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1. Introduction

Constrained quadratic optimization problems form an important area of research and
arise in many practical applications. Many of the problems that have been studied in
this area fall into the category of linearly constrained, convex quadratic programming
problems. A wealth of effective techniques are available for solving such problems,
in particular we mention active set methods (Fletcher, 1987) and various interior-point
methods (Faybusovich, 1991; Tits and Zhou, 1993; Nesterov and Nemirovskii, 1994).
The situation is not as tractable when one allows nonlinear equality constraints, see for
example Thng et al. (1996). Such constraints inherently lead to non-convex feasible sets
which often consist of a number of disconnected components.

An important area of current research closely related to constrained quadratic op-
timization is that of semidefinite programming. Semidefinite programming is a convex
optimization method that unifies a number of standard problems such as linear and
quadratic programming and has a wide variety of applications from engineering to com-
binatorial optimization. Importantly, there exist many effective interior-point methods to
solve semidefinite programming problems. These methods have polynomial worst-case
complexity and perform well in practice (Vandenberghe and Boyd, 1996).

In this paper we consider the problem of minimizing a quadratic cost subject to
purely quadratic equality constraints. Such problems are non-convex and their geometry
is such that in many cases the resulting constraint set consists of the union of a number
of disconnected subsets, each with their own local minima. To overcome the problem
of multiple minima, we reformulate the problem in a novel manner. The reformulation
involves the consideration of a sequence of linear optimization problems on the boundary
of the positive definite matrices. Each of these problems is nested together in a manner
that leads to a standard semidefinite programming problem on the interior of the positive
definite matrices. The approach taken leads to the formulation of a gradient descent
flow which can be used (in theory at least) to solve semidefinite programming problems.
Though our reformulation of the initial problem as a semidefinite programming problem
does not in general lead directly to a solution of the original problem, the initial problem
is solved by using a modified flow incorporating a penalty function. The optimum of
the semidefinite programming problem is used as the initial condition for this modified
flow.

Our aims in this paper are twofold. We present both a method for minimizing a
quadratic cost subject to quadratic equality constraints and we provide an analysis of
semidefinite programming from the non-standard though very interesting viewpoint of
dynamical systems. Though it is unlikely that the gradient flow developed will pro-
vide a practical approach to solving semidefinite programming problems, the analysis
undertaken provides an interesting perspective into the geometry of such problems.

The paper is structured as follows. In Section 2 a quadratic optimization problem
subject to pure quadratic equality constraints is introduced and then related through a
number of steps into a semidefinite programming problem. In Section 3 the geometry of
this problem is analyzed. A gradient flow to solve semidefinite programming problems
is developed and analyzed in Section 4; Section 5 contains some further analysis. In
Section 6 a modified version of the gradient flow incorporating a penalty function is
introduced. In Section 7 various methods of solving the original quadratic optimization
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problem based on the flow of Section 6 are discussed and a simulation example for one
of the methods is presented. The paper ends with some concluding remarks.

2. Problem Formulation

In this section a quadratic optimization problem subject to purely quadratic equality
constraints is presented. This problem is then reformulated as a sequence of linear
optimization problems on the boundary of the positive definite matrices. Each of these
problems is nested together in a manner that leads to a standard semidefinite programming
problem.

Consider the quadratic optimization problem:

Problem 2.1. Given A0, A1, . . . , Am ∈ Rn×n andc1, . . . , cm ∈ R,

minimizeϕ(x) := xT A0x

subject to x ∈ Rn, (2.1)

ψi (x) := xT Ai x = ci , i = 1, . . . ,m. (2.2)

The feasible set, those points which satisfy the constraints (2.1), (2.2), will certainly
not be convex, and in general will have a number of separate connected components.
Indeed, without considerably more knowledge of the matricesA1, . . . , Am ∈ Rn×n and
the scalarsc1, . . . , cm ∈ R it is unclear whether the feasible set is non-empty. To avoid
dealing with a null problem of this form the following assumptions are made:

Assumption 2.2.

(i) The matricesA0, A1, . . . , Am are symmetric.
(ii) The set of points satisfying the constraints (2.1), (2.2) is non-empty.

(iii) The matricesA1, . . . , Am are linearly independent.

The first of these assumptions can be made without loss of generality due to the
symmetry of the functionsϕ andψ1, . . . , ψm. The second assumption is for convenience
while the third assumption ensures that the constraints (2.2) are non-redundant.

Remark 2.3. It is important not to require implicitly the structure of the feasible set to
be known prior to the solution of Problem 2.1 being undertaken. Computing the set of
feasible points is itself a difficult and time-consuming task.

The approach taken is to reformulate Problem 2.1 as a matrix optimization problem
on the boundary of the positive definite matrices. Let tr denote the trace operator. Then,
given any matrixA ∈ Rn×n and any vectorx ∈ Rn, one has

xT Ax = tr(xT Ax) = tr(AxxT ) = tr(AX),

whereX := xxT . The set of realn×n matrices that can be written in the formX = xxT ,
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x 6= 0, is the set of symmetric, positive semidefinite matrices of rank 1. Let

S(1,n) = {X ∈ Rn×n | XT = X ≥ 0, rank(X) = 1}

denote this set of matrices. Consider the set

M1 = {X ∈ S(1,n) | 9i (X) := tr(Ai X) = ci , i = 1, . . . ,m}.

M1 is the set of all rank 1 matrices of the formxxT wherex is a feasible point for
Problem 2.1. This leads to the following optimization problem:

Problem 2.4. Given A0, A1, . . . , Am ∈ Rn×n andc1, . . . , cm ∈ R satisfying Assump-
tion 2.2,

minimize8(X) := tr(A0X)

subject to X ∈M1.

Observe that in the new formulation both the cost and the explicit constraint func-
tions,9i (X), are linear inX. The nonlinearity in the problem is confined to the geometry
of the setS(1,n). Much is known about the geometry ofS(1,n). In particular,S(1,n)
can be thought of as a homogeneous orbit of the general linear group under congru-
ence transformation (Helmke and Moore, 1994). The addition of linear constraints in
the definition ofM1 will generally divide the set into a number of separate connected
components. However, the reformulation allows one to consider the generalized sets

S(r,n) = {X ∈ Rn×n | XT = X ≥ 0, rank(X) = r } (2.3)

and

Mr = {X ∈ S(r,n) | tr(Ai X) = ci , i = 1, . . . ,m}. (2.4)

This leads directly to the nested set of optimization problems:

Problem 2.5. Given A0, A1, . . . , Am ∈ Rn×n andc1, . . . , cm ∈ R satisfying Assump-
tion 2.2 andr some integer 1≤ r ≤ n,

minimize8(X)

subject to X ∈Mr .

In fact eachMr suffers from the same difficulty asM1 with potentially several
connected components. As the numberr is increased the number of potential separate
components reduces untilr = n. In this final case then it is easily seen thatMn is
simply the intersection of a set of affine constraints with the convex cone of positive
definite matrices. ThusMn consists of only a single connected component and by
solving Problem 2.5 forr = n one avoids the complication of local minima due to the
geometry of the constraint sets. UnfortunatelyMn is not a closed set and hence the
problem could be ill posed.
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To avoid this problem we consider the set

M :=Mn =
⋃

r=0,...,n

Mr , (2.5)

whereMn denotes the topological closure ofMn. Note thatM is a closed subset of
Rn×n with a single connected component. This leads to the well-posed optimization
problem:

Problem 2.6. Given A0, A1, . . . , Am ∈ Rn×n andc1, . . . , cm ∈ R satisfying Assump-
tion 2.2,

minimize8(X)

subject to X ∈M.

Problem 2.6 is a standard semidefinite programming problem (Alizadeh, 1995).
There exist many practical interior-point methods to solve such problems (see Vanden-
berghe and Boyd, 1996). While classical linear programming theory ensures that the
optimum of Problem 2.6 always lies on the boundary ofM (and hence that the optimum
is rank degenerate), unfortunately, as will be discussed later in Section 5, the optimum
will not in general be rank 1. In the next sections we introduce a gradient flow to solve
Problem 2.6. Problem 2.4, and hence Problem 2.1, is then solved using a modified ver-
sion of this flow incorporating a penalty function designed to penalize solutions of rank
greater than 1. Simulations indicate that solution to Problem 2.4 lies close in terms of
the cost tr(A0X) to the solution of Problem 2.6.

3. The Geometry of the Feasible Sets

In this section the geometry of the setsMr is investigated. It is shown that, excluding a set
of singular points of zero measure, each setMr is a Riemannian manifold. Background
material on differential geometry, Lie groups and related material used in this paper can
be found in Boothby (1986) and Helmke and Moore (1994). The homogeneous space
structure ofS(r,n) is discussed in Chapter 5 of Helmke and Moore (1994).

An advantage of dealing with semi-algebraic Lie groups and group actions (such as
the general linear group and its group action onS(r,n)) is that the linearization of the
group action can be used to provide an explicit algebraic representation of the geometric
properties of the homogeneous spaces considered. Following the notation presented in
Chapter 5 of Helmke and Moore (1994), denote the symmetric bracket of two matrices
A, B ∈ Rn×n by

{A, B} := AB+ BT AT .

Theorem 3.1. The set

S(r,n) = {X ∈ Rn×n | XT = X ≥ 0, rank(X) = r }
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(as previously defined, see(2.3))is a smooth manifold whose tangent space at an element
X ∈ S(r,n) is the vector space

TX S(r,n) = {{1, X} | 1 ∈ Rn×n}.

Proof. Consider the map

α: GL(n,R)× Rn×n→ Rn×n, α(Z, X) = Z X ZT .

It is straightforward to show that

(i) If I is the identity matrix ofGL(n,R), then

α(I , X) = X for all X ∈ Rn×n.

(ii) If A, B ∈ GL(n,R), then

α(A, α(B, X)) = α(AB, X) for all X ∈ Rn×n.

Henceα is a left group action. LetIr denote ther × r identity matrix and letEr be the
n× n block matrix

Er =
(

Ir 0
0 0

)
.

Then

S(r,n) = {Z Er ZT | Z ∈ GL(n,R)}

and henceS(r,n) is an orbit of the Lie group actionα. As this group action is semi-
algebraic, it follows thatS(r,n) is a smooth submanifold ofRn×n (Gibson, 1979, p. 224).

For anyX ∈ S(r,n), consider the map

αX: GL(n,R)→ S(r,n), Z 7→ α(Z, X) = Z X ZT .

As α is a smooth action of a Lie group on a smooth manifold and the orbitS(r,n)
is a smooth submanifold, it follows that the mapαX is a submersion (Gibson, 1979,
p. 74). Hence,DαX|I , the differential ofαX evaluated atZ = I , is a linear map from
TI GL(n,R) ontoTX S(r,n) and

DαX|I (1) = 1X + X1T .

Noting thatTI GL(n,R) = Rn×n and thatX is arbitrary completes the proof.

Consider the map

F : S(r,n)→ Rm, X 7→ (tr(A1X) · · · tr(AmX))T .
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The setMr (see (2.4)) is a fibre of this map given byMr = F−1(c1, . . . , cm). The
derivative ofF in direction{1, X} ∈ TX S(r,n) is1

DF |X ({1, X}) = (tr(A1{1, X}) · · · tr(Am{1, X}))T
= 2(tr(A11X) · · · tr(Am1X))T

= 2(vec(A1) · · · vec(Am))
T (X ⊗ I ) vec(1).

The Fibre Theorem (Helmke and Moore, 1994, p. 346) implies thatMr = F−1(c1, . . . , cm)

is a smooth submanifold ofS(r,n) if the derivative ofF is full rank at every point in the
fibre. That is, if

(vec(A1) · · · vec(Am))
T (X ⊗ I ) (3.1)

is full rank for all X ∈Mr . In addition, at every pointX where the derivative ofF is
full rank,Mr is locally a manifold and the tangent space ofMr at such points is

TXMr = ker DF |X
= {{1, X} | 1 ∈ Rn×n, tr(Ai {1, X}) = 0, i = 1, . . . ,m}.

Definition 3.2. Any point X ∈Mr for which (3.1) is not full rank is termed asingular
point.

Unfortunately in practice it is difficult to know in advance when singular points
may arise. It follows from Sard’s theorem (Hirsch, 1976, p. 69) that the set of points
(c1, . . . , cm) ∈ Rm for whichMr is not a manifold has measure zero inRm. Con-
sequently, for an arbitrary choice of matricesA1, . . . , Am and scalarsc1, . . . , cm, it is
unlikely thatMr will contain singularities.

1 Let A andB be realn× n matrices. Thevecof the matrixA ∈ Rn×n is then2 length column vector
vec(A) := [ A(:,1); . . . ; A(:,m)]. It is easily verified that

tr(AB) = (vec(AT ))T vec(B).

Let Ai j denote thei j th entry of the matrixA. TheKronecker productof the matricesA andB is defined by

A⊗ B =

 A11B · · · A1n B
.
.
.

.

.

.

An1B · · · AnnB

 ∈ Rn2×n2
.

Some readily verified identities involving the vec operation and the Kronecker product are (Helmke and Moore,
1994, p. 314)

vec(AB) = (I ⊗ A) vec(B) = (BT ⊗ I ) vec(A)

and

(A⊗ B)T = (AT ⊗ BT ).
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Figure 3.1. A constraint set that is not a manifold.

The following is an example of the geometry of a setMr that contains singular
points. Forr = 1, n = 3 andm = 2 constraints, letM1 be defined byA1 = I , A2 =
diag

(
1, 1

4,4
)
andc1 = c2 = 1. It is easily verified that the matrix(vec(A1) vec(A2))

T (X⊗
I ) is rank degenerate atX = diag(1,0,0) ∈ M1. In local coordinates anyX ∈ M1

can be represented byx ∈ Rn satisfyingX = xxT . The fact that the set is not a man-
ifold is clearly demonstrated in Figure 3.1 which is a plot of the constraint set in local
coordinates. The plot shows that the points(±1,0,0) are degenerate and hence that the
constraint set does not form a manifold.

Before proceeding we make the following definition:

Definition 3.3. W := (vec(A1) · · · vec(Am)) ∈ Rn2×m.

Assumption 2.2 impliesW has rankm. Using the definition ofW a singular point now
becomes a pointX ∈Mr for which WT (X ⊗ I ) is not full rank.

Lemma 3.4. Given A0, A1, . . . , Am ∈ Rn×n and c1, . . . , cm ∈ R satisfying Assump-
tion 2.2,and W as in Definition3.3,for each r= 1, . . . ,n, the set

Nr = {X ∈Mr | WT (X ⊗ I ) is full rank}

is a smooth submanifold of S(r,n) that differs from the setMr by at most a set of measure
zero. The tangent space ofNr at a point X can be represented by the vector space

TXNr = {{1, X} | 1 ∈ Rn×n, tr(Ai {1, X}) = 0, i = 1, . . . ,m}.

Proof. The fact thatNr differs fromMr by at most a set of measure zero is a conse-
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quence of the fact thatMr −Nr is a proper algebraic subset, defined by

det
(
WT (X ⊗ I )2W

) = 0,

of the semi-algebraic setMr . The remainder of the theorem follows from discussion
above using the Fibre Theorem (Helmke and Moore, 1994, p. 346).

The manifoldsNr , r = 1, . . . ,n, are submanifolds of the homogeneous spaces
S(r,n). It is possible to giveS(r,n) a Riemannian structure derived from the normal
metric on the general linear group (Helmke and Moore, 1994, Chapter 5). This metric
is known as the normal metric onS(r,n). A key property of the metric used is that
the algebraic structure of the metric is equivalent for each of the manifoldsS(r,n),
r = 1, . . . ,n. The manifoldsNr inherit this Riemannian structure as submanifolds of
S(r,n). The explicit form of the normal metric is given in the following discussion.

The proof of Theorem 3.1 indicates that the tangent spaceTX S(r,n) can be consid-
ered as the image of the surjective linear map

DαX|I : Rn×n→ TX S(r,n), 1 7→ {1, X}.

The kernel ofDαX|I is

K = ker DαX|I = {1 ∈ Rn×n | {1, X} = 0}.

With respect to the standard inner product onRn×n,

〈A, B〉 = tr(AT B),

the orthogonal complement of kerDαX|I is

K⊥ = {Z ∈ Rn×n | tr(ZT1) = 0 ∀ 1 ∈ K }.

This leads to the following orthogonal decomposition ofRn×n,

Rn×n = K ⊕ K⊥.

Hence, every element1 ∈ Rn×n has a unique decomposition

1 = 1X +1X, (3.2)

where1X ∈ K and1X ∈ K⊥.
The mapDαX|I is surjective with kernelK and hence induces an isomorphism of

K⊥ ⊂ Rn×n ontoTX S(r,n). Thus defining an inner product onTX S(r,n) is equivalent
to defining an inner product onK⊥. For {11, X}, {12, X} ∈ TX S(r,n), set

〈〈{11, X}, {12, X}〉〉 := 2 tr((1X
1 )

T1X
2 ), (3.3)

where1X
1 and1X

2 are defined by (3.2). The factor of 2 is added purely for convenience.
This defines a positive definite, inner product onTX S(r,n). Since all the constructions are
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algebraic it is easily verified that the construction depends smoothly onX and generates
a Riemannian metric onS(r,n) (Helmke and Moore, 1994). This metric is referred to
as the normal Riemannian metric onS(r,n).

Finally, asNr is a submanifold ofS(r,n), the restriction of this metric toNr is a
Riemannian metric onNr .

4. Gradient Flow

In this section Problem 2.5 is considered and a gradient descent flow of the cost8 on
the smooth manifoldsNr introduced. Existence and uniqueness of solutions of the flow
are established along with some convergence properties.

Theorem 4.1. Given A0, A1, . . . , Am ∈ Rn×n and c1, . . . , cm ∈ R satisfying Assump-
tion2.2,let X ∈ Nr for some r, 1≤ r ≤ n. Then there is a unique solution(d1, . . . ,dm)

T

to the linear equation

 tr(A1A1X X) · · · tr(A1AmX X)
...

...

tr(AmA1X X) · · · tr(AmAmX X)


d1
...

dm

 = −
 tr(A1A0X X)

...

tr(AmA0X X)

 (4.1)

and the gradient of8(X) = tr(A0X) with respect to the normal Riemannian metric
(3.3) is given by

grad8(X) := {A0X + d1A1X + · · · + dmAmX, X}

= A0X X+ X X A0+
m∑

i=1

di (Ai X X+ X X Ai ). (4.2)

Proof. For a unique solution to (4.1) to exist it is sufficient to show that

D(X) =

 tr(A1A1X X) · · · tr(A1AmX X)
...

...

tr(AmA1X X) · · · tr(AmAmX X)


is full rank. Observing that

tr(Ai Aj X X) = tr((Ai X)
T Aj X) = (vec(Ai X))

T vec(Aj X),

it can be verified that

D(X) = WT (X ⊗ I )(X ⊗ I )W.

Recall thatWT (X ⊗ I ) is full rank for all X ∈ Nr and henceD(X) is full rank.
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The gradient of8: Nr → R with respect to the normal Riemannian metric is the
unique vector field grad8 which satisfies the following conditions:

(i) grad8(X) ∈ TXNr for all X ∈ Nr .
(ii) D8|X ({1, X}) = 〈〈grad8(X), {1, X}〉〉 for all {1, X} ∈ TXNr .

The first of these conditions implies that, for allX ∈ Nr ,

grad8(X) = {Ä, X}

for someÄ ∈ Rn×n which possibly depends onX. In addition grad8(X) must also
satisfy

tr(Ai grad8(X)) = 0 for i = 1, . . . ,m. (4.3)

Consider

Ä = A0X + d1A1X + · · · + dmAmX, (4.4)

whered1, . . . ,dm are given by (4.1). WithÄ defined by (4.4) it is straightforward to show
that grad8(X) = {Ä, X} satisfies (4.3) and hence that grad8(X) = {Ä, X} satisfies
condition (i).

The derivative of8 at X is

D8|X ({1, X}) = tr(A0{1, X}).

Condition (ii) requires

tr(A0{1, X}) = 〈〈grad8(X), {1, X}〉〉
= 〈〈{Ä, X}, {1, X}〉〉
= 2 tr((ÄX)T1X)

for all {1, X} ∈ TXNr .
We now show thatÄ = ÄX. Let3 ∈ K . Then

tr(ÄT3) = tr((X A0+ d1X A1+ · · · + dmX Am)3)

= tr(3X A0+ d13X A1+ · · · + dm3X Am)

= 1
2 tr((3X + X3T )A0+ d1(3X + X3T )A1+ · · · + dm(3X + X3T )Am)

= 1
2 tr({3, X}A0+ d1{3, X}A1+ · · · + dm{3, X}Am)

= 0 as 3 ∈ K

and henceÄ ∈ K⊥ andÄ = ÄX. This implies tr((ÄX)T1X) = tr(ÄT1). Finally we
show that 2 tr(ÄT1) = tr(A0{1, X}) for all {1, X} ∈ TXNr . Let{1, X} ∈ TXNr . Then

2 tr(ÄT1) = 2 tr((X A0+ d1X A1+ · · · + dmX Am)1)

= tr(A0(1X + X1T )+ d1A1(1X + X1T )+ · · · + dmAm(1X + X1T ))

= tr(A0{1, X} + d1A1{1, X} + · · · + dmAm{1, X})
= tr(A0{1, X}) as tr(Ai {1, X}) = 0 for i = 1, . . . ,m.

This completes the proof.
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An important aspect of this construction is that the algebraic representation of the
gradient, (4.2), as a function fromRn×n→ Rn×n is independent of the rank ofX. Thus,
except at singular points, it is possible to consider the algebraic equation

Ẋ = −
{

A0X +
m∑

i=1

di Ai X, X

}
(4.5)

as a differential equation onM (see (2.5)). There are several advantages in this interpre-
tation of the problem. In particular, the fact that the flow will be defined on a closed (and,
in most cases of interest, compact) set. However, before proceeding with the analysis it
is necessary to consider how to deal with singular points should they occur.

Observe that, whenever the matricesA1, . . . , Am satisfy the linear independence
requirement of Assumption 2.2, ifX > 0 the matrix given by (3.1) is always full rank.2

Thus, if a singular point does occur it will always occur on the boundary of the positive
definite cone.

SupposeX is a non-singular point that approaches a singular pointXs via some
continuous path. Consider the coefficientsd1, . . . ,dm defined by (4.1). Thesedi ’s are
in fact simply projection coefficients that ensure tr(Ai grad8(X)) = 0, i = 1, . . . ,m.
Hence the functionsd1, . . . ,dm must be continuous. Now, even though the matrixD(X)
becomes singular asX → Xs, the gradient direction−grad8(X) remains bounded
and has a well-defined limit. Consequently, along any solutionX(t) of the gradient flow
(4.5) for which there exists a timets > 0 such thatX(ts) = Xs, the continuous limit of
the gradient

grad8(Xs) = lim
t→ts

grad8(X(t)) (4.6)

exists. Since the solution up to this point is unique, the extension of the gradient field
in this manner is unique for a given initial condition. Of course if a different initial
condition is chosen, the gradient extension may be different. Considering a single initial
condition and applying classical existence and uniqueness theory of ordinary differential
equations, it follows that a solution of (4.5), extended via (4.6), must continue to exist
beyond timets. The convention of choosing the gradient extension as mentioned above
ensures that the solution obtained in this way is unique and (due to continuity) will
continue to satisfy the constraints that preserve the solution inMr . Since the cost is
analytic, the solution will pass through the singular surface instantaneously at timets
and then continue evolving inNr .

Recall the definition ofM (see (2.5)). The setM is a closed subset of the symmetric
positive semidefinite matrices. While it can be readily verified thatM is convex,Mmay
not be bounded and hence there may exist trajectoriesX(t) which are unbounded. Such
solutions correspond to the case where the infimum of the cost8(X) = tr(A0X) over
M is negative infinity. This possibility is of little interest and its analysis is beyond the
scope of the present paper. In what follows we assume that the cost8 is bounded below
onM. Indeed, we assume the slightly stronger condition, which considerably simplifies

2 If A, B ∈ Rn×n andλ1, . . . , λn andµ1, . . . , µn are the eigenvalues ofA and B, respectively, the
eigenvalues ofA⊗ B areλiµj for all i, j . Hence ifX is invertible, so isX ⊗ I .
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the analysis, that the cost8 has compact sublevel sets, i.e., that, for eachc ∈ R, the set
{X ∈M | 8(X) ≤ c} is a (possibly empty) compact subset ofM.

Remark 4.2. A common condition encountered in practice is that one or more of the
constraint matricesA1, . . . , Am is positive definite. In this case it can be shown thatM
is compact and hence that8 has compact sublevel sets.

Theorem 4.3. Given A0, A1, . . . , Am ∈ Rn×n and c1, . . . , cm ∈ R satisfying Assump-
tion 2.2, let X(0) = X0 ∈M be any non-singular point(see Definition3.2).Assume8
has compact sublevel sets. Then the solution X(t) to

Ẋ = −grad8(X)

= −A0X X− X X A0−
m∑

i=1

di (Ai X X+ X X Ai ), (4.7)

extended to all points inM via the extension(4.6),satisfies:

(i) The solution X(t) exists and is unique for all time t≥ 0 and remains inM.
(ii) The rank of the solutionrank(X(t)) remains constant for all time.

(iii) The equilibria of(4.7)are characterized by those points X∈M such that

(A0+ d1A1+ · · · + dmAm)X = 0. (4.8)

(iv) The cost8(X(t)) is a monotonically decreasing function of time. The solutions
X(t) converge to a connected component of the set of equilibria given by(4.8).

Proof. Existence and uniqueness of the solution of (4.7) over a small time around a
point X(t) is guaranteed by classical ODE theory and the discussion of the extension
of the flow onto singular points. (Note that singular initial conditions, for which the
extension (4.6) is unclear, are excluded from consideration.) The cost8 having compact
sublevel sets implies that the solution remains bounded and it follows thatX(t) exists
and is unique for all timet ≥ 0.

The preservation of the rank ofX(t) for all time is a direct consequence of the local
existence results and the fact that locallyX(t) remains inMr .

To verify the characterization of the critical points consider a critical pointX ∈M.
Then

grad8(X) = {AX, X} = 0, (4.9)

whereA := A0 + d1A1 + · · · + dmAm. Expanding (4.9) and multiplying byA on the
left implies

AAX X+AX XA = 0.

Taking the trace of the above equation and using properties of the trace operator implies
that

tr
(
(AX)T (AX)

) = 0
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and hence thatAX = 0. Substituting forA in this equation recovers the characterization
in the theorem statement. Sufficiency of the condition is easily verified.

Part (iv) is a consequence of the gradient nature of the flow on all but a set of measure
zero inM. The convergence result follows by considering8(X) as a Lyapunov function
for the flow.

5. Further Analysis

In this section a phase portrait analysis of the flow (4.7) is developed.
In the generic case that8 is not constant overM, any critical point of Problem 2.6

will occur on the boundary of the positive definite cone and hence will be rank degenerate.
This follows in a straightforward manner from the cost and constraint functions being
linear.

Remark 5.1. The situation that the cost functional8 is constant overM will occur if
one has a degenerate situation such asA0 being a linear combination of the constraint
matricesA1, . . . , Am.

In addition, any minima of Problem 2.6 are global minima and the set of all such
minima form a convex subset ofM (Luenberger, 1969). In fact, generically, there is a
unique solution to Problem 2.6 (Alizadeh et al., 1996).

Classical dynamical systems theory now ensures that the attractive basin of the set
of global minima is almost all of the setM. Indeed, the authors believe that the attractive
sets of the non-minimal critical points are confined to the boundary of the positive definite
cone, however, we have no satisfactory proof for this claim.

It is of interest to study more carefully the characteristics of the critical points.
Consider (4.8). In the case where there is a single constraint, the critical point condition
becomes a standard generalized eigenvalue problem:

A0X = −d1A1X.

Furthermore, whenA1 is positive definite, the one constraint case can be solved ana-
lytically. SupposeA1 > 0 and recall the original problem statement, Problem 2.1, with
m = 1 constraints:minimize xT A0x subject to xT A1x = c1. As A1 > 0, there exists
an invertible, symmetric square root ofA1, denotedA1/2

1 . Definey := c−1/2
1 A1/2

1 x and
A′0 := c1A−1/2

1 A0A−1/2
1 . Then the optimization problem can be rewritten asminimize

yT A′0y subject to yT y = 1. The solution to this problem is well known: it is the unit
length eigenvector corresponding to the minimal eigenvalue ofA′0. However, this is just
the same as claiming thatx is the solution corresponding to the smallest eigenvalue of
the generalized eigenvalue problem for the matrix pairA0, A1.

Denoting the minimal generalized eigenvalue ofA0, A1 byλ, one has the following
conditions forX = xxT to be a global minimum of Problem 2.6:

(i) (A0− λA1)x = 0,
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(ii) xT A1x = c1,

(iii) A0− λA1 ≥ 0.

Equations (i) and (iii) are solved by choosingx as the eigenvector corresponding to the
minimal generalized eigenvalue ofA0, A1. Equation (ii) can be satisfied by scalingx.

In fact, in the semidefinite programming literature it is shown that this characteri-
zation of the global minima of the single constraint case generalizes to conditions for a
global minima in the multi-constraint case.

Theorem 5.2. X ∈M is an optimal solution to Problem2.6 if and only if

(i) (A0+ d1A1+ · · · + dmAm)X = 0,
(ii) tr(Ai X) = ci , i = 1, . . . ,m,
(iii) A0+ d1A1+ · · · + dmAm ≥ 0.

Proof. See Alizadeh et al. (1996).

The final issue that needs to be considered is the question of whether a minimum of
Problem 2.6 on the full setM relates to a minima of Problem 2.1, the original problem
onRn. Unfortunately, a minimum of Problem 2.6 will not always be rank 1 and hence
one is not always able to solve Problem 2.1 directly from the solution of Problem 2.6.

The next theorem gives upper and lower bounds on the rank ofX. The result is taken
from Alizadeh et al (1996). Before proceeding we introduce some notation. Let

n2 := n(n+ 1)/2.

For h ≥ 0, letbhc denote the largest integer less than or equal toh. Define

2
√

k = bhc whereh is the positive real root of h2 = k.

Theorem 5.3. If X is an minima of Problem2.6,then, generically,

n− 2

√
n2−m≤ rank(X) ≤ 2

√
m.

Proof. See Alizadeh et al. (1996).

An example of the sorts of bounds produced by Theorem 5.3 are given in Table 5.1
(Alizadeh et al., 1996). Bounds are given forn = 20 and various values ofm.

Remark 5.4. From Theorem 5.3 it follows that, generically, ifn ≥ 2, then the solution
to Problem 2.6 is rank 1 ifm≤ 2.
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Table 5.1. Generic bounds on
rank(X) for n = 20.

m Bounds onr = rank(X)

10 1≤ r ≤ 4
20 1≤ r ≤ 5
30 2≤ r ≤ 7
40 3≤ r ≤ 8
50 3≤ r ≤ 9

6. Gradient Flow with Penalty Function

In this section we consider a modified version of the flow that incorporates a penalty
function designed to encourage the solution of the flow to converge to a rank 1 matrix.

Consider the cost function

Ä(X) = ||X||2F − ||X||22, (6.1)

where||X||F = tr(X2)1/2 is the Frobenius norm ofX and||X||2 = max||v||=1 ||Xv|| is
the 2-norm ofX. If 0 ≤ λ1 ≤ · · · ≤ λn are the eigenvalues ofX, thenÄ(X) =∑n−1

i=1 λ
2
i

and can be thought of as a measure of how close the matrixX is to being rank 1. If
Ä(X) ≥ 0 is small, thenX is close to being rank 1 and indeedÄ(X) = 0 if and only if
X is rank 1 orX = 0. (Note that generallyX = 0 will not be a member ofM.)

Remark 6.1. The costÄ is non-convex onM. All functions which are continuous on
M and are minimized only on the set of rank 1 matrices will be non-convex.

Consider the following optimization problem:

Problem 6.2. Given A0, A1, . . . , Am ∈ Rn×n andc1, . . . , cm ∈ R satisfying Assump-
tion 2.2, andε > 0,

minimize2(X) := 8(X)+ ε log(Ä(X))

subject to X ∈M,

where8(X) = tr(A0X), the cost of Problem 2.6, andÄ(X) is defined by (6.1).

The termε log(Ä(X))can be thought of as a penalty function that penalizes solutions
of rank larger than 1. LetXopt denote an optimal solution of Problem 2.6 and letXε denote
a solution of Problem 6.2 for a givenε > 0. By varyingε one can trade off how close
8(Xε) is to8(Xopt) versus how closeXε is to being rank 1. (Note that8(Xopt) ≤ 8(Xε)
for all ε > 0.)

In order to solve Problem 6.2 we develop a gradient descent flow in the same way a
gradient flow was developed to solve Problem 2.6. We now proceed to do this. Consider
again (6.1) which can be rewritten as

Ä(X) = tr(X2)− vT X2v,
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wherev = v(X) is the unit length eigenvector corresponding to the maximum eigenvalue
of X. In the derivation that follows, we are required to take the derivative ofvwith respect
to X. Thoughv will generally not be differentiable everywhere,v is differentiable almost
everywhere and this is sufficient for our purposes. The derivative ofÄ(X) in direction
{1, X} ∈ TXM is

D2|X ({1, X}) = tr(A0{1, X})+ ε DÄ|X ({1, X})
Ä(X)

,

where

DÄ|X ({1, X}) = 2 tr(X{1, X})− 2vT X{1, X}v − 2vT X2 Dv|X ({1, X})
= 2 tr(X{1, X})− 2vT X{1, X}v − 2λ2

max(X)v
T Dv|X ({1, X}).

As vTv = 1, it follows thatvT Dv|X ({1, X}) = 0. Hence

DÄ|X ({1, X}) = 2 tr((X − vvT X){1, X})

and

D2|X ({1, X}) = tr

((
A0+ 2ε(X − vvT X)

Ä(X)

)
{1, X}

)
.

This implies that the gradient flow that solves Problem 6.2 is the same as the one
that solves Problem 2.6, see (4.7), if one replacesA0 with

Aε0 := A0+ 2ε(X − vvT X)

Ä(X)
.

Note thatAε0 is a function ofX. Explicitly, the flow is

Ẋ = −
{

Aε0X +
m∑

i=1

dεi Ai X, X

}
, (6.2)

wheredε1, . . . ,d
ε
m satisfy tr(A1A1X X) · · · tr(A1AmX X)

...
...

tr(AmA1X X) · · · tr(AmAmX X)


dε1
...

dεm

 = −
 tr(A1Aε0X X)

...

tr(AmAε0X X)

 .

7. Solution Methods

If Problem 2.6 has a rank 1 optimal solution, a standard semidefinite programming
algorithm can be used to find the optimum solution of Problem 2.6 efficiently and hence
solve Problem 2.1. In this section we discuss how the modified flow (6.2) can be used to
solve Problem 2.1 in the case that Problem 2.6 does not have a rank 1 solution.
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Before proceeding we consider the problem of initial conditions. Before a semidef-
inite program or a gradient flow can be used, a matrixX = XT > 0 satisfying
tr(Ai X) = ci , i = 1, . . . ,m, must be found. This is a standard problem in semidef-
inite programming and many methods of solving this problem exist, see, for example,
pp. 86–88 of Vandenberghe and Boyd (1996).

Let Xopt denote an optimum solution of Problem 2.6. One method of solving Prob-
lem 2.1 is to findXopt using semidefinite programming techniques and then to useXopt

as an initial condition for the flow (6.2). Starting fromXopt is an intuitively appealing
idea and this method has been found to work well in practice. LetXrank 1denote the limit
of the flow (6.2). By choosingε sufficiently small, one can ensure that, to any desired
computational accuracy,Xrank 1 is indeed rank 1. Note that8(Xopt) provides a lower
bound on8(Xrank 1). Indeed, if the difference|8(Xopt)−8(Xrank 1)| is small, then one
can be confident that a good solution to Problem 2.1 has been obtained. For many ap-
plications, obtaining a feasible solution which is guaranteed to be within a known small
margin of the actual optimal cost provides a good practical solution. The authors know
of no other “tractable” numerical method that yields this information for this problem.

Simulation Example. The following is a typical simulation example withn = 20 and
m= 10. We denote the initial feasible point byX0, the optimal solution of Problem 2.6
by Xopt and the limit of the flow byXrank 1. In this particular simulation the optimal
solution was found to be rank 2. The costs and eigenvalue spectrums ofX0, Xopt and
Xrank 1 are displayed in Table 7.1 and Figure 7.1, respectively. It is interesting to note
that the flow does not appear to change the eigenvalue spectrum ofXopt except to reduce
those eigenvalues that were associated with additional rank.

The method described above is only one way of using the flow (6.2). Another method
would be the following. Starting with an initial feasible solution, one could start the flow
with ε ≈ 0. Once the flow is close to converging for this value ofε (convergence could
be monitored by checking how close the norm of the gradient of the flow is to zero),
ε could be increased by a certain small amount and the flow allowed to evolve further.
Again, once the flow is close to converging,ε could be increased further and the whole
process repeated until a solution was obtained with then − 1 smallest eigenvalues of
X sufficiently small. In this manner the penalty function can be thought of as a sort of
pseudobarrier function. This method has not been tried in practice.

An area for possible future research could be to try to develop a more efficient
method of solving the modified gradient flow. Using a numerical ODE solver to solve
this flow is computationally quite expensive. Ideally, one would like to develop an explicit

Table 7.1. A cost comparison.

X Cost8(X)

X0 1.6000
Xopt −3.8126

Xrank 1 −3.1908
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Figure 7.1. The eigenvalue spectrums of (i)X0, (ii) Xopt and (iii) Xrank 1.

numerical scheme for solving the flow. For the present, consider again the flow

Ẋ = −{AX, X}, (7.1)

whereA = A0+ d1A1+ · · · + dmAm. Exploiting the homogeneous structure ofS(r,n)
(see Section 2), the matrixX can be written asX = SX0ST whereS ∈ GL(n,R) and
X0 ∈ Rn×n satisfiesX0 = XT

0 ≥ 0. SubstitutingX = SX0ST into (7.1) produces

{Ṡ, X0ST } = −{ASX0ST S, X0ST }.

Instead of a flow onX, one can now consider the following flow:

Ṡ= −ASX0ST S

on S(t) ∈ GL(n,R). ThisSflow can be thought of as a sort of square root version of the
original flow and one would expect it to be numerically better conditioned. In fact, it has
a number of other numerical advantages over the old flow, for while in theory the solution
of (7.1),X(t), will always be positive semidefinite, numerical inaccuracies may possibly
lead toX(t) leaving the positive semidefinite cone. (Negative eigenvalues ofX(t) often
lead to unstable numerical behaviour.) Conversely, theSflow guarantees thatX(t) will
remain positive semidefinite. Furthermore, if the solution method encounters numerical
problems due toS(t) (and henceX(t)) becoming singular, it could be re-initialized. The
new value ofX0 could be set to the current value ofX(t) = S(t)X0S(t)T andS(t) could
be re-initialized to the identity matrix.

8. Conclusion

In this paper we have provided a dynamical systems analysis of semidefinite program-
ming. We have also developed methods of minimizing a quadratic cost subject to purely
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quadratic constraints based on a gradient descent flow incorporating a penalty function.
One of these methods was simulated and found to work well in practice. Despite the en-
couraging results, at present it is not known whether the methods developed will always
find the optimal solution. Further analysis is required in this area.
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