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Abstract. How should plant ecologists scale up from the fine-scale events affecting
individual plants in small neighborhoods to the coarse-scale dynamics of plant communities?
We give here a dynamical system, derived from an individual-based model, that captures
the main effects of spatial structure. The individual-based model describes a multispecies
plant community, living in a spatial domain, containing plants that (1) reproduce and die
with rates that depend on other individuals in a specified neighborhood, and (2) move
through seed dispersal and clonal growth. Over the course of time, substantial spatial
structure can build up in such a community due to local interactions and dispersal. The
dynamical system describes how the structure of local neighborhoods changes over time,
using the first and second spatial moments of the individual-based model. We show, by
means of an example of two competing species, that the dynamical system gives a close
approximation to the behavior of the underlying individual-based model, and that the chang-
es in local spatial structure as time progresses have fundamental effects on the dynamics.
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INTRODUCTION

Individual plants and animals are the natural starting
point for much field-based ecology. The fate of an in-
dividual plant, for instance, is often contingent upon
other plants in its immediate neighborhood (e.g., Pacala
and Silander 1990, Tyler and D’Antonio 1995). Yet the
questions that ecologists wish to address are often of
an aggregate, macroscopic kind, such as what deter-
mines the abundance of species, and what determines
the biodiversity of communities. Somehow ecologists
need to scale up from these fine-scale (microscopic),
neighborhood-dependent events to understand the
coarse-scale (macroscopic) dynamics of coexistence
and exclusion of species.

Plant ecologists use several methods for scaling up.
In the past the favored method has been to assume that
plants encounter one another in proportion to their av-
erage abundance over space, the so-called ‘‘mean-
field’’ assumption. This leads to dynamical systems,
relatively tractable from a mathematical point of view,
from which much of theoretical ecology has been de-
veloped. But the small neighborhoods over which
plants interact (Stoll and Weiner 2000), together with
the nonrandom spatial structure typically found in plant
communities (e.g., Mahdi and Law 1987), raise doubt
as to whether the mean-field assumption is appropriate.
An alternative, made popular by developments in com-
puter technology, is to run computer simulations in an

Manuscript received 26 May 1998; revised 20 April 1999;
accepted 18 May 1999; final version received 19 July 1999.

3 E-mail: RL1@york.ac.uk

explicit spatial setting following the fate of each in-
dividual (Crawley and May 1987, Cain et al. 1995,
Pacala et al. 1996, Schwinning and Parsons 1996). Al-
though this might seem to remove the need for scaling
up altogether, there often remains a problem of how to
obtain generic understanding of the macroscopic pro-
cesses involved (Dieckmann et al. 2000).

How to scale up to the macroscopic dynamics from
events acting on individuals in an explicit spatial set-
ting remains a major challenge for ecologists (Levin
et al. 1997, Tilman and Karieva 1997, Dieckmann et
al. 2000). This paper describes and tests a dynamical
system for the macroscopic behavior of plant com-
munities, derived from a spatially explicit model of
individual plants. The paper builds on and extends a
method involving the first two spatial moments of the
individual-based model, sometimes referred to as the
method of moments (Bolker and Pacala 1997, Dieck-
mann et al. 1997). The first spatial moments are simply
the population densities of the species averaged over
space, and the second moments measure the vari-
ability of densities over space. By incorporating the
second spatial moments, the dynamical system tracks
important aspects of the community’s spatial structure
and couples this structure to the dynamics of mean
density, thereby allowing a feedback between the two.
Such coupling is crucial in plant communities: the fate
of individuals is affected by local spatial structure,
and this in turn causes the spatial structure to change.

The paper extends earlier work on moment dynamics
in several respects. (1) It introduces a simple function,
the pair-density function, to describe the second-order
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spatial structure. (2) It gives a closed dynamical system
for the coupled dynamics of the first and second mo-
ments, for a plant community containing an arbitrary
number of species, living explicitly in a continuous,
two-dimensional space. (3) Putting the dynamical sys-
tem side by side with an individual-based model of two
competing plant species, it is shown that the outcome
matches closely that of the individual-based model. The
coupling of the first and second moments given by the
dynamical system is fundamental to the outcome of
competition. (4) The paper demonstrates that the terms
involved in the dynamics of pair densities have precise
geometric interpretations. (5) As a more technical foot-
note, the success of the dynamical system depends on
a moment closure, which does not presuppose that the
third central moment is negligible.

We begin by outlining a stochastic individual-based
model of births, deaths, and movements in a continuous
two-dimensional space, and we define first and second
spatial moments as convenient measures for summa-
rizing the emerging patterns. We then give and explain
a dynamical system describing the behavior of the mo-
ments over the course of time. (The formal derivation
of the dynamical system from the individual-based
model is technical, and is given elsewhere [Dieckmann
and Law 2000].) To keep the argument from becoming
abstract, we illustrate each step in terms of a com-
munity comprising two competing plant species. Read-
ers who wish to see what the dynamical system can do
relative to the individual-based model, without going
into the underlying formalism, should turn to the sec-
tion labeled Example.

A STOCHASTIC BIRTH–DEATH–MOVEMENT PROCESS

Consider a plant community comprising n species in
a large, continuous, two-dimensional space, with in-
dividuals located at points x 5 (x1, x2) in this plane.
(Individuals could be referenced by further properties
such as age or size, but, for simplicity, we deal here
only with species and location.) The spatial pattern of
individuals of species i can be thought of as a function
pi(x). Taking all n species together, the individuals form
a multispecies spatial pattern at time t denoted by a
vector of density functions p(x) 5 ( p1(x), . . . , pn(x));
p(x) thus describes the state of the system at time t.
(We use Dirac-delta functions to represent dis-d (x)x9

crete individuals in these functions; for an individual
at point is peaked at x 5 x9 and is 0 at allx9, d (x)x9

other points x [Dieckmann and Law 2000].) The pro-
cess operates in continuous time in an environment
with no spatial heterogeneity other than that generated
by individuals themselves.

There are three primary stochastic events associated
with an individual, namely, movement, death, and birth
of offspring. Opportunities for movement of plants are
obviously limited, but might arise through clonal
growth; for the sake of completeness movement is

therefore included. For an individual of species i, lo-
cated at point x in a pattern p(x), we write the proba-
bility per unit time of movement to location x9 as

M (x, x9, p) 5 m (x9 2 x).i i (1)

In other words, movement depends only on the intrinsic
tendency for individuals of species i to move and on
the distance moved x9 2 x. (More complicated depen-
dencies could, in principle, be introduced.)

An individual of species i, located at point x in a
pattern p(x), has a probability per unit time of death:

(d)D (x, p) 5 d 1 d w (x9 2 x)Oi i ij E ij[j

3 [ p (x9) 2 d 3 d (x9)] dx9 .j ij x ]
(2)

The first term, given by the parameter di, is a neighbor-
independent component of death, and is common to all
individuals of species i. The term inside the summation
describes how the death rate in species i depends on
individuals of species j in the neighborhood of location
x. The function weights the effect of a(d)w (x9 2 x)ij

neighbor of species j at x9 according to its distance
from x, the superscript d indicating that the weight
applies to deaths; this function is multiplied by the
density pj(x9) of j at location x9. Essentially the integral
adds up the contribution of each neighbor of species j,
making allowance through the weighting function for
the distance between individual j at location x9 and
individual i at x. The integrated expression is multiplied
by a parameter dij, making the interaction species spe-
cific. It is easily forgotten that the individual of species
i at location x cannot itself be a member of its neigh-
borhood; the term dij 3 dx(x9) comprising the Kronecker
delta dij multiplied by the Dirac delta-function dx(x9)
subtracts this individual from the integrated expression
(the Kronecker delta dij takes value 1 when i 5 j, and
0 otherwise).

An individual of species i, located at point x in a
pattern p(x), has a probability per unit time of giving
birth to an individual at location x9:

B (x, x9, p)i

(b)5 b 1 b w (x0 2 x)Oi ij E ij[1 j

3 [ p (x0) 2 d 3 d (x0)] dx0j ij x ]2
(b)3 m (x9 2 x). (3)i

In most respects this birth term has the same structure
as the death term (Eq. 2). The bi and bij are parameters
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TABLE 1. Nonzero parameters used in defining a community
of two competing species.

State Parameter

Value for species i

i 5 1 i 5 2

Death di

di1

di2

ri1
(d)

ri2
(d)

si1
(d)

si2
(d)

0.2
0.001
0.0005
0.12
0.12
0.03
0.03

0.2
0.002
0.001
0.12
0.12
0.03
0.03

Birth bi

ri
(bm)

si
(bm)

0.4
0.12
0.03

0.4
0.5
0.2

Note: Parameters are defined in A stochastic birth–death–
movement process.

FIG. 1. A spatial pattern of two plant species showing
neighborhoods of disperal and interaction. The axes x1 and
x2 are the spatial coordinates and are scaled to cover the range
0 to 1. Small circles mark points at which individuals are
located; these are filled for species 1, and open for species
2. Larger dashed circles are neighborhoods for individuals of
species 1; dotted circles are neighborhoods for species 2.
Thick discontinuous boundaries are dispersal neighborhoods,
with radii Thin discontinuous boundaries are interaction(bm)s .i

neighborhoods of five individuals of each species, with radii
Parameter values are as in Table 1.(d)2 3 s .ij

for neighbor-independent and neighbor-dependent
births, respectively, and is a function for(b)w (x0 2 x)ij

weighting the effect of neighbors, the superscript b
indicating that the weight applies to birth. The main
difference from Expression 2 is that there is dispersal
at birth statistically independent of the(b)m (x9 2 x),i

production of offspring, which moves the offspring to
a location x9 with probability density the(b)m (x9 2 x),i

superscript b indicating that dispersal takes place at
birth.

The probabilities per unit time above define a sto-
chastic individual-based model that changes the spatial
pattern of the community from one state p(x) to another
state p9(x). While it may seem that Expressions 2 and
3 are rather intricate, it would not be easy to write
general expressions for a species-specific neighbor-
hood dependence with less information. The derivation
of the equations for dynamics of the moments proceeds
simply with the information above; the specific shapes
taken by the functions are immaterial.(d) (b) (b)m , w , w , mi ij ij i

The most important assumption in Expressions 2 and
3 is that births and deaths depend linearly on the local
densities of neighbors; this assumption could, however,
be removed for small departures from linearity by
means of a Taylor approximation.

As an example, we consider a plant community
comprising two species, with parameters as in Table
1. Movement is assumed to take place only through
seed dispersal the location of each in-(b)m (x9 2 x);i

dividual becomes fixed at the time of germination, as
a result of which the function mi(x9 2 x) 5 0. We also
assume for simplicity that neighborhood dependence
operates only through deaths, so bij 5 0. The species
differ in two ways. (1) The first species is a stronger
competitor, and interactions are set in such a way that
species 1 would replace species 2 in the absence of
any spatial effects. (2) Seeds of the second species
can disperse farther (Fig. 1). In an explicitly spatial
system, greater dispersal may help species 2 to avoid
intraspecific competition, because offspring are more

likely to escape from the neighborhoods of their par-
ents, and this in turn could affect the outcome of com-
petition between the species. Communities with this
kind of trade-off between competitive ability and dis-
persal have been much studied because of their po-
tential to lead to coexistence of species (Skellam
1951, Hastings 1980, Crawley and May 1987, Tilman
1994, Dytham 1995).

Specifically, the dispersal properties of the species
in the community are as follows. Seeds of species i
move a random distance up to a maximum radius

relative to the parent. The direction is a random(bm)r i

variable with a uniform probability density function,
and the distance is a random variable with a normal
probability density function, peaked at zero and having
a standard deviation determining its width; the(bm)s i

normal distribution is truncated at , and normalized(bm)r i

so that its integral is one. In other words, the distance
r is drawn from a probability density function 1/z 3
exp[2r 2/(2 3 , where , and z is the nor-2(bm) (bm)s )] r # ri i

malization constant.
Apart from the difference in competitive ability and

seed dispersal, the species are ecologically equivalent;
in particular they have the same functions and param-



2140 RICHARD LAW AND ULF DIECKMANN Ecology, Vol. 81, No. 8

FIG. 2. Examples of spatial patterns of two competing
plant species generated as a realization of the individual-
based model described in the text using parameter values in
Table 1. Axes are as defined in Fig. 1. (a) Time zero, which
corresponds to a random initial distribution of 200 individuals
of each species. (b) Pattern after five units of continuous time
have elapsed, showing the spatial structure generated by in-
teractions and dispersal. Filled circles are locations of indi-
viduals of species 1; open circles are locations of individuals
of species 2.

eters for neighborhood dependence of deaths. We as-
sume that the effect of a neighbor on the chance of
death of an individual is a normal function of the neigh-
bor’s distance, truncated at a radius with a standard(d)r ,ij

deviation measuring how slowly the neighbor’s ef-(d)s ij

fect diminishes with distance.
Fig. 1 shows a random sample of interaction neigh-

borhoods of each species and illustrates why these
neighborhoods are important. In the spatial pattern
shown, species 1 is aggregated and segregated from
species 2. Individuals of species 1 thus tend to live in
a community locally dominated by conspecifics, at a
density rather higher than the global average. Species
2, on the other hand, lives in a community in which
the local density of conspecifics is close to the global
average and in which the local density of species 1 is
rather low. On the average, the species have a some-
what different ‘‘plant’s-eye view’’ of the community
(Turkington and Harper 1979, Mahdi and Law 1987).
This affects the risks of mortality, which together with
seed dispersal, affects the subsequent spatial structure;
the new spatial structure affects the risks of mortality,
and so on.

Evidently there is an intricate interplay between the
spatial structure and the events affecting individuals
over the course of time. The outcome of this is not
immediately obvious, but some understanding can be
gained from running a realization of the individual-
based model (here with periodic boundaries), illus-
trated by two snapshots in Fig. 2. At time 0, 200 in-
dividuals of each species are distributed at random
across the space. This density is markedly greater than
the community can support, and substantial mortality
occurs during the first five time units. By time 5, the
spatial pattern (that used in Fig. 1) has developed a
substantial amount of structure. Species 1, which has
less dispersal, shows much more aggregation than does
species 2; moreover, the species are not usually found
together because, where they do so, species 1 tends to
eliminate species 2.

FIRST AND SECOND SPATIAL MOMENTS OF THE

INDIVIDUAL-BASED MODEL

The spatial patterns that develop during realizations
of an individual-based model have their own intrinsic
interest. But it is far from straightforward to charac-
terize the major properties of the model simply by look-
ing at the patterns. What is needed are statistics that
capture its most important spatial features. The first
and second spatial moments of p(x) suggest themselves
as obvious contenders. The first moment Ni( p) of a
pattern p,

1
N (p) 5 p (x) dx (4)i E iA

is simply the average density of species i across a space
of area A. As a second moment Cij(j, p), we use a

product of pairs of densities for a spatial pattern p(x):

1
C (j, p) 5 p (x) 3 [ p (x 1 j) 2 d 3 d(j)] dx.ij E i j ijA

(5)

This comprises a product of the density of individuals
of species i and those of j at a distance j 5 (j1, j2)
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FIG. 3. Examples of spatial correlation functions com-
puted for the spatial patterns in Fig. 2. The graphs in the first
row are the correlations at time 0: (a) autocorrelation of spe-
cies 1, (b) cross-correlation of species 1 and 2, (c) autocor-
relation of species 2. Graphs (d), (e), and (f ) in the second
row are the corresponding correlations at time 5. The distance
scale is the same as that in Fig. 1.

from i, averaged across a region of area A. The second
moment is related to a spatial covariance, but is not a
central moment, because the densities are not expressed
as deviations from the means Ni( p). (We use this non-
central moment in preference to the central one, be-
cause this makes the equations for the moment dynam-
ics simpler later on.) The term dij 3 d(j) is subtracted
to remove a spurious term arising from a self pair at i
5 j and j 5 (0, 0), which Expression 5 would otherwise
contain. Notice that the second moment is a function
of the distance j of j from i, and needs to be thought
of as a function describing a surface; we refer to it as
an autocorrelation function when i 5 j, and as a cross-
correlation function when i ± j. When we show results
about second moments below, we normalize the mo-
ment by dividing by the product Ni( p) 3 Nj( p) and
refer to the moment as a spatial correlation function.
Values of this function greater than one then indicate
aggregation of individuals of species i and j, and values
less than one indicate that these individuals are spa-
tially segregated.

It is easiest to see the information carried in the
second moment by examining its shape when calcu-
lated for some explicit spatial patterns. We have there-
fore computed the shape of the second moments for
the spatial patterns in Fig. 2, and these are given in
Fig. 3. The individual-based model is isotropic, and

this means that the pair densities depend only on the
distances that separate the pairs, and not on the direc-
tion from i to j. In these circumstances, a spatial cor-
relation has a similar shape in every direction from the
origin, and we replace it by the radial correlation for
the purpose of illustration. (The radial correlation is
obtained by integrating the spatial correlation function
over the angle around the circle.)

At time 0 (Fig. 3a, b, c), the correlation functions
are close to unity at all distances, due to the random
locations at which individuals were placed at the start
(Fig. 2a). By time 5, however, substantial spatial struc-
ture has developed. Species 1, in keeping with its ten-
dency to occur in small clumps, has a large autocor-
relation close to the origin (Fig. 3d), but the correlation
diminishes with distance, because spatial structure is
localized. The autocorrelation function of species 2 is
much flatter because dispersal at the time of reproduc-
tion is so much greater in this species (Fig. 3f ). The
spatial segregation of species 1 and 2 is evident in the
small values of the crosscorrelation between the species
close to the origin (Fig. 3e).

The spatial patterns in Fig. 2 come from a single
realization of the underlying individual-based model.
If we ‘‘reshake the dice’’ and run the process again,
the spatial patterns that emerge are different. Repeated
often enough, one can think of a probability density
function P( p) for the spatial pattern p(x) at time t,
arising from the individual-based model. To extract the
generic features of the model, one needs the averages
of the first and second moments across the ensemble
of realizations, given by

N 5 P(p) 3 N (p) dp (6)i E i

C (j) 5 P(p) 3 C (j, p) dp (7)ij E ij

where dp means that the integration is over the space
of functions p. The purpose of the next section is to
give a dynamical system that describes the behavior of
these moments Eqs. 6 and 7 over time.

Before giving the dynamical system, a third spatial
moment needs to be introduced. Eventually this will
not be present in the dynamical system, but it appears
at an intermediate stage. We define the third moment,
for a spatial pattern p(x), as

T (j, j9, p)ijk

1
5 {p (x) 3 [ p (x 1 j) 2 d 3 d(j)]E i j ijA

3 [ p (x 1 j9) 2 d 3 d(j9)k ik

2 d 3 d(j 2 j9)]} dx.jk (8)

This is a natural extension of the second moment. It is
essentially a triplet density, the product of the density
of individuals of species i, times the density of indi-
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viduals of j at distance j from i, times the density of
individuals of k at distance j9 from i, averaged across
a region of area A. The delta terms are introduced as
before to remove products arising from self pairs. The
average of the third moment across the ensemble of
realizations of an individual-based model is given by

T (j, j9) 5 P(p) 3 T (j, j9, p) dp. (9)ijk E ijk

A DYNAMICAL SYSTEM FOR THE FIRST AND SECOND

MOMENTS

The method of moments attempts to describe the
dynamics of the moments in Eqs. 6 and 7 as a system
of differential equations. The rates of change of the
first moments are readily obtained by differentiating
Eqs. 6 with respect to time, giving

d
(b)N 5 (b 2 d ) 3 N 1 b 3 WOi i i i ij ijdt j

(d)2 d 3 W (10)O ij ij
j

where

(b) (b)W 5 w (j9) 3 C (j9) dj9 andij E ij ij

(d) (d)W 5 w (j9) 3 C (j9) dj9.ij E ij ij

The expressions make the metaphor of a(b) (d)W , Wij ij

‘‘plant’s-eye view’’ of the community (Turkington and
Harper 1979) precise and formal. Each expression com-
prises the pair density at a distance j9 weighted by the
distance of j from i, and integrated over all distances;
the weighting depends on the identity of the neigh-
boring species and whether the event associated with
the target individual is a birth or death. As the spatial
structure of the community changes over time, so does
the ‘‘plant’s-eye view’’ as given by Thus(b) (d)W , W .ij ij

and play a crucial role in coupling the dy-(b) (d)W Wij ij

namics of the first moment to the second-order spatial
structure of the community. In this sense the method
of moments can be said to provide a formal dynamical
system for changes in neighborhoods of plant com-
munities.

Although Eqs. 10 may seem unfamiliar at first sight,
the well-known Lotka-Volterra equations are a limiting
case as neighborhood size is made large. With and(b)Wij

equal to Ni 3 Nj, Eqs. 10 give(d)Wij

d
N 5 N 3 b 2 d 1 (b 2 d ) 3 N . (11)Oi i i i ij ij j1 2dt j

Eqs. 11 assume that individuals encounter one another
in proportion to their average abundance over space—
the ‘‘mean-field’’ assumption, equivalent to assuming
that spatial structure has no effect on the dynamics.
The reason why the Lotka-Volterra equations emerge

is that the birth and death rates were made linearly
dependent on neighborhood in defining the individual-
based model above.

The dynamics of the second moments (Eqs. 7) can
be thought of as keeping track of the flux in pairs of
individuals of species i and j (pair densities), where j
is a distance j from i. To account for all components
of this flux is basically a matter of careful bookkeeping,
but, because there are many terms, the right-hand sides
of the differential equations 12 below are correspond-
ingly somewhat complex. (In fact there are 10 types of
event, for each type involving i, with an equivalent
event involving j.)

The flux of the second moment is obtained by dif-
ferentiating Eqs. 7 with respect to time. For clarity, we
consider separately the contributions to the flux due to
movements (at times other than birth), deaths and
births, and some correction terms that keep track of
self pairs:

d
C (j) 5 (Movements) 1 (Deaths) 1 (Births)ijdt

1 (Corrections). (12)

Each term on the right-hand side of Eqs. 12 has a pre-
cise geometric meaning as a gain or loss of a pair ij,
where j is a distance j from i. The geometry is shown
in Fig. 4, and it will help understanding to keep this
geometry in mind when looking at the components of
Eqs. 12 below.

Movement of individuals at times other than birth
can both create pairs at a distance j and cause them to
disappear:

(Movements) 5 1 m (j0) 3 C (j 1 j0) dj0 (12.1)E i ij

1 m (j0) 3 C (2j 1 j0) dj0 (12.2)E j ji

2 zm z 3 C (j) (12.3)i ij

2 zm z 3 C (2j). (12.4)j ji

Terms 12.1 and 12.2 are positive contributions to Cij(j).
In term 12.1 an individual of i starts at a location such
that j is a distance j 1 j0 from i and moves by an
amount j0, so that j is a distance j from i after this
movement; the integration is needed to cover the full
range of starting points j0. Expression 12.2 is the cor-
responding term for species j. The term 12.3 is a neg-
ative contribution to Cij(j) that comes about from the
loss of pairs at a distance j when movement of an
individual of species i occurs and j is a distance j from
i before i moves; the term zmiz is the total probability
per unit time of movement (zmiz 5 # mi(j0) dj0). Ex-
pression 12.4 is the corresponding term for species j.

The death terms always cause pairs to be lost, but
this can happen both in a manner which is independent
of the neighborhood, and in a manner dependent on the
neighborhood:
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FIG. 4. Geometry of components of flux of the second
spatial moment in Eq. 12. At the top is a pair of individuals
ij of species i and j, with j at a distance j from i; this pair
can be created or destroyed by the events shown below in
species i (first column) and j (second column). Circles rep-
resent individuals of species i, squares represent individuals
of j, and diamonds represent those of k; arrows are the vectors
j, j9, and j0 used in the text; numbers denote terms on the
right-hand side of Eq. 12. An open symbol indicates a location
at which an individual is no longer present once the event
has taken place.

(Deaths) 5 2d 3 C (j) (12.5)i ij

2d 3 C (2j) (12.6)j ji

(d)2 d w (j9) 3 T (j, j9) dj9 (12.7)O ikE ik ijk
k

(d)2 d w (j9) 3 T (2j, j9) dj9.O jk E jk jik
k

(12.8)

The neighborhood-independent terms 12.5 and 12.6 are
straightforward, the ij pair being destroyed either by
the death of i or by death of j. The neighborhood-
dependent term 12.7 is more intricate because death is
affected by a neighbor k of the ij pair. For this the third
spatial moment Tijk(j, j9) is needed, in other words the
spatial density of triplets, comprising: (1) i, (2) j at a
distance j from i, and (3) k at a distance j9 from i. The
integral is needed to sum over all individuals of k in
the neighborhood of i. The term 12.8 is the correspond-
ing neighborhood-dependent death term for species j.

The birth terms always bring new pairs into exis-
tence; like the death terms, births can occur in a manner
independent of the neighborhood, or dependent on the
neighborhood:

(Births)

(b)5 1b 3 m (j0) 3 C (j 1 j0) dj0 (12.9)i E i ij

(b)1b 3 m (j0) 3 C (2j 1 j0) dj0 (12.10)j E j ji

1 bO ik
k

(b) (b)3 w (j9) 3 m (j0) 3 T (j 1 j0, j9) dj0 dj9E ik E i ijk

(12.11)

1 bO jk
k

(b) (b)3 w (j9) 3 m (j0) 3 T (2j 1 j0, j9) dj0 dj9.E jk E j jik

(12.12)

The complication in this case is that newborn individuals
disperse. In the case of neighborhood-independent births
of i (Expression 12.9), we start with a parent of species
i such that j is a distance j 1 j0 from the parent; the
seed of i disperses a distance j0 relative to its parent,
thereby forming a new pair such that j is a distance j
from the seedling. The integration accounts for all the
positions of the i parent from which this process could
start. Expression 12.10 is the equivalent neighborhood-
independent birth term for species j. The neighborhood-
dependent term 12.11 has to allow for the effect of
neighbors k on the births by the parent i and, like the
death term, this requires the third spatial moment, here
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Tijk(j 1 j0, j9). The first integral sums over all individuals
k in the neighborhood, and the second integral accounts
for all the seed dispersal. Term 12.12 is the correspond-
ing neighborhood-dependent term of species j.

The remaining eight terms correct for effects that
were omitted from the third moment due to the elim-
ination of self pairs:

(Corrections)

(d)5 2d 3 w (j) 3 C (j) (12.13)ij ij ij

(d)2d 3 w (2j) 3 C (2j) (12.14)ji ji ji

(b)1 d 3 m (2j) 3 b 3 N (12.15)ij i i i

(b)1 d 3 m (j) 3 b 3 N (12.16)ji j j j

(b)1 d 3 m (2j) 3 bOij i ik
k

(b)3 w (j9) 3 C (j9) dj9 (12.17)E ik ik

(b)1 d 3 m (j) 3 bOji j jk
k

(b)3 w (j9) 3 C (j9) dj9 (12.18)E jk jk

(b) (b)1 b w (j 1 j0) 3 m (j0)ij E ij i

3 C (j 1 j0) dj0 (12.19)ij

(b) (b)1 b w (2j 1 j0) 3 m (j0)ji E ji j

3 C (2j 1 j0) dj0. (12.20)ji

Expression 12.13 is the contribution that j itself makes
to the neighborhood-dependent death of i, and Ex-
pression 12.14 is the corresponding term for species j.
The term 12.15 adds in pairs that are created between
a parent of i and its offspring, when the newborn in-
dividual comes to be at a distance 2j from its parent,
with Expression 12.16 being the corresponding term
for species j. There is also an effect of k on this birth
event given in Expression 12.17 and 12.18. Finally,
Expression 12.19 (respectively 12.20) adds in the effect
that j (respectively i) itself has on the neighborhood
dependence of births in species i (respectively j). This
completes the right-hand side for the dynamics of the
second moment. We have in place a formal derivation
for Eqs. 10 and 12; this is somewhat technical and will
be published elsewhere (Dieckmann and Law 2000).

Notice that Eqs. 10 and 12 do not yet constitute a
closed dynamical system because Eqs. 12 contain terms
12.7, 12.8, 12.11, and 12.12, depending on the third
spatial moment. The set of equations has to be closed
by replacing the third moment with an expression based
on the first and second moments (Bolker and Pacala
1997, Dieckmann and Law 2000). The idea of a moment
closure is not a familiar one in ecology, but it is implied
by ecological models such as Eqs. 11 that ignore spatial

structure and replace the second moment in Eqs. 10 by
the product of two first moments. Here we close the
hierarchy of moments at order two instead of at order
one, replacing the third moments in Eqs. 12 by

C (j) 3 C (j9)ij ik
T (j, j9) 5 . (13)ijk Ni

We have chosen this closure for several reasons. It
satisfies two checks on consistency, (1) recovering the
dynamics of the first moment as the distance between
pairs becomes large, and (2) recovering the dynamics
of the first moment when the second moments are re-
placed by the products of first moments (mean densi-
ties) and interaction neighborhoods are made large.
Other closures can be constructed that satisfy these
checks, but the dynamics using closure 13 fit much
better to stochastic processes we have investigated than
do the dynamics using three other closures that we have
also studied (Dieckmann and Law 2000). Closure 13
is different from the one that would be obtained by
assuming that the third central moment is zero: the
latter does not give a good fit when population density
becomes low.

EXAMPLE

How good an approximation to the individual-based
model is the macroscopic dynamical system in Eqs. 10
and 12? To answer this question, the population den-
sities predicted by the dynamical system can be put
alongside some realizations of the individual-based
model. Here we examine the approximation for the
community of two competing plant species with pa-
rameter values given in Table 1. Notice that Eqs. 12
are simplified by virtue of the assumptions made ear-
lier: (1) that movement occurs only through seed dis-
persal, and (2) that neighbors affect only the probability
of death. These assumptions leave half the number of
terms on the right-hand side of Eqs. 12, namely, 12.5
to 12.10, and 12.13 to 12.16. We assume that, at time
0, individuals are randomly distributed in the plane.

First consider the dynamical behavior familiar from
the Lotka-Volterra competition Eqs. 11; these are in
effect the mean-field dynamics predicted by the first
moments taken on their own. Here spatial structure is
not taken into account, and the phase portrait suggests
that species 1, the stronger competitor, should eliminate
species 2 (Fig. 5a).

However, realizations of the stochastic process (Fig.
5b) show that the dynamics predicted from Eqs. 11 are
incorrect: it is elimination of species 1 that actually
takes place. (Each line in Fig. 5b corresponds to a mean
path, here an average of 20 realizations starting from
the same initial conditions.) The reason for the dis-
crepancy between Fig. 5a and b is that offspring in
species 1 are less well dispersed than those in species
2 and are less likely to escape from the neighborhoods
of their parents. This places species 1 at a disadvantage
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FIG. 5. Phase portraits showing the dynamics of two com-
peting species. At time 0, individuals are placed at random
locations in space; the trajectories are allowed to develop until
time 100 from 16 starting points. Panel (a) assumes that there
are no effects of space and uses Lotka-Volterra dynamics as
in Eq. 11. Panel (b) shows the mean path of the stochastic
process, here constructed from 20 realizations. Panel (c) gives
the trajectories after coupling the first and second spatial mo-
ments using Eqs. 10 and 12.

relative to species 2, which is large enough for species
2 eventually to eliminate species 1. The mean-field
dynamics do not carry information about the local
neighborhoods, and are qualitatively in error.

The phase portrait using the coupled first and second
moments (Fig. 5c) has flows quite different from those
of the first moment on its own. There is now a close
match between the trajectories and the mean paths of
the stochastic process. Evidently, by coupling the dy-
namics of the first and second moments, we capture
correctly important effects of spatial structure. (It
should be borne in mind that the trajectories shown are
projections into the plane of population densities of
orbits from a higher dimensional system incorporating
the second moment. This means that it is possible for
trajectories to cross one another in the plane of pop-
ulation densities.)

The coupled dynamics of first and second moments
hold in place much more information than just the spa-
tial averages of population densities. The system keeps
track of how the spatial structure of the community
develops over time. Major changes in this structure take
place, as the realization of the individual-based model
in Fig. 2 has already demonstrated. Time series for the
second moments show that the functions, which are
initially flat, rapidly build up structure at short dis-
tances (Fig. 6). There is a pronounced increase in the
autocorrelation of species 1 because of its limited dis-
persal, whereas the cross-correlation decreases because
of the tendency of species 1 to eliminate species 2
where they occur in the same proximity. There is also
some decline in the autocorrelation of species 2 at small
distances.

The discrepancy between the moment dynamics and
the nonspatial Lotka-Volterra dynamics in Fig. 5 is a
direct consequence of the coupling of the first and sec-
ond moments. At time 0, plants of both species are
distributed at random across space and there is no spa-
tial structure in the community. Plants therefore en-
counter one another in proportion to their average abun-
dance over space, and the mean-field dynamics of the
Lotka-Volterra model are a good approximation. This
can be seen in Fig. 5c, because its orbits start by moving
in the same direction as those of the nonspatial model
in Fig. 5a, i.e., towards extinction of species 2, the
weaker competitor.

Shortly after time 0, however, seed dispersal and
neighborhood-dependent mortality begin to generate
spatial structure in the community. Species 1, with
neighborhoods increasingly dominated by conspecifics,
experiences greater intraspecific competition; this de-
presses its mean density because large values of C11(j)
at small distances inflate in Eqs. 10. Species 2, on(d)W 11

the other hand, starts to escape some of the deleterious
effects of species 1, as the species become segregated
from one another; its mean density increases, because
the small values of C21(j) at small distances diminish

in Eqs. 10. Together, the increased competition in(d)W 21
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FIG. 6. Time series of radial correlation functions ob-
tained from integrating Eqs. 10 and 12: (a) autocorrelation
of species 1; (b) cross-correlation of species 1 and 2; (c)
autocorrelation of species 2. The distance scale is the same
as that in Fig. 1.

species 1 and reduced competition in species 2 are great
enough to put species 2 at an advantage. This is the
cause of the curl in the orbits in Fig. 5c, from pointing
towards extinction of species 2 to pointing towards
extinction of species 1. In other words, the difference
between Fig. 5a and c is simply a consequence of spa-
tial structure; the parameters of birth and death rates
are the same; only the neighborhoods are different.

DISCUSSION

The main messages from this analysis are twofold.
First, the method of moments is able to capture the
dynamics of neighborhoods in a plant community
closely enough to be a good approximation to an un-
derlying individual-based model. In conjunction with
work already in place (Bolker and Pacala 1997, Pacala

and Levin 1997, Bolker et al. 2000), moment dynamics
establish a firm, formally derived link from spatially
extended, individual-based, stochastic simulations, to
macroscopic, deterministic, ecological models. Sec-
ond, the effect of spatial structure on the dynamics is
fundamental; in the example shown, spatial structure
qualitatively reverses the outcome of competition, the
weaker competitor surviving and the stronger compet-
itor going to extinction.

Incorporating neighborhoods into community dy-
namics brings community theory a step closer to field
ecology. This applies particularly in the context of plant
ecology where the important processes often occur
within small neighborhoods in spatially structured
communities (Stoll and Weiner 2000), and there are a
number of other ecological contexts, such as population
dynamics in spatially structured landscapes (Murrell
and Law 2000), in which this approach could also prove
useful. There is still some way to go, however. Neigh-
borhoods in plant communities change in size as focal
individuals and their neighbors grow; in principle such
an extension could be achieved by indexing individuals
by size as well as by species, and by introducing a
function for neighborhood-dependent growth.

Quite a lot can, of course, be learnt simply from
running stochastic realizations of spatially extended,
individual-based models, as Fig. 5b illustrates. Such
realizations aid precise thinking about ecological pro-
cesses (Pacala et al. 1996), can be useful tools for man-
agement (Turner et al. 1995), and are needed in any
event to test deterministic approximations, as we have
done above. Arguably, though, more will be learnt in
the long run from deterministic approximations derived
from the individual-based models, because it is likely
to be easier to understand the generic properties of
deterministic models (Dieckmann et al. 2000). For in-
stance, it should be clearer what the asymptotic states
are, whether these states are homogeneous in space and
time, whether there are multiple attractors, what their
basin boundaries are, how initial states (of both the
first and second moments) determine which attractors
are reached, and so on.

It will not come as a surprise that a dynamical system
incorporating changes in neighborhoods can have much
more complex behavior than systems ignoring spatial
structure; the equations are, after all, more intricate and
contain parameters for interactions and dispersal that
are absent in simpler models. We think it likely that a
large class of phenomena is waiting to be unearthed in
these systems, even in the case of single-species sys-
tems, and that, as a result, some recasting of ecological
theory may be needed. For instance, how plant species
coexist has appeared to be a critical problem from
Gause’s competitive exclusion principle (Silvertown
and Law 1987); this theory has its roots in the Lotka-
Volterra competition equations and assumes that mean-
field population dynamics apply. But spatial clumping
of individuals within species is a common feature of
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natural plant communities (e.g., Pielou 1974, Mahdi
and Law 1987), and obviously reduces the importance
of interspecific relative to intraspecific competition
(Law and Watkinson 1989, Rees et al. 1996, see also
Atkinson and Shorrocks 1981). With ecological models
in place that properly incorporate such spatial structure,
coexistence of species could turn out to be more readily
achieved than previously thought (Pacala 1997, Pacala
and Levin 1997).

Another phenomenon, unanticipated from nonspatial
models, is that community dynamics, at least in the
early stages, may be determined by the initial spatial
structure. A random initial pattern at first gives dy-
namics close to mean-field; it is only as spatial structure
builds up that substantial divergence from these dy-
namics can develop. Consider, for instance, the exper-
iment by Pacala and Silander (1990) on a two-species
mixture of annual weeds, initially distributed with a
pattern close to random, and designed to test for de-
partures from mean-field dynamics over the course of
time; the mean-field model gave a good fit to the data,
rather as one would expect in the early stages given
the intial spatial structure. The initial spatial pattern
has implications more generally in the design of plant
competition experiments and community microcosms
(Firbank and Watkinson 1990, Naeem et al. 1994);
seeds of plant species are often scattered roughly at
random across some spatial region, and this is likely
to have its own effects on the outcome of competition
in the short term. Reliable insights into competitive
interactions may entail running such experiments for a
number of generations, or setting the spatial structure
close to its asymptotic state at the start. It is even pos-
sible, if there is more than one attractor, for different
starting patterns to move the initial state from one basin
to another, leading to different asymptotic states. Clear-
ly, the role of initial spatial structure deserves more
attention than it has received.

It is important to appreciate that the method of mo-
ments can never be more than an approximation to an
underlying individual-based model, and there are cir-
cumstances in which it is likely to fail. If important
properties of spatial structure lie in higher-order mo-
ments, then a second-order closure of the hierarchy is
obviously not adequate. (It ought to be relatively
straightforward to establish how serious a problem this
is from analysis of multispecies spatial patterns of plant
communities in the field.) In particular, the method rests
on the idea that the average neighborhood of an indi-
vidual adequately characterizes the spatial structure. If
structure occurs at large spatial scales, so that individ-
uals are either in one type of environment or another,
the average may not help understanding of the dynam-
ics. Interestingly, we noticed quite large single-species
patches developing in our stochastic realizations; the
success of the method of moments in these systems
suggests that it could be quite robust, remaining reli-
able even if there are substantial departures from the

mean-field. Another constraint is that births and deaths
are assumed to depend linearly on the density of neigh-
bors; it is this that is responsible for the close link to
Lotka-Volterra dynamics. But this assumption is not
essential, and could be removed by a Taylor approxi-
mation for small departures from linearity.

In sum, the method of moments needs to be used
cautiously with due regard to its limitations. But dy-
namics based on changes in neighborhoods have the
potential to provide new insight into plant community
dynamics. We believe that, as the basic core of theory
is developed, the method of moments will lead to a
much improved understanding about processes in ecol-
ogy.
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