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A dynamical-system analysis of the optimum

s-gradient algorithm

L. Pronzato, H.P. Wynn, and A. Zhigljavsky

Summary. We study the asymptotic behaviour of Forsythe’s s-optimum gradient
algorithm for the minimization of a quadratic function in R

d using a renormalization
that converts the algorithm into iterations applied to a probability measure. Bounds
on the performance of the algorithm (rate of convergence) are obtained through
optimum design theory and the limiting behaviour of the algorithm for s = 2 is
investigated into details. Algorithms that switch periodically between s = 1 and
s = 2 are shown to converge much faster than when s is fixed at 2.

1.1 Introduction

The asymptotic behavior of the steepest-descent algorithm (that is, the opti-
mum 1-gradient method) for the minimization of a quadratic function in R

d

is well-known, see Akaike (1959); Nocedal et al. (1998, 2002) and Chap. 7 of
(Pronzato et al., 2000). Any vector y of norm one with two nonzero compo-
nents only is a fixed point for two iterations of the algorithm after a suitable
renormalization. The main result is that, in the renormalized space, one typ-
ically observes convergence to a two-point limit set which lies in the space
spanned by the eigenvectors corresponding to the smallest and largest eigen-
values of the matrix A of the quadratic function. The proof for bounded
quadratic operators in Hilbert space is similar to the proof for R

d although
more technical, see Pronzato et al. (2001, 2006). In both cases, the method
consists of converting the renormalized algorithm into iterations applied to
a measure νk supported on the spectrum of A. The additional technicalities
arise from the fact that in the Hilbert space case the measure may be contin-
uous. For s = 1, the well-known inequality of Kantorovich gives a bound on
the rate of convergence of the algorithm, see Kantorovich and Akilov (1982)
and (Luenberger, 1973, p. 151). However, the actual asymptotic rate of con-
vergence, although satisfying the Kantorovich bound, depends on the starting
point and is difficult to predict; a lower bound can be obtained (Pronzato
et al., 2001, 2006) from considerations on the stability of the fixed points for
the attractor.

The situation is much more complicated for the optimum s-gradient algo-
rithm with s ≥ 2 and the paper extends the results presented in (Forsythe,
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1968) in several directions. First, two different sequences are shown to be
monotonically increasing along the trajectory followed by the algorithm (af-
ter a suitable renormalization) and a link with optimum design theory is
established for the construction of upper bounds for these sequences. Second,
the case s = 2 is investigated into details and a precise characterization of
the limiting behavior of the renormalized algorithm is given. Finally, we show
how switching periodically between the algorithms with respectively s = 1 and
s = 2 drastically improves the rate of convergence. The resulting algorithm
is shown to have superlinear convergence in R

3 and we give some explana-
tions for the fast convergence observed in simulations in R

d with d large: by
switching periodically between algorithms one destroys the stability of the
limiting behavior obtained when s is fixed (which is always associated with
slow convergence).

The chapter is organized as follows. Sect. 1.2 presents the optimum s-
gradient algorithm for the minimization of a quadratic function in R

d, first in
the original space and then, after a suitable renormalization, as a transforma-
tion applied to a probability measure. Rates of convergence are defined in the
same section. The asymptotic behavior of the optimum s-gradient algorithm
in R

d is considered in Sect. 1.3 where some of the properties established in
(Forsythe, 1968) are recalled. The analysis for the case s = 2 is detailed in
Sect. 1.4. Switching strategies that periodically alternate between s = 1 and
s = 2 are considered in Sect. 1.5.

1.2 The optimum s-gradient algorithm for the

minimization of a quadratic function

Let A be a real bounded self-adjoint (symmetric) operator in a real Hilbert
space H with inner product (x, y) and norm given by ‖x‖ = (x, x)1/2. We
shall assume that A is positive, bounded below, and its spectral boundaries
will be denoted by m and M :

m = inf
‖x‖=1

(Ax, x) , M = sup
‖x‖=1

(Ax, x) ,

with 0 < m < M < ∞. The function f0 to be minimized with respect to
t ∈ H is the quadratic form

f0(t) =
1

2
(At, t) − (t, y)

for some y ∈ H, the minimum of which is located at t∗ = A−1y. By a trans-
lation of the origin, which corresponds to the definition of x = t − t∗ as the
variable of interest, the minimization of f0 becomes equivalent to that of f
defined by

f(x) =
1

2
(Ax, x) , (1.1)



1 A dynamical-system analysis of the optimum s-gradient algorithm 3

which is minimum at x∗ = 0. The directional derivative of f at x in the
direction u is

∇uf(x) = (Ax, u) .

The direction of steepest descent at x is −g, with g = g(x) = Ax the gradient
of f at x. The minimum of f along the line L1(x) = {x + γAx , γ ∈ R} is
obtained for the optimum step-length

γ∗ = − (g, g)

(Ag, g)
,

which corresponds to the usual steepest-descent algorithm. One iteration of
the steepest-descent algorithm, or optimum 1-gradient method, is thus

xk+1 = xk − (gk, gk)

(Agk, gk)
gk , (1.2)

with gk = Axk and x0 some initial element in H. For any integer s ≥ 1, define
the s-dimensional plane of steepest descent by

Ls(x) = {x +

s
∑

i=1

γiA
ix , γi ∈ R for all i} .

In the optimum s-gradient method, xk+1 is chosen as the point in Ls(xk) that
minimizes f . When H = R

d, A is d × d symmetric positive-definite matrix
with minimum and maximum eigenvalues respectively m and M , and xk+1 is
uniquely defined provided that the d eigenvalues of A are all distinct. Also,
in that case Ld(xk) = R

d and only the case s ≤ d is of interest. We shall give
special attention to the case s = 2.

1.2.1 Updating rules

Similarly to (Pronzato et al., 2001, 2006) and Chap. 2 of this volume, consider
the renormalized gradient

z(x) =
g(x)

(g(x), g(x))1/2
,

so that (z(x), z(x)) = 1 and denote zk = z(xk) for all k. Also define

µk
j = (Ajzk, zk) , j ∈ Z , (1.3)

so that µk
0 = 1 for any k and the optimum step-length of the optimum 1-

gradient at step k is −1/µk
1 , see (1.2). The optimum choice of the s γi’s in the

optimum s-gradient can be obtained by direct minimization of f over Ls(xk).
A simpler construction follows from the observation that gk+1, and thus zk+1,
must be orthogonal to Ls(xk), and thus to zk, Azk, . . . , As−1zk. The vector of
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optimum step-lengthes at step k, −→γ k = (γk
1 , . . . , γk

s )⊤, is thus solution of the
following system of s linear equations

Mk
s,1

−→γ k = −(1, µk
1 , . . . , µk

s−1)
⊤ , (1.4)

where Mk
s,1 is the s × s (symmetric) matrix with element (i, j) given by

{Mk
s,1}i,j = µk

i+j−1.
The following remark will be important later on, when we shall compare

the rates of convergence of different algorithms.

Remark 1. One may notice that one step of the optimum s-gradient method
starting from some x in H corresponds to s successive steps of the conjugate
gradient algorithm starting from the same x, see (Luenberger, 1973, p. 179).

¤

The next remark shows the connection with optimum design of experi-
ments, which will be further considered in Sect. 1.2.3 (see also Pronzato et al.
(2005) where the connection is developed around the case of the steepest-
descent algorithm).

Remark 2. Consider Least-Squares (LS) estimation in a regression model

s
∑

i=1

γi ti = −1 + εi

with (εi) a sequence of i.i.d. errors with zero mean. Assume that the ti’s
are generated according to a probability (design) measure ξ. Then, the LS
estimator of the parameters γi, i = 1, . . . , s is

γ̂ = −
[∫

(t, t2, . . . , ts)⊤(t, t2, . . . , ts) ξ(dt)

]−1 ∫

(t, t2, . . . , ts)⊤ ξ(dt)

and coincides with −→γ k when ξ is such that

∫

tj+1 ξ(dt) = µk
j , j = 0, 1, 2 . . .

The information matrix M(ξ) for this LS estimation problem then coincides
with Mk

s,1. ¤

Using (1.4), one iteration of the optimum s-gradient method thus gives

xk+1 = Qk
s(A)xk , gk+1 = Qk

s(A)gk (1.5)

where Qk
s(t) is the polynomial Qk

s(t) = 1+
∑s

i=1 γk
i ti with the γk

i solutions of
(1.4). Note that the use of any other polynomial P (t) of degree s or less, and
such that P (0) = 1, yields a larger value for f(xk+1). Using (1.4), we obtain
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Qk
s(t) = 1 − (1, µk

1 , . . . , µk
s−1) [Mk

s,1]
−1







t
...
ts







and direct calculations give

Qk
s(t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 µk
1 . . . µk

s−1 1
µk

1 µk
2 . . . µk

s t
...

... . . .
...

...
µk

s µk
s+1 . . . µk

2s−1 ts

∣

∣

∣

∣

∣

∣

∣

∣

∣

|Mk
s,1|

(1.6)

where, for any square matrix M, |M| denotes its determinant. The derivation
of the updating rule for the normalized gradient zk relies on the computation
of the inner product (gk+1, gk+1). From the orthogonality property of gk+1 to
gk, Agk, . . . , As−1gk we get

(gk+1, gk+1) = (gk+1, γ
k
s Asgk) = γk

s (Qk
s(A)Asgk, gk)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 µk
1 . . . µk

s−1 µk
s

µk
1 µk

2 . . . µk
s µk

s+1
...

... . . .
...

...
µk

s µk
s+1 . . . µk

2s−1 µk
2s

∣

∣

∣

∣

∣

∣

∣

∣

∣

|Mk
s,1|

γk
s (gk, gk) , (1.7)

where γk
s , the coefficient of ts in Qk

s(t), is given by

γk
s =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 µk
1 . . . µk

s−1

µk
1 µk

2 . . . µk
s

...
... . . .

...
µk

s−1 µk
s . . . µk

2s−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

|Mk
s,1|

. (1.8)

1.2.2 The optimum s-gradient algorithm as a sequence of

transformations of a probability measure

When H = R
d, we can assume that A is already diagonalized, with eigenvalues

0 < m = λ1 ≤ λ2 ≤ · · · ≤ λd = M , and consider [zk]2i , with [zk]i the i-th

component of zk, as a mass on the eigenvalue λi (note that
∑d

i=1[zk]2i = µk
0 =

1). Define the discrete probability measure νk supported on (λ1, . . . , λd) by
νk(λi) = [zk]2i , so that its j-th moment is µk

j , j ∈ Z, see (1.3).

Remark 3. When two eigenvalues λi and λj of A are equal, their masses [zk]2i
and [zk]2j can be added since the updating rule is the same for the two com-
ponents [zk]i and [zk]j . Concerning the analysis of the rate of convergence of
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the optimum s-gradient algorithm, confounding masses associated with equal
eigenvalues simply amounts to reducing the dimension of H and we shall there-
fore assume that all eigenvalues of A are different when studying the evolution
of νk. ¤

In the general case where H is a Hilbert space, let Eλ denote the spectral
family associated with the operator A; we then define the measure νk by
νk(dλ) = d(Eλzk, zk), m ≤ λ ≤ M . In both cases H = R

d and H a Hilbert
space, we consider νk as the spectral measure of A at the iteration k of the
algorithm, and write

µk
j =

∫

ti νk(dt) .

For any measure ν on the interval [m,M ], any α ∈ R and any positive integer
m define

Mm,α(ν) =

∫

tα (1, t, t2, . . . , tm)⊤(1, t, t2, . . . , tm) ν(dt) . (1.9)

For both H = R
d and H a Hilbert space, the iteration on zk can be written

as

zk → zk+1 = Tz(zk) =
gk+1

(gk+1, gk+1)1/2

=
(gk, gk)1/2

(gk+1, gk+1)1/2
Qk

s(A)zk

=
|Mk

s,1|
|Mk

s,0|1/2|Mk
s−1,0|1/2

Qk
s(A)zk , (1.10)

with Mk
s,1 = Ms−1,1(νk) and Mk

m,0 = Mm,0(νk), i.e. the (m + 1) × (m + 1)

matrix with element (i, j) given by {Mk
m,0}i,j = µk

i+j−2. The iteration on zk

can be interpreted as a transformation of the measure νk

νk → νk+1 = Tν(νk) with νk+1(dx) = Hk(x)νk(dx) , (1.11)

where, using (1.5, 1.6, 1.7) and (1.8), we have

Hk(x) =
[Qk

s(x)]2 |Mk
s,1|2

|Mk
s,0||Mk

s−1,0|
(1.12)

= (1, x, . . . , xs)[Mk
s,0]

−1











1
x
...

xs











− (1, x, . . . , xs−1)[Mk
s−1,0]

−1











1
x
...

xs−1











.

As moment matrices, Mk
s,1 and Mk

m,0 are positive semi-definite and

|Mk
s,1| ≥ 0 for any s ≥ 1 (respectively |Mk

m,0| ≥ 0 for any m ≥ 0), with equal-
ity if and only if νk is supported on strictly less that s points (respectively
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on m points or less). Also note that from the construction of the polynomial
Qk

s(t), see (1.5), we have

∫

Qk
s(t) ti νk(dt) = (Qk

s(A)gk, Aigk) = 0 , i = 0, . . . , s − 1 , (1.13)

which can be interpreted as an orthogonality property between the polyno-
mials Qk

s(t) and ti for i = 0, . . . , s − 1. From this we can easily deduce the
following.

Theorem 1. Assume that νk is supported on s + 1 points at least. Then the
polynomial Qk

s(t) defined by (1.5) has s roots in the open interval (m,M).

Proof. Let ζi, i = 1, . . . , q − 1, denote the roots of Qk
s(t) in (m,M). Suppose

that q − 1 < s. Consider the polynomial T (t) = (−1)q−1 Qk
s(m)

∏q−1
i=1 (t −

ζi), it satisfies T (t)Qk
s(t) > 0 for all t ∈ (m,M), t 6= ζi. Therefore,

∫

T (t)Qk
s(t)νk(dt) > 0, which contradicts (1.13) since T (t) has degree q− 1 ≤

s − 1.

Remark 4. Theorem 1 implies that Qk
s(m) has the same sign as Qk

s(0) =
(−1)s|Mk

s−1,0|/|Mk
s,1|, that is, (−1)s. Similarly, Qk

s(M) has the same sign

as limt→∞ Qk
s(t) which is positive. ¤

Using the orthogonality property (1.13), we can also prove the next two
theorems concerning the support of νk, see Forsythe (1968).

Theorem 2. Assume that the measure νk is supported on s+1 points at least.
Then this is also true for the measure νk+1 obtained through (1.11).

Proof. We only need to consider the case when the support Sk of νk is finite,
that is, when H = R

d. Suppose that νk is supported on n points, n ≥ s+1. The
determinants |Mk

s,1|, |Mk
s,0| and |Mk

s−1,1| in (1.12) are thus strictly positive.
Let q be the largest integer such that there exist λi1 < λi2 < · · · < λiq

in Sk

with Qk
s(λij

)Qk
s(λij+1

) < 0, j = 1, . . . , q − 1. We shall prove that q ≥ s + 1.
From (1.11, 1.12) it implies that νk is supported on s + 1 points at least.

From (1.13),
∫

Qk
s(t) νk(dt) = 0, so that there exist λi1 and λi2 in Sk with

Qk
s(λi1)Q

k
s(λi2) < 0, therefore q ≥ 2. Suppose that q ≤ s. By construction

Qk
s(λi1) is of the same sign as Qk

s(m) and we can construct q disjoint open
intervals Λj , j = 1, . . . , q such that λij

∈ Λj and Qk
s(λi)Q

k
s(λij

) ≥ 0 for all
λi ∈ Sk ∩Λj with ∪q

j=1Λ̄j = [m,M ], where Λ̄j is the closure of Λj (notice that

Qk
s(λ) may change sign in Λj but all the Qk

s(λi)’s are of the same sign for λi ∈
Sk∩Λj). Consider the q−1 scalars ζi, i = 1, . . . , q−1, defined by the endpoints
of the Λj ’s, m and M excluded; they satisfy λi1 < ζ1 < λi2 < · · · < ζq−1 < λiq

.
Form now the polynomial T (t) = (−1)s+q−1(t − ζ1) × · · · × (t − ζq−1), one
can check that Qk

s(λi)T (λi) ≥ 0 for all λi in Sk. Also, Qk
s(λij

)T (λij
) > 0

for j = 1, . . . , q. This implies
∑d

i=1 T (λi)Q
k
s(λi)[zk]2i > 0, which contradicts

(1.13) since T (t) has degree q − 1 ≤ s − 1.
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Corollary 1. If x0 is such that ν0 is supported on n0 = s + 1 points at least,
then (gk, gk) > 0 for all k ≥ 1. Also, the determinants of all (m+1)× (m+1)
moment matrices Mm,α(νk), see (1.9), are strictly positive for all k ≥ 1.

Theorem 3. Assume that ν0 is supported on n0 = s+1 points. Then ν2k = ν0

for all k.

Proof. It is enough to prove that g2k is parallel to g0, and thus that g2 is
parallel to g0. Since the updating rule only concerns nonzero components,
we may assume that d = s + 1. We have g1 = Q0

s(A)g0, g2 = Q1
s(A)g1, g1 is

orthogonal to g0, Ag0, . . . , A
s−1g0, which are independent, and g2 is orthogonal

to g1. We can thus decompose g2 with respect to the basis g0, Ag0, . . . , A
s−1g0

as

g2 =

s−1
∑

i=0

αi Aig0 .

Now, g2 is orthogonal to Ag1, and thus

g⊤1 Ag2 = 0 =

s−1
∑

i=0

αi g⊤1 Ai+1g0 = αs−1 g⊤1 Asg0

with g⊤1 Asg0 6= 0 since otherwise g1 would be zero. Therefore, αs−1 = 0.
Similarly, g2 is orthogonal to A2g1, which gives

0 =

s−2
∑

i=0

αi g⊤1 Ai+2g0 = αs−2 g⊤1 Asg0

so that αs−2 = 0. Continuing like that up to g⊤1 As−1g2 we obtain α1 = α2 =
· · · = αs−1 = 0 and g2 = α0g0. Notice that α0 > 0 since (A−1g2, g0) =
(A−1g1, g1), see (1.18).

The transformation zk → zk+1 = Tz(zk) (respectively νk → νk+1 =
Tν(νk)) can be considered as defining a dynamical system with state zk ∈ H
at iteration k (respectively, νk ∈ Π, the set of probability measures defined
on the spectrum of A). One purpose of the paper is to investigate the limit set
of the orbit of the system starting at z0 or ν0. As it is classical in the study of
stability of dynamical systems where Lyapunov functions often play a key role
(through the Lyapunov Stability Theorem or Lasalle’s Invariance Principle,
see, e.g., (Elaydi, 2005, Chap. 4)), the presence of monotone sequences in the
dynamics of the renormalized algorithm will be an important ingredient of
the analysis. Theorem 3 shows that the behavior of the renormalized algo-
rithm may be periodic with period 2. We shall see that this type of behavior
is typical, although the structure of the attractor may be rather complicated.
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1.2.3 Rates of convergence and monotone sequences

Rates of convergence

Consider the following rate of convergence of the algorithm at iteration k,

rk =
f(xk+1)

f(xk)
=

(Axk+1, xk+1)

(Axk, xk)
=

(A−1gk+1, gk+1)

(A−1gk, gk)
. (1.14)

From the orthogonality property of gk+1 we have

(A−1gk+1, gk+1) = (A−1Qk
s(A)gk, gk+1) = (A−1gk, gk+1)

and thus, using (1.6),

rk =
|Mk

s,−1|
|Mk

s,1|µk
−1

with Mk
s,−1 = Ms,−1(νk), see (1.9), that is, the (s+1)×(s+1) moment matrix

with element (i, j) given by {Mk
s,−1}i,j = µk

i+j−3. Using the orthogonality
property of gk+1 again, we can easily prove that the sequence of rates (rk) is
non-decreasing along the trajectory followed by the algorithm.

Theorem 4. When x0 is such that ν0 is supported on s + 1 points at least,
the rate of convergence rk defined by (1.14) is non-decreasing along the path
followed by the optimum s-gradient algorithm. It also satisfies

rk ≤ R∗
s = T−2

s

(

̺ + 1

̺ − 1

)

(1.15)

where ̺ = M/m is the condition number of A and Ts(t) is the s-th Chebyshev
polynomial (normalized so that maxt∈[−1,1] |Ts(t)| = 1)

Ts(t) = cos[s arccos(t)] =
(t +

√
t2 − 1)s + (t −

√
t2 − 1)s

2
. (1.16)

Moreover, the equality in (1.15) is obtained when νk is the measure ν∗
s defined

by
ν∗

s (y0) = ν∗
s (ys) = 1/(2s) , ν∗

s (yj) = 1/s , 1 ≤ j ≤ s − 1 , (1.17)

where yj = (M + m)/2 + [cos(jπ/s)](M − m)/2.

Proof. From Corollary 1, (g0, g0) > 0 implies (gk, gk) > 0 for all k and rk is
thus well defined. Straightforward manipulations give

(A−1gk+1, gk+1) − (A−1gk+2, gk) =
(

A−1[Qk
s(A) − Qk+1

s (A)]gk, Qk
s(A)gk

)

=

(

A−1
s

∑

i=1

(γk
i − γk+1

i )Aigk, Qk
s(A)gk

)

= 0 (1.18)
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where equality to zero follows from (1.13). Therefore, from the Cauchy–
Schwarz inequality,

(A−1gk+1, gk+1)
2 = (A−1gk+2, gk)2 ≤ (A−1gk+2, gk+2)(A

−1gk, gk)

and rk ≤ rk+1, with equality if and only if gk+2 = αgk for some α ∈ R
+ (α > 0

since (A−1gk+2, gk) = (A−1gk+1, gk+1)). This shows that rk is non-decreasing.
The rate (1.14) can also be written as

rk =
[

µk
−1{(Mk

s,−1)
−1}1,1

]−1
.

Define the measure ν̄k by ν̄k(dt) = νk(dt)/(tµk
−1) (so that

∫

ν̄k(dt) = 1) and
denote M̄k

m,n the matrix obtained by substituting ν̄k for νk in Mk
m,n for any

n,m. Then, M̄k
s,0 = Mk

s,−1/µk
−1 and rk =

[

{(M̄k
s,0)

−1}1,1

]−1
. The maximum

value for rk is thus obtained for the Ds-optimal measure ν̄∗
s on [m,M ] for

the estimation θ0 in the linear regression model η(θ, x) =
∑s

i=0 θix
i with

i.i.d. errors, see, e.g., (Fedorov, 1972, p. 144) and (Silvey, 1980, p. 10) (ν̄∗
s is

also c-optimal for c = (1, 0, . . . , 0)⊤). This measure is uniquely defined, see
Hoel and Levine (1964), (Sahm, 1998, p. 52): it is supported at the s + 1
points yj = (M + m)/2 + [cos(jπ/s)](M − m)/2, j = 0, . . . , s, and each yj

receives a weight proportional to αj/yj , with α0 = αs = 1/2 and αj = 1 for
j = 1, . . . , s − 1. Applying the transformation ν(dt) = tν̄(dt)µ−1 we obtain
the measure ν∗

s given by (1.17).

Remark 5. Meinardus (1963) and Forsythe (1968) arrive at the result (1.15)
by a different route. They write

rk =
(A−1gk+1, gk+1)

(A−1gk, gk)
=

∫

[Qk
s(t)]2 t−1 νk(dt)

µk
−1

.

Since Qk
s(t) minimizes f(xk+1), rk ≤ (1/µk

−1)
∫

P 2(t) t−1 νk(dt) for any s-
degree polynomial P (t) such that P (0) = 1. Equivalently,

rk ≤
∫

S2(t) t−1 νk(dt)

S2(0)µk
−1

for any s-degree polynomial S(t). Take S(t) = S∗(t) = Ts[(M +m−2t)/(M −
m)], so that S2(t) ≤ 1 for t ∈ [m,M ], then rk satisfies rk ≤ [S∗(0)]−2 = R∗

s

with R∗
s given by (1.15). ¤

Notice that Ts[(̺+1)/(̺−1)] > 1 in (1.15), so that we have the following.

Corollary 2. If x0 is such that ν0 is supported on s + 1 points at least, then
the optimum s-gradient algorithm converges linearly to the optimum, that is,

0 < c1 =
f(x1)

f(x0)
≤ f(xk+1)

f(xk)
≤ R∗

s < 1 , for all k .

Moreover, the convergence slows down monotonically on the route to the op-
timum and the rate rk given by (1.14) tends to a limit r∞.
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The monotonicity of the sequence (rk), together with Theorem 3, has the
following consequence.

Corollary 3. Assume that ν0 is supported on n0 = s+1 points. Then rk+1 =
rk for all k.

Other rates of convergence can be defined as

Rk(W ) =
(Wgk+1, gk+1)

(Wgk, gk)
(1.19)

with W be a bounded positive self-adjoint operator in H. However, the fol-
lowing theorem shows that all such rates are asymptotically equivalent, see
Pronzato et al. (2006).

Theorem 5. Let W be a bounded positive self-adjoint operator in H, with
bounds c and C such that 0 < c < C < ∞ (when H = R

d, W is a d × d
positive-definite matrix with minimum and maximum eigenvalues respectively
c and C). Consider the rate of convergence defined by (1.19) if ‖gk‖ 6= 0
and Rk(W ) = 1 otherwise. Apply the optimum s-gradient algorithm (1.5),
initialized at g0 = g(x0), for the minimization of f(x) given by (1.1). Then
the limit

R(W,x0) = lim
n→∞

[

n−1
∏

k=0

Rk(W )

]1/n

exists for all x0 in H and R(W,x0) = R(x0) does not depend on W . In
particular,

R(W,x0) = r∞ = lim
n→∞

(

n−1
∏

k=0

rk

)1/n

(1.20)

with rk defined by (1.14).

Proof. Assume that x0 is such that for some k ≥ 0, ‖gk+1‖ = 0 with ‖gi‖ > 0
for all i ≤ k (that is, xk+1 = x∗ and xi 6= x∗ for i ≤ k). This implies
Rk(W ) = 0 for any W , and therefore R(W,x0) = R(x0) = 0.

Assume now that ‖gk‖ > 0 for all k. Consider

Vn =

[

n−1
∏

k=0

Rk(W )

]1/n

=

[

n−1
∏

k=0

(Wgk+1, gk+1)

(Wgk, gk)

]1/n

=

[

(Wgn, gn)

(Wg0, g0)

]1/n

.

We have,
∀z ∈ H , c‖z‖2 ≤ (Wz, z) ≤ C‖z‖2 ,

and thus

(c/C)1/n

[

(gn, gn)

(g0, g0)

]1/n

≤ Vn ≤ (C/c)1/n

[

(gn, gn)

(g0, g0)

]1/n

.
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Since (c/C)1/n → 1 and (C/c)1/n → 1 as n → ∞, lim infn→∞ Vn and
lim supn→∞ Vn do not depend on W . Taking W = A−1 we get Rk(W ) = rk.
The sequence (rk) is not decreasing, and thus limn→∞ Vn = r∞ for any W .

For any fixed ̺ = M/m, the bound R∗
s given by (1.15) tends to zero as s

tends to infinity whatever the dimension d when H = R
d, and also when H is

a Hilbert space. However, since one step of the optimum s-gradient method
corresponds to s successive steps of the conjugate gradient algorithm, see
Remark 1, a normalized version of the convergence rate allowing comparison

with classical steepest descent is r
1/s
k , which is bounded by

N∗
s = (R∗

s)
1/s = T−2/s

s

(

̺ + 1

̺ − 1

)

(1.21)

where Ts(t) is the s-th Chebyshev polynomial, see (1.16). The quantity N∗
s is

a decreasing function of s, see Fig. 1.1, but has a positive limit when s tends
to infinity,

lim
s→∞

N∗
s = N∗

∞ =
(
√

̺ − 1)2

(
√

̺ + 1)2
. (1.22)

Fig. 1.2 shows the evolution of N∗
∞ as a function of the condition number ̺.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

s

N
s*

ρ=16

ρ=8

ρ=4

ρ=2

Fig. 1.1. Upper bounds N∗

s , see (1.21), as functions of s for different values of the
condition number ̺

A second monotone bounded sequence

Another quantity qk also turns out to be non-decreasing along the trajectory
followed by the algorithm, as shown in the following theorem.
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0.1

0.2
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ρ

N
∞*

Fig. 1.2. Limiting value N∗

∞ as a function of ̺

Theorem 6. When x0 is such that ν0 is supported on s + 1 points at least,
the quantity qk defined by

qk =
(gk+1, gk+1)

(γk
s )2 (gk, gk)

, (1.23)

with γk
s given by (1.8), is non-decreasing along the path followed by the opti-

mum s-gradient algorithm. Moreover, it satisfies

qk ≤ q∗s =
(M − m)2s

24s−2
, for all k , (1.24)

where the equality is obtained when νk is the measure (1.17) of Theorem 4.

Proof. From Corollary 1, (g0, g0) > 0 implies (gk, gk) > 0 and γk
s > 0 for all

k so that qk is well defined. Using the same approach as for rk in Theorem 4,
we write

(gk+1, gk+1)/γk
s − (gk+2, gk)/γk+1

s =
(

Qk
s(A)gk, gk+1

)

/γk
s

−
(

Qk+1
s (A)gk, gk+1

)

/γk+1
s

=
(

[Qk
s(A)/γk

s − Qk+1
s (A)/γk+1

s ]gk, gk+1

)

=

([

(1/γk
s − 1/γk+1

s )I +

s−1
∑

i=1

(γk
i /γk

s − γk+1
i /γk+1

s )Ai

]

gk, gk+1

)

= 0 ,

where equality to zero follows from (1.13). The Cauchy–Schwarz inequality
then implies
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(gk+1, gk+1)
2/(γk

s )2 = (gk+2, gk)2/(γk+1
s )2 ≤ (gk+2, gk+2)(gk, gk)/(γk+1

s )2

and qk ≤ qk+1 with equality if and only if gk+2 = αgk for some α ∈ R
+ (α > 0

since (gk+2, gk) = (gk+1, gk+1)γ
k+1
s /γk

s and γk
s > 0 for all k, see Corollary 1).

This shows that qk is non-decreasing.
The determination of the probability measure that maximizes qk is again

related to optimal design theory. Using (1.7) and (1.8), we obtain

qk =
|Mk

s,0|
|Mk

s−1,0|
.

Hence, using the inversion of a partitioned matrix, we can write

qk = µk
2s − (1, µk

1 , . . . , µk
s−1)(M

k
s−1,0)

−1











1
µk

1
...

µk
s−1











=
(

{

(Mk
s,0)

−1
}

s+1,s+1

)−1

,

so that the maximization of qk with respect to νk is equivalent to the de-
termination of a Ds-optimum measure on [m,M ] for the estimation of θs in
the linear regression model η(θ, x) =

∑s
i=0 θix

i with i.i.d. errors (or to the
determination of a c-optimal measure on [m, M ] with c = (0, . . . , 0, 1)⊤). This
measure is uniquely defined, see (Kiefer and Wolfowitz, 1959, p. 283): when
the design interval is normalized to [−1, 1], the optimum measure ξ∗ is sup-
ported on s + 1 points given by ±1 and the s − 1 zeros of the derivative of
s-th Chebyshev polynomial Ts(t) given by (1.16) and the weights are

ξ∗(−1) = ξ∗(1) = 1/(2s) , ξ∗(cos[jπ/s]) = 1/s , 1 ≤ j ≤ s − 1 .

The transformation t ∈ [−1, 1] 7→ z = (M + m)/2 + t(M − m)/2 ∈ [m,M ]
gives the measure ν∗

s on [m,M ]. The associated maximum value for qk is q∗s
given by (1.24), see (Kiefer and Wolfowitz, 1959, p. 283).

The monotonicity of the sequence (qk), together with Theorem 3, implies
the following analogue to Corollary 3.

Corollary 4. Assume that ν0 is supported on n0 = s+1 points. Then qk+1 =
qk for all k.

As a non-decreasing and bounded sequence, (qk) tends to a limit q∞. The
existence of limiting values r∞ and q∞ will be essential for studying the limit
points of the orbits (z2k) or (ν2k) in the next sections. In the rest of the paper
we only consider the case where H = R

d and assume that A is diagonalized
with d distinct eigenvalues 0 < m = λ1 < λ2 < · · · < λd = M .
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1.3 Asymptotic behavior of the optimum s-gradient

algorithm in R
d

The situation is much more complex when s ≥ 2 than for s = 1, and we shall
recall some of the properties established in (Forsythe, 1968) for H = R

d. If
x0 is such that the initial measure ν0 is supported on s points or less, the
algorithm terminates in one step. In the rest of the section we thus suppose
that ν0 is supported on n0 ≥ s + 1 points. The algorithm then converges
linearly to the optimum, see Corollary 2. The set Z(x0) of limit points of the
sequence of renormalized gradients z2k satisfies the following.

Theorem 7. If x0 is such that ν0 has s + 1 support points at least, the
set Z(x0) of limit points of the sequence of renormalized gradients z2k,
k = 0, 1, 2, . . . is a closed connected subset of the d-dimensional unit sphere
Sd. Any y in Z(x0) satisfies T 2

z (y) = y, where T 2
z (y) = Tz[Tz(y)] with Tz

defined by (1.10).

Proof. Using (1.18) we get

rk+1 − rk =
(A−1gk+2, gk+2)

(A−1gk+1, gk+1)
×

[

1 − (A−1gk+2, gk)2

(A−1gk+2, gk+2)(A−1gk, gk)

]

= rk+1 ×
[

1 − (A−1zk+2, zk)2

(A−1zk+2, zk+2)(A−1zk, zk)

]

.

Since rk is non-decreasing and bounded, see Theorem 4, rk tends to a limit
r∞(x0) and, using Cauchy–Schwarz inequality ‖zk+2−zk‖ → 0. The set Z(x0)
of limit points of the sequence z2k is thus a continuum on Sd.

Take any y ∈ Z(x0). There exists a subsequence (ki) such that z2ki
→ y as

i → ∞, and z2ki+2 = T 2
z (z2ki

) → y since ‖z2ki+2 − z2ki
‖ → 0. The continuity

of Tz then implies z2ki+2 → T 2
z (y) and thus T 2

z (y) = y.

Obviously, the sequence (z2k+1) satisfies a similar property (consider ν1 as
a new initial measure ν0), so that we only need to consider the sequence of
even iterates.

Remark 6. Forsythe (1968) conjectures that the continuum for Z(x0) is in fact
always a single point. Although it is confirmed by numerical simulations, we
are not aware of any proof of attraction to a single point. One may however
think of Z(x0) as the set of possible limit points for the sequence (z2k), leaving
open the possibility for attraction to a particular point y∗ in Z(x0). Examples
of sets Z(x0) will be presented in Sect. 1.4. Note that we shall speak of at-
traction and attractors although the terms are somewhat inaccurate: starting
from x′

0 such that z′0 = g(x′
0)/‖g(x′

0)‖ is arbitrarily close to some y in Z(x0)
yields a limit set Z(x′

0) for the iterates z′2k close to Z(x0) but Z(x′
0) 6= Z(x0).

¤
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Some coordinates [y]i of a given y in Z(x0) may equal zero, i ∈ {1, . . . , d}.
Define the asymptotic spectrum S(x0, y) at y ∈ Z(x0) as the set of eigenvalues
λi such that [y]i 6= 0 and let n = n(x0, y) be the number of points in S(x0, y).
We shall then say that S(x0, y) is a n-point asymptotic spectrum. We know
from Theorem 3 that if ν0 is supported on exactly n0 = s + 1 points then
n(x0, y) = s + 1 (and ν2k = ν0 for all k so that Z(x0) is the singleton {z0}).
In the more general situation where ν0 is supported on n0 ≥ s + 1 points,
n(x0, y) satisfies the following, see Forsythe (1968).

Theorem 8. Assume that ν0 is supported on n0 > s + 1 points. Then the
number of points n(x0, y) in the asymptotic spectrum S(x0, y) of any y ∈
Z(x0) satisfies

s + 1 ≤ n(x0, y) ≤ 2s .

Proof. Take any y in Z(x0), let n be the number of its nonzero components.
To this y we associate a measure ν through ν(λi) = [y]2i , i = 1, . . . , d and we
construct a polynomial Qs(t) from the moments of ν, see (1.6). Applying the
transformation (1.11) to ν we get the measure ν′ from which we construct
the polynomial Q′

s(t). The invariance property T 2
z (y) = Tz[Tz(y)] = y, with

Tz defined by (1.10), implies Qs(λi)Q
′
s(λi)[y]i = c[y]i, c > 0, where [y]i is any

nonzero component of y, i = 1, . . . , n. The equation Qs(t)Q
′
s(t) = c > 0 can

have between 1 and 2s solutions in (m,M). We know already from Theorem 2
that n(x0, y) ≥ s + 1.

The following Theorem shows that when m and M are support points of
ν0, then the asymptotic spectrum of any y ∈ Z(x0) also contains m and M .

Theorem 9. Assume that ν0 is supported on n0 ≥ s + 1 points and that
ν0(m) > 0, ν0(M) > 0. Then lim infk→∞ νk(m) > 0 and lim infk→∞ νk(M) >
0.

Proof. We only consider the case for M , the proof being similar for m.
First notice that from Theorem 1, all roots of the polynomials Qk

s(t) lie in
the open interval (m,M), so that νk(M) > 0 for any k.

Suppose that lim infk→∞ νk(M) = 0. Then there exists a subsequence (ki)
such that z2ki

tends to some y in Z(x0) and limi→∞ ν2ki
(M) = 0. To this y we

associate a measure ν as in the proof of Theorem 8 and construct a polynomial
Qs(t) from the moments of ν, see (1.6). Since ν2ki

(M) → 0, ν(M) = 0. Let
λj be the largest eigenvalue of A such that ν(λj) > 0. Then, all zeros of Qs(t)
lie in (m, λj) and the same is true for the polynomial Q′

s(t) constructed from
the measure ν′ = Tν(ν) obtained by the transformation (1.11). Hence, Qs(t)
and Q′

s(t) are increasing (and positive, see Remark 4) for t between λj and
M , so that Qs(M)Q′

s(M) > Qs(λj)Q
′
s(λj). This implies by continuity

Q2ki
s (M)Q2ki+1

s (M) ≥ cQ2ki
s (λj)Q

2ki+1
s (λj)

for some c > 1 and all i larger than some i0. Therefore,
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[g2ki+2]
2
d

[g2ki
]2d

≥ c2
[g2ki+2]

2
j

[g2ki
]2j

, i > i0 ,

see (1.6), and thus
[z2ki+2]

2
d

[z2ki+2]2j
≥ c2 [z2ki

]2d
[z2ki

]2j
, i > i0 .

Since [zk]2d > 0 for all k and [z2ki
]2j → ν(λj) > 0 this implies [z2ki

]2d → ∞ as
i → ∞, which is impossible. Therefore, lim infk→∞ νk(M) > 0.

The properties above explain the asymptotic behavior of the steepest-
descent algorithm in R

d: when s = 1 and ν0 is supported on two points at
least, including m and M , then n(x0, y) = 2 for any y in Z(x0) and m and
M are in the asymptotic spectrum S(x0, y) of any y ∈ Z(x0). Therefore,
S(x0, y) = {m,M} for all y ∈ Z(x0). Since Z(x0) is a part of the unit sphere
Sd, ‖y‖ = 1 and there is only one degree of freedom. The limiting value r∞ of
rk then defines the attractor uniquely and Z(x0) is a singleton.

In the case where s is even, Forsythe (1968) gives examples of invariant
measures ν0 satisfying νk+2 = νk and supported on 2q points with s + 1 <
2q ≤ 2s, or supported on 2q + 1 points with s + 1 ≤ 2q + 1 < 2s. The nature
of the sets Z(x0) and S(x0, y) is investigated more deeply in the next section
for the case s = 2.

1.4 The optimum 2-gradient algorithm in R
d

In all the section we omit the index k in the moments µk
j and matrices Mk

m,n.

The polynomial Qk
2(t) defined by (1.6) is then

Qk
2(t) =

∣

∣

∣

∣

∣

∣

1 µ1 1
µ1 µ2 t
µ2 µ3 t2

∣

∣

∣

∣

∣

∣

|M2,1|
=

∣

∣

∣

∣

∣

∣

1 µ1 1
µ1 µ2 t
µ2 µ3 t2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ1 µ2

µ2 µ3

∣

∣

∣

∣

and the function Hk(x), see (1.12), is given by

Hk(x) =

∣

∣

∣

∣

∣

∣

1 µ1 1
µ1 µ2 x
µ2 µ3 x2

∣

∣

∣

∣

∣

∣

2

∣

∣

∣

∣

1 µ1

µ1 µ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

∣

∣

∣

∣

∣

∣

(1.25)

=
(

1 x x2
)





1 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4





−1 



1
x
x2



 −
(

1 x
)

(

1 µ1

µ1 µ2

)−1 (

1
x

)

.
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The monotone sequences (rk) and (qk) of Sect. 1.2.3, see (1.14, 1.23), are given
by

rk =

∣

∣

∣

∣

∣

∣

µ−1 1 µ1

1 µ1 µ2

µ1 µ2 µ3

∣

∣

∣

∣

∣

∣

µ−1

∣

∣

∣

∣

µ1 µ2

µ2 µ3

∣

∣

∣

∣

, qk =

∣

∣

∣

∣

∣

∣

1 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 µ1

µ1 µ2

∣

∣

∣

∣

. (1.26)

When ν0 is supported on three points, νk+2 = ν0 for all k from Theorem 3
and, when ν0 is supported on less than three points, the algorithm converges
in one iteration. In the rest of the section we thus assume that ν0 is supported
on more than three points. Without any loss of generality, we may take d as
the number of components in the support of ν0 and m and M respectively as
the minimum and maximum values of these components.

1.4.1 A characterization of limit points through the

transformation νk → νk+1

From Theorem 8, the number of components n(x0, y) of the asymptotic spec-
trum S(x0, y) of any y ∈ Z(x0) satisfies 3 ≤ n(x0, y) ≤ 4 and, from Theorem 9,
S(x0, y) always contains m and M .

Consider the function

Q̄k
2(t) =

Qk
2(t)|M2,1|

|M1,0|1/2|M2,0|1/2
=

∣

∣

∣

∣

∣

∣

1 µ1 1
µ1 µ2 t
µ2 µ3 t2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 µ1

µ1 µ2

∣

∣

∣

∣

1/2
∣

∣

∣

∣

∣

∣

1 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

∣

∣

∣

∣

∣

∣

1/2
. (1.27)

It satisfies [Q̄k
2(t)]2 = Hk(t), zk+1 = Q̄k

2(A)zk, see (1.10), and can be
considered as a normalized version of Qk

2(t); zk+2 = zk is equivalent to
Q̄k+1

2 (A)Q̄k
2(A)zk = zk, that is Q̄k

2(λi)Q̄
k+1
2 (λi) = 1 for all i’s such that

[zk]i 6= 0. Q̄k
2(t) and Q̄k+1

2 (t) are second order polynomials in t with two
zeros in (m,M), see Theorem 1, and we write

Q̄k
2(t) = αkt2 + βkt + ωk , Q̄k+1

2 (t) = αk+1t
2 + βk+1t + ωk+1 .

From the expressions (1.26, 1.27), αk = 1/
√

qk for any k, so that both αk and
αk+1 tend to some limit 1/

√
q∞, see Theorem 6. From (1.27) and (1.7, 1.8),

ω2
k =

(gk, gk)

(gk+1, gk+1)
, ω2

k+1 =
(gk+1, gk+1)

(gk+2, gk+2)
.

Since ‖z2k+2 − z2k‖ tends to zero, see Theorem 7, Theorem 5 implies that
ωkωk+1 tend to 1/r∞ as k tends to infinity.
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Three-point asymptotic spectra

Assume that x0 is such that ν0 has more than three support points. To any y
in Z(x0) we associate the measure ν defined by ν(λi) = [y]2i , i = 1, . . . , d and
denote Q2(t) the polynomial obtained through (1.6) from the moments of ν.
Denote ν′ the iterate of ν through Tν ; to ν′ we associate Q′

2(t) and write

Q2(t) = αt2 + βt + ω , Q′
2(t) = α′t2 + β′t + ω′ , (1.28)

where the coefficients satisfy α = α′ = 1/
√

q∞ and ωω′ = 1/r∞.
Suppose that n(x0, y) = 3, with S(x0, y) = {m,λj ,M}, where λj is some

eigenvalue of A in (m,M). We thus have

Q2(m)Q′
2(m) = Q2(λj)Q

′
2(λj) = Q2(M)Q′

2(M) = 1 ,

so that Q2(t) and Q′
2(t) are uniquely defined, in the sense that the number of

solutions in (β, β′, ω) is finite. (ω is a root of a 6-th degree polynomial equation,
with one value for β and β′ associated with each root. There is always one
solution at least: any measure supported on m,λj ,M is invariant, so that at
least two roots exist for ω. The numerical solution of a series of examples shows
that only two roots exist, which renders the product Q2(t)Q

′
2(t) unique, due

to the possible permutation between (β, ω) and (β′, ω′).) Fig. 1.3 presents a
plot of the function Q2(t)Q

′
2(t) when ν gives respectively the weights 1/4, 1/4

and 1/2 to the points m = 1, λj = 4/3 and M = 2 (which gives Q2(t)Q
′
2(t) =

(81t2 − 249t + 176)(12t2 − 33t + 22)/8).

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

t

Q
2
(t

)Q
′ 2

(t
)

Fig. 1.3. Q2(t)Q
′

2(t) when ν(1) = 1/4, ν(4/3) = 1/4 and ν(2) = 1/2
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The orthogonality property (1.13) for i = 0 gives
∫

Q2(t) ν(dt) = 0, that
is,

αµ2 + βµ1 + ω = 0 (1.29)

where µi = p1m
i + p2λ

i
j + (1 − p1 − p2)M

i, i = 1, 2 . . . with p1 = [y]21 and

p2 = [y]2j . Since ν has three support points, its moments can be expressed as
linear combinations of µ1 and µ2 through the equations

∫

ti(t − m)(t − λj)(t − M) ν(dt) = 0 , i ∈ Z .

Using (1.27) and (1.29) µ1 and µ2 can thus be determined from two coefficients
of Q2(t) only. After calculation, the Jacobians J1, J2 of the transformations
(µ1, µ2) → (α, β) and (µ1, µ2) → (α, ω) are found to be equal to

J1 =
Mm + mλj + λjM − 2µ1(m + λj + M) + µ2

1 + 2µ2

2|M2,0||M1,0|
,

J2 =
µ2

1(m + λj + M) − 2µ1µ2 − mλjM

2|M2,0||M1,0|
.

The only measure ν̃ supported on {m,λj ,M} for which J1 = J2 = 0 is
given by µ1 = λj , µ2 = [λj(m + λj + M) − mM ]/2, or equivalently ν̃(m) =
(M − λj)/[2(M − m)], ν̃(λj) = 1/2. The solution for µ1, µ2 (and thus for ν
supported at m,λj , M) associated with a given polynomial Q2(t) through the
pair r∞, q∞ is thus locally unique and there is no continuum for three-point
asymptotic spectra, Z(x0) is a singleton. As Fig. 1.3 illustrates, the existence
of a continuum would require the presence of an eigenvalue λ∗ in the spectrum
of A to which some weight could be transferred from ν. This is only possible if
Q2(λ

∗)Q′
2(λ

∗) = 1, so that λ∗ is uniquely defined (λ∗ = 161/108 in Fig. 1.3).
When this happens, it corresponds to a four-point asymptotic spectrum, a
situation considered next.

Four-point asymptotic spectra

We consider the same setup as above with now n(x0, y) = 4 and S(x0, y) =
{m,λj , λk,M}, where λj < λk are two eigenvalues of A in (m,M). We thus
have

Q2(m)Q′
2(m) = Q2(λj)Q

′
2(λj) = Q2(λk)Q′

2(λk) = Q2(M)Q′
2(M) = 1 ,

where Q2(t), Q
′
2(t) are given by (1.28) and satisfy α = α′ = 1/

√
q∞, ωω′ =

1/r∞. The system of equations in (α, β, ω, α′, β′, ω′) is over-determined, which
implies the existence of a relation between r∞ and q∞. As it is the case
for three-point asymptotic spectra, to a given value for q∞ corresponds a
unique polynomial Q2(t) (up to the permutation with Q′

2(t)). The measures ν
associated with Q2(t) can be characterized by their three moments µ1, µ2, µ3,
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which can be obtained from the values of α, β, ω once µ4 has been expressed
as a function of µ1, µ2 and µ3 using

∫

(t − m)(t − λj)(t − λk)(t − M) ν(dt) = 0 .

Consider the Jacobian J of the transformation (µ1, µ2, µ3) → (α, β, ω). Set-
ting J to zero defines a two-dimensional manifold in the space of moments
µ1, µ2, µ3, or equivalently in the space of weights p1, p2, p3 with p1 = ν(m),
p2 = ν(λj), p3 = ν(λk) (and ν(M) = 1 − p1 − p2 − p3). By setting some
value to the limit r∞ or q∞ one removes one degree of freedom and the
manifold becomes one-dimensional. Since [y]21 = p1, [y]2j = p2, [y]2k = p3,

[y]2d = 1− p1 − p2 − p3, the other components being zero, this also character-
izes the limit set Z(x0).

Let x1 < x2 (respectively x′
1 < x′

2) denote the two zeros of Q̄2(t) (respec-
tively Q̄′

2(t)). Suppose that λj < x1. Then Q̄2(λj) > 0 and Q̄2(λj)Q̄
′
2(λj) = 1

implies Q̄′
2(λj) > 0 and thus λj < x′

1. But then, Q̄2(λj) < Q̄2(m) and
Q̄′

2(λj) < Q̄′
2(m) which contradicts Q̄2(λj)Q̄

′
2(λj) = Q̄2(m)Q̄′

2(m) = 1.
Therefore, λj > x1, and similarly x2 > λk, that is

m < x1 < λj < λk < x2 < M . (1.30)

Denote

S = x1 + x2 = −β

α
, P = x1 x2 =

ω

α
,

Sλ = λj + λk , Pλ = λj λk ,

Sm = m + M , Pm = mM ,

and

E = (Sλ − S)[S(S − Sm) + (Pm − P )] − (Pλ − P )(S − Sm) . (1.31)

One can easily check by direct calculation that

J =
|M1,0|2

2α|M2,0|3
E

so that the set of limit points y in Z(x0) with n(x0, y) = 4 is characterized by
E = 0. In the next section we investigate the form of the corresponding man-
ifold into more details in the case where the spectrum S(x0, y) is symmetric
with respect to c = (m + M)/2.

Four-point symmetric asymptotic spectra

When the spectrum is symmetric with respect to c = (m + M)/2, Sλ = Sm

so that the equation E = 0, with E given by (1.31), becomes
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(S − Sm)[S(S − Sm) + (Pm − P ) + (Pλ − P )] = 0 .

This defines a two-dimensional manifold with two branches: M1 defined by
S = Sm and M2 defined by S(S − Sm) + (Pm − P ) + (Pλ − P ) = 0. The
manifolds M1 and M2 only depend on the spectrum {m,λj , λk,M}. Note
that on the branch M1 we have (x1 +x2)/2 = (m+M)/2 = c so that Q̄2(t) is
symmetric with respect to c. One may also notice that Q̄2(t) symmetric with
respect to c implies that the spectrum S(x0, y) is symmetric with respect to
c when E = 0. Indeed, Q̄2(t) symmetric implies S = Sm, (1.30) then implies
P 6= Pm, so that E = 0 implies Sλ = S = Sm.

The branch M1 can be parameterized in P , and the values of r∞, q∞
satisfy

r∞ =
(Pm − P )(P − Pλ)

P (Pm + Pλ − P )
,

q∞ = (Pm − P )(P − Pλ) .

Both r∞ and q∞ are maximum for P = (Pλ+Pm)/2. On M1, p1, p2, p3 satisfy
the following

p1 =
[p2 (M − λj)(λj − λk) − (P − Pm)](P − Pλ)

(P − Pm)(M − m)(M − λj)
, (1.32)

p3 =
P − Pm

(M − λj)(λj − m)
− p2 , (1.33)

where the value of P is fixed by r∞ or q∞, and the one dimensional manifold
for p1, p2, p3 is a linear segment in R

3.
We parameterize the branch M2 in S, and obtain

r∞ =
(m + λj − S)(M + λj − S)(m + λk − S)(M + λk − S)

[(λk − S)(λj − S) + Pm][(λk − S)(λj − S) + Pm + 2Sm(Sm − S)]
,

q∞ =
(m + λj − S)(M + λj − S)(m + λk − S)(M + λk − S)

4
.

Both r∞ and q∞ are maximum for S = Sm = m+M . Hence, for each branch
the maximum value for r∞ and q∞ is obtained on the intersection M1 ∩M2

where S = Sm and P = (Pm + Pλ)/2. On M2, p1, p2, p3 satisfy the following

p2 =
λk + m − S

λk − λj

[

λk + M − S

2(M − λj)
− p1

M − m

λj + M − S

]

,

p3 =
λj + m − S

λk − λj

[

−λj + M − S

2(λj − m)
+ p1

M − m

λk + M − S

]

,

where now the value of S is fixed by r∞ or q∞; the one dimensional manifold
for p1, p2, p3 is again a linear segment in R

3.
Figs. 1.4 and 1.5 present the two manifolds M1 and M2 in the space

(p1, p2, p3) when m = 1, λj = 4/3, λk = 5/3 and M = 2. The line segment
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C, C ′ on Fig. 1.4 corresponds to symmetric distributions for which p2 = p3. On
both figures, when starting the algorithm at x0 such that the point with co-
ordinates ([z0]

2
1, [z0]

2
2, [z0]

2
3) is in A, to the even iterates z2k correspond points

that evolve along the line segment A, B, and to the odd iterates z2k+1 cor-
responds the line A′, B′. The initial z0 is chosen such that A is close to the
manifold M1 in Fig. 1.4 and to the manifold M2 in Fig. 1.5. In both cases
the limit set Z(x0) is a singleton {y} with n(x0, y) = 3: [y]3 = 0 in Fig. 1.4
and [y]2 = 0 in Fig. 1.5.

Fig. 1.4. Sequence of iterates close to the manifold M1: A, B for z2k, A′, B′ for
z2k+1; the line segment C, C′ corresponds to symmetric distributions on M1 (p2 =
p3)

1.4.2 A characterization of limit points through monotone

sequences

Assume that x0 is such that ν0 has more than three support points. The limit
point for the orbit (zk) are such that rk+1 = rk. To any y in Z(x0) we associate
the measure ν defined by ν(λi) = [y]2i , i = 1, . . . , d and then ν′ = Tν(ν) with
Tν given by (1.11); with ν and ν′ we associate respectively r(ν) and r(ν′),
which are defined from their moments by (1.26). Then, y ∈ Z(x0) implies
Tν [Tν(ν)] = ν and

∆(ν) = r(ν′) − r(ν) = 0 .

We thus investigate the nature of the sets of measures satisfying ∆(ν) = 0.
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Fig. 1.5. Sequence of iterates close to the manifold M2: A, B for z2k, A′, B′ for
z2k+1

Distributions that are symmetric with respect to µ1

When ν is symmetric with respect to µ1 direct calculation gives

∆(ν) =
|M4,−1||M2,1|
µ1|M3,0||M2,0|

,

which is zero for any four-point distribution. Any four-point distribution ν
that is symmetric with respect to µ1 is thus invariant in two iterations, that
is Tν [Tν(ν)] = ν. The expression above for ∆(ν) is not valid when ν is not
symmetric with respect to µ1, a situation considered below.

General situation

Direct (but lengthy) calculations give

∆(ν) =
N

D

with

D = µ−1|M2,1||M2,−1|
[

|M1,0|2(|M1,−1||M4,1| − µ1|M4,−1|)
+ |M2,0|2(µ−1|M3,1| − |M3,−1|) − 2|M1,0||M2,0||M3,0|

]

(1.34)

N = |M4,−1||M1,0|2
[

µ1(µ−1|M2,1| − |M2,−1|)2 − µ−1|M2,1|2
]

+a2|M4,1| + b2|M3,−1| − 2ab|M3,0| (1.35)
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with a = |M1,0||M2,−1| and b = (µ−1|M2,1| − |M2,−1|)|M2,0|. The determi-
nants that are involved satisfy some special identities

|M1,0|2 = |M1,−1||M2,1| − µ1|M2,−1| (1.36)

|M2,0|2 = |M2,−1||M3,1| − |M2,1||M3,−1|
|M3,0|2 = |M3,−1||M4,1| − |M3,1||M4,−1|

and

µ−1|M1,1| − |M1,−1| = 1 , |M1,−1||M1,1| − µ1|M1,−1| = 0

(|M1,−1||M2,1| − µ1|M2,−1|)(µ−1|M1,1| − |M1,−1|) = |M1,0|2

(|M1,−1||M3,1| − µ1|M3,−1|)(µ−1|M2,1| − |M2,−1|) = |M2,0|2

+(|M1,−1||M2,1| − µ1|M2,−1|)(µ−1|M3,1| − |M3,−1|)
(|M1,−1||M4,1| − µ1|M4,−1|)(µ−1|M3,1| − |M3,−1|) = |M3,0|2

+(|M1,−1||M3,1| − µ1|M3,−1|)(µ−1|M4,1| − |M4,−1|)

where all the terms inside the brackets are non-negative. Using these identities
we obtain

D = µ−1|M2,1||M2,−1|
{[

|M1,0|(|M1,−1||M4,1| − µ1|M4,−1|)1/2

+|M2,0|(µ−1|M3,1| − |M3,−1|)1/2
]2

+ 2|M1,0||M2,0|

× (|M1,−1||M3,1| − µ1|M3,−1|)(µ−1|M4,1| − |M4,−1|)
(|M1,−1||M4,1| − µ1|M4,−1|)1/2(µ−1|M3,1| − |M3,−1|)1/2 + |M3,0|

}

and thus D > 0 when ν has three support points or more.
We also get

a2|M4,1| + b2|M3,−1| − 2ab|M3,0| ≥ |M1,0|2|M2,1|2
|M3,1||M4,−1|

|M3,−1|

which gives

N ≥ |M1,0|2|M4,−1|
|M3,−1|

[

|M1,0|2(µ−1|M2,1| − |M2,−1|)|M3,−1| + |M2,0|3|M2,−1|
]

≥ 0 .

Now, y ∈ Z(x0) implies N = 0. Since |M2,−1| > 0 when ν has three
support points or more, N = 0 implies |M4,−1| = 0, that is, ν has three or
four support points only, and we recover the result of Theorem 8.

Setting |M4,−1| = 0 in (1.35) we obtain that y ∈ Z(x0) implies

a2|M4,1| − 2ab|M3,0| + b2|M3,−1| = 0 . (1.37)
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The condition (1.37) is satisfied for any three-point distribution. For a four
point-distribution it is equivalent to b/a being the (double) root of the follow-
ing quadratic equation in t, |M4,1|− 2t|M3,0|+ |M3,−1|t2 = 0. This condition
can be written as

δ(ν) = (µ−1|M2,1| − |M2,−1|)|M2,0||M3,−1| − |M1,0||M3,0||M2,−1| = 0 .
(1.38)

(One may notice that when ν is symmetric with respect to µ1, δ(ν) becomes
δ(ν) = [|M1,0||M2,0|2/|M3,0|] |M4,−1| which is equal to zero for a four-point
distribution. We thus recover the result of Sect. 1.4.2.)

To summarize, y ∈ Z(x0) implies that ν is supported on three or four
points and satisfies (1.38). In the case of a four-point distribution supported
on m,λj , λk,M , after expressing µ−1, µ4, µ5 and µ6 as functions of µ1, µ2, µ3

though
∫

ti(t − m)(t − λj)(t − λk)(t − M) ν(dt) = 0 , i ∈ Z ,

we obtain δ(ν) = KJ with

K = 2
α|M2,0|3|M1,0|

mλjλkM
p1p2p3(1 − p1 − p2 − p3)

×(λk − λj)
2(λk − m)2(M − λk)2(λj − m)2(M − λj)

2(M − m)2 > 0 ,

where p1, p2, p3, α and J are defined as in Sect. 1.4.1. Since K > 0, the
attractor is equivalently defined by J = 0, which is precisely the situation
considered in Sect. 1.4.1.

1.4.3 Stability

Not all three or four-point asymptotic spectra considered in Sect. 1.4.1 corre-
spond to stable attractors. Although ν associated with some vector y on the
unit sphere Sd may be invariant by two iterations of (1.11), a measure νk arbi-
trarily close to ν (that is, associated with a renormalized gradient zk close to
y) may lead to an iterate νk+2 far from νk. The situation can be explained from
the example of a three-point distribution considered in Fig. 1.3 of Sect. 1.4.1.
The measure ν is invariant in two iteration of Tν given by (1.11). Take a mea-
sure νk = (1−κ)ν + κν′ where 0 < κ < 1 and ν′ is a measure on (m,M) that
puts some positive weight to some point λ∗ in the intervals (4/3, 161/108) or
(1.7039, 1.9337). Then, for κ small enough the function Q2(t)Q

′
2(t) obtained

for ν′ is similar to that plotted for ν on Fig. 1.3, and the weight of λ∗ will
increase in two iterations since |Q2(λ

∗)Q′
2(λ

∗)| > 1. The invariant measure ν
is thus an unstable fixed point for T 2

ν when the spectrum of A contains some
eigenvalues in (4/3, 161/108) ∪ (1.7039, 1.9337). The analysis is thus similar
to that in (Pronzato et al., 2001, 2006) for the steepest-descent algorithm
(s = 1), even if the precise derivation of stability regions (in terms of the
weights that two-step invariant measures give to their three or four support
points), for a given spectrum for A, is much more difficult for s = 2.
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1.4.4 Open questions and extension to s > 2

For s = 2, as shown in Sect. 1.4.1, if x0 is such that z0 is exactly on one of
the manifolds M1 or M2, then by construction z2k = z0 for all k. Although
it might be possible that choosing z0 close enough to M1 (respectively M2)
would force z2k to converge to a limit point before reaching the plane p3 = 0
(respectively p2 = 0), the monotonicity of the trajectory along the line seg-
ment A,B indicates that there is no continuum and the limit set Z(x0) is a
single point. This was conjectured by Forsythe (1968) and is still an open ques-
tion. We conjecture that additionally for almost all initial points the trajectory
always attracts to a three-point spectrum (though the attraction make take a
large number of iterations when zk is very close to M1∪M2 for some k). One
might think of using the asymptotic equivalence of rates of convergence, as
stated in Theorem 5, to prove this conjecture. However, numerical calculations
show that for any point on the manifold M1 defined in Sect. 1.4.1, the prod-
uct of the rates at two consecutive iterations satisfies Rk(W )Rk+1(W ) = r2

∞

for any positive-definite matrix W (so that Rk(W )Rk+1(W ) does not depend
on p2 on the linear segment defined by r∞ on M1, see (1.32, 1.33), and all
points on this segment can thus be considered as asymptotically equivalent).

Extending the approach of Sect. 1.4.2 for the characterization of limit
points to the case s > 2 seems rather difficult, and the method used in
Sect. 1.4.1 is more promising. A function Q̄k

s(t) can be defined similarly to
(1.27), leading to two s-degree polynomials Qs(t), Q′

s(t), see (1.28), each of
them having s roots in (m,M). Let α and α′ denote the coefficients of terms
of highest degree in Qs(t) and Q′

s(t) respectively, then α = α′ = 1/
√

q∞. Also,
let ω and ω′ denote the constant terms in Qs(t) and Q′

s(t); Theorem 5 im-
plies that ωω′ = 1/r∞. Let n be the number of components in the asymptotic
spectrum S(x0, y), with s+1 ≤ n ≤ 2s from Theorem 8; we thus have 2(s+1)
coefficients to determine, with n + 3 equations:

α = α′ = 1/
√

q∞ , ωω′ = 1/r∞ and Qs(λi)Q
′
s(λi) = 1 , i = 1, . . . , n

where the λi’s are the eigenvalues of A in S(x0, y) (including m and M , see
Theorem 9). We can then demonstrate that the functions Qs(t) and Q′

s(t) are
uniquely defined when n = 2s and n = 2s−1 (which are the only possible cases
when s = 2). When n = 2s, the system is over-determined, as it is the case in
Sect. 1.4.1 for four-point asymptotic spectra when s = 2. The limit set Z(x0)
corresponds to measures ν for which the weights pi, i = 1, . . . , n−1 belong to
a n−2-dimensional manifold. By setting some value to r∞ or q∞ the manifold
becomes (n − 3)-dimensional. When n = 2s − 1, ν can be characterized by
its 2s − 2 first moments, which cannot be determined uniquely when s > 2.
Therefore, although Qs(t) and Q′

s(t) are always uniquely defined for n = 2s
and n = 2s − 1, the possibility of a continuum for Z(x0) still exists. The
situation is even more complex when s + 1 ≤ n ≤ 2s − 2 and s > 2.
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1.5 Switching algorithms

The bound N∗
2 = (R∗

2)
1/2 on the convergence rate of the optimum 2-gradient

algorithm, see (1.21), is smaller than the bound N∗
1 = R∗

1, which indicates
a slower convergence for the latter. Let ǫ denote a required precision on the
squared norm of the gradient gk, then the number of gradient evaluations
needed to reach the precision ǫ is bounded by log(ǫ)/ log(N∗

2 ) for the optimum
2-gradient algorithm and by log(ǫ)/ log(N∗

1 ) for the steepest-descent algo-
rithm. To compare the number of gradient evaluations for the two algorithms
we thus compute the ratio L∗

1/2 = log(N∗
1 )/ log(N∗

2 ). The evolution of L∗
1/2 as

a function of ̺ is presented in Fig. 1.6 in solid line. The improvement of the
optimum 2-gradient over steepest descent is small for small ̺ but L∗

1/2 tends to

1/2 as ̺ tends to infinity. (More generally, the ratio L∗
1/s = log(N∗

1 )/ log(N∗
s )

tends to 1/s as ̺ → ∞.) The ratio L∗
1/∞ = log(N∗

1 )/ log(N∗
∞), where N∗

∞ is

defined in (1.22), is also presented in Fig. 1.6. It tends to zero as 1/
√

̺ when
̺ tends to ∞.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ

Fig. 1.6. Ratios L∗

1/2 (solid line) and L∗

1/∞ (dashed line) as functions of ̺

The slow convergence of steepest descent, or, more generally, of the op-
timum s-gradient algorithm, is partly due to the existence of a measure ν∗

s

associated with a large value for the rate of convergence R∗
s , see Theorem 4,

but mainly to the fact that ν∗
s is supported on s+1 points and is thus invari-

ant in two steps of the algorithm, that is, Tν [Tν(ν∗
s )] = ν∗

s , see Theorem 3 (in
fact, ν∗

s is even invariant in one step, i.e. Tν(ν∗
s ) = ν∗

s ).
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Switching between algorithms may then be seen as an attractive option
to destroy the stability of this worst-case behavior. The rest of the paper is
devoted to the analysis of the performance obtained when the two algorithms
for s = 1 and s = 2 are combined, in the sense that the resulting algorithm
switches between steepest descent and optimum 2-gradient. Notice that no
measure exists that is invariant in two iterations for both the steepest descent
and the optimum 2-gradient algorithms (this is no longer true for larger val-
ues of s, for instance, a symmetric four-point distribution is invariant in two
iterations for s = 2, see Sect. 1.4.2, and s = 3, see Theorem 3).

1.5.1 Superlinear convergence in R
3

We suppose that d = 3, A is already diagonalized with eigenvalues m < λ <
M = ̺m, and that x0 is such that ν0 puts a positive weight on each of them.
We denote pk = νk(m), tk = νk(λ) (so that νk(M) = 1 − pk − tk). Consider
the following algorithm.

Algorithm A

Step 0: Fix n, the total number iterations allowed, choose ǫ, a small positive
number; go to Step 1.
Step 1 (s = 1): Use steepest descent from k = 0 to k∗, the first value of k
such that qk+1 − qk < ǫ, where qk is given by (1.23) with s = 1; go to Step
2.
Step 2 (s = 2): Use the optimum 2-gradient algorithm for iterations k∗ to
n.

Notice that since qk is non-decreasing and bounded, see Theorem 6, switching
will always occur for some finite k∗. Since for the steepest-descent algorithm
the measure νk converges to a two-point measure supported at m and M ,
after switching the optimum 2-gradient algorithm is in a position where its
convergence is fast provided that k∗ is large enough for tk∗ to be small (it
would converge in one iteration if the measure were supported on exactly two
points, i.e. if tk∗ were zero). Moreover, the 3-point measure νk∗ is invariant
in two iterations of optimum 2-gradient, that is, νk∗+2j = νk∗ for any j, so
that this fast convergence is maintained from iterations k∗ to n. This can be
formulated more precisely as follows.

Theorem 10. When ǫ = ǫ∗(n) = C log(n)/n in Algorithm A, with C an
arbitrary positive constant, the global rate of convergence

Rn(x0) =

[

f(xn)

f(x0)

]1/n

=

(

n−1
∏

k=0

rk

)1/n

, (1.39)

with rk given by (1.14), satisfies

lim sup
n→∞

log[Rn(x0)]

log(n)
< −1

2
.



30 L. Pronzato, H.P. Wynn, and A. Zhigljavsky

Proof. We know from Theorem 6 that the sequence (qk) is non-decreasing and
bounded. For steepest descent s = 1 and the bound (1.24) is q∗1 = (M−m)2/4.
Since q0 > 0, it implies k∗ < (M − m)2/(4ǫ). Also, direct calculation gives
qk+1 − qk = |Mk

2,0|/q2
k = |Mk

2,0|/|Mk
1,0|2 and, using (1.36),

qk+1 − qk =
|Mk

2,0|
|Mk

2,1|
1

|Mk
1,−1| − µ1

|Mk
2,−1

|

|Mk
2,1|

>
|Mk

2,0|
|Mk

2,1|
1

|Mk
1,−1|

,

so that qk∗+1 − qk∗ < ǫ implies

|Mk∗

2,0|
|Mk∗

2,1|
< ǫ|Mk∗

1,−1| . (1.40)

For steepest descent, rk = |Mk
1,−1|/(µk

−1|Mk
1,1|) = 1 − 1/(µk

1µk
−1) < R∗

1, so

that |Mk∗

1,−1| = µk∗

1 µk∗

−1 − 1 < R∗
1/(1 − R∗

1) = (M − m)2/(4mM) and (1.40)
gives

|Mk∗

2,0|
|Mk∗

2,1|
< ǫ

(M − m)2

4mM
. (1.41)

The first iteration of the optimum 2-gradient algorithm has the rate

rk∗ =
f(xk∗+1)

f(xk∗)
=

|Mk∗

2,−1|
µk∗

−1|Mk∗

2,1|
=

|Mk∗

2,0|
mMλµk∗

−1|Mk∗

2,1|
,

and using µk∗

−1 > 1/M and (1.41) we get rk∗ < Bǫ with B = (M −
m)2/[4Mλm2]. Since d = 3, νk∗+2j = νk∗ and rk∗+2j = rk∗ for j = 1, 2, 3 . . .

Now, for each iteration of steepest descent we bound rk by R∗
1; for the

optimum 2-gradient we use rk < Bǫ for k = k∗ + 2j and rk < R∗
2 for k =

k∗ + 2j + 1, j = 1, 2, 3 . . . We have

log[Rn(x0)] =
1

n

{

log

[

k∗−1
∏

k=0

rk

]

+ log

[

n−1
∏

k=k∗

rk

]}

.

Since R∗
2 < R∗

1, Bǫ < R∗
2 for ǫ small enough, and k∗ < k̄ = (M −m)2/(4ǫ) we

can write

log[Rn(x0)] < Ln(ǫ) =
1

n

{

k̄ log R∗
1 + (n − k̄)

1

2
[log(Bǫ) + log(R∗

2)]

}

.

Taking ǫ = C log(n)/n and letting n tend to infinity, we obtain

lim
n→∞

Ln/ log(n) = −1/2 .
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Algorithm A requires to fix the number n of iterations a priori and to
choose ǫ as a function of n. The next algorithm does not require any such
prior choice and uses alternatively a fixed number of iterations of steepest
descent and optimum 2-gradient.

Algorithm B

Step 1 (s = 1): Use steepest descent for m1 ≥ 1 iterations; go to Step 2.
Step 2 (s = 2): Use the optimum 2-gradient algorithm for 2m2 iterations,
m2 ≥ 1; return to Step 1.

Its performance satisfies the following.

Theorem 11. For any choice of m1 and m2 in Algorithm B, the global rate
(1.39) satisfies Rn(x0) → 0 as the number n of iterations tends to infinity.

Proof. Denote kj = (j−1)(m1 +2m2)+m1, j = 1, 2 . . ., the iteration number
for the j-th switching from steepest descent to optimum 2-gradient. Notice
that νkj−1 = νkj+2m2−1 since any three-point measure is invariant in two steps
of the optimum 2-gradient algorithm. The repeated use of Step 2, with 2m2

iterations each time, has thus no influence on the behavior of the steepest-
descent iterations used in Step 1. Therefore, ǫj = qkj

− qkj−1 tends to zero as
j increases. Using the same arguments and the same notation as in the proof
of Theorem 10 we thus get rkj

< Bǫj for the first of the 2m2 iterations of the
optimum 2-gradient algorithm, with B = (M − m)2/[4Mλm2]. For large n,
we write

j =

⌊

n

m1 + 2m2

⌋

n′ = n − j(m1 + 2m2) < (m1 + 2m2). For the last n′ iterations we bound rk

by R∗
1; for steepest-descent iterations we use rk < R∗

1; at the j-th call of Step
2 we use rkj

< Bǫj for the first iteration of optimum 2-gradient and rk < R∗
2

for the subsequent ones. This yields the bound

log[Rn(x0)] <
1

j(m1 + 2m2) + n′

×
{

n′ log(R∗
1) + jm1 log(R∗

1) + j(2m2 − 1) log(R∗
2) +

j
∑

i=1

log(Bǫi)

}

.

Finally, we use the concavity of the logarithm and write

∑j
i=1 log(Bǫi)

j
< log

(

B

∑j
i=1 ǫi

j

)

= log

(

B
qkj

− qm1−1

j

)

< log

(

B
q∗1
j

)

with q∗1 = (M − m)2/4, see (1.24). Therefore, log[Rn(x0)] → −∞ and
Rn(x0) → 0 as n → ∞.
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Fig. 1.7 presents a typical evolution of log(rk) and log(Rk), with Rk the
global rate of convergence (1.39), as functions of the iteration number k in
Algorithm B when m1 = m2 = 1 (z0 is a random point on the unit sphere S3

and A has the eigenvalues 1, 3/2 and 2). The rate of convergence rk of the
steepest-descent iterations is slightly increasing, but this is compensated by
the regular decrease of the rate for the pairs of optimum 2-gradient iterations
and the global rate Rk decreases towards zero.
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Fig. 1.7. Typical evolution of the logarithms of the rate of convergence rk, in dashed
line, and of the global rate Rk defined by (1.39), in solid line, as functions of k in
Algorithm B

Remark 7. In Theorems 10 and 11, n counts the number of iterations. Let n
now denote the number of gradient evaluations (remember that one iteration
of the optimum 2-gradient algorithm corresponds to two steps of the conjugate
gradient method, see Remark 1, and thus requires two gradient evaluations),
and define

Nn(x0) =

[

f [x(n)]

f(x0)

]1/n

(1.42)

with x(n) the value of x generated by the algorithm after n gradient eval-
uations. Following the same lines as in the proof of Theorem 10 we get for
Algorithm A
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log[Nn(x0)] =
1

n

{

log

[

k∗−1
∏

k=0

rk

]

+ log

[

n−1
∏

k=k∗

√
rk

]}

< L′
n(ǫ) =

1

n

{

k̄ log R∗
1 + (n − k̄)

1

4
[log(Bǫ) + log(R∗

2)]

}

.

Taking ǫ = C log(n)/n and letting n tend to infinity, we then obtain
limn→∞ L′

n/ log(n) = −1/4.
Similarly to Theorem 11 we also have Nn(x0) → 0 as n → ∞ in Algo-

rithm B. ¤

The importance of the results in Theorems 10 and 11 should not be overem-
phasized. After all, the optimum 3-gradient converges in one iteration in R

3!
It shows, however, that an algorithm with fast convergence can be obtained
from the combination of two algorithms with rather poor performance, which
opens a promising route for further developments. As a first step in this direc-
tion, next section shows that the combination used in Algorithm B still has a
good performance in dimensions d > 3, with a behavior totally different from
the regular one observed in R

3.

1.5.2 Switching algorithms in R
d, d > 3

We suppose that A is diagonalized with eigenvalues m = λ1 < λ2 < · · · <
λd = M = ̺m and that x0 is such that ν0 has n0 > 3 support points.
The behavior of Algorithm B is then totally different from the case d =
3, where convergence is superlinear. Numerical simulations (see Sect. 1.5.2)
indicate that the convergence is then only linear, although faster than for the
optimum 2-gradient algorithm for suitable choices of m1 and m2. A simple
interpretation is as follows. Steepest descent tends to force νk to be supported
on m and M only. If m1 is large, when switching to optimum 2-gradient,
say at iteration kj = j(m1 + 2m2) + m1, the first iteration has then a very
small rate rkj

. Contrary to the case d = 3, νkj+2 6= νkj
, so that the rate rk

quickly deteriorates as k increases and νk converges to a measure with three
or four support points. However, when switching back to steepest descent at
iteration (j + 1)(m1 + 2m2) = kj + 2m2, the rate is much better than the
bound R∗

1 since νkj+2m2
is far from a two-point measure. This alternation of

phases where νk converges towards a two-point measure and then to a three or
four-point measure renders the behavior of the algorithm hardly predictable
(Sect. 1.5.2 shows that a direct worst-case analysis is doomed to failure). On
the other hand, each switching forces νk to jump to regions where convergence
is fast. The main interest of switching is thus to prevent the renormalized
gradient zk from approaching its limit set where convergence is slow (since rk

is non-decreasing), and we shall see in Sect. 1.5.2 that choosing m1 = 1 and
1 ≤ m2 ≤ 5 in Algorithm B is suitable.
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The limits of a worst-case analysis

One of the simplest construction for a switching algorithm is as follows.

Algorithm C

Use the optimum 2-gradient algorithm if its rate of convergence is smaller
than some value R < R∗

2 and steepest descent otherwise.

When the state of the algorithm is given by the measure νk, denote
rk = r(νk) (respectively r′k = r′(νk)) the rate of convergence (1.14) if a
steepest-descent (respectively an optimum 2-gradient) iteration is used. De-
spite the simplicity of its construction, the performance of Algorithm C resists
to a worst-case analysis when one tries to bound the rate of convergence at
each iteration of the algorithm. Indeed, one can easily check that the mea-
sures ν∗

s associated with the worst rates R∗
s for s = 1, 2, see (1.17), satisfy

r′(ν∗
1 ) = 0 and r(ν∗

2 ) =
√

r′(ν∗
2 ) =

√

R∗
2 = N∗

2 > R∗
2, see (1.21). This im-

plies that when the state of the algorithm is given by the measure ν∗
2 the rate

of convergence equals R∗
2 for an optimum 2-gradient iteration and is larger

than R∗
2 for a steepest-descent iteration; it thus ruins any hope to improve

the performance of optimum 2-gradient at each iteration. The situation is
not better when measuring the performance per gradient evaluation: the rate
of convergence then equals N∗

2 for both a steepest-descent and an optimum
2-gradient iteration for the measure ν∗

2 . Therefore, the only possibility for ob-
taining an improvement over optimum 2-gradient is in the long run behavior
of the algorithm: when iterations with a slow rate of convergence occur they
are compensated by a fast rate at some other iterations. This phenomenon
is difficult to analyse since it requires to study several consecutive iterations
of steepest descent and/or optimum 2-gradient, which is still an open issue.
Some encouraging simulations results are presented in Sect. 1.5.2.

Although improving the value R∗
2 for the rate of convergence is doomed to

failure, it is instructive to investigate the possible choices for R in Algorithm C.
Consider a steepest-descent iteration. Define Lk = µk

−1µ
k
1 , so that Lk =

1/(1− rk). Since rk is non-decreasing, Lk is non-decreasing too, and bounded
by 1/(1 − R∗

1) = (̺ + 1)2/(4̺). Direct calculation gives

Lk+1 − Lk =
µk

1 |Mk
2,−1|

|Mk
1,0|2

.

When the optimum 2-gradient is used, the rate of convergence r′k satisfies

r′k =
|Mk

2,−1|
µk
−1|Mk

2,1|
,

so that using (1.36)
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Lk+1 − Lk = µk
1µk

−1r
′
k

|Mk
2,1|

|Mk
1,0|2

= µk
1µk

−1r
′
k

1

|Mk
1,−1| − µk

1

|Mk
2,−1

|

|Mk
2,1|

>
µk

1µk
−1r

′
k

|Mk
1,−1|

=
r′k
rk

. (1.43)

Now,

Lk+1 − Lk =
rk+1 − rk

(1 − rk+1)(1 − rk)
<

rk+1 − rk

(1 − R∗
1)

2

and rk < R∗
1 so that rk+1 − rk < Fr′k where

F =
(1 − R∗

1)
2

R∗
1

=
16̺2

(̺ − 1)2(̺ + 1)2

(and F < 1 if ̺ > 2 +
√

5). In Algorithm C, by construction the rate of
convergence is less than R when optimum 2-gradient is used. When steepest
descent is used, it means that r′k ≥ R, and therefore

rk < rk+1 − FR < r̄1(R) = R∗
1 − FR . (1.44)

Choosing R such that the bounds on the rates coincide for steepest-descent
and optimum 2-gradient iterations, that is, such that r̄1(R) = R, gives

R = R̄ =
(̺ − 1)4

̺4 + 14̺2 + 1
, (1.45)

which is larger than R∗
2 for any ̺ > 1 and therefore cannot be used in Algo-

rithm C. Fig. 1.8 presents R∗
1 (dotted line), R∗

2 (dashed line), R̄ (dash-dotted
line) and r̄1(R

∗
2), r̄1(R

∗
2/2) (solid lines, top for r̄1(R

∗
2/2)), as functions of ̺.

The trade-off value R̄ is clearly larger than R∗
2, taking R = R∗

2 gives a bound
r̄1(R

∗
2) already close to R∗

1 and getting even closer as R decreases.
The situation can be slightly improved by constructing a better bound

than (1.44). We write

Lk+1 − Lk =
rk+1 − rk

(1 − rk+1)(1 − rk)
<

R∗
1 − rk

(1 − R∗
1)(1 − rk)

so that for r′k ≥ R (1.43) gives

(R∗
1 − rk)rk > R(1 − R∗

1)(1 − rk) . (1.46)

The quadratic equation (R∗
1 − x)x = R(1−R∗

1)(1− x) has two roots r2(R) <
r̄2(R) if and only if

R > R̺̄ =
2 − R∗

1 + 2
√

1 − R∗
1

1 − R∗
1

or
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Fig. 1.8. Dotted line: R∗

1, dashed line: R∗

2, dash-dotted line: R̄ defined by (1.45),
solid lines: r̄1(R

∗

2) < r̄1(R
∗

2/2), with r̄1(R) defined by (1.44), as functions of ̺

R < R̺ =
2 − R∗

1 − 2
√

1 − R∗
1

1 − R∗
1

=
(̺ + 1 − 2

√
̺)2

4̺
,

(and they are then positive since their product equals R(1−R∗
1) and their sum

is R∗
1 + R(1 − R∗

1)). One may easily check that R∗
2 < R̺ and R̺̄ > 4 for any

̺ > 1. Choosing R ≤ R∗
2 thus ensures that the two roots r2(R), r̄2(R) exist

and, from (1.46), rk satisfies r2(R) < rk < r̄2(R). We have r̄2(R) < r̄1(R) =
R∗

1−FR, which thus improves (1.44) (notice that the equation r̄2(R) = R has
now no solution in R). Fig. 1.9 presents R∗

1 (dotted line),
√

R∗
2 (dashed line),

r̄1(R
∗
2) < r̄1(R

∗
2/2) (solid lines) and r̄2(R

∗
2), r̄1(R

∗
2/2) (dash-dotted lines, top

for r̄2(R
∗
2/2)), as functions of ̺. The improvement of r̄2(R) over r̄1(R) is clear

for R near R∗
2 (although r̄2(R

∗
2) remains quite close to R∗

1) but is negligible
for R = R∗

2/2.

Remark 8. The bounds r̄1(R) and r̄2(R) are rather pessimistic, as evidenced
by Fig. 1.9: the constraint r′k ≥ R∗

2 implies that νk is the measure ν∗
2 given

by (1.17) in Theorem 4, and therefore rk =
√

R∗
2. The gap between

√

R∗
2 and

the lower curves in solid line and dash-dotted line illustrates the pessimism of
r̄1(R

∗
2) and r̄2(R

∗
2) respectively.

An exact bound could be obtained, at least numerically, for any value
of R ∈ [0, R∗

2] since the maximization of the rate rk of the steepest-descent
algorithm under the constraint that the rate r′k of the optimum 2-gradient
algorithm satisfies r′k ≥ R for some R ∈ [0, R∗

2] corresponds to a Ds-optimum
design problem under constraint. Indeed, similarly to the proof of Theorem 4,
the maximum value for rk is obtained for the measure ν̄ supported on [m,M ]
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Fig. 1.9. Dotted line: R∗

1, dashed line:
p

R∗

2, solid lines: r̄1(R
∗

2) < r̄1(R
∗

2/2), with
r̄1(R) defined by (1.44), dash-dotted lines: r̄2(R

∗

2) < r̄2(R
∗

2/2), as functions of ̺

that minimizes the variance of the estimator of θ0 in the regression model
θ0 + θ1x with i.i.d. errors (a convex function of ν̄) under the restriction that
the variance of the estimator of θ0 in the model θ0 + θ1x + θ2x

2 is smaller
than 1/R (which defines a convex constraint on ν̄). Numerical algorithms for
solving such convex design problems can be constructed following e.g. the
ideas presented in (Molchanov and Zuyev, 2001). ¤

As an attempt to consider several consecutive iterations in order to cir-
cumvent the limits of the worst-case analysis above, one may consider the
following algorithm.

Step 1 (s = 1): Use steepest descent while Lk+1 − Lk ≥ ǫ for some ǫ > 0,
with Lk = 1/(1 − rk) = µk

−1µ
k
1 . When Lk+1 − Lk < ǫ, go to Step 2.

Step 2 (s = 2): Use the optimum 2-gradient algorithm while the rate of
convergence r′ is smaller than αR∗

2 for some α, ǫR∗
1/R∗

2 < α < 1. When
r′ > αR∗

2, return to Step 1.

The idea of the algorithm is that the rate of convergence of the first itera-
tion of Step 2 is very good when ǫ is small enough. Indeed, when switching from
s = 1 to s = 2, Lk+1 − Lk < ǫ and (1.43) imply r′k < ǫrk < ǫR∗

1 < αR∗
2 (note

that this switching necessarily occurs since Lk is not decreasing and bounded
by L∗ = 1/(1 − R∗

1)). We did not manage to improve the results above, how-
ever. The reason is that a worst-case analysis leads to consider cycles where the
optimum 2-gradient algorithm is used for one iteration only, with a comeback
to a sequence of n steepest-descent iterations with associated rates bounded
by 1 − 1/[L∗ − (n − 1)ǫ], 1 − 1/[L∗ − (n − 2)ǫ], . . . , 1 − 1/[L∗ − ǫ], 1 − 1/L∗.
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The logarithm of the global rate of convergence over such a cycle of n + 1
iterations can then be bounded by

log Rmax =

(

1

n + 1

)

[

n
∑

i=0

log

(

1 − 1

L∗ − iǫ

)

+ log(R∗
1ǫ)

]

<

(

n

n + 1

)

log

[

1

n

n
∑

i=0

(

1 − 1

L∗ − iǫ

)

]

+
log(R∗

1ǫ)

n + 1

<

(

n

n + 1

)

log

[

1 − 1

n(L∗)2

n
∑

i=0

(L∗ + iǫ)

]

+
log(R∗

1ǫ)

n + 1

=

(

n

n + 1

)

log

[

1 − 1

L∗
− (n − 1)ǫ

2(L∗)2

]

+
log(R∗

1ǫ)

n + 1

which should be maximized with respect to n (to bound the worst-case cycle)
and then minimized with respect to ǫ to optimize the bound. A careful analysis
shows that the optimum is always attained for ǫ as large as possible and
n small. The situation is then similar to that considered for Algorithm C:
when n = 1 one should choose ǫ such that both the steepest-descent and the
optimum 2-gradient iterations have a rate of convergence smaller than R∗

2,
which is impossible.

Table 1.1. Global rates R100, N188 and their logarithms for Algorithm B (m1 = 1,
m2 = 4), averaged over 1000 random problems in R

1000 with ̺ = 100, together with
their standard deviations, minimum and maximum values over the 1000 problems

mean std. deviation minimum maximum

R100 0.5538 0.0157 0.5047 0.6138
log(R100) -0.5914 0.0284 -0.6838 -0.4881

N188 0.7394 0.0105 0.7061 0.7781
log(N188) -0.3020 0.0142 -0.3481 -0.2508

Some simulation results

We apply Algorithm B with m1 = 1, m2 = 4 to a series of 1000 problems
in R

d with d = 1000. For each problem, the eigenvalues of A are randomly
generated with the uniform distribution in [1, ̺] and the initial renormalized
gradient z0 is also randomly generated, with the uniform distribution on the
unit sphere S1000.

The algorithm is run for 100 iterations (which means 12 steepest-descent
iterations and 88 iterations of the optimum 2-gradient algorithm, and thus
188 gradient evaluations). The results in terms of global rates Rn, see (1.39)
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Table 1.2. Global rates R100, N200 and their logarithms for the optimum 2-gradient
algorithm, averaged over 1000 random problems in R

1000 with ̺ = 100, together with
their standard deviations, minimum and maximum values over the 1000 problems,
and theoretical maxima

mean std. deviation minimum maximum theoretical max.

R100 0.8199 0.0101 0.7766 0.8399 R∗

2 ≃ 0.8548
log(R100) -0.1986 0.0123 -0.2528 -0.1745 log(R∗

2) ≃ −0.1569
N200 0.9055 0.0056 0.8812 0.9164 N∗

2 ≃ 0.9245
log(N200) -0.0993 0.0062 -0.1264 -0.0873 log(N∗

2 ) ≃ −0.0785
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Fig. 1.10. Global rates Rk from iteration 1 to iteration k, (averaged over 1000
random problems) for the optimum 2-gradient and Algorithm B with m1 = 1,
m2 = 4 as functions of k

and Nn, see (1.42), are summarized in Table 1.1 for the case ̺ = 100. For
comparison, R∗

1 ≃ 0.9608 for steepest descent, R∗
2 ≃ 0.8548 and N∗

2 ≃ 0.9245
for the optimum 2-gradient. The rate of convergence of the steepest-descent
algorithm is known to be always close to its maximum value, see, e.g., Pronzato
et al. (2001, 2006). Table 1.2 indicates that this is true also for the optimum 2-
gradient algorithm: in that table, Algorithm B is run with m1 = 0, that is, all
iterations correspond to the optimum 2-gradient algorithm. One may notice
that on average Algorithm B requires 0.3020/0.0993 ≃ 3 times less gradient
evaluations than the optimum 2-gradient algorithm to reach a given precision
on the squared norm of the gradient. Even if one considers the very pessimistic
situation that corresponds to the worst performance for Algorithm B and the
best one for the optimum 2-gradient algorithm, the ratio is 0.2508/0.1264 ≃
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2. To obtain similar performance for ̺ = 100 with an optimum s-gradient
algorithm, that is, N∗

s < 0.78, one must take s ≥ 9.
Tables 1.3 and 1.4 give the same information as Tables 1.1 and 1.2 respec-

tively, but for the case when the algorithm is run for 1000 iterations (which
means 2000 gradient evaluations for the optimum 2-gradient algorithm and
1888 for Algorithm B with m1 = 1 and m2 = 4). The performance of the op-
timum 2-gradient algorithm are worse in Table 1.4 than in Table 1.2 (which
comes as no surprise since the rate of convergence of the algorithm is non-
decreasing), but those of Algorithm B are better when the number of iterations
increases. This is confirmed by Fig. 1.10 that shows the global rates Rk from
iteration 1 to iteration k, see (1.39), averaged over 1000 random problems, for
the optimum 2-gradient and Algorithm B as functions of k. Fig. 1.11 presents
the rate of convergence rk of both algorithms, averaged over the 1000 random
problems, as a function of k. The regular increase of rk is clear for the op-
timum 2-gradient algorithm, whereas Algorithm B exhibits a rather specific
pattern: the dots above the full line correspond to the steepest-descent itera-
tions and those below to optimum 2-gradient iterations, the (averaged) rates
of which tend to follow m2 = 4 rather well identified pairs of trajectories.
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Fig. 1.11. Rate rk at iteration k, averaged over 1000 random problems, for the
optimum 2-gradient (solid line) and Algorithm B with m1 = 1, m2 = 4 (dots) as a
function of k

Table 1.5 gives the same information as Table 1.1 but for the case ̺ = 1000
(which gives R∗

2 ≃ 0.9842 and N∗
2 ≃ 0.9920). To obtain R∗

s < 0.93 for ̺ = 1000
with an optimum s-gradient algorithms one must take s ≥ 5 and to get
N∗

s < 0.956 one must take s ≥ 13.
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Table 1.3. Global rates R100, N1888 and their logarithms for Algorithm B (m1 = 1,
m2 = 4), averaged over 1000 random problems in R

1000 with ̺ = 100, together with
their standard deviations, minimum and maximum values over the 1000 problems

mean std. deviation minimum maximum

R1000 0.5203 0.0079 0.4953 0.5467
log(R1000) -0.6535 0.0151 -0.7026 -0.6039

N1888 0.7184 0.0055 0.7008 0.7365
log(N1898) -0.3307 0.0076 -0.3555 -0.3059

Table 1.4. Global rates R1000, N2000 and their logarithms for the optimum 2-
gradient algorithm, averaged over 1000 random problems in R

1000 with ̺ = 100,
together with their standard deviations, minimum and maximum values over the
1000 problems, and theoretical maxima

mean std. deviation minimum maximum theoretical max.

R1000 0.8484 0.0018 0.8403 0.8521 R∗

2 ≃ 0.8548
log(R1000) -0.1644 0.0022 -0.1740 -0.1601 log(R∗

2) ≃ −0.1569
N2000 0.9211 0.0010 0.9167 0.9231 N∗

2 ≃ 0.9245
log(N2000) -0.0822 0.0011 -0.0870 -0.0800 log(N∗

2 ) ≃ −0.0785

Table 1.5. Global rates R100, N188 and their logarithms for Algorithm B (m1 = 1,
m2 = 4), averaged over 1000 random problems in R

1000 with ̺ = 1000, together with
their standard deviations, minimum and maximum values over the 1000 problems

mean std. deviation minimum maximum

R100 0.8724 0.0182 0.8042 0.9154
log(R100) -0.1368 0.0209 -0.2179 -0.0884

N188 0.9320 0.0099 0.8940 0.9554
log(N188) -0.0705 0.0106 -0.1121 -0.0457
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