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Using echo-top height and hourly rainfall datasets, a new reflectivity-rainfall (Z-R) relationship is established in the present study
for the radar-based quantitative precipitation estimation (RQPE), taking into account both the temporal evolution (dynamical)
and the types of echoes (i.e., based on echo-top height classification).+e new Z-R relationship is then applied to derive the RQPE
over the middle and lower reaches of Yangtze River for two short-time intense rainfall cases in summer (2200 UTC 1 June 2016
and 2200 UTC 18 June 2016) and one stratiform rainfall case in winter (0000 UTC 15 December 2017), and then the comparative
analyses between the RQPE and the RQPEs derived by the other two methods (the fixed Z-R relationship and the dynamical Z-R
relationship based on radar reflectivity classification) are accomplished. +e results show that the RQPE from the new Z-R
relationship is much closer to the observation than those from the other two methods because the new method simultaneously
considers the echo intensity (reflecting the size and concentration of hydrometers to a certain extent) and the echo-top height
(reflecting the updraft to a certain extent). Two statistics of 720 rainfall events in summer (April to June 2017) and 50 rainfall
events in winter (December 2017) over the same region show that the correlation coefficient (root-mean-squared error and
relative error) between RQPE derived by the new Z-R relationship and observation is significantly increased (decreased) compared
to the other two Z-R relationships. Besides, the new Z-R relationship is also good at estimating rainfall with different intensities as
compared to the other two methods, especially for the intense rainfall.

1. Introduction

Radar quantitative precipitation estimation (RQPE) has
finer temporal and spatial resolutions than those of tradi-
tional gauge-based station rainfall observations and can
accurately reflect the nonuniformness of the precipitation
over a large area [1–3]. +erefore, RQPE is of great im-
portance to severe weather monitoring, industrial and ag-
ricultural production, natural disasters prediction and
preventing, and even weather modification [4–6]. In prac-
tice, the value of RQPE is computed through a nonlinear
empirical relationship between radar reflectivity (Z) and
precipitation rate (R), Z � aRb, where a and b are two
parameters to be determined [7–9].

In early studies, a simple Z-R relationship can be ob-
tained statistically over a climatic timescale and then applied

to the quantitative estimate of precipitation. Different re-
gions usually yield quite different parameters [10, 11]. +e
RQPE obtained from the U.S. WSR-88D radar system obeys
the relationship of Z � 300R1.4 in extratropical regions,
while obeys Z � 250R1.2 in the tropical regions [12]. In
China mainland, the RQPE obtained from China New
Generation Weather Radar (CINRAD) system follows the
fixed relationship of Z � 300R1.4. In fact, there is consid-
erable variation in the coefficients a and b, and they are
significantly affected by the characteristics of raindrop-sized
spectra [7, 13]. +erefore, the parameters a and b in the Z-R
relationship are affected by synoptic weather situations,
hydrology, geography, and so on and thus vary with time
and space. Such a fact could produce different values of these
parameters in different climates and even different rainfall
events [14–17]. Rosenfeld and Ulbrich [18] also discuss the
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differences in the Z-R relationship between maritime and
continental, convective, transition and stratiform, and
orographic precipitation. +erefore, a fixed Z-R relationship
may not be accurate for a rainfall event with different
intensities.

From then on, in order to obtain a more complex and
accurate Z-R relationship, precipitation is categorized into
different types (or radar reflectivity is classified into different
intensities).+en, a set of Z-R relationships in different types
of precipitation are derived. +is method is well known as
the classification Z-R relationship and has been a great
improvement in accuracy [19, 20]. Besides, Alfieri et al. [21]
assumed that the Z-R relationship changes with time and
pointed out that the Z-R relationship within a specific time
should be determined by the reflectivity and rainfall during
that time (i.e., dynamical Z-R relationship). +e method of
the dynamical Z-R relationship also improves the accuracy
of RQPE.

Although the above two methods (classification Z-R
relationship and dynamical Z-R relationship) improve the
accuracy of RQPE, they both have obvious shortcomings.
+e classification Z-R relationship (i.e., the method in [19]
and [20]) does not take into account the possible temporal
variation of the relationship, while the dynamical Z-R re-
lationship (i.e., the method in [21]) does not take into ac-
count different types of precipitation.With the advantages of
the classification Z-R relationship and dynamical Z-R re-
lationship, Wang et al. [22] proposed a dynamical Z-R re-
lationship based on radar reflectivity classification. a and b in
this Z-R relationship vary with the time and echo strength.
+is method is shown to have both advantages of the
previous two methods and thus further improves the ac-
curacy of RQPE [22].

Previous works mainly focused on the spatial or tem-
poral variation of the empirical coefficients a and b in the
Z-R relationship, while Wang et al. [22] simultaneously
consider their spatial and temporal variation. +ey cate-
gorize observational precipitation and reflectivity into dif-
ferent groups based on the radar reflectivity and then
dynamically (in different times) calculate the coefficients
a and b in the Z-R relationship in different groups. Although
the radar reflectivity value (echo strength) is closely related
to the size and concentration of hydrometeors in a sampled
area [18] and can directly reflect the rain rate of a storm to
a certain extent, the echo-top (ET) height is also a good
indicator of rain rate. Adler and Mack [23] and Atlas et al.
[24] noted that the rain rate in a storm is determined by the
updraft and the vertical gradient of saturation vapor density
(which can change the content of hydrometeors), and the
storm height (i.e., the echo-top height) is also determined
essentially by the updraft velocity. Adler and Mack [23] and
Rosenfeld et al. [25] have shown that the echo-top (ET)
height is well correlated with rain rate. Bedka et al. [26] also
implied that the ET height is more representative to the
development of a storm and rainfall system. Also, ET height
can be used to identify the ground clutters based on the
different features between meteorological echoes and
ground clutters [27]. Owing to the advantages of ET height,
Rosenfeld et al. [25] utilized it to develop the height-area

rainfall threshold (HART) method to estimate the mean
convective rainfall over an area (i.e., an averaged value over
an area) and show better results. +erefore, using ET height
instead of radar reflectivity to categorize observational
precipitation and reflectivity into different groups is ex-
pected to further improve the accuracy of RQPE because the
new method simultaneously considers the content of hy-
drometers (radar reflectivity) and the updraft (ET height) of
a storm to a certain extent. Section 2 introduces the study
area and data processing procedure. Section 3 describes the
dynamical Z-R relationship based on reflectivity classifica-
tion, and Section 4 depicts the new constructed Z-R re-
lationship based on ET height classification. Section 5 shows
the performance of the new Z-R relationship to derive
RQPE. Conclusions are given in the final section.

2. Data Source and Processing

+e area of interest in the present study is over the middle and
lower reaches of Yangtze River (113–119°E, 27.5–31°N), where
short-time intense precipitation (rain intensity more than
10mm·h−1) occurs very frequently in the summer time
(April–August). +is area includes six provinces of Jiangxi,
Anhui, Zhejiang, Hunan, Hubei, and Fujian in China, con-
taining 3468 automatic rainfall observational stations and 12
CINRAD Doppler radars (Figure 1). +e observed radar and
rain gauge data are provided by the Meteorological In-
formation Center of the Jiangxi (in China) Meteorological
Administration (JMA) and can be accessed from the CMISS
interface (http://10.116.89.55/cimissapiweb/) at the Intranet
of JMA.

When estimating the rainfall using the reflectivity of the
Doppler radar, it is common to use the echoes on the
constant-altitude plan position indicator [28] at 1.5 km from
the sea level or echoes at low elevation angles [29]. However,
in the area of interest here, there are some blind regions in
the radar CAPPI at 2 km due to the uneven distribution and
different altitudes of radar stations. Besides, there are also
mountains (elevation larger than 600m) within 30 km for
several radar stations (Shangrao, Yichun, and Quzhou) that
prevent the detection of radar beams at small elevation
angles (i.e., some radar beams at small elevation angles may
be blocked by surrounding mountains). +erefore, in this
area, the radar mosaic of composite reflectivity (CR) is used
for RQPE instead of using 1.5 km CAPPI and small-angle
echoes. CR is accomplished through four steps. Firstly, radar
reflectivity data in polar coordinates are processed to remove
isolated nonmeteorological echoes and ground clutters using
the improved quality control method in [30]. +en, the
horizontal interpolation with the nearest neighbor on the
range-azimuth plane [31] is selected to convert radar data in
polar coordinates into a regular latitude/longitude grid of
0.01° resolution. +irdly, the maximum value of CR in
different radars is used as the value of the radar mosaic for
overlapping regions. Finally, a 9-point smooth operator is
applied to yield the final mosaic for each time. +e processes
of the mosaic in ET height are similar to those in CR. Here,
the ET height is calculated using the improved method of
[32]. +e algorithm is as follows.
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θT � ZT −Za( ) θb − θa( )
Zb −Za( ) + θb, (1)

where θb is the maximum elevation angle where the
reflectivity value Zb exceeds the echo-top reflectivity
thresholdZT (e.g., 18 dBZ). θa andZa are the elevation angle
and reflectivity value at the next higher elevation angle of θb.
θT obtained by (1) is an elevation angle rather than a height
over the radar site. +e radar beam height (i.e., the ET
height) of θT can be calculated by the method of [33]:

R2
+ R2

W + 2R · RW · sin θ( )1/2 −RW � 4.5. (2)

+e improved method for obtaining ET height (e.g., (1))
is proposed that echo tops be computed by interpolating
between elevation scans that bracket the echo-top threshold
and results in smaller errors when higher-elevation scans are
available [32].

3. Dynamical Z-R Relationship Based on Echo
Intensity Classification

+e parameters a and b in the Z-R relationship are affected
by local weather, hydrology, geography, and so on. +ere-
fore, different regions in a given time or different times in
a given region usually correspond to different parameters
a and b. In other words, the parameters a and b vary with
time and space. Liu et al. [20] and Chumchean et al. [19] take

into account the spatial variation (i.e., classification of
precipitation) and Alfieri et al. [21] consider the temporal
variation (i.e., dynamical fitting of a and b using observa-
tional rainfall and reflectivity in a given time) to construct
the Z-R relationship. Wang et al. [22] proposed a Z-R re-
lationship which has simultaneously taken into account the
spatial variation (classification based on radar reflectivity)
and temporal variation (dynamical fitting) of a and b (e.g.,
dynamical Z-R relationship based on echo intensity classi-
fication). +is method significantly improves the accuracy of
RQPE compared to that of [19] and [21].

+e dynamical Z-R relationship based on echo intensity
classification is designed as follows [22]: Firstly, getting the
CR mosaic using the maximum-value-based composite
method introduced in Section 2. Secondly, averaging the CR
mosaic over a specific time (one hour in the present study),
as well as obtaining the accumulated amount of observa-
tional precipitation in different sites over the same time.
+irdly, classifying the averaged CR into different groups
according to the interval of 5 dBZ (i.e., 5, 10, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 65, 70, and 75 dBZ). Fourthly, the
accumulated precipitations are also classified into different
groups according to the groups of CR. Fifthly, the Z-R re-
lationships in different groups (e.g., the CR group of 30 dBZ
and the corresponding precipitation group) are determined
by fitting the CR to the precipitation using the optimizing
method developed in [34]. A set of a and b corresponding to
different groups are obtained in the given time, yielding
a “best-fit” Z-R relationship for the time. +e optimizing
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Figure 1: Doppler radar stations (cross point) and automatic rainfall observation stations (dot) over the middle and lower reaches of
Yangtze River. Circles indicate the range of CAPPI at 2 km height and shaded portions indicate altitude (unit: m).
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method proposed in [34] is to obtain the minimum values of
a criterion function (CTF) which is expressed as follows:

CTF � min ∑n
i�1

Hi,j,k −Gi( )2 + Hi,j,k −Gi( )[ ] , (3)

whereGi is the observed precipitation at station i and n is the
number of stations. +e estimated precipitation Hi,j,k is
calculated by the Z-R relationship at station i as

Hi,j,k � 10 logZi−log aj( )/( bk/100), (4)

where aj � 1, 2, . . . , 1200, bk � 100, 101, . . . , 300, and Zi is
the reflectivity value at station i. +e best value of a and
b (i.e., the most suitable Z-R relationship) is obtained
through iteratively computing CTF to get the minimum
value. Ciach et al. [35] and Chumchean et al. [19] used a very
similar method to get the Z-R relationships. Finally, re-
peatedly performing the above 1–5 steps in different times
(i.e., dynamical) can induce the coefficients a and b in the
Z-R relationship to vary with the reflectivity intensity and
time, finally forming the dynamical Z-R relationship based
on echo intensity classification.

4. Dynamical Z-R Relationship Based on
ET Classification

Radar ET height is defined as the radar beam height at the
highest elevation angle where the detected reflectivity value
is not less than a threshold of 18 dBZ. ET height not only can
reflect the storm development stage and precipitation system
intensity [26] but also can identify ground clutters since they
have a relatively low ET height [27]. +erefore, it has been
widely used in weather forecasting and synoptic diagnostics
[36, 37] (Evens, 2004). Table 1 shows the mean correlation
coefficients between echo intensity or ET height and ob-
servational rainfall in the region of Figure 1 during April and
May 2017. It is clear that the correlation coefficients between
both of them are greater than 0.5, and the correlation
coefficient between observational precipitation and ET
height is slightly large in both April and May 2017. +is
further confirms that ET height can be an indicator of
rainfall intensity very well. Besides, although two storms
with the same reflectivity and different ET heights in the
conical surface may have a similar amount of hydrometeors
(Figure 2), they may yield different precipitation rates
because the rain rate is well related to the updraft and the
ET height is the embodiment of the updraft (Adler and
Mack, 1984) [24]. +erefore, if the two storms are grouped
by ET height, they may have different precipitation rainfall
because they are classified into different groups. But if they
are grouped by echo intensity, they belong to a same group
and yield the same precipitation. +erefore, the Z-R re-
lationship based on ET height classification (rather than
reflectivity classification) may further improve the accuracy
of RQPE.

+e procedure of the dynamical Z-R relationship based
on ET height classification is similar to that of the dynamical
Z-R relationship based on echo intensity which has been

depicted in Section 3, except for echo classification using ET
height instead of reflectivity intensity. +e specific steps are
as follows: firstly, getting the CR mosaic and ET height
mosaic using the maximum-value-based method introduced
in Section 2. Secondly, averaging the CR mosaic and ET
height mosaic over a specific time (one hour in the present
study), as well as obtaining the accumulated amount of
observational precipitation over the same time. +irdly, the
averaged CR is classified into different groups based on the
ET height with 1 km interval (i.e., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, and 15 km).+e 4–6 steps are the same as those of
the dynamical Z-R relationship based on echo intensity
which has been depicted in Section 3.

5. Results

+e study [26] and the correlation analysis in Section 4 have
shown that ET height can reflect preferably the develop-
ment of storm. +erefore, the dynamical Z-R relationship
based on ET height classification is expected further to
improve the accuracy of RQPE. To verify this, three
methods (Z-R relationships) are used to derive RQPE and
then compared to observational precipitation. +e three
methods are the fixed-parameter algorithm (SM), dy-
namical Z-R relationship based on echo intensity classifi-
cation (EIDM) developed in [22], and dynamical Z-R
relationship based on ET height classification (ETDM)
developed in this paper.

5.1. Case Study. We choose two short-time intense rainfall
events (occurred, resp., at 2200 UTC 1 June 2016 and 2200
UTC 18 June 2016) over the middle and lower reaches of
Yangtze River to test the ETDM. For the case happened at
2200 UTC 18 June 2016, precipitation was mainly located at
the northern part of Jiangxi Province and the border regions
of provinces of Jiangxi, Hubei, and Anhui, with maximum
values exceeding 40mm·h−1 (Figure 3(a)). +e main rainfall
belt (with precipitation more than 10mm·h−1) is northwest-
southeast distributed. +e three methods that derived RQPE

Table 1: +e correlation coefficients between reflectivity/ET height
and observational rainfall.

Time Composite reflectivity ET height

April 2017 0.508 0.522
May 2017 0.505 0.510

Storm 1 Storm 2

T

Figure 2: Schematic illustrations of two storms with the same echo
intensity and different ET heights.
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have been produced with reasonable rainfall distribution
(Figure 3(a)). However, it can be seen that the RQPE de-
termined by the SM method (Figure 3(b)) was obviously
underestimated, and the area of RQPE exceeding 10 or
30mm·h−1 was significantly decreased. +e distribution and
value of RQPE derived by EIDM (Figure 3(c)) are very similar
to those of SM (Figure 3(b)), except for that the SM over-
estimates the RQPE in the red circle region in Figure 3. By
comparison, the ETDM obtains the best RQPE (Figure 3(d))
in both magnitude and region as compared to the observation
(Figure 3(a)). +e spatial correlation coefficients between
RQPEs estimated by the three methods and observational
precipitation (≥0.1mm·h−1) are 0.76 (SM), 0.80 (EIDM), and
0.88 (ETDM), respectively. +is further implies that the
ETDM to obtain RQPE is best in the three methods.

In the case of 2200 UTC 1 June 2016, the precipitation
was mainly distributed at the northwestern part of Jiangxi
Province, with maximum values exceeding 30mm·h−1

(Figure 4(a)). +e main rainfall belt (with precipitation
more than 10mm·h−1) is also northwest-southeast orien-
tated. Like the case of 2200 UTC 18 June 2016, all three
methods (SM, EIDM, and ETDM) have successfully de-
rived the distribution of precipitation (Figures 4(b)–4(d)).
But the RQPE determined (Figure 4(b)) by the SM method is

consistently smaller than observations over the areas with
rainfall exceeding 15mm·h−1, as shown in Figure 4(a). By
comparison, the EIDM improves the accuracy of RQPE, with
an obvious increase in precipitation (with the maximum
rainfall exceeding 30mm·h−1). But the rainfall intensity is still
smaller than that of observation. More importantly, the
ETDM (Figure 4(d)) conspicuous improved RQPE quality
which is more close to the observation (Figure 4(a)). +e
spatial correlation coefficients between RQPEs determined by
the three methods and observational precipitation (more than
0.1mm·h−1) are 0.68 (SM), 0.72 (EIDM), and 0.74 (ETDM),
respectively. +e ETDM has still the largest correlation co-
efficient in the three methods.

+e above two short-time intense rainfall cases (2200
UTC 1 June 2016 and 2200 UTC 18 June 2016) have shown
the well performance of ETDM to derive RQPE. Why ETDM
has better performance than EIDM? In fact, the EIDM
(ETDM) is constructed by classifying CR and precipitation
into different groups based on echo intensity (ET height), and
the parameters a and b in the Z-R relationship are fitted by the
CR values and the observed precipitations for a specific group.
If there are more samples with intense (weak) precipitation in
the group, the fitted Z-R relationships will derive intense
(weak) RQPE. +e distributions of CR, ET height, and
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Figure 3: Precipitations (mm) obtained from (a) observation, (b) SM method, (c) EIDM method, and (d) ETDM method at 2200 UTC 18
June 2016.
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precipitation in the rectangular region in Figure 4 are shown
in Figure 5. As shown in Figure 5, the strong precipitation
occurs in the areas of strong radar echo (≥35 dBZ) and high
ET height (≥9 km). But the high ET height corresponds better
to the intense precipitation than the large CR. For example,
a region with relatively weak precipitation (6mm·h−1), strong
echoes (exceeding 40 dBZ), and relatively low ET height (less
than 9 km) appears at the black circle area in Figure 5. +is
indicates that when constructing the Z-R relationships using
EIDM, the group (especially for the group that included most
intense precipitation samples) may contain more weak pre-
cipitation samples than using the ETDM. +e more weak
precipitation samples will result in that the EIDM un-
derestimates the RQPE than the ETDM (e.g., Figures 3(c),
3(d), 4(c), and 4(d)).

Although the new method based on ET classification to
derive RQPE performs better than the other two methods,
the two cases used to test belong to convective storms.
Rosenfeld et al. [25] also indicated that a deeper convective
storm can more easily produce heavy rain, and a better
correlation can be obtained using the classification statistics
based on ET height. +erefore, how does the new method
performs in nonconvective storm (i.e., stratiform pre-
cipitation system)? To answer this question, a stratiform
precipitation case that occurred at 0000 UTC 15 December
2017 is selected to further test the newmethod. At 0000 UTC
15 December 2017, the precipitation mainly fell in the
middle and northeastern parts of Jiangxi Province, with

maximum values less than 4mm·h−1 (Figure 6(a)). All three
methods (SM, EIDM, and ETDM) have successfully derived
the precipitation near the maximum precipitation center
(i.e., the black square in Figure 6). But precipitations ob-
tained by the three methods are less than the observation.
+e SMmethod throws away many areas with precipitation,
leading to many scattered precipitation points appeared at
the domain (Figure 6(b)). +is induces that the correlation
coefficient between observation and RQPE derived by SM
is only 0.32 which is significantly less than those of the
above two convective cases. By comparison, the EIDM
estimates more areas with precipitation (Figure 6(c)),
increasing the correlation coefficient to 0.55. More im-
portantly, the ETDM not only increases the areas of
precipitation but also enlarges the intensity of precipitation
(Figure 6(d); the maximum precipitation is more than
2.5mm·h−1), further increasing the correlation coefficient
to 0.58. As shown in Figure 6, all three methods cannot
derive the precipitation in the area encircled by the red
rectangle which is in fact the mountainous region (Figure 1).
+is may be induced by the blockage of mountains to the
radar beam in lower elevation angles. Zou et al. [30] in-
dicated that this area is also a blind region of the Nanchang
radar in 0.5° tilt. It is clear that although the RQPE derived
from the stratiform precipitation system is less accurate than
that from the convective storm, the ETDM to derive RQPE
still has a significant advantage compared with the other
methods.
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FIGURE 4: Precipitations (mm) obtained from (a) observation, (b) SMmethod, (c) EIDMmethod, and (d) ETDMmethod at 2200 UTC 1 June
2016.
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5.2. StatisticalAnalysis. It has been shown in the above three
cases that the ETDM proposed in the present study results in
a more accurate RQPE than the traditional SM and EIDM
do. Is this viewpoint universality? To address this problem,
in the following section, 720 rainfall cases in the summer
season (April to June 2017) and 50 rainfall cases in the winter
season (December 2017) over the middle and lower reaches
of Yangtze River were collected to further compare SM,
EIDM, and ETDM methods. �e precipitations over the
region in the summer time comprise convective rainfall and
stratiform precipitation (with a high ET height), while the
precipitations occurring in the winter time system are
mainly induced by the stratiform system (with a lower ET
height). �ree statistics, correlation coefficient (R), root-
mean-squared error (RMSE), and relative error (RE), be-
tween RQPEs derived by the three methods and observed
precipitation are used to evaluate the performance of each
method:

R �
∑ni�1 Hi −Hi( ) Qi −Qi( )��������������������������

∑ni�1 Hi −Hi( )2 ·∑ni�1 Qi −Qi( )2
√ , (5)

RMSE �

�������������
1

n
∑
n

i�1

Hi −Qi( )2
√√

, (6)

RE �
∑ni�1 Hi −Qi

∣∣∣∣ ∣∣∣∣
∑ni�1Qi

. (7)

whereHi is the estimated precipitation (according to (4)),Qi
is the observed precipitation at station i, and n is the number
of stations with valid rainfall in a given time. �e correlation

coefficient R reflects the similarity of the spatial patterns
between RQPE and observational precipitation, with the
bigger the R, the higher the accuracy of RQPE. �e RMSE
shows the overall deviation of RQPE from the observation,
with the smaller the RMSE, the higher the accuracy of RQPE.
�e RE reflects the overall relative error of RQPE related to
observation, with the smaller the RE, the higher the accuracy
of RQPE.

Table 2 shows all these statistics in (5)–(7) which are
averaged fromApril to June 2017 (i.e., in the summer season,
with a total of 720 rainfall cases) over the middle and lower
reaches of Yangtze River. It can be seen from Table 2 that the
RQPE derived by the SM is able to preferably reproduce the
spatial pattern and amount of observational precipitation,
with a correlation coefficient of 0.59, an RMSE of 3.0mm,
and an RE of 69.1%. However, there is a significant im-
provement for the EIDM to derive RQPE, with a significant
increase of correlation coefficient to 0.64, a reduction of
RMSE to 2.5mm, and a decrease of RE to 59%. More im-
portantly, there is also a further improvement for the ETDM
to derive RQPE (relative to EIDM), with R increasing to 0.69
(it is 0.1 or 0.05 larger than that of the SM or EIDM, resp.),
RMSE reducing to 2.3mm, and RE decreasing to 56.2%.
�erefore, it is shown that there are continuous improve-
ments from SM to EIDM and then to ETDM, which results
in more and more accurate RQPE.

To further assess the performances of the three methods
to derive RQPE in the winter season (small precipitation and
lower ET height), these statistics in (5)–(7) during December
2017 (with a total of 50 rainfall cases) are shown in Table 3.
�e correlation coefficient between RQPE derived by SM
and observation is only 0.44, decreasing by 0.15 compared
to that of the summer season (Table 2). Correspondingly,
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Figure 5: (a) CR (unit: dBZ) and (b) ET (unit: km) in the black rectangle in Figure 4 at 2200 UTC 1 June 2016. Digits show the 1-hour
precipitation (mm) observed by rain gauges.
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the relative error RE (70.5%) is more than that of the
summer season. Note that the smaller RMSE in the winter
season (Table 2) does not reflect the higher accuracy. +is
is mainly induced by a small amount of precipitation in
the winter season. Clearly, the performance of SM in the
summer season is better than that in the winter season.
Similarly, the EIDM improves the accuracy of RQPE in the
winter season on the basis of SM. +e correlation co-
efficient increases to 0.49 accompanied by a reduction of
RMSE to 0.63mm and a decrease of RE to 70.4%. More
importantly, the ETDM further improves the accuracy of
RQPE on the basis of EIDM so that the correlation co-
efficient increases to 0.51 followed by a slight decrease in
RMSE and RE. It is clear that although the accuracy of
RQPE in the winter season is worse than that in the
summer season, the ETDM still can improve the accuracy
of RQPE derived by EIDM and SM.

+e above analysis evaluates the performance of the SM,
EIDM, and ETDM to derive RQPE in an overall perspective.
It is also interesting to evaluate their performance in de-
riving RQPE at different rainfall intensities. Here, four
intensity levels of 0.1–10mm, 10–25mm, 25–50mm, and
above 50mm are chosen to evaluate the three methods (SM,
EIDM, and ETDM). Figure 7 shows the RE (relative error;
i.e., (7)) between observed precipitation and the RQPEs
obtained by the three methods at different rainfall in-
tensities. It is clear that the RE of the SM (∼75%) is close to
that of the EIDM when the rainfall amount is less than

10mm. However, with the increase in rainfall, the RE of
both SM and EIDM decreases significantly. When the
rainfall amount is larger than or equal to 50mm, the RE of
the SM and EIDM decreases to about 55% and 40%, re-
spectively. It is also shown in Figure 7 that the RE of ETDM
is the smallest one at the intensity level of 0.1–10mm, and
then it decreases more rapidly than those of SM and EIDM.
+us, the RE of ETDM is the smallest one at different
rainfall intensities, and the RE difference between the
ETDM and SM increases with the increase of rainfall in-
tensity. +erefore, it is obvious that the ETDM constructed
in the paper is a better choice to derive RQPE at different
rainfall intensities, especially for precipitation more than
50mm which has the smallest RE (∼30%). Besides, among
the three methods to derive RQPE, the reduction speed of
RE of SM is the slowest with the increase of rainfall in-
tensity. +is implies that the SM has the worst performance
in the three methods to obtain the precipitation rate.

Table 2: Statistics of correlation coefficient (R), root-mean-squared
error (RMSE), and relative error (RE) that evaluate the perfor-
mance of the three methods to derive RQPE during April to June
2017.

Method R RMSE (mm) RE (%)

SM 0.59 3.0 69.1
EIDM 0.64 2.5 59.0
ETDM 0.69 2.3 56.2
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FIGURE 6: Precipitations (mm) obtained from (a) observation, (b) SM method, (c) EIDM method, and (d) ETDM method at 0000 UTC 15
December 2017.
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6. Conclusions

In the present study, a new dynamical reflectivity-rainfall
(Z-R) relationship is established for the operational RQPE,
based on the echo-top (ET) height which can preferably
reflect the development of the rainfall storm. +en, it is
applied to derive the RQPE over the middle and lower
reaches of Yangtze River for three cases (two cases are short-
time intense rainfall cases, resp., at 2200 UTC 1 June 2016
and 2200 UTC 18 June 2016, and one is a stratiform rainfall
case). +e results show that the RQPEs derived from two
summer cases are more accurate compared to that from the
winter case. More importantly, regardless of the summer
case with large precipitation and high ET height or the
winter case with small precipitation and low ET height, the
new ETDM proposed here is able to derive an RQPE which
is much closer to the observation in both magnitude and
spatial distribution than the SM and EIDM methods.

To further confirm the performance of the new ETDM,
three statistical variables (correlation coefficients, root-
mean-squared error, and relative error) between RQPEs
derived by the three methods (SM, EIDM, and ETDM) and
observed precipitation are used to evaluate their perfor-
mances to derive RQPE over three summer months (April to
June 2017, with a total of 720 rainfall cases) and one winter
month (December 2017, with a total of 50 rainfall cases).+e
results also show that the new ETDM significantly increases

the correlation coefficient and reduces the root-mean-
squared error and relative error between the RQPE and
the observed precipitation regardless of summer or winter.
Besides, the new ETDM yields a more accurate RQPE in
different intensity rainfalls as compared to the SM and
EIDM methods. It is clear that the ETDM-based ET clas-
sification further improves the accuracy of derived RQPE
compared with the EIDM-based echo intensity
classification.

A new dynamical Z-R relationship is established based
on ET height classification in this paper. +e tests of the
three cases (two in summer and one in winter) and two
statistics (one in summer and the other one in winter) show
that the new Z-R relationship has well performed to derive
RQPE. However, the merging results of multiple sources of
rainfall rates can provide a better quantity than any single
source [38]. Although satellite QPE is limited by a lack of
robust correlation between cloud-top brightness tempera-
ture and surface rainfall, it is more spatially coherent than
radar QPE and is not subject to terrain-based blockages or
discontinuities due to lack of data and instrumentation
differences [38]. +erefore, future work will focus on the
blending of RQPE developed in this paper, satellite rainfall
QPE, and rain gauge estimate.
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