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Abstract—Most Hardware Transactional Memory
(HTM) implementations choose fixed version and
conflict management policies at design time. While
eager HTM systems store transactional state in-place in
memory and resolve conflicts when they are produced,
lazy HTM systems buffer the transactional state in
specialized hardware and defer the resolution of conflicts
until commit time. Each scheme has its strengths and
weaknesses, but, unfortunately, both approaches are too
inflexible in the way they manage data versioning and
transactional contention. Thus, fixed HTM systems may
result in a significant performance opportunity loss when
they execute complex transactional applications.

In this paper, we present DynTM (Dynamically Adapt-
able HTM), the first fully-flexible HTM system that
permits the simultaneous execution of transactions using
complementary version and conflict management strate-
gies. In the heart of DynTM is a novel coherence proto-
col that allows tracking conflicts among eager and lazy
transactions. Both the eager and the lazy execution modes
of DynTM exhibit very high performance compared to
modern HTM systems. For example, the DynTM lazy
execution mode implements local commits to improve on
previous proposals. In addition, lazy transactions share
the majority of hardware support with eager transactions,
reducing substantially the hardware cost compared to
other lazy HTM systems. By utilizing a simple predictor
to decide the best execution mode for each transaction
at runtime, DynTM obtains an average speedup of 34%
over HTM systems that employ fixed version and conflict
management policies.
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I. INTRODUCTION

Version and conflict management are the two most

critical aspects of Transactional Memory (TM) sys-

tems that employ speculation to execute transactions

concurrently. Version management defines where and

how transactional modifications are kept, while conflict

management details (a) when conflicts are detected, (b)

how conflicts are resolved and (c) which actions are

performed and by whom. These mechanisms can be

implemented in software [8], [20], hardware [1], [7],

[9], [16] or a combination of the two [6], [10], [19]. In

this work, we focus on hardware TM (HTM) systems.

There are two main classes of version management

schemes used in HTM systems: eager and lazy. Eager

approaches keep new (speculative) values in-place in the

memory hierarchy while old (pre-transactional) values

are held elsewhere. The most popular eager systems

buffer the old values in a different location in mem-

ory, using a software-managed log [14], [27]. On the

other hand, lazy approaches keep the old values in the

memory hierarchy while new values are invisible to the

system until commit. Many lazy systems buffer the new

values in-place in the processor’s caches, but modify

the coherence protocol to hide the modifications and to

prohibit their propagation until commit time [9], [22].

Conflict management schemes are also classified as

eager and lazy. Eager schemes detect and resolve con-

flicts at the moment that a load (store) instruction from

an in-flight transaction accesses a memory location be-

ing written (read or written) by another transaction [1],

[16]. Lazy schemes resolve conflicts at the time that a

transaction wants to commit. In lazy schemes, conflict

detection can take place early [22], [25] or it can be

delayed until commit [7], [15]—after all, the conflict

will not be resolved until commit time.

Nowadays, HTM systems implement fixed (either

eager or lazy) version and conflict management mecha-

nisms. The notable exception to this is FlexTM [22], a

hybrid TM system that use software support to permit

either eager or lazy conflict management. However,

FlexTM still implements only lazy version management

and it fixes the conflict management policy for the entire

application execution.

Fixed-policy HTM systems are faced with several

challenges that limit the concurrency of transactional

workloads [3]. First, inflexible conflict management

strategies have to prioritize between conflicting transac-

tions. On the one hand, lazy HTM systems must abort

all the transactions that conflict with the committing

one, which (a) may result to starvation of the older

transactions [2] and (b) it increases the amount of

discarded transactional computation [21], [24]. On the

other hand, eager HTM systems may abort a transaction

multiple times, which may lead to different pathological

situations [17]. Nevertheless, lazy transactions can avoid

some read-after-write conflicts whereas eager transac-

tions minimize discarded work in the case of write-after-



write violations by stalling conflicting requesters. Hav-

ing a flexible version and conflict management scheme

allows the system to select the policy that achieves the

best performance on each situation.

Second, complex applications that combine small and

large transactions with variable contention present a

great challenge for HTM systems that fix the version

and conflict management strategies for the whole pro-

gram execution: while eager HTM systems can preserve

the computation generated by long transactions in case

of collision, lazy HTM systems are more effective in

dealing with small, high-contention transactions. A truly

flexible HTM that could select the ideal (eager or lazy)

execution mode for each transaction at runtime would

not be challenged by such complex situations.

In this paper, we propose the Dynamically Adaptable

HTM (DynTM) system, an HTM implementation that

tries to address the shortcomings of fixed HTM systems.

By providing a fully-flexible version and conflict man-

agement implementation, DynTM allows the system to

dynamically adapt its policies to best suit the application

behavior. DynTM makes several contributions to the

state of the art of HTM systems:

• DynTM is the first HTM system to allow the si-

multaneous execution of eager and lazy transactions,

both in terms of version and conflict management.

We propose a novel, unified transactional coherence

protocol that, when tightly coupled with a new

conflict resolution policy, enables safe execution of

eager and lazy transactions.

• DynTM presents two high-performance execution

modes for eager and lazy transactions. Especially,

our proposal implements a new lazy execution mode

that performs local commits and falls-back to eager

mode when a transaction overflows the L1 cache.

• DynTM describes a runtime prediction scheme that

decides, for each dynamic instance of a transaction,

at what mode it should be executed according to its

characteristics. The evaluation of DynTM in a cycle-

accurate simulation environment shows that our pro-

posal obtains a 34% average speedup compared to

the fixed state-of-the-art HTM reference systems.

The remainder of the article is organized as follows.

In Section II, we summarize related work on HTM.

In Section III, we describe DynTM’s hardware support

and explain how the eager and lazy modes operate. In

Section IV, we present the DynTM coherence proto-

col and show how eager- and lazy-mode transactions

can be executed simultaneously, while in Section V

we describe the DynTM execution mode predictor. In

Section VI we evaluate our proposal and in Section VII

we conclude the article.

II. BACKGROUND IN HTM SYSTEMS

Many HTM implementations have been proposed

since Herlihy and Moss introduced Transactional Mem-

ory as an alternative lock-free parallel programming

model [9]. UTM [1] was the first eager HTM that sup-

ported unbounded transactions. By placing transactional

modifications across the memory hierarchy and storing

metadata on the side, it is able to execute transactions

of any size or duration. LogTM [14] simplifies the

version management mechanism by keeping the pre-

transactional state in a software-managed log—which

is restored on aborts—and using Read-Write cache bits

[19] to eagerly detect conflicts. LogTM-SE [27] decou-

ples the transactional state from caches by summarizing

the memory accesses in signatures [4]. To accelerate

the abort recovery phase and reduce the pressure on

the write signature, FASTM [11] implements a hybrid

version management mechanism.

Eager HTM systems present poor performance when

they execute applications with a high number of con-

flicts. In these scenarios, eager designs may abort a

transaction multiple times before it commits [2]. More-

over, most implementations require a backoff policy

to avoid repetitive conflicts between aborting transac-

tions [17]. On the other hand, eager approaches can

preserve the computation generated on large transac-

tions by stalling conflicting requesters, and they do not

require additional commit actions [21].

Transactional Coherence and Consistency (TCC) [7]

presents a novel consistency model based on lazy trans-

actions. Committing transactions propagate their write

set to the rest of the processors, which abort their

transactions in case of conflict. In order to prevent the

simultaneous commit of conflicting transactions, TCC

requires a centralized arbiter. Chafi et al. proposed TCC-

Scalable [5] to permit parallel commits. However, a

TCC-Scalable implementation requires communication

with all the directories in the read/write sets and a

centralized agent to order the transactions. Pugsley et

al. [15] improved the prior technique with a distributed

arbitration mechanism based on the acquisition of direc-

tories. Eazy HTM [25] reduces even more the overheads

of lazy commits by eliminating arbitration on non-

conflicting transactions, but it still performs directory

updates at commit time.

Most lazy HTM systems buffer the new values in-

place in the processor’s caches, but modify the coher-

ence protocol to prohibit their propagation until commit.

Hence, lazy approaches suffer considerable delays when

hardware resources are overflowed—they fall-back to

slow software solutions [6], [10] or require cumbersome

hardware support [16], [22]. Moreover, lazy solutions

must abort all the transactions that conflict with the

committer, which (a) may result to starvation of older



transactions [20] and (b) increases the amount of trans-

actional discarded computation [21]. Nevertheless, lazy

HTM systems can avoid some read-after-write conflicts

and can guarantee forward progress without applying

a backoff policy. Therefore, lazy approaches are more

effective when they deal with small, high-contention

transactions [2].

Recent HTM designs have developed different alter-

natives to increase concurrency in the case of conflicts.

DATM [18] bypasses transactional values to eliminate

non-crossed WaW/RaW conflicts. Titos et al. [24] con-

ceived an eager HTM that stalls younger committing

transactions to avoid WaR conflicts. Unfortunately, the

above proposals impose a strict order between con-

flicting transactions and can only eliminate acyclic

dependences. Thus, these HTM systems experiment the

same issues as conventional HTM systems when they

execute transactions with crossed conflicts, which are

common in typical transactional workloads [3].

In order to introduce some flexibility to TM sys-

tems, Shriraman et al. proposed FlexTM [22], a hy-

brid implementation [6], [10] that decouples conflict

detection from conflict resolution by tracking transac-

tional violations eagerly and delegating their resolution

to the software. This dual-mode system permits the

programmer to decide the conflict management scheme

for the entire application (eager or lazy), but it requires

(a) software decisions to resolve conflicts, (b) complex

hardware to buffer transactional overflowed data (be-

cause it uses lazy version management) and (c) software

commit arbitration for lazy transactions. What is more,

FlexTM applies the same conflict management policy

for the whole execution, being more restrictive than an

HTM system that dynamically adapts the policy at the

granularity of a transaction.

III. THE DYNTM BASE SYSTEM

DynTM offers two different execution modes: eager

and lazy. The eager DynTM execution mode uses

both eager version and conflict management. The lazy

DynTM execution mode, on the other hand, uses

both lazy version and conflict management. Moreover,

DynTM permits eager- and lazy-mode transactions to

execute simultaneously in the system. This is possi-

ble through UTCP, a novel unified transactional cache

coherence protocol that is able to correctly track con-

flicts among transactions—independent of their execu-

tion mode—and it ensures the correct propagation of

transactional modifications.

The DynTM eager execution follows a log-based

approach. Transactional modifications are kept in-place

in memory, where they are allowed to propagate to all

levels of the hierarchy. The pre-transactional state is

logged in a software structure [14]. In the eager mode,

conflicts are resolved as soon as they are produced.

Figure 1. Base system configuration for DynTM

In contrast, the DynTM lazy execution mode resolves

conflicts at the very end of a transaction. In the lazy

mode, the speculative state is buffered in the L1 cache

and is not made visible to the rest of the system until the

transaction is committed. DynTM takes advantage of the

built-in hardware support for eager version management

in order to handle L1 cache overflows and context

switches for lazy transactions. In such cases, the system

will simply abort the lazy transaction and re-execute it

in eager mode.

In order to further accelerate lazy transactions,

DynTM implements local commits with core-to-core

abort notification, avoiding expensive commit arbitra-

tion [15] and directory updates [25]. Moreover, DynTM

employs a history-based hardware predictor to decide

the execution mode (eager or lazy) on every new

dynamic instance of a transaction. Predicting the appli-

cation behavior at runtime permits the system to select

the best-suited policy for each instance of a transaction,

resulting in a significant performance improvement.

A. Hardware Support

In this work, we assume a CMP system with single-

threaded cores and two levels of caches, where the L1

cache is private and the L2 cache is shared among all

cores, as shown in Figure 1. Coherency is implemented

using a blocking, distributed directory placed in the L2

cache. Besides the UTCP protocol, DynTM requires

additional extensions to existing hardware components:

Logging Support: Like previous log-based HTM pro-

posals [11], [14], [27], DynTM extends the core with

software logging support to implement eager version

management.

Signatures: DynTM requires Read and Write Signa-

tures [4], [27] (Bloom filters) to track transactional

accesses. While the Read Signature summarizes any

transactional read, the Write Signature only contains

adresses from eager transactional stores.

Conflict Vectors: Like in FlexTM [22] or Eazy

HTM [25], DynTM introduces two bit-vectors per core

to track conflicts among speculative transactions. While

the Read Conflict Vector (RCV) tracks possible read

violations, the Write Conflict Vector (WCV) tracks true

write conflicts with remote transactions.



Transactional Mode Selector (TMS): Each core in-

cludes a TMS to decide the most profitable execution

mode for each transaction. This hardware component

uses past information of the current instance of a

transaction and history from previous instances of the

same transaction.

B. Eager Execution Mode

In DynTM, eager transactions follow the same hy-

brid data version management mechanism as the one

presented in FASTM [11]. This mechanism guarantees

that, if a transaction has not overflowed the L1 cache,

the L2 cache will contain the correct pre-transactional

state. This is done by writing-back a L1 dirty non-

transactional cache line before overwriting it with trans-

actional data. By keeping both the old and the new

(transactional) state in-place in memory, DynTM offers

a very fast abort recovery mechanism for transactions

that do not overflow the L1 cache—it simply invalidates

transactionally accessed lines.

Eager transactions also maintain the old state in a

private, cacheable software log [14], which permits the

safe eviction of consistent transactionally written lines.

In case of overflow, the pre-transactional state can be

recovered by a software routine (slow abort recovery

mechanism). Moreover, transactional store operations

always add their addresses in the Write Signature. Thus,

the DynTM eager mode allows transactions to survive

context switches and page faults by virtualizing the

signatures and by using the software log for abort

recovery [23] .

DynTM detects conflicts early with the help of the

UTCP protocol. Conflicts are resolved using EEHP [2],

a high-performance conflict management policy that

tries to avoid wasting computation by stalling transac-

tions that issue conflicting requests. However, younger

readers are aborted in order to minimize starvation

for writing transactions. After aborting, an exponential

backoff (based on the number of retries) is performed

to guarantee the forward progress of eager transactions.

C. Lazy Execution Mode

Like other lazy HTM protocols, DynTM restricts

transactional updates to the L1 cache only, maintain-

ing pre-transactional values in the L2 cache. However,

rather than requiring specialized hardware to handle L1

cache overflows [16], [22], DynTM aborts the offending

transaction and re-executes it in eager mode. Moreover,

DynTM implements local commits; a novel mechanism

that avoids arbitration and communication at commit

time [15], [25].

Lazy transactions also detect conflicts early via the

UTCP protocol. Contrary to the eager execution mode,

lazy transactions continue executing after detecting a

conflict—conflicts are resolved lazily at commit time or

Figure 2. Local commits and abort notification in DynTM

until someone aborts the transaction. In order to track

conflicts from their detection until their resolution time,

DynTM transitions conflicting cache lines to special

UTCP states, and marks conflicts among cores in the

Read and Write Conflict Vectors (RCV and WCV).

In DynTM, when a lazy transaction attemps to com-

mit, it probes its local WCV for conflicts with remote

transactions. If the WCV is empty (i.e., non-conflicting

or read-only conflicting transactions), the core enters

the commit phase. However, in case of conflict, the

core enters the notification phase. In this phase, the

core sends abort messages (AbortTx) to all the cores

marked in its WCV and waits for their response. A

core that receives an abort request must check both its

RCV and WCV to verify that there is a conflict with the

commiter. If so, the conflicting transaction is aborted

and an AbortAck response is sent to the committer.

Otherwise, the abort request is because of a conflict

with a transaction that no longer executes on this core

(either committed or aborted) and the request is ignored.

DynTM eliminates arbitration among lazy transac-

tions, therefore two transactions may enter the noti-

fication phase at the same time. In order to prevent

crossed conflicts, abort requests include a timestamp

with the time a transaction started executing. When two

transactions in the middle of their notification phase

receive crossed abort requests, the younger transaction

is aborted (it receives an AbortNack response). In the

uncommon case that two transactions report the same

timestamp, the transaction executed on the core with a

higher CPUid is aborted. Aborting committing transac-

tions in their notification phase is safe to do because the

memory state is not updated until the commit phase.

When all abort requests have been acknowledged,

the notification phase ends. The core then enters the

commit phase, when the core locally commits the

transactional data in order to make it globally visible.

This is done by transitioning all cache lines accessed

transactionally to a non-speculative state (very cheap

action with UTCP) and by clearing the local signatures

and the Conflict Vectors. Unlike prior proposals, lazy

DynTM does not require directory updates [5], [25] nor

data movement [7], [15] at commit time.



Lazy Reader Lazy Writer

Eager
No conflict

Speculate with the eager reader
Reader Abort eager if lazy commits first

Eager Abort lazy Abort lazy
Writer (immediately) (immediately)

Table I
RESOLVING EAGER-LAZY CONFLICTS IN DYNTM

Figure 2 shows how DynTM executes lazy transac-

tions. In the Early Read Conflict example, Ti is a read-

only transaction that commits without conflict notifica-

tion (step 1). When transaction Tj commits, it sends an

AbortTx message to Ti (step 2). However, Tj does not

appear in the Read Conflict Vector (RCV) of Ti, so Ti

acknowledges the request and continues its execution

(step 3). In the Late Write Conflict example, Ti and

Tj are transactions with crossed conflicts that attempt

to commit at the same time. Both transactions notify

conflicts by sending abort messages (step 4-5), but only

Tj successfully commits, because Tj’s timestamp is older

than Ti’s (step 6-7). Both Ti and Tj wait until they collect

all the replies from conflicting cores. Tj only receives

AbortAck messages, therefore Tj moves to the commit

phase, and locally commits the transaction (step 8). In

contrast, Ti aborts as soon as it receives the AbortNack

message from Tj (step 9).

IV. SIMULTANEOUS EXECUTION OF EAGER AND

LAZY TRANSACTIONS

In order to simultaneously execute transactions with

different version and conflict management schemes,

DynTM uses a novel conflict resolution policy that

preserves the consistency of eager transactions and, at

the same time, shields lazy transactions from eager

modifications that have overflowed the cache. We have

decided to implement a conflict resolution policy that

prioritizes eager transactions over lazy transactions.

This policy favors large transactions that overflow the

L1 cache and transactions with many lazy aborts.

In DynTM, lazy transactions cannot safely access the

pre-transactional data of an eager transaction because,

in the case of a transactional L1 cache eviction, eager

transactions write-back the line in the L2 cache, polut-

ing the pre-transactional values. For this reason, lazy

transactions must abort when they access a memory

location written by an eager transaction, since they

cannot know if the L2 cache contains a pre-transactional

or an evicted eager value.

Nonetheless, eager readers speculate when they con-

flict with lazy writers. When an eager transaction wants

to read data that is written in a lazy transaction, the

system will respond with the line from the L2 cache

(lazy modifications are never evicted from the L1 cache,

so the L2 cache always keeps the pre-transactional state)

and mark a conflict in the eager transaction’s RCV.

This policy avoids read-write conflicts if the eager

transaction commits before the lazy transaction. If the

lazy transaction commits first, then the eager transaction

must abort. Notice that eager transactions only speculate

with read data (the WCV remains empty), so abort

notification at commit time is not required. Table I

summarizes the conflict resolution policy between eager

and lazy transactions.

A. The Unified Transactional Coherence Protocol

In the heart of DynTM lies a novel coherency

protocol, the Unified Transactional Coherence Proto-

col (UTCP), that guarantees the correct propagation

of transactional modifications, as well as the prompt

detection of conflicts among transactions. The UTCP

protocol distinguishes between coherent and speculative

states. The coherent states include the four states of a

typical MESI protocol, plus the T state. Cache lines

in these states are either non-transactional or they are

read inside a transaction and have no conflicts (M , E, S

and I states), or they are written inside a transcation and

they have no conflicts (T state). The two speculative R

and W states keep transactionally read (R) or written

(W ) cache lines that have a conflict with one or more

other transactions. Cache lines are transitioned to the

R or W states only inside transactions that have a

conflict with a lazy transaction—eager transactions are

not allowed to speculate with their execution when they

conflict with other eager transactions.

The coherent states T , M , E and S have a single

owner or version in the system directory (multiple shar-

ers are allowed, of course). On the other hand, specula-

tive lines can have multiple active versions, therefore the

directory must maintain a vector of owners. Conflicts

among transactions are detected through the T and W

states (for lazy transactional writers) and the Read and

Write Signatures (for transactional readers and eager

transactional writers, respectively). Figure 3 shows the

UTCP states and transitions. The label of each transition

shows the UTCP triggering message (before the slash)

and the associated actions (after the slash). Following

is a detailed description of the UTCP operations for

same-mode transactions:

Non-conflicting Accesses [TLoad/TStore]: Non-

conflicting eager or lazy memory accesses follow the

TMESI protocol proposed in FASTM [11]. While trans-

actional loads are performed as regular loads (adding the

address in the Read Signature if they end successfully),

transactional stores write-back the M -state lines to

the L2 cache before transitioning to the T state. This

guarantees that the L2 cache always has the correct pre-

transactional value of the line.

Eager Conflicting Accesses [TLoad(E)/TStore(E)]:

Assume two cores E0 and E1 executing eager trans-

actions. When E0 either misses in the L1 cache or



Figure 3. State-transition diagram of the unified transactional L1 cache coherence protocol

attemps to write shared data, it requests the line from the

directory. The directory forwards the coherence request

to the current owner (or sharers) of the line, which

checks its signatures for conflicts. Assume that E1 has

accessed the line in its in-flight eager transaction. In this

case, E1 replies to E0’s conflicting request (TGetS(E)

or TGetX(E)) with a Nack message. E0 can either retry

the memory access or abort the transaction.

Lazy Conflicting Accesses [TLoad(L)/TStore(L)]:

Assume that core L0, which is executing a lazy trans-

action, attemps to read (or write) a line that has been

accessed by another lazy transaction executed on core

L1. In this scenario, L0 requests the line to the directory,

which (1) forwards the coherence request to the current

owner(s) of the line and (2) sends a message containing

the number of owners to L0. When L1 receives a lazy

conflicting request (TGetS(L) or TGetX(L)), it replies to

L0 with a Lack message and moves the line to one of

the speculative states. If L1 has transactionally written

the line before (i.e., the line is in the T or W state),

the line transitions to W and L1 adds L0 to its WCV.

Similarly, if L1 has transactionally read the line (i.e., the

line is in the M , E, S, I or R state), the line transitions

to R and L1 adds L0 to its RCV.

When L0 receives the Lack reply from L1, it detects

that there is a conflict. Hence, L0’s request is serviced

by the L2 cache, which is guaranteed to have the correct

pre-transactional values, and L0 is added as a new line

owner in the directory. L0 puts the line in a speculative

state (R for a TLoad(L), W for a TStore(L)) and adds L1

to its local RCV (TLoad(L)) or WCV (TStore(L)). This

mechanism permits the system to identify inconsistent

transactions that should be aborted before committing.

Local Commits and Aborts: Eager and lazy transac-

tions employ local commits and aborts. When a core

commits a transaction, it instantaneously transitions all

the transactionally written lines (T or W ) to the M state

and invalidates all the R lines. When a core receives an

abort notification, it invalidates all the T , W and R

lines from its L1 cache. Notice that DynTM’s commits

or aborts do not require communication with the L2

cache or the directory.

Lazy Directory Updates: In DynTM, the directory

is updated lazily, therefore committed lines may have

multiple owners in the directory even though they may

only exist in one L1 cache. Assume that L0, L1 and

L2 are cores that have written line A inside a lazy

transaction. Eventually, L2 commits, aborting L0 and

L1. When L0 re-executes, it requests line A from the

directory. L2 has not updated the directory at commit

time, so the directory still maintains L0, L1 and L2

as the owners of the line. Thus, the directory forwards

the request to L1 and L2. While L1 acknowledges the

request (it has invalidated line A during its abort, so it

does not own the line anymore), L2 sends the committed

data to L0. After collecting all the responses, L0 updates

the directory by setting itself as a sharer (TLoad) or as

the exclusive owner (TStore) of the line.

B. Combining Eager and Lazy Execution Modes

Now, assume that E0 is a core executing an eager

transaction and L1 is a different core executing a

lazy transaction. In order to explain how conflicts that

involve eager and lazy transaction are resolved, we will

describe the various situations in Figure 4.

Eager Early Write (Example 1): DynTM must prevent

lazy transactions from reading or writing the modifi-



Figure 4. Resolving eager/lazy conflicts in DynTM

cations introduced by eager transactions. Thus, when

L1 attemps to access a line being modified by E0, E0

responds with a Nack message. After receiving the Nack

response, L1 aborts immediately.

Eager Late Write (Example 2): Similarly, upon a

write request from E0, L1 acknowledges the request and

aborts itself, permitting the eager transaction to obtain

the pre-transactional data from the L2 cache. This is safe

to do because lazy writes never leave the L1 cache. This

approach reduces the amount of wasted computation on

aborts and facilitates fast restarts, since lazy transactions

do not require backoff cycles.

Eager Late Read (Example 3): When E0 reads data

that is written in L1, L1 responds with a Lack message.

E0 marks the conflict in its RCV, and L1 marks the

conflict in its WCV. E0 receives the line data from the

L2 cache and stores it in the R state. Since lazy modifi-

cations are never evicted from the L1 cache, E0 gets the

correct pre-transactional data. This policy avoids aborts

from read-write conflicts when E0 commits before L1.

Of course, if L1 commits first, E0 has to abort.

Eager Early Read (Example 4): Similarly, L1 can con-

tinue its execution when it writes a memory location that

has been read by E0, tracking the conflict in its WCV.

Hence, if L1 commits before E0, an AbortTx message

is sent to E0, which immediately aborts. Otherwise, if

E0 commits before L1, no conflict is reported.

V. TRANSACTIONAL MODE SELECTOR

In DynTM, each core includes a simple Transactional

Mode Selector (TMS) to decide the most profitable

execution mode for each transaction. The appropriate

execution mode for a transaction is highly application-

dependent. Lazy transactions usually manage contention

more efficiently than eager transactions, especially when

there are many small transactions with high contention.

Nonetheless, eager transactions reduce the amount of

discarded work due to aborts of large transactions. For

this reason, the TMS decides to execute most of the

transactions lazily, except in the case of multiple lazy-

mode aborts or frequent overflows.

The TMS configuration shares similarities with typi-

cal two-level branch predictors [26]. As it can be seen

Figure 5. Hardware support for the Transactional Mode Selector

in Figure 5, the TMS requires two hardware structures

that store important information about past transactional

executions. The first structure is the Transactional State

Register (TSR), which collects information about the

current dynamic instance of a locally executing transac-

tion. The second structure is the Transactional History

Table (THT), which records statistics from previously

committed transactions on this core.

The TSR contains (a) the overflow bit (OV), which is

asserted when the system aborts a lazy transaction due

to an L1 cache overflow, (b) a 3-bit saturating counter

(Ret) that counts how many aborts (i.e., retries) the

currently executing transaction has peformed, and (c)

the Mode bit, which determines the execution mode of

the current in-flight transaction. Each entry of the THT

has two 2-bit saturating counters and a bit that contains

the execution mode of the last committed instance of the

transaction (LEM bit). The first counter (LOC) tracks

if the transaction is prone to overflow while the latter

(RetC) tracks if the transaction is prone to abort multiple

times before committing.

At the beginning of a given transaction, the TMS

decides the execution mode (eager or lazy) of the

transaction and stores the decision in the Mode bit of

the TSR. This decision is preserved until the transaction

commits or aborts. Figure 6a shows how the execution

mode is selected using the TMS. The TMS uses the

TSR when the system re-executes an aborted transaction

(Ret>0). In this case, DynTM changes the execution

mode from lazy to eager when (a) the OV bit is asserted

or (b) the number of transactional retries is above a

threshold T. In our evaluation, the threshold T is a static

parameter (the number of cores divided by eight). This

technique permits our system to eliminate the starvation

of the older pathology [2] and minimize the amount of

discarded transactional computation [21].

When a new instance of a transacation starts (i.e., not

a re-execution), the TMS indexes the THT with the Pro-

gram Counter (PC) of the transaction to decide the exe-

cution mode. If it hits in the THT, the TMS inspects the

corresponding saturated counters. If previous instances

of the same transaction have presented a reckognizable

behavior (confident LOC or RetC counters), the TMS



(a) Execution Mode Predictor

if(Ret>0)

if(OV == true || Ret > T || Mode == Eager)

Mode = Eager

else

Mode = Lazy

else

if(LOC == 3 || RetC == 3)

Mode = Eager

else if (LOC < 2 && RetC < 2)

Mode = Lazy

else

Mode = LEM

(b) Transactional History Table Update

if(Ret > 2*T && RetC < 3){

RetC++

else if(Ret < T/2 && RetC > 0)

RetC--

if(OV == true && LOC < 3){

LOC++

else if(OV == false && LOC > 0)

LOC--

LEM = Mode

Figure 6. TMS selection (up) and THT update (down) algorithms

chooses between the eager (high counter values) or lazy

(low counter values) execution modes. If the predictor

is not confident on its decision, the TMS chooses the

execution mode used in the last committed instance of

the transaction (LEM bit). If there is a miss in the

THT, the TMS executes the transaction lazily because

lazy transactions usually obtain better performance than

eager transactions. The THT is updated each time the

core commits an instance of a transaction following the

algorithm described in Figure 6b.

VI. EVALUATION

For the evaluation of DynTM we assume a Chip

Multiprocessor (CMP) with 32 cores, as shown in

Figure 1. The system has a 16-node mesh interconnect

with 64-byte links. Each node has two cores, a 1MB

shared L2 cache and part of the directory. The system

has four memory controllers to access 4GB of memory.

Each core has 2Kbit Read and Write signatures, 32-bit

Conflict Vectors (one bit per core) and a TMS with a

16-entry THT. Detailed system parameters are shown in

Table II. The base system, the HTM support, and the

UTCP coherence protocol have been simulated using

the Simics [12] infrastructure from Virtutech and the

GEMS [13] toolset from Wisconsin’s Multifacet group.

For our analysis, we execute applications from the

STAMP benchmark suite [3] and two micro-benchmarks

from the GEMS 2.0 distribution.

We have categorized these applications according to

their characteristics. Low-contention applications (those

with few conflicts) have been executed with 32 threads,

whereas high-contention applications (those that scale

poorly) have been executed with 16 threads. Table III

Core
32 cores, 1.2 GHz in-order,
single issue, single-threaded

L1 cache
32 KB 4-way, 64-byte line,
write-back, 2-cycle latency

L2 cache
16 MB 8-way, banked NUCA,
write-back, 15-cycle latency

Memory 4 GB, 4 banks, 150-cycle latency

L2 directory Bit vector of sharers/owners, 6-cycle latency

Interconnect 16-node Mesh, 64-byte links, 3-cycle latency

HTM 2 Kb Chuckoo-Bloom Signatures
Support 32-bit CVs, TMS with 16-entry THT

Table II
BASE SYSTEM PARAMETERS

Bench Suite Input parameters Category

Btree
µbench

25% insertions 100K Tx
Deque 5K dummy work 100K Tx Low
Genome

STAMP

32K seg. 512 gene. 32 len. Contention
Kmeans 15/15 clusters 16K points

Ssca2 214 nodes 9 edg. 9 len. 32 threads
Vacation 1M input, high contention
Bayes 32 vars, 1024 records

High
Intruder 4K traf. 10 at. 16 pack

Contention
Labyrinth 32*3*3 maze, 1024 routes
Yada 20 angle, 633.2 mesh 16 threads

Table III
INPUT PARAMETERS OF TM APPLICATIONS

presents the input parameters of the TM applications

used in the evaluation. For our analysis, we have chosen

to compare DynTM (labeled D in Figures 7 to 9)

with four different HTM systems that require similar

hardware support; two state-of-the-art HTM systems,

and two DynTM alternatives. The four systems are the

following:

Eager Fixed HTM (labeled E): This configuration

corresponds to a state-of-the-art eager HTM system,

which is similar to FASTM-Sig [11].

Lazy Fixed HTM (labeled L): This configuration

shares similarities with state-of-the-art lazy HTM sys-

tems that use fixed version and conflict management

policies [22], [25]. Our lazy HTM implements an in-

finite victim cache that “magically” buffers overflowed

transactional data. Like the lazy mode of DynTM, it

uses the Read/Write Signatures and the UTCP protocol

to track conflicts, and it performs local commits.

Dynamic Overflow HTM (labeled O): This is the

lazy mode of DynTM. In this configuration, we force

DynTM to execute all transactions lazily. Only in case

of L1 cache overflow a transaction switches to eager

mode, but after committing, the next instance of the

transaction will start again in lazy mode. We use

this configuration to test the effectiveness of the non-

adaptive lazy mode of DynTM.

Statically Programmed HTM (labeled S): Static

alternative to DynTM where an expert programmer

decides the execution mode of transactions. For our

evaluation, we decided to execute all transactions lazily

except those transactions that overflow the L1 cache or



Figure 7. 32-threaded (left) and 16-threaded (right) normalized time of HTM systems

those transactions with many lazy aborts. We use this

system to evaluate the performance benefit of the TMS

predictor compared to a simpler adaptive method.

A. Performance Analysis of DynTM

Figure 7 presents the time distribution of the Eager

Fixed (E), the Lazy Fixed (L), and the DynTM (D)

HTM systems in their 32-threaded (low-contention ap-

plications, left side of the graphic) and 16-threaded

(high-contention applications, right side of the graphic)

executions. The execution time has been normalized

to Eager Fixed and has been broken down to: non-

transactional and barrier waiting cycles (labeled Non-Tx

and Barrier), the time spent in committed transactions

(labeled Good Tx) and in non-useful computation dis-

carded on aborts (labeled Aborted Tx), the time spent

in abort recovery and in local commits (labeled Abort

and Commit), the time that eager transactions remain

stalled after detecting a conflict (labeled Stalled) and

the time that cores execute a backoff after aborting an

eager transaction (labeled Backoff).

As it can be seen in Figure 7, DynTM outperforms

both Eager and Lazy Fixed HTMs by (a) combining

eager and lazy transactions in applications that execute

heterogeneous transactions and (b) re-adapting the ex-

ecution mode of the transactions at runtime. DynTM

achieves, on average, a speedup of 34% over the Eager

Fixed HTM and a speedup of 47% over the Lazy Fixed

HTM. The reasons why DynTM outperforms state-

of-the-art Fixed HTM executions are described in the

following paragraphs.

On the one hand, eager HTMs—even the Eager Fixed

HTM that implements high-performance conflict and

version management policies—are not effective when

collisions among threads are frequent. In our Eager

Fixed HTM execution, transactions are stalled in case

of conflict, which may lead to futile stalls (transactions

that abort after being stalled for a long time) or cascades

of stalls (transactions that are stalled by transactions

that are waiting for other conflicts to be resolved). This

behavior typically occurs in many-threaded applications

with read-write conflicts, like Btree or Vacation, or in

applications with long transactions like Labyrinth. On

average, 18% of the eager execution time is spent in

stalled transactions. Moreover, eager transactions utilize

an exponential backoff that is based on the number of

retries to spread the computation and avoid livelocks.

Backoff is critical in high-contention applications with

large transactions, like Bayes or Yada, or in applications

with lots of aborts and small transactions, like Deque or

Genome. On average, 16% of the eager execution time

is spent in the backoff.

On the other hand, the Lazy Fixed HTM may abort

older writers several times, which results to an important

amount of discarded transactional work (5X more than

the Eager Fixed HTM execution on average). This

is critical in applications with large transactions, like

Intruder or Yada. However, applications with small

transactions and read-write conflicts, such as Btree or

Vacation, improve their performance over the Eager

Fixed HTM. This performance improvement is due to

the speculative resolution policy that the Lazy Fixed

HTM employs, which does not stall conflicting memory

accesses nor requires backoff. Notice that our tech-

nique removes the commit phase from the critical path,

spending less than 0.1% of the execution time in local

commits.

DynTM uses the eager execution mode for transac-

tions that commonly overflow the cache or for trans-

actions that abort several times before committing. In

the former case, DynTM can stall large transactions—

those that modify lots of lines—to preserve useful

work in case of conflict without requiring specialized

lazy version management support. In the latter case,

older transactions can commit faster and decrease the

number of aborts because eager transactions have more

priority than lazy transactions. Combining eager and

lazy execution has a positive effect in applications with

heterogeneous transactions like Genome, Intruder or

Yada, which reduce the Stalled and Backoff cycles (with

respect to the Eager Fixed HTM) and the Aborted Tx

cycles (with respect to the Lazy Fixed HTM).

We want to point out that the Lazy Fixed HTM

outperforms DynTM in Vacation. This workload suffers

important performance issues when DynTM executes



Figure 8. HTM systems normalized execution time

Figure 9. HTM systems time distributed by the execution mode

eagerly those transactions that overflow the L1 cache:

eager transactions stall the requester in case of a read-

write conflict, limiting the concurrency of Vacation’s

transactions. Instead, the Lazy Fixed HTM can take

advantage from the unbounded (non-realistic) transac-

tional victim cache to keep executing lazily even in case

of overflow, which permits the system to speculate with

read-write conflicts.

B. Static and Dynamic Alternatives to DynTM

Figure 8 shows the distribution time of the Dynamic

Overflow (O), the Statically Programmed (S) and the

DynTM (D) HTM systems. As it can be seen in Fig-

ure 8, DynTM is the best of the three alternatives that

combine eager and lazy transactions, achieving a 17%

speedup over the Dynamic Overflow HTM and a 10%

speedup over the Statically Programmed HTM.

The Dynamic Overflow HTM obtains good perfor-

mance in applications with small transactions, like

Deque, Ssca2 or Kmeans, which do not suffer from

cache overflows. Moreover, it also accelerates the execu-

tion of applications with huge transactions that overflow

the L1 cache like Bayes, by restarting them in eager

mode. However, the Dynamic Overflow HTM cannot

combine execution modes on applications like Intruder,

which starve older non-overflowed transactions. More-

over, overflowed transactions must abort before re-

executing, which increases the amount of discarded

transactional work in Yada.

The Statically Programmed HTM delegates the elec-

tion of the execution mode to the programmer. The

programmer has tried to minimize the impact of aborts

caused by overflows (e.g., in Bayes) and to accelerate

applications with multiple lazy aborts (e.g., in Intruder).

However, applications that present a dynamic behavior

(such as phase changes) may suffer considerable delays

when we fix the execution mode of a transaction for

the entire application. This happens in applications

like Genome, Labyrinth or Yada, which present several

overflows at the beginning of the execution and less

overflows at their end.

Figure 8 shows the importance of having a dynamic

execution mode selector. By re-adapting the system at

runtime, DynTM can use the most profitable strategy at

any time during the execution of a program. In contrast

to Dynamic Overflow HTM, DynTM does not need to

abort lazy overflowed transactions to restart them in

eager mode, because it recognizes very quickly which

transactions will probably overflow and decides to exe-

cute most of them eagerly right away. As opposed to the

Statically Programmed HTM, DynTM executes eager

transactions only when it is necessary (when lazy aborts

are frequent), avoiding the use of conservative conflict

management mechanisms for the entire application. The

only scenario where the Statically Programmed HTM

system performs better than DynTM is Bayes. This

happens because Bayes executes transactions only a

few times, which does not give enough time to our

dynamic selector to learn the best execution mode for

each transaction.

Figure 9 breaks down previous HTM execution times

to the time spent in non-transactional code or barriers



Figure 10. Commit time (left) and speedup (right) of Lazy Fixed HTM systems

(labeled N-Tx+B), the time spent in eager transactions

(labeled Eager) and the time spent in lazy transactions

(labeled Lazy). As it can be seen, DynTM executes most

of the applications with small transactions lazily. This

strategy is really useful because it eliminates read-write

conflicts if the reader commits before the writer, does

not require exponential backoff, and removes patholog-

ical behavior caused by stalled transactions. In con-

trast, DynTM chooses to run coarse-grain applications

most of the time in eager mode, because (a) large

transactions that overflow the cache do not support the

lazy execution mode and (b) the DynTM eager conflict

management policy reduces drastically the number of

aborts and re-executions.

Figure 9 also shows the effectiveness of the adaptive

mechanism that DynTM employs. While the Dynamic

Overflow HTM spends most of the time in lazy trans-

actions (only transactions that overflow the cache are

executed eagerly) and the Statically Programmed HTM

in eager transactions (the execution mode is designated

by the programmer), DynTM can re-adjust its execution

mode selection at runtime, distributing eager and lazy

transactions in a more appropiate way in Labyrinth,

Vacation or Yada.

C. Performance Analysis of Local Commits

Here, we compare the effectiveness of DynTM’s

local commits with two other mechanisms proposed for

lazy transactions: Distributed and Selective Commits.

Figure 10 shows the time spend on commits (left)

and the speedup (right) of Lazy Fixed HTM systems

that use different commit strategies normalized to the

Distributed approach. In the Distributed Commit im-

plementation [15], the system acquires the directory

modules accessed during the transaction before making

transactional writes globally visible. Hence, transactions

that modify different directories can commit in parallel.

In the Selective Commit implementation [25], the sys-

tem only acquires directory modules when it commits

a conflicting transaction. This fact permits a parallel

commit on non-conflicting (or read-only conflicting)

transactions. In our proposal (Local Commit), lazy trans-

actions eliminate directory updates from the commit

phase. All three HTM implementations use the abort

notification mechanism to report remote conflicts.

DynTM performs local commits, a technique that

eliminates the communication with shared resources at

commit time. This is especially helpful in applications

with read-only transactions, like Btree or Vacation, or

in applications with tiny-size transactions, like Deque or

Ssca2. Figure 10 shows that local commits accelerate

the commit phase of the Distributed approach by a

factor of 11 and of the Selective approach by a factor

of 2.5. In environments that execute small transactions,

the usage of local commits report significant benefit, im-

proving up to a 20% the performance of the Distributed

Commit implemention.

VII. CONCLUSIONS

In this paper we have presented DynTM, the first

fully-flexible HTM that permits the simultaneous exe-

cution of transactions with distinct version and conflict

management strategies, either eager or lazy. The tight

coupling and correct functioning of the two exection

modes is achieved by the UTCP protocol, a novel cache

coherence protocol that ensures consistency among ea-

ger transactional modifications that are propagated in

the memory hierarchy and lazy transactional modifica-

tions that are hidden in the processor’s private caches.

What is more, DynTM is the first HTM to offer a lazy

execution mode that uses a log-based HTM as a fall-

back mechanism in order to survive cache overflows

and context switches, with the added benefit of reduced

hardware cost.

Both DynTM’s eager and lazy mode implementations

offer very good performance. Our simulations show that

the eager DynTM mode is as fast as an accelerated

log-based HTM system, while the lazy mode beats

the performance of other lazy HTM implementations

due to the new commit technique that it implements.

Finally, when coupled with the Transactional Mode

Selector, a history-based predictor that takes advantage

of the flexibility offered by DynTM to decide the best

execution mode for each transaction at runtime, DynTM

obtains an average speedup of 34% over HTM systems

that employ fixed version and conflict management

mechanisms.



ACKNOWLEDGEMENTS

This work is partially supported by the Generalitat

de Catalunya under grant 2009SGR1250, the Spanish

Ministry of Education and Science under contracts

TIN2007-61763 and TIN2010-18368, and Intel Corpo-

ration. Marc Lupon is supported by an UPC-Research

grant.

REFERENCES

[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leis-
erson, and S. Lie, “Unbounded Transactional Memory,”
in Procs. of the 11th Intl Symp on High-Performance
Computer Architecture, Feb. 2005.

[2] J. Bobba, K. E. Moore, L. Yen, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood, “Performance Pathologies
in Hardware Transactional Memory,” in Procs. of the
34th Intl Symp on Computer Architecture, Jun. 2007.

[3] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun, “STAMP: Stanford Transactional Applications for
Multi-Processing,” in Procs. of The IEEE Intl Symp on
Workload Characterization, Sep. 2008.

[4] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas, “Bulk
Disambiguation of Speculative Threads in Multiproces-
sors,” in Procs. of the 33th Intl Symp on Computer
Architecture, Jun. 2006.

[5] H. Chafi, J. Casper, B. D. Carlstrom, A. McDonald,
C. C. Minh, W. Baek, C. Kozyrakis, and K. Olukotun,
“A Scalable, Non-blocking Approach to Transactional
Memory,” in Procs. of the 13th Intl Symp on High-
Performance Computer Architecture, Feb. 2007.

[6] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir,
and D. Nussbaum, “Hybrid Transactional Memory,” in
Procs. of the 12th Intl Conf on Architectural Support for
Programming Languages and Operating Systems, Oct.
2006.

[7] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun, “Transactional Memory
Coherence and Consistency,” in Procs. of the 31st Intl
Symp on Computer Architecture, Jun. 2004.

[8] M. Herlihy, V. Luchangco, M. Moir, and I. William N.
Scherer, “Software Transactional Memory for Dynamic-
Sized Data Structures,” in Procs. of the 22nd ACM Symp
on Principles of Distributed Computing, Jul. 2003.

[9] M. Herlihy and J. E. B. Moss, “Transactional Memory:
Architectural Support for Lock-Free Data Structures,” in
Procs. of the 20th Intl Symp on Computer Architecture,
May 1993.

[10] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and
A. Nguyen, “Hybrid Transactional Memory,” in Procs.
of the ACM SIGPLAN Symp on Principles and Practice
of Parallel Programming, Mar. 2006.

[11] M. Lupon, G. Magklis, and A. González, “FASTM: A
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