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Abstract This paper presents a novel approach to real-time

obstacle avoidance based on dynamical systems (DS) that

ensures impenetrability of multiple convex shaped objects.

The proposed method can be applied to perform obstacle

avoidance in Cartesian and Joint spaces and using both

autonomous and non-autonomous DS-based controllers.

Obstacle avoidance proceeds by modulating the original dy-

namics of the controller. The modulation is parameterizable

and allows to determine a safety margin and to increase the

robot’s reactiveness in the face of uncertainty in the local-

ization of the obstacle. The method is validated in simula-

tion on different types of DS including locally and globally

asymptotically stable DS, autonomous and non-autonomous

DS, limit cycles, and unstable DS. Further, we verify it in

several robot experiments on the 7 degrees of freedom Bar-

rett WAM arm.

Keywords Realtime obstacle avoidance · Nonlinear

dynamical system · Harmonic potential function · Robot

manipulator

1 Introduction

In our quest to develop robots that react to arbitrary forms of

perturbations, we seek methods by which this reactivity will

be effortless and will unfold naturally from the control law.

Imagine you are being served tea by a robot. As the robot is

about to pour the boiling liquid in the cup you are holding,

you sneeze. As a result of your sudden hiccup, the cup is dis-

placed and your hand is now in the way of the robot in place

of the cup. Surely, you wish the robot would be able to react
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swiftly, so as to redirect its motion to the cup while avoid-

ing your hand. These are examples of fast perturbations that

require a reactivity of the order of the second. These encom-

pass a wide variety of perturbations dealt with by robotics

such as: when an obstacle suddenly appears in the robot’s

path, when the target moves, or when the robot is pushed

away from its trajectory while in motion. In these situations,

there is no time to re-plan no matter how fast the replanning

technique may be and hence alternative techniques must be

sought.

Dynamical systems-based approaches to robot control

offer such robustness to real-time perturbations. When con-

trolled through a Dynamical System (DS), a robot motion

unfolds in time with no need to re-plan. In this paper, we

propose an obstacle avoidance algorithm that can be inte-

grated into existing DS-based motion control approaches,

while retaining the swiftness and robustness provided by

these approaches. In the presented method, we assume that

the robot motion is driven by a continuous and differentiable

DS in the absence of obstacle(s). This DS is provided by the

user, and henceforth we will call it the original DS. Given

the original DS and an analytical formulation describing the

surface of obstacles, our algorithm is able to instantly mod-

ify the robot’s trajectory to avoid collisions with obstacles.

Our approach has two main features: 1) As it only requires

the differentiability of the original DS, it can be applied on a

large set of DS including locally and globally asymptotically

stable DS, autonomous and non-autonomous DS, limit cy-

cles, unstable DS, etc., and 2) It does not modify the critical

points of the original DS. Thus the attractors of the original

DS are also the attractors of the modulated DS.

The rest of this paper is structured as follows: Section 2

describes main existing obstacle avoidance methods in the

literature. Section 3 formalizes our obstacle avoidance algo-

rithm for robot motions in the presence of a convex obstacle.

Section 4 discusses the stability of the control law after ap-
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plying the proposed obstacle avoidance algorithm. Section 5

describes how the avoidance trajectories can be customized

through different parameters such as safety factor, reactivity,

etc. Section 6 extends the presented approach to avoid mul-

tiple obstacles. Section 7 gives a conceptual sketch on how

to use the proposed algorithm in robot experiments. Section

8 presents the experimental results, and Section 9 concludes

the paper.

2 Related Work

Obstacle avoidance is a classical problem in robotics and

many approaches have been proposed to solve it. One may

distinguish between local and global methods, depending

on whether the obstacle influences the behavior only locally

or everywhere. Local methods such as the Bug’s algorithm

(Lumelsky and Skewis, 1990), the Vector Field Histogram

(Borenstein and Koren, 1991), and the Curvature-Velocity

method (Simmons, 1996) offer fast response in the face of

perturbations. These are usually locally optimal and hence

are not ensured to always find a feasible path.

Global methods, such as those dealt with by path plan-

ning algorithms (Lozano-Perez, 1983; Kuffner and LaValle,

2000; Kavraki et al., 1996) ensures to find a valid solution,

if it exists. Despite recent efforts at reducing the computa-

tional costs of such global searches for a feasible path (Di-

ankov and Kuffner, 2007; Burns and Brock, 2005; Tous-

saint, 2009), these methods cannot offer the reactivity sought

for swiftly avoiding obstacles that appear suddenly.

The reshaping method such as the Elastic Band approach

(Quinlan and Khatib, 1993; Brock and Khatib, 2002) aims

at realtime trajectory adaptation in dynamic environments.

In this method, the initial shape of the elastic band is a free

path generated by a classical planner. In the presence of ob-

stacles, this band is deformed by applying repulsive forces.

The work by (Fraichard et al., 1991) also follows the same

principle in which the original path is deformed locally to re-

flect changes in the environment topology. In these methods

if the path being executed becomes infeasible due to obsta-

cles coming into its way, the reshaping algorithm cannot be

applied any more (Yoshida and Kanehiro, 2011).

Hybrid systems that switch between local and global

methods offer an interesting compromise. In (Barbehenn et al.,

1994), a task is decomposed into several segments that are

amenable locally. If the local approach fails, the global method

is invoked. Yoshida and Kanehiro (2011) propose a reactive

motion planning approach which considers both the possi-

bility of re-planning and deformation of the path during the

execution of a task. In this approach, the planner first at-

tempts to locally modify the trajectory in the presence of

an obstacle. In situations where deformation is no longer

possible (i.e. the path becomes infeasible), a new feasible

trajectory is re-planned. The work by (Vannoy and Xiao,

2008) proposes an adaptive motion planner that considers

the simultaneous path and trajectory planning of high-DOF

robots. This method provides multiple diverse trajectories at

all times to allow instant adaptation of robot motion to newly

sensed changes in the environment. The elastic roadmap ap-

proach (Yang and Brock, 2007) is similar to the conven-

tional roadmap algorithm with the difference that it allows

the modification of the vertices and edges during the execu-

tion of the task, hence the roadmap always represents task-

consistent motions.

In Artificial Potential Fields (Khatib, 1986) each obsta-

cles is modeled with a repulsive force that prevents the robot

from colliding with the obstacle. An appropriate repulsion

force should be computed so that it repels sufficiently the

trajectory away from the obstacle while avoiding to get stuck

in local minima. The Attractor Dynamics Approach (Ios-

sifidis and Schner, 2006) is another variant of the poten-

tial field method, which uses heading direction rather than

the cartesian position of the vehicle. The Dynamic Potential

Field (Park et al., 2008) extends the potential field principle

by taking into account not just the path but also the veloc-

ity along the path. Sprunk et al. (2011) propose a kinody-

namic trajectory generation method, in which the dynam-

ics of the robot is considered during path generation. This

method uses quintic Bezier splines to specify position and

orientation of the holonomic robot, and optimizes it accord-

ing to a user-defined cost function.

Hoffmann et al. (2009) proposes a dynamical based ap-

proach to obstacle avoidance. This method, in essence, is

very similar to the Attractor Dynamics approach in that it

changes the original dynamics of motion by introducing a

factor in the motion equation that stirs the motion away from

the obstacle. This method is implemented to avoid point-

mass objects in two and three dimensional spaces. For non-

point objects, this approach requires determining a repulsion

parameter that deforms the trajectory enough not to hit the

obstacle.

Harmonic Potential functions (Kim and Khosla, 1992;

Feder and Slotine, 1997) were first introduced to overcome

the limitation of Potential Fields. This approach takes in-

spiration in the description of the dynamics of (incompress-

ible and irrotational) fluids around impenetrable obstacles.

In contrast to potential field-based methods, harmonic potential-

based methods are powerful in that they do not have local

minima. Harmonic potentials have been used for control in

numerous ways in the past few years. We mention here only

the works that are closest to our method.

Kim and Khosla (1992) were among the first groups to

use harmonic potential functions to control mobile robots

and in particular to control a 3DOF arm manipulator. Feder

and Slotine (1997) extended Kim and Khosla’s work to mov-

ing obstacles with constant translational and/or rotational

velocities. To support multiple obstacles, they partitioned
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the space into regions affected by a single obstacle at most.

To avoid the problem of partitioning, Waydo and Murray

(2003) developed an alternative formulation using a continu-

ous weighting factor. Similarly to (Feder and Slotine, 1997),

this work only considered moving obstacles with constant

velocity. A major advantage of harmonic potential functions

over other potential functions is that they ensure that the

target is the only attractor of the system. Unfortunately, in

practice, requiring that the motions of both the robot and the

obstacle follow harmonic functions may be too limiting.

In this paper we propose a local obstacle avoidance ap-

proach which can be used to locally modify the robot mo-

tions that are generated by a DS. The proposed method en-

sures that this local modification of trajectories does not

change the main properties of the original DS. For instance,

if the original DS is globally stable (i.e. all trajectories reach

the target point) when there is no obstacle in the robot work-

ing space, it also remains stable in the presence of obstacles.

The system described above could also be pictured as a hy-

brid controller in the sense that: the globally stable DS is the

global planner generating trajectories that always reach the

target, and the local planner is the proposed method that de-

forms the generated trajectory in the presence of obstacles.

Both the path generation and deformation are done simulta-

neously at each time step. This approach is similar, in spirit,

to the harmonic potential functions. The main differences

lies in that our approach does not require the robot to follow

harmonic functions, hence it can be applied to a larger set of

robot motions.

3 Obstacle Avoidance Formulation

Consider a state variable ξ ∈ R
d that defines the state of a

robotic system. Its temporal evolution may be governed by

either an autonomous (time-invariant) or non-autonomous

(time-varying) DS according to:

ξ̇ = f (ξ ), f : Rd 7→ R
d autonomous DS (1)

ξ̇ = f (t,ξ ), f : R+×R
d 7→ R

d non-auto. DS (2)

where f (.) is a continuous function (we further use the nota-

tion f (.) to refer to both autonomous and non-autonomous

DS). Given an initial point {ξ}0, the robot motion along

time can be computed by integrating f (.) recursively:

{ξ}t = {ξ}t−1 + f (.)δ t (3)

where δ t is the integration time step and t is a positive inte-

ger. Figs. 1 and 3 illustrate a few examples of such functions.

Next we show how we can induce a modulation on our

generic motion due to the presence of an obstacle. We first

consider a hyper-sphere obstacle. We then extend this model

to convex objects.

3.1 Hyper-Sphere Obstacles

Consider a d-dimensional hyper-sphere object centered at

ξ o with radius ro. The object creates a modulation through-

out the robot’s state space, which is conveyed through the

non-linear function φ s(ξ ;ξ o,ro) : Rd 7→ R
d as follows1:

φ s(ξ ;ξ o,ro) = (1+
(ro)2

(ξ −ξ o)T (ξ −ξ o)
)(ξ −ξ o) (4)

where (.)T denotes the transpose. To determine how φ mod-

ulates the velocity of the robot, we compute the Jacobian

which yields:

Ms(ξ ;ξ o,ro) = ∇φ s(ξ ;ξ o,ro) (5)

To simplify the notation, we express the modulation in

a frame of reference centered on the object and define ξ̃ =
ξ −ξ o:

Ms(ξ̃ ;ro) = III +(
ro

ξ̃ T ξ̃
)2(ξ̃ T ξ̃ III−2ξ̃ ξ̃ T ) (6)

where III is the identity matrix. We call Ms the dynamic mod-

ulation matrix. The final model for real-time avoidance of

spherical obstacles can be obtained by applying the dynamic

modulation matrix to the original DS given by Eqs. (1)-(2):

ξ̇ = Ms(ξ̃ ;ro) f (.) (7)

Ms(ξ̃ ;ro) in Eq. (7) is a modulation factor that locally

deforms the original dynamics f such that the robot does

not hit the obstacle.

�

Theorem 1 Consider a d-dimensional static hyper-sphere

obstacle in R
d with center ξ o and radius ro. The obstacle

boundary consists of the hyper-surface X b ⊂ R
d = {ξ ∈

R
d : ∥ξ − ξ o∥ = ro}. Any motion {ξ}t , t = 0..∞ that starts

outside the obstacle, i.e. ∥{ξ}0−ξ o∥> ro, and evolves ac-

cording to Eq. (7) never penetrates into the obstacle, i.e.

∥{ξ}t −ξ o∥ ≥ ro.

Proof: See Appendix A.

�

Fig. 1 illustrates the effect of the modulation induced by

such a spherical object on two and three-dimensional flows.

As it is illustrated, in both cases the flow is deflected prop-

erly and it passes the obstacle.

1 The development of Eq. (4) was partly inspired by the complex po-

tential function that models the uniform flow around a circular cylin-

der (Milne-Thomson, 1960). In both formulations the modulation of

the flow due to the object’s presence decreases quadratically with the

distance to the center of the object (see the second term in Eq. (4)). The

main difference between the two approaches lies in their functionality.

Eq. (4) is a d-dimensional vector and its Jacobian is a d × d matrix

which can be used to modulate the original flow. In contrast, the com-

plex potential function is a scalar value, and its derivative directly gives

the modified flow in the presence of the obstacle.
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(a) Two dimensional example

(b) Three dimensional example

Fig. 1 Effect of the modulation induced by a spherical obstacle (lo-

cated at the origin and with radius ro = 2) on (a) a two dimensional flow

generated by ξ̇1 = 1.0 and ξ̇2 = sin(ξ1), and (b) a three dimensional

flow generated by ξ̇1 = 1.0, ξ̇2 =−sin(ξ2/4)sinξ1, and ξ̇3 = sinξ1.

3.2 Convex Obstacles

Suppose a continuous function Γ (ξ̃ ) that projects Rd into R.

The function Γ (ξ̃ ) has continuous first order partial deriva-

tives (i.e. C1 smoothness) and increases monotonically with

∥ξ̃∥. The level curves of Γ (i.e. Γ (ξ̃ ) = c, ∀c ∈ R
+) en-

close a convex region. By construction, the following rela-

tion holds at the surface of the obstacle:

Γ (ξ̃ ) = 1 (8)

For example Γ (ξ̃ ) : ∑d
i=1(ξ̃i/ai)

2 = 1 corresponds to a

d-dimensional ellipsoid with axis lengths ai. We can divide

the space spanned by Γ into three regions X o, X b, and

X f to distinguish between points inside the obstacle, at its

boundary, and outside the obstacle respectively:

Interior points : X
o = {ξ ∈ R

d : Γ (ξ̃ )< 1} (9)

Boundary points : X
b = {ξ ∈ R

d : Γ (ξ̃ ) = 1} (10)

Free region : X
f = {ξ ∈ R

d : Γ (ξ̃ )> 1} (11)

At each point ξ b ∈X b on the outer surface of the ob-

stacle, we can compute a tangential hyper-plane defined by

its normal vector n(ξ̃ b):

n(ξ̃ b) =
[

∂Γ (ξ̃ b)

∂ξ b
1

· · · ∂Γ (ξ̃ b)

∂ξ b
d

]T

(12)

By extension, we can compute a deflection hyperplane

at each point ξ ∈X f outside the obstacle with normal:

n(ξ̃ ) =
[

∂Γ (ξ̃ )
∂ξ1

· · · ∂Γ (ξ̃ )
∂ξd

]T

(13)

Tangential Hyper-Plane

฀( ) = 1

~

(~ )

~

฀( ) 1~

฀( ) 1~
(~)

(~ )

~

฀( ) = 1~

Deflection Hyper-Plane

Tangential Hyper-Plane
~

Fig. 2 Illustration of the tangential hyper-plane and its basis (left), and

the deflection hyper-plane (right) for a 3-dimensional object.

Each point on the deflection hyper-plane can be expressed

as a linear combination of a set of (d−1) linearly indepen-

dent vectors. These vectors form a basis of the deflection

hyper-plane. One particular set of such vectors e1, ...,ed−1

is2:

ei
j(ξ̃ )=















− ∂Γ (ξ̃ )
∂ξi

j = 1

∂Γ (ξ̃ )
∂ξ1

j = i ̸= 1

0 j ̸= 1, j ̸= i

i∈ 1..d−1 , j∈ 1..d (14)

where ei
j corresponds to the j-th component of the i-th ba-

sis vector. Fig. 2 illustrates the tangential and the deflection

hyper-planes for a three-dimensional object.

As in the case of the spherical object, we can determine

a modulation matrix M(ξ̃ ) given by3:

M(ξ̃ ) = E(ξ̃ )D(ξ̃ )E(ξ̃ )(−1) (15)

with the matrices of basis vectors E(ξ̃ ) and associated eigen-

values D(ξ̃ ):

E(ξ̃ ) =
[

n(ξ̃ ) e1(ξ̃ ) · · · ed−1(ξ̃ )
]

(16)

D(ξ̃ ) =







λ 1(ξ̃ ) 000

. . .

000 λ d(ξ̃ )






(17)

where







λ 1(ξ̃ ) = 1− 1

|Γ (ξ̃ )|

λ i(ξ̃ ) = 1+ 1

|Γ (ξ̃ )|
2≤ i≤ d

(18)

The dynamic modulation matrix M(ξ̃ ) propagates the

influence of the obstacle on the motion flow. The result of

2 In case ∂Γ (ξ̃ )/∂ξ1 vanishes, the vectors are no longer linearly

independent and one should choose another index for the derivative

which is non-zero.
3 Derivation of Eqs. (15)- (16) are inspired from the proof of Theo-

rem 1. For a spherical obstacle, these equations yield to the same result

given by Eq. (6).
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Eq. (15) is invariant to the choice of the basis e1..ed−1. Fur-

thermore, the matrix of basis vector is invertible in R
d \

ξ o. At the obstacle reference point ξ o, the deflection hyper-

plane is undefined; however, this does not cause any prob-

lem since ξ o is a point inside the obstacle (recall Γ (000)< 1).

Moreover, since Γ (ξ̃ ) monotonically increases with ∥ξ̃∥,
the matrix of eigenvalues and by extension the dynamic mod-

ulation matrix converge to the identity matrix as the distance

to the obstacle increases. Hence, the effect of the dynamic

modulation matrix is maximum at the boundaries of the ob-

stacle, and vanishes for points far from it.

Similarly to the hyper-sphere obstacle avoidance given

by Eq. (7), we can apply the modulation given by Eq. (15)

on our original motion flow f which yields:

ξ̇ = M(ξ̃ ) f (.) (19)

�

Theorem 2 Consider a convex manifold Γ (ξ̃ ) = 1 that en-

closes a static d-dimensional obstacle with respect to a ref-

erence point ξ o inside the obstacle. A motion {ξ}t , that

starts outside the obstacle, i.e. Γ ({ξ}0) ≥ 1, and evolves

according to Eq. (19) does not penetrate the obstacle, i.e.

Γ ({ξ}t)≥ 1, t = 0..∞

Proof: See Appendix B.

�

Fig. 3 illustrates with four examples the effect of the

modulation induced on the field of motion in the presence

of different obstacles.

4 Robot Discrete Movements

So far we have shown how the dynamic modulation matrix

M(ξ̃ ) can be used to deform a robot motion such that it does

not collide with an obstacle. However in many robot experi-

ments, e.g. reaching a target, not only should the robot avoid

the obstacle, but it should also reach a target, which we fur-

ther denote ξ ∗. In other words, we would like the modified

motion to preserve the convergence property of the origi-

nal dynamics while still ensuring that the motion does not

penetrate the object. In this section we discuss the stability

of DS when they are modulated with the proposed obstacle

avoidance method. Throughout the section, we will assume

that the target point ξ ∗ is outside the obstacle boundary, i.e.

ξ ∗ ∈X f .

Suppose a d-dimensional globally asymptotically stable

autonomous or non-autonomous DS defined by Eq. (1) or

(2). The global stability of f requires that the velocity van-

ishes solely at the target point ξ ∗, i.e. f (ξ ∗) = 0 for au-

tonomous DS and limt→∞ f (t,ξ ∗) = 0 for non-autonomous

DS. When f is modulated with the dynamic modulation ma-

trix M(ξ̃ ), ξ ∗ remains an equilibrium point because the ve-

locity still vanishes at the target, i.e. M(ξ ∗− ξ o) f (ξ ∗) = 0

for autonomous DS, and limt→∞ M(ξ ∗−ξ o) f (t,ξ ∗)=M(ξ ∗−
ξ o) limt→∞ f (t,ξ ∗) = 0 for non-autonomous DS.

However, in the presence of an obstacle, the target may

not remain the unique equilibrium point of the system. Other

possible equilibrium points may be created due to the mod-

ulation term M(ξ̃ ). These points can be computed by look-

ing at the null space of M(ξ̃ ). For all ξ ∈X f , the matrix

M(ξ̃ ) is full rank and hence ξ ∗ will be the only equilibrium

point in X f . Only on the boundaries of the obstacle, i.e.

ξ b ∈X b, M(ξ̃ b) loses one rank yielding a number of spu-

rious equilibrium points. In fact, these spurious equilibrium

points ξ s ∈X b are generated when there is collinearity be-

tween the velocity and the normal vector at the boundary

points4:

n(ξ̃ s)T f (.)

∥ f (.)∥
=±1 and Γ (ξ̃ s) = 1 (20)

where n(ξ̃ s) is the unit normal vector of the tangential hy-

perplane at ξ̃ s. The set X s includes all solutions to Eq. (20).

Depending on the function f , these equilibrium points could

be either saddle points and/or local minima.

Computing this set of equilibrium points may not always

be feasible. We can however simplify our task by observing

that, since all the equilibrium points appear solely on the

obstacle boundary, one may avoid remaining stuck by using

some external mechanisms. Algorithm 1 describes such a

mechanism: when one detects that the motion has stopped

at the outer surface (boundary) of an obstacle (i.e. at an

equilibrium point), she applies a small perturbation along

any of the basis vectors e1..ed−1. All of these vectors de-

termine directions that ensure that the flow will move away

from the obstacle. If the equilibrium point is a saddle point,

the algorithm exits in one iteration. But if it is a local min-

imum, the obstacle is contoured along the direction of the

basis vector ei until it leaves the basin of attraction of the

local minimum. The positive scalar α controls the ampli-

tude of the movement along the basis vector ei. The value

of α should be chosen by compromising between the accu-

racy, safety, and speed of the movement. For large integra-

tion time step δ t, one should use a small α to decrease the

drifting error (due to integration) from the desired trajectory

when contouring the obstacle. Furthermore, since contour-

ing takes place at the outer surface of the obstacle, for safety

reasons one should generally avoid selecting a high value

for α . A very small value for α is also not recommended

since it significantly slows down the contouring speed. Fig.

4 illustrates two examples where the Algorithm 1 is used to

handle a saddle point and a local minimum.

4 From Theorem 2 we know that the normal velocity at the boundary

points vanishes. Hence, if f (ξ ) is aligned with the normal vector of the

tangential hyperplane at a boundary point, we have M(ξ̃ ) f (ξ ) = 0.
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ξ1

ξ 2

ξ1

ξ 2

ξ2ξ1

ξ 3

ξ2ξ1

ξ 3

(a) Two dimensional autonomous flow

(b) Three dimensional autonomous flow

ξ1

ξ 2

ξ1

ξ 2

ξ2

ξ1

ξ 3

ξ2

ξ1

ξ 3

(c) Two dimensional stable limit−cycle.

(d) Three dimensional non−autonomous flow

Fig. 3 Modifying the original motion of a flow with a modulation matrix for: (a) A two dimensional flow with ξ̇1 = log((ξ1 + 3)2 + 2) and

ξ̇2 = sin(ξ1), (b) A three dimensional autonomous flow with ξ̇1 = log((ξ1 +3)2 +2), ξ̇2 = 0, and ξ̇3 = sin(ξ1), (c) A stable limit cycle motion with

ξ̇1 = ξ2−ξ1(ξ
2
1 +ξ 2

2 −1) and ξ̇2 =−ξ1−ξ2(ξ
2
1 +ξ 2

2 −1), and (d) A three dimensional non-autonomous flow with ξ̇1 = log((ξ1+3)2/(t+1)+2),

ξ̇2 = sin(5t)−0.1, and ξ̇3 = 0.05t cos(ξ2). In all four cases the obstacle is centered at ξ o = 000. In (c), the thick black line represents the stable limit

cycle.
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0
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Contouring

(a) Analyzing Algorithm 1 in the presence of the saddle point

(b) Analyzing Algorithm 1 in the presence of the local minimum

Fig. 4 Illustration of using Algorithm 1 to avoid possible equilib-

rium point(s) on the obstacle boundary. The target point is shown

with a black star. The saddle point(s) and local minimum are rep-

resented with hollow circle and diamond, respectively. The obstacle

boundary is modeled with (ξ̃1/1)2 + (ξ̃2/2)2 = 1 when ξ̃1 > 0 and

(ξ̃1/3)4 + (ξ̃2/2)2 = 1 elsewhere. (a) When the DS is defined by

ξ̇1 = −ξ1 + 3 and ξ̇2 = −ξ2, the modulated dynamics has two sad-

dle points at (−3,0) and (0,1). Without using Algorithm 1, the motion

stops at (−3,0) (see (a)-left). However, by using Algorithm 1 for one

iteration, the motion continues until it reaches the target (see (a)-right).

(b) By modifying the DS along its second dimension to ξ̇2 =−3ξ2, the

modulated dynamics will have one local minimum at (−3,0) and three

saddle point at (0,1), (−2.6757,1.2120), and (−2.6757,−1.2120).
Without using Algorithm 1, the motion stops at the local minimum

(−3,0) (see (b)-left). In this situation, Algorithm 1 is used iteratively

until the trajectory leaves the basin of attraction of the local minimum

(i.e. the range between the local minimum and the saddle point). Then,

the motion continues its way to the target (see (b)-right). The part of

trajectory that generated by Algorithm 1 is plotted with a thick red line.

5 Characterizing the Path during Obstacle Avoidance

When doing obstacle avoidance, sometimes it is more prac-

tical to customize the path to avoid an obstacle based on the

object’s property. For example, fragile or sharp objects may

require a large safety margin while soft and round object

may not. Furthermore, it is essential to react and deflect the

robot trajectory earlier when it goes toward a fire flame than

when it is just heading towards a soft pillow. In this section,

we extend the proposed obstacle avoidance approach to in-

corporate user’s preference during obstacle avoidance.

5.1 Safety Margin

The desired safety margin around an object can be obtained

by scaling the state variable (in the obstacle frame of refer-

ence) in the dynamic modulation matrix M(ξ̃ ) given by Eq.

(18) as follows:

M(ξ̃η) = E(ξ̃η)D(ξ̃η)E(ξ̃η)
(−1) (21)

where ξ̃η = ξ̃ ./η corresponds to the element-wise division

of ξ̃ by η ∈ R
d , and ηi ≥ 1, ∀i ∈ 1..d is the desired safety

factor, which inflates the object along each direction ξ̃1 with

the magnitude ηi (in the obstacle frame of reference). By

choosing different value for each ηi, one can control the re-

quired safety margin along the corresponding direction of

the object. Fig. 5 illustrates the effect of different safety mar-

gins for a 2D object in a uniform flow5.

5 One can also define different safety factors along the positive and

negative directions of each object’s axis by considering an if -else con-

dition on the sign of each ξ̃i.
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Algorithm 1 Procedure to handle equilibrium points at the

obstacle boundary

Require: ξ t , ξ̇ t , and the integration time step δ t

1: if Γ (ξ̃ t) = 1 and ξ̇ t = 0 then

2: Choose one of the basis vectors ei of tangential hyper-plane.

3: Define a small positive scalar α > 0

4: while true do

5: ξ t+1← ξ t +αeiδ t

6: Compute ξ̇ t+1 from Eq. (19)

7: if (ei)T ξ̇ t+1 > 0 or n(ξ̃ )T ξ̇ t+1 > 0 then

8: exit

9: end if

10: t← t +1

11: end while

12: end if

ξ1

ξ 2

η1 = η2 = 1.0

ξ1

ξ 2

η1 = η2 = 1.3

ξ1

ξ 2

η1 = 1.3, η2 = 2.0

Fig. 5 Controlling the safety margin around the obstacle via the safety

factor. The obstacle is inflated in the direction ξ1 and ξ2 with the value

η1 and η2, respectively. The area between the dashed line and the ob-

stacle boundary is the safety margin. The direction of the motion is

from left to right.

ξ1

ξ 2

ρ = 1.0

ξ1

ξ 2

ρ = 2.0

ξ1

ξ 2

ρ = 5.0

Fig. 6 Controlling the reactivity of the motion to the presence of the

obstacle (for η1 = η2 = 1.2). By increasing ρ , the reactivity increases,

hence the flow deflects earlier in time and with a higher magnitude.

Note that on the right graph, the white gap between the dashed line and

the trajectories is part of the free region.

5.2 Reactivity

The magnitude of the modulation created by the obstacle

can be tuned by modifying the eigenvalues of the dynamic

modulation matrix as follows:











λ 1(ξ̃ ) = 1− 1

|Γ (ξ̃ )|
1
ρ

λ i(ξ̃ ) = 1+ 1

|Γ (ξ̃ )|
1
ρ

2≤ i≤ d
(22)

where ρ > 0 is the reactivity parameter. The larger the reac-

tivity, the larger the amplitude of the deflection, and conse-

quently the earlier the robot responds to the presence of an

obstacle. A large ρ also extends the deflection farther out.

Fig. 6 illustrates the effect of using different reactivity pa-

rameters for a 2D object in a uniform flow.

ξ1

ξ 2

ξ1

ξ 2

Fig. 7 Controlling the tail-effect after passing the obstacle. Left: The

tendency of the trajectories to follow the obstacle shape after passing

it. Right: Remedying the tail-effect by defining the first eigenvalue

according to Eq. 23.

5.3 Tail-Effect

In the proposed obstacle avoidance formulation, the mod-

ulation due to the obstacle continues affecting the motion

even when the robot is moving away from the obstacle (see

Fig. 7-left). We call this effect of the obstacle on trajectories

tail-effect. In case of uncertainty in sensing, such a behavior

may be beneficial as it would mitigate imprecise detection of

the real volume of the obstacle. When it is not desirable, one

can remedy the tail-effect by defining the first eigenvalue of

the dynamic modulation matrix as follows:

λ 1(ξ̃ ) =







1− 1

|Γ (ξ̃ )|
1
ρ

n(ξ̃ )T ξ̇ < 0

1 n(ξ̃ )T ξ̇ ≥ 0
(23)

In the above equation, we use the sign of n(ξ̃ )T ξ̇ to

check whether a trajectory is going towards (negative sign)

or away (positive sign) from the obstacle. Fig. 7-right illus-

trates the result after using Eq. 23. In this figure one can

see that the tail-effect is significantly reduced. However, the

slight modulation of the trajectories after passing the obsta-

cle is still required in order to ensure the continuity in the

velocity.

6 Extension to Multiple Obstacles

So far we have shown how the dynamic modulation matrix

can be used to avoid a single obstacle. However, in the pres-

ence of multiple obstacles, the current dynamic modulation

matrix is ineffective and should be modified to include the

effect of all the obstacles. Beware that this extension can-

not be simply obtained by multiplying together the dynamic

modulation matrix of all the obstacles. In this case, the im-

penetrability condition is only guaranteed for one of the ob-

stacles. Note that for the sake of clarity of equations, in this

section we did not consider the extensions that we have pro-

vided in Section 5 on the safety margin, reactivity, and tail-

effect (here we use the default value η = ρ = 1, and do not

remedy the tail-effect). In Section 7, we unify all these ex-

tensions into a single final model (see Table 1).



8 S.M. Khansari-Zadeh, Aude Billard

Let us consider K obstacles with associated reference

points ξ o,k and boundary functions Γ k(ξ ;ξ o,k), k = 1..K
(the parameters of the k-th obstacle is denoted by (.)k). We

modify Eq. (18), and compute the eigenvalues of the k-th ob-

stacle based on both its current state, and the state of other

obstacles as follows:







λ k
1 (ξ̃

k) = 1− ωk(ξ̃ k)

|Γ (ξ̃ k)|

λ k
i (ξ̃

k) = 1+ ωk(ξ̃ k)

|Γ (ξ̃ k)|
2≤ i≤ d

(24)

where ξ̃ k = ξ − ξ o,k, Γ k(ξ k) is the simplified notation of

Γ k(ξ ;ξ o,k), and ωk(ξ̃ k) are weighting coefficients that are

computed according to6:

ωk(ξ̃ k) =
K

∏
i=1,i ̸=k

(Γ i(ξ̃ i)−1)

(Γ k(ξ̃ k)−1)+(Γ i(ξ̃ i)−1)
(25)

First observe that ωk(ξ̃ k) are continuous positive scalars

between zero and one, i.e. 0 ≤ ωk(ξ̃ k) ≤ 1. Second, at the

boundary of the k-th obstacle (i.e. Γ k(ξ̃ k) = 1), we have

ωk(ξ̃ k) = 1 and ω i(ξ̃ i) = 0, ∀i ∈ 1..K and i ̸= k. As we will

discuss later on, these two properties are crucial to ensure

impenetrability of the obstacles. Note that, when only one

obstacle exists (K = 1), we simply set ω1(ξ̃ 1) = 1 and Eq.

(24) simplified into Eq. (18).

By substituting Eq. (25) into the matrix of eigenvalues

given by Eq. (17), the dynamic modulation matrix for each

obstacle becomes:

Mk(ξ̃ k) = Ek(ξ̃ k)Dk(ξ̃ k)
(

Ek(ξ̃ k)
)−1

(26)

The combined modulation matrix that considers the net

effect of all the obstacles is then given by:

M̄(ξ ) =
K

∏
k=1

Mk(ξ̃ k) (27)

Eq. (27) ensures the impenetrability of all the K obsta-

cles. To verify this, suppose a point ξ b on the boundary of

the k-th obstacle. At this point, following the properties of

ω mentioned above and considering Eqs. (24), (17), (26),

and (27), we have:

ω i(ξ̃ b,i) = 0 ⇒ λ i
j(ξ̃

b,i) = 1 ∀ j ∈ 1..d,∀i ∈ 1..K, i ̸= k

⇒ Di(ξ̃ b,i) = III

⇒ Mi(ξ̃ b,i) = E i(ξ̃ b,i) III
(

E i(ξ̃ b,i)
)−1

= III

⇒ M̄(ξ b) = Mk(ξ̃ b,k)

6 Eq. (25) is in spirit very similar to the weighting coefficients pro-

posed in (Waydo and Murray, 2003) with the difference that we use

Γ k(ξ ) to compute weights (rather than the distance between the obsta-

cles).

Furthermore, because ωk(ξ̃ b,k) = 1, Mk(ξ̃ b,k) and by ex-

tension M̄(ξ b) is exactly similar to Eq. (15). Hence fol-

lowing Theorem 2, the obstacle is impenetrable. By mov-

ing from one obstacle to another, the weighting coefficients

smoothly changes between zero and one, and by this, im-

penetrability is always ensured for all the obstacles.

Following the discussion given in Section 4, the

target point ξ ∗ is the only equilibrium point in the free re-

gion because all the modulation matrices Mk has full rank.

However, as discussed before, on the boundaries of each ob-

stacle a set of saddle points or local minima may be gen-

erated. Provided the obstacles are not connected, i.e. they

do not have a contact point, these equilibrium points can be

handled by following Algorithm 1.

Fig. 8 illustrates the implementation of Eq. (27) in the

presence of five obstacles positioned in different ways. To

simplify the reference to these objects, they are numbered

from one to five. In this figure, the thick black line is the

streamline that starts on the symmetric line of the obstacles

arrangement. As can be seen, the combined modulation ma-

trix is able to prevent hitting the obstacles even if there is

a narrow passage between them (see for example Fig. 8(a),

(b) or (c)).

Fig. 8(d) shows the result for the case where all obstacles

are connected. First observe that the resulting shape is no

longer convex, but the impenetrability of the obstacles is still

preserved. However in the presence of the resulting concave

shape, Algorithm 1 cannot be used to avoid local minima.

A trivial solution to handle this problem is to model all the

connected obstacles as a single convex obstacle. Note that

at the boundaries’ intersection points, the weighting coeffi-

cients ωk are undefined (because the distance to more than

one obstacle is zero, and thus a division by zero occurs). At

these points, we have simply stopped the simulation.

7 Obstacle Avoidance Module

The proposed obstacle avoidance algorithm requires a user

to provide an analytical formulation of the outer surface of

the obstacle. When provided with the 3D model of the ob-

ject, one may compute a smooth convex envelope (also known

as convex bounding volume) that fits tightly around the ob-

ject. This Bounding Volume (BV) can be used (instead of

the object’s shape) to perform obstacle avoidance. Fig. 9 il-

lustrates such 3D convex envelopes generated from the 3D

models of a mug and a drawer.

When solely the point cloud description of the object

is available, one may use one of the estimation techniques

to approximate the BV. For example, in (Benallegue et al.,

2009), the BV is approximated using a set of spheres and

tori. To use this method, one first needs to find the relevant

patch (either sphere or torus) of the BV that corresponds to

the current position of the robot. Then, based on the analyti-
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ξ1

ξ 2

(a)

ξ1

ξ 2

(b)

ξ1

ξ 2

(c)

ξ1

ξ 2

(d)

2

3
5

4

1

4

5

3

2

5

4

3

2

1

5

4

3

1

2

1

Fig. 8 Extension of the proposed approach to multiple obstacles. The

combined dynamic modulation matrix ensures the impenetrability of

all obstacle even if they are very close or connected to each other. How-

ever, for the case where the objects are connected (see (d)), some local

minima may appear that cannot be avoided with Algorithm 1. Trajecto-

ries that stop at the local minima are plotted with dashed lines. A trivial

solution to handle this problem is to model all the connected obstacles

as a single convex obstacle.

Fig. 9 Illustration of two complex objects that are modeled with

two smooth hyper-surfaces. The analytical model for the drawer is

Γ (ξ̃ ): (ξ̃1/0.4)4 + (ξ̃2/0.4)8 + (ξ̃3/0.6)4 = 1, and the mug is mod-

eled with (ξ̃1/0.05)4 +(ξ̃2/0.05)8 +(ξ̃3/0.05)4 = 1 when ξ̃2 > 0 and

(ξ̃1/0.05)4 +(ξ̃2/0.08)2 +(ξ̃3/0.05)4 = 1 elsewhere.

cal formulation of that patch, one can compute the dynamic

modulation matrix as described before. Recall that our ob-

stacle avoidance module only requires the convexity and C1

smoothness of the BV, which are fulfilled in this work. Fig.

10 shows an example of the convex BV generated from the

point cloud of a toy car using the method above.

When doing obstacle avoidance in a dynamic environ-

ment, it is hardly possible to generate the BVs from the out-

put of the vision system in realtime. Thus, it is necessary to

generate a library that stores the analytical formulations of

different objects. In our implementation, we rely on a library

of objects with known analytical convex envelopes. We use

this analytical descriptor of the envelop both to detect the

object and for our obstacle avoidance module.

Fig. 11 illustrates a conceptual sketch describing how

the presented obstacle avoidance method can be used in robot

experiments. In this approach, first the raw output of the vi-

(a) (c)(b)

Fig. 10 Illustration of generating a BV from the point cloud of a toy

car. (a) The 3D model of the car. (b) The point cloud of the car taken

from the Princeton Shape Benchmark (Shilane et al., 2004). (c) The C1

smoothness BV generated using the method described by (Benallegue

et al., 2009).
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Vision 
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Dynamic Modulation 

         Matrix 

 

Robot motion 

generated from DS Commanded 

velocity to the robot 

Is there enough 

time to recognize 

the object(s)? 
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No 

Fit a simple convex 

envelope around the 

point cloud of the 

obstacle. No

Fig. 11 A conceptual sketch describing the implementation of the ob-

stacle avoidance module for robot motions. The set ϒ i = {η i,ρ i,κ i}
contains the user preference for each obstacle.

sion system is sent to an object recognition module to iden-

tify the object(s). When the objects are recognized, their

corresponding properties such as the analytical formulation

of the boundary, safety factor, etc. are sent to the obstacle

avoidance module. The obstacle avoidance module modi-

fies the original dynamics of the motion by multiplying it

with the combined dynamic modulation matrix M̄(ξ ) so as

to avoid the obstacle safely. The complete formulation of

dynamic modulation matrix is summarized in Table 1.

In the presence of fast unknown moving obstacles, the

object recognition phase may not provide the agility required

to avoid the obstacle (especially when there is a large library

of the objects). In these situations, it might be more adequate

to replace the object recognition phase with an automatic

BV generator algorithm (see Fig. 11). Generating a simple

BV (e.g. an ellipsoid) around the point cloud of an obstacle

can be done quite quickly. If the object moves very rapidly,

it is recommended to set a large value for the safety mar-

gin η and for the reactivity parameter ρ (see Section 5) to

increase the robustness to uncertainties.

Furthermore, when there are many obstacles in the work-

ing space of the robot, it may not be necessary (and also
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Table 1 The complete formulation of dynamic modulation matrix

Nomenclature Formulation

d Dimension of state variable (a) For each obstacle compute the followings:

K Number of Obstacles (a.1) ξ̃ k
η = (ξ −ξ o,k)./η

ξ ∈ R
d Current robot position

(a.2) Ek(ξ̃ k
η ) =

[

nk(ξ̃ k
η ) e1,k(ξ̃ k

η ) · · · ed−1,k(ξ̃ k
η )
]

ξ̇ ∈ R
d Current robot velocity

ξ o,k ∈ R
d Center of k-th obstacle

(a.3) ωk(ξ̃ k
η ) =

K

∏
i=1,i̸=k

(Γ i(ξ̃ k
η )−1)

(Γ k(ξ̃ k
η )−1)+(Γ i(ξ̃ k

η )−1)ξ̃ k ∈ R
d Robot relative position to k-th obstacle

ξ̃ k
η ∈ R

d Scaled robot relative position to k-th obstacle

Γ k : Rd 7→ R Analytical description of k-th obstacle

(a.4)























λ k
1 (ξ̃

k
η ) =







1−
ωk(ξ̃ k

η )

|Γ (ξ̃ k
η )|

1
ρ

n(ξ̃ )T ξ̇ < 0 or κ = 1

1 n(ξ̃ )T ξ̇ ≥ 0 and κ = 0

λ k
i (ξ̃

k
η ) = 1+

ωk(ξ̃ k
η )

|Γ (ξ̃ k
η )|

1
ρ

2≤ i≤ d

Ek ∈ R
d×d Matrix of Basis vectors of k-th obstacle

Dk ∈ R
d×d Matrix of eigenvalues of k-th obstacle

Mk ∈ R
d×d Dynamic Modulation Matrix of k-th obstacle

nk ∈ R
d Normal vector of deflection hyperplane

for k-th obstacle

(a.5) D(ξ̃ k
η ) =









λ k
1 (ξ̃

k
η ) 000

. . .

000 λ k
d (ξ̃

k
η )









ei,k ∈ R
d i-th basis vector of k-th obstacle

λ k
i ∈ [0 2] i-th eigenvalue of k-th obstacle

ωk ∈ [0 1] Weighting coefficient of k-th obstacle

η ∈ [0 ∞) Safety factor (a.6) Mk(ξ̃ k
η ) = Ek(ξ̃ k

η )Dk(ξ̃ k
η )

(

Ek(ξ̃ k
η )
)−1

ρ ∈ R
+ Reactivity

(b) Combined Dynamic Modulation Matrix: M̄(ξ ) =
K

∏
k=1

Mk(ξ̃ k
η )κ ∈ {0,1} Tail-Effect

computationally feasible) to track all the obstacles all the

time. Since the modulation decreases as the distance to the

obstacle increases, one could ignore all obstacles for which

the associated modulation matrices are close to identity7 (since

we have limξ̃ k→∞Mk(ξ̃ k) = III).

By taking into account the obstacles that are locally rel-

evant, the processing time for the vision systems could de-

crease significantly. However, this will be at the cost of im-

posing a small discontinuity in the robot velocity when an

obstacle is added or removed from the set of relevant obsta-

cles. By setting a small threshold, this discontinuity practi-

cally becomes very negligible.

8 Experiments

We evaluate the performance of the proposed approach in

three ways: 1) On a set of theoretical autonomous and non-

autonomous DS, 2) On a set of 2D motions described by dy-

namical systems that were inferred from human demonstra-

tions, using two different learning approaches: Stable Esti-

mator of Dynamical Systems (SEDS) (Khansari-Zadeh and

Billard, 2011) and Dynamic Movement Primitives (DMP)

(Hoffmann et al., 2009) (see Section 8.2 for further infor-

mation about these approaches), and 3) In five robot ex-

7 For example, we consider the k-th obstacle is locally relevant in

the current position of the robot if: |λ k
i (ξ̃

k)−1| > ς ,∀i = 1..d, where

ς is a small positive threshold.

Table 2 The theoretical DS used for the Simulation Experiments

(a)

{

ẋ =−x

ẏ =−xcosx− y
(d)

{

ẋ = y− x(x2 + ysinx−1)

ẏ =−x− y(x2 + ysinx−1)

(b)

{

ẋ = cosx

ẏ = siny
(e)











ẋ = |x|/2+1

ẏ = 0

ż = |y|cos t

(c)

{

ẋ = y

ẏ =−x+0.9y(1− x2)

periments performed on the 7-DOF Barrett WAM arm. Un-

less otherwise specified, throughout this section we consider

ρ = κ = 1, and the state of the system is defined as either

planar or 3D motions, i.e. ξ = [x y]T or ξ = [x y z]T respec-

tively.

8.1 Simulation Experiments on Theoretical DS

We first evaluate the method in simulation using our basic

motion flow f (.) for five different dynamical systems. These

DS are defined in Table 2 and their phase plots are illustrated

in Fig. 12.

The first DS is globally asymptotically stable at the ori-

gin. Due to the cosine term, this DS displays a high nonlin-

ear behavior. The second DS is interesting in that it has infi-

nite number of attractors, saddle points, and unstable points.

The third DS has a stable limit cycle that includes an unsta-
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ble point located at origin. The forth DS is globally unstable

and has a unique unstable point at the origin. Due to the sine

terms, this DS also displays a high nonlinear behavior. The

fifth DS is globally unstable without equilibrium point.

All these DS are evaluated in the presence of multiple

obstacles. For simplicity, we consider two types of the 2D

obstacles and one 3D obstacle, but we use them in different

scales, orientations, and reference points. These obstacles

are formulated as follows:

Obstacle #1 :Γ (ξ̃ ) = (x̃/0.75)4 +(ỹ/1)2 = 1

Obstacle #2 :Γ (ξ̃ ) =

{

(x̃/1.2)4 +(ỹ/0.4)2 = 1 y≤ yo

(x̃/1.2)2 +(ỹ/1)2 = 1 y > yo

Obstacle #3 :Γ (ξ̃ ) =

{

x̃2 +(ỹ/1.4)2 +(2z̃)2 = 1 y≤ yo

x̃2 + ỹ4 +(2z̃)2 = 1 y > yo

Considering Fig. 12, all obstacles can be successfully

avoided in all types of DS even in the presence of high

nonlinearities and/or having several equilibrium points. As

it is expected, the multiplication of the combined dynamic

modulation matrix does not modify the original equilibrium

points of the system, and does not add any extra equilibrium

point in the free space X̄ f . The potential spurious equilib-

rium points on the boundaries of obstacles are also handled

using Algorithm 1.

8.2 Simulation Experiments on SEDS/DMP

In this section we evaluate the performance of the proposed

approach to generate handwritten trajectories forming the

alphabet letters ‘N’, ‘G’ and ‘J’. Each motion was demon-

strated three times. They were collected at 50 Hz from pen

input using a Tablet-PC. The motions are learned using SEDS

and DMP. SEDS builds an estimate of the motion through an

autonomous DS ξ̇ = f (ξ ), and thus in the presence of ob-

stacle(s) it can be modulated by following Eq. (19), whereas

DMP models a motion as a second order DS that takes the

form of ξ̈ = g(t,ξ , ξ̇ ). This function can be transformed into

a first order DS via:

{

ξ̇ = ζ

ζ̇ = g(t,ξ ,ζ )
(28)

and the modulation due to the presence of obstacle(s) can be

obtained as follows8:

{

ξ̇ = M(ξ̃ )ζ

ζ̇ = g(t,ξ ,M(ξ̃ )ζ )
(29)

8 The same principle can be used if the SEDS motions are modeled

with a second or higher order DS.
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Fig. 12 Performance evaluation of the proposed obstacle avoidance

module in the presence of five complex DS that are (a) globally sta-

ble, (b) locally stable, (c) stable limit cycle, and (d)-(e) unstable. The

left column shows the original DS, and the right column illustrates the

modulated DS in the presence of multiple obstacles. In this figure, sta-

ble, unstable, and saddle points are shown in star, solid circle and hol-

low circle, respectively. Obstacles are colored in green and the black

dashed lines illustrate their safety margin (η = 1.2 is considered for

all the obstacles). In (c), the thick black line is the stable limit cycle.

For formulation of the DS and the obstacles please refer to the text in

Section 8.1.
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Fig. 13 illustrates the results for these motions in the

presence of four different obstacles. In this experiment the

obstacles are modeled with the following formulations:

(a) Γ (ξ̃ ) :

{

(x̃/20)2 +(ỹ/10)2 = 1 x≤ xo

(x̃/20)6 +(ỹ/10)2 = 1 x > xo

(b) Γ (ξ̃ ) :























(x̃/12)2 +(ỹ/1.6)2 = 1 x≤ xo, y≤ yo

(x̃/32)2 +(ỹ/1.6)2 = 1 x > xo, y≤ yo

(x̃/32)2 +(ỹ/5.6)2 = 1 x > xo, y > yo

(x̃/12)2 +(ỹ/5.6)2 = 1 x≤ xo, y > yo

(c) Γ (ξ̃ ) :

{

(x̃/12)4 +(ỹ/4)2 = 1 y≤ yo

(x̃/12)2 +(ỹ/10)2 = 1 y > yo

(d) Superposition of (a), (b), and (c)

The obstacles in Fig. 13(a) and (b) are rotated by 110◦

and 10◦, respectively. We used the safety factor η = 1.3
for all the obstacle models. For both autonomous and non-

autonomous DS, the modified dynamics of the motions suc-

cessfully reach the target without hitting the obstacles. Fig.

13(d) shows the result for the case where multiple objects

exist in the experiment.

8.3 Robot Experiments

In this section we evaluate our obstacle avoidance method in

five robot experiments (three in the Cartesian space and two

in the robot joint space) performed on 7DoF Barrett WAM

arm. The arm length is 1.1m (when fully stretched). De-

pending on the experiment, the robot is kinematically con-

trolled in either Cartesian or joint space, and in all cases

the controller command is sent at 500 Hz. For the experi-

ments in the Cartesian space, we use the damped least square

pseudo-inverse kinematics to compute the robot’s joint an-

gles. The torque command to the robot is computed based

on the desired kinematic command using the WAM built-

in PID controller. All the results illustrated in this section

were recorded from the robot. Recordings of the robot ex-

periments are provided in Online Resource 1.

8.3.1 Experiments in the Cartesian Space

The first experiment consisted of having the robot reach for

an object while avoid hitting a table and a box. The height,

length, and width of the table are 0.02, 3 and 3m respec-

tively, and for the box these values are 0.24, 0.36, and 0.12m.

Note that we consider an extremely large value for the length

and width of the table to limit all trajectories to the region

above the table. The orientation and the position of the box

are computed by detecting the four markers’ location (blobs)

placed on the box at the rate of 100 fps using two high-speed

Mikrotron MK-1311 cameras. The position and orientation

of the table are fixed and are given to the system.

In this experiment we define the motion in the Cartesian

coordinates system. The original robot motion is learned us-

ing SEDS based on a set of demonstrations (in the absence

of obstacles) provided by the user. Fig. 14 represents the

experiment set-up and the trajectories generated from the

original and the modulated dynamics of the motion. As it

is expected, all reproductions from the modified dynamics

successfully avoid the box and reach the target. In this exper-

iment, the box center is initially placed at xc,B = 0.0, yc,B =
−0.65, and zc,B = 0.135 with respect to the robot frame of

reference. We define the box reference point to be at xo,B =
xc,B, yo,B = yc,B, and zo,B = 0, and use the analytical for-

mulation Γ (ξ̃ )B: ((x−xo,B)/0.092)4 +((y−yo,B)/0.23)4 +
((z− zo,B)/0.27)4 = 1 to model the box. The table is also

modeled with xo,T = yo,T = 0, zo,T = −0.01cm and Γ (ξ̃ )T :

((x− xo,T )/3)6 + ((y− yo,T )/3)6 + ((z− zo,T )/0.01)4 = 1.

We set the safety factor of the table to η = 1.3. For the

box, we used three different values for the safety factor, i.e.

ηx = 2.5, ηy = 1.5, and ηz = 1.2, to account for the large

differences between the box height, length, and width.

Note that, though the box and the table are connected, we

can avoid the problem highlighted in Fig. 8(d) by defining

zo,B = 0. In this way, the dynamic modulation matrix of the

box always deforms trajectories towards its upper part. Thus

no local minimum can be generated at the contact edges of

the box and the table.

Adaptation to change in the target position: To verify

the adaptability of the system in a dynamic environment, we

perform an experiment in which we continuously displace

the target while the robot approaches it (see Fig. 15). Dur-

ing the reproduction, the position of the target is updated

based on the output of the stereo vision system. Since the

modulated dynamics preserves the asymptotic stability of

the model, the system can adapt its motion on-the-fly to the

change in the target position. Note that the instant adaptation

to the target position is an inherent property of the SEDS

modeling. In this experiment we are demonstrating the fact

that our approach preserves all the properties of the SEDS

model, while enabling it to perform obstacle avoidance.

Adaptation to change in both the target and obstacle

positions: To evaluate the performance of the system in the

presence of a moving obstacle, we extend the previous ex-

ample to a case where both the target and the obstacle posi-

tions are changed as the robot approaches the target. Please

note that in this experiment we assume that the obstacle

movement is “quasi-static”. This assumption requires the

obstacle approaching speed (the projection of the obstacle

velocity onto the vector connecting the obstacle center to the

robot end-effector) to be significantly smaller than the robot

movement in that direction. Fig. 16 demonstrates the ob-

tained results. In this experiment, at the time between t = 0
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In The initial and final points of the trajectories are indicated by solid circle and star, respectively. Please refer to the text for further information.

(a) Experiment Set−up

−0.2
0

0.2
0.4

−0.8

−0.6

0

0.1

0.2

0.3

Modified Dynamics

−0.2
0

0.2
0.4

−0.8

−0.6

0

0.1

0.2

0.3

Original Dynamics

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

Top view

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0

0.1

0.2

0.3

Left view

(b) Experiment Results

Fig. 14 (a) The experiment set-up. The upper surface of the green block corresponds to the target point. (b) Adaptation of the original dynamics of

the reaching motion (top-left) with the dynamic modulation matrix (top-right). The graphes in the bottom row illustrate the top and left views of

both dynamics. Red dashed line and solid blue lines correspond to the trajectories from the original and the modified dynamics, respectively. The

black area represents the box outer surface, and the green area is its estimated analytical model. The light blue rectangle shows the upper surface

of the table. The initial and final points of each trajectory are indicated by solid circle and star, respectively.

and t = 6 seconds, the target is moved from its original po-

sition first in the opposite and then along the direction of

the y-axis. The box also starts moving in the period between

t = 0 and t = 2 seconds. During the reproduction, the tar-

get position and the box center and orientation are continu-

ously updated based on the output of the stereo vision sys-

tem. Similarly to the previous example, the system remains

robust to these changes in the environment and successfully

reaches the target.

Evaluation in a more dynamic environment: We fur-

ther evaluate our approach in a more dynamic environment

where both the target and the obstacle are quickly displaced

as the robot moves toward the target. Both positions of the

target and the obstacle are detected at 100 Hz. The obstacle

is a ball with radius 5cm. We set its safety factor to η = 1.5.

Note that the safety factor of 1.5 results in a 2.5cm safety

margin around the ball which is necessary to compensate for

the size of the haptic ball attached to the robot end-effector.
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(c) Illustration of the sequences of the motion

Fig. 15 Adaptation of the model to the changes in the target position.

Fig. 17 shows the experiment set-up and the obtained results.

The robot adapts on-the-fly its motion to both the obstacle

and the target movement.

Evaluation in a complex environment: In this exper-

iment we evaluate our method in the presence of several

obstacles including a desk lamp, a pile of books, a Wall-E

toy, a pencil sharpener, a book, a (red) glass, and a desk.

The task consists of having the robot place a (transparent)

glass on the desk, and in front of the person (see Fig. 18).

The position and orientation of all the objects except the

glass are pre-set. In order to have a more realistic exper-

iment, at each trial we add a error vector ε to the prede-

fined position of each obstacle ξ o,i to account for uncer-

tainty in the environment, i.e. ξ̂ o,i = ξ o,i + ε i. The value

of each component of the error vector ε i is drawn from a

Gaussian distribution with N (0,0025). The position of the

glass is actively tracked through the stereo camera described

above. The maximum tracking error in sensing the glass po-

sition is ±0.05m. The orientation of the glass is not mea-

sured, though it may change during each trial. We approxi-

mate all the obstacles with an ellipsoid envelope of the form

∑3
i=1(ξ̃i/ai)

2pi = 1, where ai > 0 and pi > 0 are real and inte-
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(c) Illustration of the sequences of the motion

Fig. 16 Robustness of the model to the changes in the target and ob-

stacle positions.

ger values, respectively. To compensate for the uncertainties,

we consider a safety factor of η = 1.5 for all the obstacles.

The tail-effect of all the obstacles is removed (i.e. κ = 0),

and the reactivity to the presence of the glass is increased by

setting ρ = 2 (the default value of ρ = 1 is considered for

other objects).

In this paper, we report on two trials of this experiment,

but we have also included two additional trials in the ac-

companying video. We use the same DS function that was

described in the previous robot experiments to control the

robot motions. In the first trial, the person moves the red

glass from his right to his left hand side (i.e. along the neg-

ative direction of the y-axis) while the robot is approaching

the target point. The person intentionally moves the glass

in a way that crosses the robot trajectory to the target point

(see Fig. 18(a)). In order to avoid hitting the red glass, the

robot deflects its trajectory towards the negative direction of

y-axis, and then approaches the target from its left side (in

Fig. 18(b), see the robot trajectory along y-axis in the time

period t = [3 4] seconds).

In the second trial, the person takes the glass from its

right hand side and moves it to the target position while the
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Fig. 17 Validation of the proposed method in a dynamic environment,

where both the target and the obstacle are displaced continuously. The

obstacle is a ball with the radius of 5cm. Please refer to the text for the

further information.

robot is approaching. In this situation, the robot stops near

the red glass (and the target) since it cannot get any closer to

the target (in Fig. 18(d), see the time evolution of the robot

trajectory in the time period t = [4 6] seconds). The robot

waits at this position until the person clears the areas. When

the red glass is lifted, the robot moves towards the target

point.

8.3.2 Experiments in the Joint Space

In this section, we validate our approach in d = 7 dimen-

sions, by controlling this time the WAM arm’s 7 joints, i.e.

ξ = [θi], i = 1..d. In the first experiment, we use our obsta-

cle avoidance approach to limit the movement range in the

second joint of the robot to values below −1.2 radian. To

reach this goal, we define a 7-dimensional obstacle Γ (θ) =

∑7
i=1((θi−θ o

i )/ai)
4 with ai = [10;0.1;10;10;10;10;10], θ o =

[0;−1.1;0;0;0;0;0] and the safety factor η = 1.2. The orig-

inal DS is defined in the joint space and is learned based

on a set of demonstrations in the robot joint space using the

SEDS learning algorithm. Fig. 19 illustrates the generated

trajectories from the original and the modified dynamics. As

it is expected, in the modified dynamics, the robot success-

fully reaches the target while the value of the second joint

remains below the desired value.

In the last experiment, we use our approach to avoid

two 7D spherical obstacles defined in the robot joint space.

The original robot motion is a cyclic movement in θ1-θ2

plane with θ̇1 = θ2 and θ̇2 = −θ1 + θ2(1− (θ1/5)2) and

θ̇i = 0, ∀i∈ 3..7. The obstacles have radius of ro,1 = ro,2 = 5

degrees and are placed in θ o,1 = [−100;45;1;61;1;−29;1]
and θ o,2 = [−80;45;−1;59;−1;−31;−1], respectively. The

safety factor of η = 1.2 is used in this experiment.

Fig. 20(a) illustrates the evolution of the motion in the

absence and presence of the obstacles. One can observe that

the modulated dynamics deviates in the presence of obsta-

cles, and due to the induced coupling via the dynamic modu-

lation matrix9, the robot also starts showing cyclic behavior

in previously static joints, i.e. θi, i = 3..7. Fig. 20(b) shows

the distance to the closest obstacle along the time. Here, one

can observe that while the original motion penetrates into

the obstacle, the modulated dynamics can smoothly avoid

the obstacles. The evolution of the motion along time is

shown in Fig. 20(c). One can see that the period of the mo-

tion is slightly decreased due to the presence of the obsta-

cle10. The corresponding robot motion in the task space is

shown in 20(d).

9 Summary and Conclusion

In this paper, we proposed a Dynamical System approach

to realtime obstacle avoidance for a case where robot mo-

tions are given by autonomous or non-autonomous DS, and

the obstacle(s) are convex. The method is derived for a d-

dimensional DS, hence can be used in both the Cartesian

and configuration spaces. The proposed method can han-

dle multiple obstacles, and do not modify the equilibrium

points of the original dynamics. However, in the presence of

obstacle(s) the method may lead to the appearance of sad-

dle points and local minima along the obstacles’ boundaries.

These points can be tackled through Algorithm 1.

The presented approach requires a global model of the

environment and an analytical modeling of the obstacles bound-

ary. When the analytical description of the obstacle is avail-

able, our method guarantees that all obstacles will be avoided

safely. However, the analytical equation of the obstacle or

its accurate status (i.e. position and orientation) may not be

available all the time. To generate the analytical equation,

it is possible to use one of the state-of-the-art bounding-

volume algorithms (e.g. Benallegue et al. (2009); Lahanas

et al. (2000); Welzl (1991) to approximate a convex BV on

9 Note that the motions across θi, i = 3..7 would become uncoupled

if the obstacles were placed at θ o,1 = [−100;45;0;60;0;−30;0] and

θ o,2 = [−80;45;0;60;0;−30;0].
10 Note that this paper does not claim that the cyclic behavior is al-

ways preserved in the presence of the obstacles.



16 S.M. Khansari-Zadeh, Aude Billard

(1) (3)

(4)

(2)

(a) Sequences of the mo on for the rst trial. In this experiment, the person moves the 
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point. (1): The ini al con gura on. (2): The person inten onally moves the glass in a 

way that crosses the robot trajectory to the target point. (3 & 4): In order to avoid 

hi ng the red glass, the robot de ects its trajectory towards the le  side of the 

person, and then approaches the target from that side. The trajectories of the robot 

and the red glass are shown with blue and yellow curves, respec vely. The traveled 

path is indicated with a solid line. 
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Fig. 18 Evaluation of the proposed method in a complex environment. In this experiment, the robot is required to put a glass on the desk and in

front of the person, while avoid hitting several objects including a desk lamp, a pile of books, a Wall-E toy, a pencil sharpener, an open book, a

(red) glass, and a desk. All the objects except the red glass are fixed and their convex envelope are shown in green. The trajectory of the red glass

is indicated by red diamonds (for the clarity of the graph, we do not display the envelope of the red glass).
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(a) Robot trajectories in the joint space

(b) Illustration of the robot trajectories in the taske space

Fig. 19 Using the proposed obstacle avoidance module to limit the

movement range in the second joint of the robot to values below −1.2
radian. (a) The red dashed line and the blue solid line corresponds to

the trajectories generated by the original and the modified dynamics,

respectively. The obstacle is shown in green. The initial and final points

of the motion are indicated by solid circle and star, respectively. (b)

Illustration of the robot movement in the robot task space.

the output of the vision system. In this work we used the

approach by Benallegue et al. (2009) because it satisfies the

convexity and C1 smoothness conditions required in our ap-

proach, and it provides a good volume-ratio convex fit of

objects. In the worst case when there is little time to gen-

erate the bounding volume, one could quickly fit the point

cloud with an ellipsoid.

The presented algorithm is able to cope with uncertainty

in the obstacle’s position by allowing certain safety margins

around the obstacle. The larger the safety margin, the more

robust the system is to uncertainty in the obstacle position.

Note that in the presence of an unforeseen object or un-

certainty in the obstacle’s position, our algorithm no longer

guarantees the safe avoidance of the obstacle, and can only

strive for the best performance.

All theorems derived in this work are based on the con-

tinuous state space assumption; however, in real experiments,

robot motions are usually generated with a finite number of

points (discrete modeling). Thus the choice of integration

time step is important specially in the close vicinity of the

object. In fact, when a big integration time step is used, for

trajectories that are very close to an obstacle, it is very likely

that the subsequent point falls inside the obstacle due to the

integration error. In this situation, trajectories tend to remain

inside the obstacle (because the boundaries are impenetra-

ble, no trajectory can enter or leave the obstacle). In this

paper, we did not face such an issue by considering the in-

tegration time steps of 0.01 and 0.002 sec in all simulations

and robot experiments, respectively.

The presented work is limited in that it can only be ap-

plied to convex shaped obstacles. While Theorem 2 still holds
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(c) Illustration of the robot trajectories in the taske space

Fig. 20 Illustration of applying the obstacle avoidance module in the

robot joint space. In this figure, the red dashed line shows the original

cyclic motion and the solid line demonstrates the modulated motion

in the presence of two 7-D spherical obstacles with the radius of 10

degrees. The robot motion is defined in the joint space and its evolution

is shown in (a). The solid black circle indicates the starting point of the

motion. The distance to the closest obstacle is illustrated in (b). The

corresponding robot motion in the task space is shown in (c). Please

refer to the text for the further information.

for concave shape, the simple Algorithm 1 to overcome local

minima on the boundary can no longer apply and an alter-

native solution must be sought. As a part of future work, we

are aiming at developing a non-harmonic formulation of the

panel method to model concave obstacles.

The quasi-static assumption that is considered in this pa-

per for moving obstacles is quite conservative. An important

extension to this work is to relax this assumption. Such ex-

tension currently exists for the case where the robot and the

obstacle motions are defined by harmonic functions (Feder

and Slotine, 1997). However, further investigation should be

carried out for non-harmonic motions.

The presented work considers obstacle avoidance for a

point robot. However, it is also possible to integrate other al-

gorithms to perform collision avoidance for the whole robot.

For example, while the end-effector follows the commanded

velocity from the proposed approach, one can use the kine-

matics null-space to avoid link collision (Maciejewski and

Klein, 1985). Furthermore, similarly to (Park et al., 2008),

we could also use the presented approach to control the kine-

matics null-space movement. To do this, it is only necessary

to find the closest point on the robot to the obstacle, and then
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use the proposed model to drive away this point from the ob-

stacle (if this movement is feasible in the joint null-space).

The source code of the proposed obstacle avoidance mod-

ule can be downloaded from:

http://lasa.epfl.ch/sourcecode/
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A Proof of Theorem 1

Consider a hyper-surface X b ⊂ R
d corresponding to boundary points

of a hyper-sphere obstacle in R
d with a center ξ o and a radius ro. Im-

penetrability of the obstacle’s boundaries is ensured if the normal ve-

locity at boundary points ξ b ∈X b vanishes:

n(ξ b)T ξ̇ b = 0 ∀ξ b ∈X
b (30)

where n(ξ b) is the unit normal vector at a boundary point ξ b:

n(ξ b) =
ξ b−ξ o

∥ξ b−ξ o∥

ξ̃ b=ξ b−ξ o

−−−−−−→ n(ξ b) =
ξ̃ b

r
∀ξ b ∈X

b (31)

The eigenvalue decomposition of the square matrix Ms(ξ̃ ,ro) is

given by:

Ms(ξ̃ ,ro) =V s(ξ̃ ,ro)Ds(ξ̃ ,ro)V s(ξ̃ ,ro)(−1) (32)

where Ds(ξ̃ ,ro) is a d× d diagonal matrix composed of the eigenval-

ues:







λ 1 = 1− r2

ξ̃ T ξ̃

λ i = 1+ r2

ξ̃ T ξ̃
∀i ∈ 2..d

(33)

and V s(ξ̃ ,ro) = [υ1 · · · υd ] is the matrix of eigenvectors with:



















υ1 = ξ̃

υ i
j =











−ξ̃i j = 1

ξ̃1 j = i

0 j ̸= 1, i

∀i ∈ 2..d, j ∈ 1..d
(34)

Substituting Eqs. (31), (32) and (7) into Eq. (30) yields:

n(ξ b)T ξ̇ b =
(ξ̃ b)T

r
V s(ξ̃ b,ro)Ds(ξ̃ b,ro)V s(ξ̃ b,ro)(−1) f (.) (35)

Since ξ b is equal to the first eigenvector of V s(ξ̃ b,ro), Eq. (35)

reduces to:

n(ξ b)T ξ̇ b =

[

r

[000]d−1

]T

Ds(ξ̃ b,ro)V s(ξ̃ b,ro)(−1) f (.) (36)

where [000]d−1 is a zero column vector of dimension d−1. For all points

on the obstacle boundary, the first eigenvalue is zero, i.e. λ 1 = 0, ∀ξ b ∈
X b. Thus, we have:

n(ξ b)T ξ̇ b = [000]Td V s(ξ̃ b,ro)(−1) f (.) = 0 (37)

B Proof of Theorem 2

The proof of Theorem 2 follows directly from that of Theorem 1. Ob-

serve that:

n(ξ b)T ξ̇ b = n(ξ b)E(ξ̃ b,ro)D(ξ̃ b,ro)E(ξ̃ b,ro)(−1) f (.) (38)

Considering the fact that n(ξ b) is equal to the first eigenvector of

E(ξ̃ b,ro), and the first eigenvalue is zero for all points on the obstacle

boundary yields:

n(ξ b)T ξ̇ b =

[

1

[000]d−1

]T

D(ξ̃ b,ro)E(ξ̃ b,ro)(−1) f (.)

= [000]Td E(ξ̃ b,ro)(−1) f (.) = 0 (39)
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