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ABSTRACT

Many convective parameterization schemes define a convective adjustment time scale t as the time allowed

for dissipation of convective available potential energy (CAPE). The Kain–Fritsch scheme defines t based on

an estimate of the advective time period for deep convective clouds within a grid cell, with limits of 1800 and

3600 s, based on practical cloud-lifetime considerations. In simulations from the Weather Research and

Forecasting (WRF)Model using 12-km grid spacing, the value of t often defaults to the lower limit, resulting

in relatively rapid thermodynamics adjustments and high precipitation rates. Herein, a new computation for

t in the Kain–Fritsch scheme is implemented based on the depth of the buoyant layer and the convective

velocity scale. This new t formulation is applied using 12- and 36-kmmodel grid spacing in conjunction with a

previous modification that takes into account the radiation effects of parameterized convective clouds. The

dynamically computed convective adjustment time scale is shown to reduce the precipitation bias by ap-

proximately 15% while also providing improved simulations of inland rainfall from tropical storms.

1. Introduction

Previous applications of the Weather Research and

Forecasting (WRF) Model for dynamical downscaling,

as described in Otte et al. (2012), Bowden et al. (2012,

2013), and Bullock et al. (2014), have shown a general

tendency for simulations to produce too much pre-

cipitation, especially for the warm seasons. To treat

parameterized convection in a more realistic manner,

Alapaty et al. (2012) modified the Kain–Fritsch con-

vective parameterization scheme (CPS) and the Rapid

Radiative Transfer Model for GCMs (RRTMG) to

simulate the radiative effects of subgrid-scale convective

clouds. This resulted in a significant decrease in simu-

lated convective precipitation and reduced the positive

bias in total precipitation inWRF simulations using 36-km

grid spacing (Herwehe et al. 2014). However, when

these subgrid radiation treatments were applied in this

study using 12-km grid spacing, a considerable positive

bias remained. The excess convective precipitation ap-

peared to be worse at finer resolution, so the Kain–

Fritsch parameterization was examined with a special

focus on scale-sensitive formulations. One such formu-

lation was found having to do with the convective ad-

justment time scale.

The convective adjustment time scale t, also called the

relaxation time scale, is the hypothetical time required

for deep moist convective overturning to adjust ther-

modynamic profiles to a quasi-equilibrium or neutral

state. As discussed by Frank (1983), the factors that

modulate both the time and space scales of convective

adjustment are complicated, dependent on local dy-

namical constraints, and not completely understood.

In numerical models, convective parameterizations are

generally applied in individual grid columns, in effect

constraining the spatial scale of adjustment for a given

model configuration, but there is no universal agreement

on how to define an appropriate corresponding time

scale. Early convective adjustment schemes acted

instantaneously—temperature and water vapor adjust-

ments were applied in a single model time step (e.g.,
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Manabe et al. 1965)—motivated by the fundamental

objective of not allowing potentially unstable layers to

become saturated in a model. Betts (1986) proposed

allowing this time period to encompass many model

time steps while still keeping it small enough (and thus

the adjustment rate large enough) to maintain sub-

saturation in potentially unstable layers. Similarly, other

studies such as those of Kuo (1974) and Frank and

Cohen (1987) tied the adjustment rate to the rate of local

moisture and mass convergence, respectively.

Fritsch and Chappell (1980) focused on the idea that

moist convection stabilizes the local environment by

replacing unstable air at low levels with less unstable air

from above, through the action of convective down-

drafts. They assumed that this process proceeds sys-

tematically as convective updraft–downdraft couplets

move over an area, ingesting low-level unstable air and

leaving more stable air in their wake. Accordingly, they

linked the convective adjustment time scale to the ad-

vective time scale of clouds in a grid element. This

concept was carried over to the Kain–Fritsch (Kain and

Fritsch 1993) parameterization. Specifically, in this

scheme t was calculated by dividing the horizontal grid

length by the vector average of the wind speed at cloud

base and the 500-hPa pressure level. Based on early

testing and observations of typical cloud lifetimes, t was

restricted to a maximum value of 3600 s and a minimum

value of 1800 s. While this concept works fairly well for

coarse grid resolutions, it leads to a shorter adjustment

time scale at higher resolutions. This invigorates pa-

rameterized convection in fine-grid modeling where at

least some of the convective energy might be resolvable.

None of these approaches for t estimation has been

universally accepted by the broader community, yet

numerous studies have indicated that a variety of sim-

ulations are very sensitive to specified values of t (e.g.,

Emanuel et al. 1994; Lin et al. 2000; Alapaty et al. 1994a,

1994b). Consequently, the magnitude of t is often cho-

sen on the basis of trial and error. For example, in a high-

resolution regional modeling study, Done et al. (2006)

concluded that usage of a large t (;24 h) practically

eliminated subgrid-scale precipitation while small

t (;600 s) resulted in a predominant subgrid-scale pre-

cipitation pattern. In many general circulation models,

t ranges from about one to a few hours (e.g., Zhang and

McFarlane 1995; Collins et al. 2006; Wilcox and Donner

2007). In a high-resolution global climate simulation

study, Bacmeister et al. (2007) found that usage of larger

t led to marked improvements in hurricane spinup time

and intensity. Lucas et al. (2010) have shown that among

other uncertain parameters, t was found to be one of the

most influential specified parameters in their global cli-

mate simulations. Using the Community Atmosphere

Model, Liu et al. (2007) studied the climate response to

various constant values of t and found that no single

value of this parameter produced optimal results for all

aspects of climate. Results obtained from these and

many other climate modeling studies demonstrate that

specification of a particular t value is problematic. This

highlights the need for a spatially and temporally vary-

ing value of t.

One way of doing this was tested by Bechtold et al.

(2008). They made t a function of simulated cloud

depth, updraft vertical velocity averaged over the cloud

layer, and a factor dependent on global model spectral

resolution. They obtained probability density functions

from several global forecasts with different spectral

resolutions indicating that t can be as small as 600 s

and as high as 3 h. To improve the treatment of the re-

laxation time scale in the Kain–Fritsch convection

scheme (Kain 2004) as it is employed in theWRFModel

(Skamarock et al. 2008), we have developed a similar

formulation for t based on convective cloud depth and

convective velocity scale and have applied that new

formulation in WRF using 12-km grid spacing. The

analysis presented here will deal primarily with the ef-

fects of our new t formulation on precipitation bias,

with a cursory examination of its effects on surface-level

temperature, humidity, and wind speed.

2. Model and experiment design

The standardKain–Fritsch CPS defines t simply as the

model grid spacing divided by the average of the wind

speeds at the lifting condensation level (LCL) and the

500-hPa level. The value of t is then limited to the range

of 1800–3600 s. However, given the same wind condi-

tions, this formulation tends to force the dissipation of

CAPE more quickly with stronger updrafts for model

applications using finer grid spacing. As the horizontal

resolution of the model approaches the so-called gray

scales where convection is at least partially resolved by

model dynamics, we would expect to see the opposite

effect where the CPS has less impact. For these reasons,

we propose an alternate formulation for t.

a. Dynamic t formulation

Based on the previous work of Bechtold et al. (2008),

we adopted a similar formulation for t that omits a

scaling factor dependent on model resolution and con-

siders the effect of convective overturning throughout

each grid column where convective updrafts may exist.

Our dynamic formulation includes only the depth of the

convective cloud divided by a convective cloud velocity

scale wc similar to that described by Grant and Lock

(2004) based on BOMEX observations (Holland and
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Rasmusson 1973) and large eddy simulation of shallow

convection.

Our initial estimate for the convective adjustment

time scale (s) is given by

t05
zEq.Lev. 2 zLCL

wc

, (1)

where zEq.Lev. is the height (m) of the equilibrium level

and zLCL is the height (m) of the LCL, both of which are

calculated as part of the Kain–Fritsch CPS and their dif-

ference is considered as the depth of the convective cloud.

Equation (1) is analogous to the formulation suggested by

Bechtold et al. (2008). The convective cloud velocity scale

wc (ms21) used herewas suggested for shallow convective

clouds (Grant and Lock 2004). Measurements necessary

for calibrating the magnitude of the velocity scale for

deep convective clouds do not exist, but a theoretical basis

was documented by Emanuel and Bister (1996). A global

constant parameter ƍ may be needed to make this for-

mulation for wc suitable for deep convection. We in-

troduce such a constant ƍ, but set it to unity for these

initial numerical simulations at 12-km grid spacing. The

convective velocity scale is defined as

w
c
5 (ƍ3m

b
3ABE)1/3 , (2)

where mb is described by Grant and Lock (2004) as the

cloud-basemass flux per unit density (m s21) andABE is

the available buoyant energy (m2 s22), including en-

trainment, taken from the Kain–Fritsch CPS. Note that

Grant and Lock (2004) only considered adiabatic

buoyancy, so the convective velocity scale from Eq. (2)

differs somewhat as a result of the consideration of en-

trainment. Equation (2) holds well for shallow convec-

tive clouds and can be used for deep convective clouds as

well since the right-hand side of Eq. (2) is not too dif-

ferent from the cube root of the vertically integrated

buoyancy flux over the cloud depth, as shown by

Emanuel and Bister (1996) for undiluted buoyancy.

Also, this term is similar to the cloud work function in-

troduced by Arakawa and Schubert (1974), which is

defined as kinetic energy generation per unit cloud-base

mass flux, and, in the case of deep convective clouds, the

product of ƍ andmb is related to the mean updraft mass

flux. For the model grid scale, cloud-base mass flux per

unit density is calculated as

mb 5
VMTLCL

(Dx)23 rLCL

, (3)

where VMTLCL is the vertical mass transfer rate (kg s21)

within the updraft at the LCL that is required to

consume at least 90% of the initial ABE, as determined

by the Kain–Fritsch CPS; Dx is the horizontal grid

spacing (m) for our WRF simulations; and rLCL [atmo-

spheric density (kgm23) at the LCL] is calculated from

the local pressure and temperature (pLCL and TLCL, re-

spectively, both available from the Kain–Fritsch CPS)

using the ideal gas law. Since deep convective clouds are

vertically resolved, their depth as well as the ABE es-

timations are determined on resolvable scales. Thus, our

final formulation for t is applicable at resolved scales

representing the convective turnover time required to

remove most of the ABE.

Once our initial estimate is calculated, the final value

for t is constrained to be within the range of 1800 #

t # 18 000 s (0.5–5 h). The Kain–Fritsch CPS has a

minimum cloud depth of about 4000m to trigger deep

convection. Our preliminary tests with 10-day simula-

tions indicated that t could be as low as 900 s for clouds

less than 5000m deep, while for clouds that are over

10 000m deep in humid environments t can be around

15 000 s. The lower limit of 1800 s was selected to

maintain consistency with the original Kain–Fritsch

formulation.

b. WRF Model configuration

Our dynamic t formulation was initially tested in ap-

plications of WRF version 3.4.1 (using the Advanced

Research WRF configuration) with 12-km grid spacing

and a modeling domain covering the area shown in

Fig. 1. We later repeated our testing regimen using

36-km grid spacing to see if the improvements we found

were sensitive to the horizontal resolution. The model

was configured three different ways for both horizontal

resolutions, the first using the regular Kain–Fritsch CPS

(case KF), the second using the modified Kain–Fritsch/

RRTMG of Alapaty et al. (2012) to account for the

radiative effects of parameterized convection (case

RadKF), and the third using both the modified Kain–

Fritsch/RRTMG and the new dynamic t formulation

(case RadTauKF). The simulations covered the 3-yr

period from 0000 UTC 1 January 2005 to 0000 UTC

1 January 2008. All simulations used analysis nudging

toward NCEP–DOE AMIP-II Reanalysis data

(Kanamitsu et al. 2002) with nudging coefficients de-

pendent upon the horizontal resolution. Stauffer and

Seaman (1994) recommend weaker nudging at finer

scales. Based on sensitivity tests in Bullock et al. (2014),

the nudging coefficients used in this study for 12-km grid

spacing were equal to 5 3 1025 s21 for the potential

temperature and wind components and 53 1026 s21 for

the water vapor mixing ratio. For 36-km grid spacing,

these coefficients were a factor of 2 larger. This nudging
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toward a reference state, in this case toward a reanalysis

field, certainly diminishes the sensitivity to changes in

the convective parameterization. However, the moti-

vation for this research was to improve dynamical

downscaling methods, which rely on nudging. Also, the

nudging coefficients used here are much smaller

(weaker nudging) than the WRF default values, espe-

cially for water vapor mixing ratio, and are the values

found to be optimum for 12-km dynamical downscaling

as applied in Bullock et al. (2014) and applied for 36-km

downscaling in Otte et al. (2012).

Initial and boundary conditions for all cases were

obtained from previous WRF simulations using the

standard Kain–Fritsch CPS over a slightly larger domain

with 108- and 36-km nested grids. The parent 108- and

36-km simulations also used analysis nudging toward the

NCEP–DOE AMIP-II Reanalysis data. In all cases,

WRF was run using the same 34-layer configuration and

50-hPa model top used to evaluate the general approach

to downscaling to 12-km grid spacing described in

Bullock et al. (2014). Other WRF Model configuration

options employed were also the same as in Bullock et al.

(2014), namely the Yonsei University planetary

boundary layer scheme (Hong et al. 2006), the Noah

land surface model (Chen and Dudhia 2001), and the

WRF single-moment 6-class microphysics scheme

(Hong and Lim 2006).

3. Impact of the new formulation on the convective

adjustment time scale

Figure 1 shows the effect of the dynamic t formulation

in slowing the dissipation of CAPE in our modeling with

12-km grid spacing. As a typical summertime example,

the top map in Fig. 1 shows the July 2006 average rate of

CAPE dissipation (1/t) from the standard Kain–Fritsch

formulation (cases KF andRadKF) while the lower map

shows the result from our dynamic t formulation (case

RadTauKF). In areas where lower-tropospheric winds

have considerable velocity even during midsummer, the

standard formulation produces t values near the mini-

mum limit of 1800 s and the monthly average rate of

CAPE dissipation can exceed 5 3 1024 s21. Most of the

model domain in Fig. 1a shows an average CAPE dis-

sipation rate of over 4 3 1024 s21, including the area

over the Pacific Ocean where shallow convection com-

monly occurs. The Kain–Fritsch CPS applies a pre-

defined t of 2400 s for shallow convection. Thus, the

average CAPE dissipation rate in that area is 1/2400 or

4.1667 3 1024 s21. When the dynamic t formulation is

applied (Fig. 1b), most of the model domain shows av-

erage CAPE dissipation rates of less than 3 3 1024 s21

with some areas much lower because of the increased

t upper limit of 18 000 s versus 3600 s in the standard

formulation. Again, shallow convection over the Pacific

Ocean results in larger CAPE dissipation rates since the

predefined t value of 2400 s is also applied for shallow

convection in our dynamic formulation.

a. Effect on monthly average precipitation

Figure 2 shows average monthly accumulated pre-

cipitation from 2005 through 2007 over the continental

United States as indicated by the Parameter-Elevation

Relationships on Independent Slopes Model (PRISM;

Daly et al. 1994) compared to corresponding values sim-

ulated by all three WRF runs with 12-km grid spacing.

Monthly average WRF and PRISM precipitation was

calculated for all model grid cells over land using special

scripts derived from the Atmospheric Model Evaluation

Tool (AMET) described in Appel et al. (2011). A positive

bias is evident in the control caseKF, as was also shown by

Bullock et al. (2014). The modified radiation treatment

that accounts for the effect of subgrid-scale clouds reduced

precipitation to a large degree, but still left a considerable

positive bias. The new dynamic t formulation (in addition

to the modified radiation) provides further correction of

that positive precipitation bias during the boreal spring

FIG. 1. Maps showing the average rate of CAPE dissipation (1/t)

during July 2006 across the 480 3 300 array of 12-km grid cells of

the WRF Model from (a) the standard Kain–Fritsch formulation

and (b) the new dynamic t formulation. White grid cells show

where the convective parameterization was not required during the

entire month.
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and summer months when convection is known to

produce a significant fraction of the total precipitation.

Over the entire 3-yr test period, WRF using the

standard Kain–Fritsch CPS (case KF) resulted in an

average precipitation bias of 130% relative to PRISM.

When only the subgrid radiation effects were taken

into account (case RadKF), this overall bias was

reduced to 121%. With the addition of our dynamic

t formulation to the subgrid radiation treatment (case

RadTauKF), the overall precipitation bias was reduced

to 115% of the observed amount as represented by the

PRISM analysis.

To investigate whether the improvements described

above were robust and not limited to our choice of nu-

merical settings for 12-km grid spacing, we repeated the

testing regimen using a larger grid spacing and obtained

FIG. 2. Average monthly accumulated precipitation from WRF test cases using 12-km grid

spacing vs data from PRISM.

FIG. 3. As in Fig. 2, but for 36-km grid spacing.
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similar results. To illustrate this, Fig. 3 shows the average

monthly accumulated precipitation analogous to Fig. 2,

but now results from simulations using 36-km grid

spacing are evaluated against PRISM data. Essentially

similar results were found where improvements occur

primarily in the warm seasons and the strong positive

bias in the base case (case KF) was reduced with the

treatment of subgrid cloud–radiation effects (case

RadKF) and reduced further with the addition of the

new dynamic t formulation (case RadTauKF).

b. Effect on summertime precipitation

Because these modifications had their greatest effect

during the summer season when convection is prevalent,

we focus on the summer season (June–August) of each

year. The patterns of precipitation that actually fell

across the continental United States during the summers

of 2005–07 vary considerably, as shown in Fig. 4. The

PRISM data show that the summer of 2006 was very wet

in the Northeast states compared to the other two

summers in the study. On the other hand, the Southeast

states had the most precipitation during the summer of

2005 and the summer of 2007 was exceptionally dry in

that area. In the Great Plains region, the summers of

2005 and 2007 both had a relatively large amount of

rainfall, with 2006 being generally much drier. Obvi-

ously, these three summers provided a wide variety of

conditions with which to test our modifications to the

Kain–Fritsch CPS.

Figure 5 shows the average summer precipitation

pattern derived from the PRISM data along with the

corresponding average summer precipitation simulated

by each of the three WRF configurations using 12-km

grid spacing. Use of the standard Kain–Fritsch CPS

(KF) produced a significant excess of precipitation over

almost all of the eastern United States, with the greatest

excess in the Southeast region. There are also areas of

excess precipitation over the Great Lakes and Midwest

regions, and over mountainous areas of Colorado and

NewMexico. Accounting for subgrid-scale cloud effects

on radiation (RadKF) helped to reduce the excess pre-

cipitation in all of these areas, but most areas east of the

Mississippi River still show an obvious excess of pre-

cipitation. In contrast, the small areas of heavy pre-

cipitation (.400mm) indicated by PRISM over eastern

Kansas and central Oklahoma are slightly un-

derrepresented by the RadKF model configuration.

With the addition of the dynamic t formulation

(RadTauKF), only the Southeast and mid-Atlantic re-

gions continue to show localized areas of excess pre-

cipitation. However, there is now a deficit of precipitation

relative to PRISM across much of the central plains re-

gion and along the Texas and Louisiana coasts.

Figure 6 shows the fractional decrease in simulated

precipitation in June–August (JJA) relative to the

standard Kain–Fritsch CPS from only the subgrid-scale

radiation treatment and the additional effect of adding

the dynamic t formulation. Some of the model grid cells

FIG. 4. Summer season total precipitation over the continental United States during each year of the study period

and average summer precipitation for the period as represented by PRISM.
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in southern California and the Southwest region show an

almost complete elimination of simulated precipitation

just from the radiation treatment, and the number of

these cells increases with the addition of the dynamic

t formulation. These cells accurately showed little or no

summertime precipitation in the standard KF configu-

ration and subsequent modifications resulted in much

the same outcome. Calculation of fractional change

with a near-zero value for the standard KF in the de-

nominator results in these large (or quasi infinite) re-

ductions. Nonetheless, Fig. 6a clearly shows that

reductions in simulated precipitation from the subgrid

radiation treatment are more significant in states along

the Atlantic Ocean and Gulf of Mexico and in western

areas at high elevation. However, the effect of the dy-

namic t formulation is more concentrated in the Mid-

west and Great Plains states. Obviously, there is still an

opportunity for further improvement with some areas

now having too little summer precipitation and other

still having too much, but the subgrid radiation treat-

ment and the dynamic t formulation are certainly im-

proving the overall precipitation bias across the

continental United States (Fig. 2).

Figure 7 shows the monthly mean absolute error

(MAE) for each of the three WRF configurations

relative to the PRISM precipitation data. With the

standard Kain–Fritsch CPS, MAE is 40–45mm during

the summer months. It is interesting to note that the

magnitude of this summertime MAE is not much

greater than the magnitude of the bias indicated by the

plot of the observed and simulated mean monthly

precipitation in Fig. 2, suggesting that simulated pre-

cipitation is excessive across most if not all of the

continental United States. The MAE obtained from

FIG. 5. Average summer precipitation from (top left) PRISM compared to (top right) WRF using the standard

Kain–Fritsch CPS (KF), (bottom left) WRF using the subgrid radiation treatment (RadKF), and (bottom right)

WRF using both the subgrid radiation treatment and dynamic t formulation (RadTauKF). All WRF test cases

shown here used 12-km grid spacing.

FIG. 6. Fractional decrease in simulated JJA precipitation rela-

tive to the standardKain–FritschCPS showing (a) the effect of only

the subgrid radiation treatment and (b) the additional effect of

adding the dynamic convective time-scale formulation. Results

shown here are from test cases using 12-km grid spacing.
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treating subgrid-scale radiation (RadKF) is signifi-

cantly reduced during the warm months when con-

vective precipitation is common, and addition of the

dynamic t formulation (RadTauKF) reduces MAE

further for most of these months. While Fig. 5 does

show a few areas where simulated precipitation is de-

ficient relative to PRISM, overall the accuracy is im-

proved with the dynamic t formulation.

FIG. 7. MAE for WRF test cases using 12-km grid spacing vs PRISM for each month of the

study period.

FIG. 8. Resolved and convective proportions of total simulated precipitation with 12-km grid spacing for each month

from each of the three test cases during the entire 3-yr simulation period.
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c. Effect on precipitation type (resolved vs

convective)

These modifications also impact the proportion of

resolved versus parameterized precipitation, leaving

more moisture and convective instability to be acted

upon by resolved model processes. Figure 8 shows the

average monthly proportion of total simulated pre-

cipitation that is produced by grid-scale water vapor

saturation (resolved) versus that produced by the

convective parameterization (convective). The values

shown for each month are derived from all 3 yr of

the simulation (2005–07) and from all model grid

cells over the continental United States. The effect of

adding the subgrid radiation treatment is minimal.

However, when the dynamic t formulation is added,

the fraction of resolved precipitation is increased for

every month, not just in the warm season. But the in-

crease in resolved precipitation is certainly more sig-

nificant in the warm months when the convective

parameterization is more often applied to address

convective instability.

To once again test the robustness of the new dynamic

t formulation, we analyzed the proportions of resolved

versus parameterized precipitation from our simula-

tions using 36-km grid spacing. The results in Fig. 9

show similar effects as were found with 12-km grid

spacing. The resolved fraction of the total simulated

precipitation is somewhat less with 36-km grid

spacing, and the effect of the subgrid-scale cloud–

radiation treatment is rather small. But the new

dynamic t formulation still results in increased frac-

tions of resolved precipitation, especially during the

spring and summer when convective precipitation is

dominant.

d. Effect on other surface weather variables

Aside from the improvement in overall precipitation

bias and error, the dynamic t formulation could also

impact the simulation of other important near-surface

variables. To assess its impact, we compared our simu-

lations using 12-km grid spacing to hourly observations

of 2-m temperature, 2-m water vapor mixing ratio, and

10-m wind speed data. To assure data quality, we used

only standard observation data [Surface Aviation Ob-

servation (SAO) and METAR] from the Meteorologi-

cal Assimilation Data Ingest System (MADIS) data

repository provided by the National Oceanic and At-

mospheric Administration. These reports provided over

30 000 000 hourly observations across the WRF model-

ing domain during the 2005–07 simulation period.

FIG. 9. As in Fig. 8, but for 36-km grid spacing.
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Statistical comparisons of simulated and observed

weather data were made using standard procedures

provided by AMET.

Table 1 shows the resulting analysis of mean bias for

each year of the test period and for all years combined.

For 2-m temperature, the mean bias from the standard

Kain–Fritsch CPS is quite small for each year and only

slightly negative at 20.0340K for the entire test period.

The RadKF case shows a minor trend toward more

negative bias, with a bias of 20.1552K for 2007 and a

bias of 20.0793K for the entire period. Interestingly,

adding the dynamic t formulation to the subgrid radia-

tion treatment almost totally eliminates bias for the 3-yr

period with a value of 20.0007K.

For water vapor mixing ratio, WRF was showing a

rather strong positive bias in the standard configura-

tion, as in other studies (Bullock et al. 2014; Otte et al.

2012). For 2007, the bias is 0.4842 g kg21, and for the

entire test period the computed bias is 0.3228 g kg21.

Adding the subgrid radiation treatment helps to reduce

this moist bias slightly to 0.3092 g kg21 for the 3-yr

period.With the addition of the dynamic t formulation,

we see a larger reduction to 0.2707 g kg21 for the 3-yr

period, but this bias remains somewhat high. There has

been some suspicion that the NCEP–DOE AMIP-II

Reanalysis data, to which we nudged these simulations,

may have a moist bias and this could be contributing.

However, Bullock et al. (2014) found a similar moist

bias that was reduced with stronger nudging toward the

same NCEP–DOE AMIP-II Reanalysis data. There-

fore, we conclude that the cause is internal to the WRF

Model itself (and possibly related to the choice of land

surface model).

For wind speed, Table 1 shows very little difference in

mean bias between the three test simulations. Wind

speed is biased slightly high, with annual values and the

3-yr value all hovering around 0.2m s21. From the above

results, we conclude that the dynamic t formulation is

certainly not degrading bias in the simulation of basic

surface weather conditions and may actually be helping

to reduce some biases toward zero.

Table 2 shows a similar analysis for mean absolute

error. For these MAE values, all differences between

the WRF test simulations are very small. The mean

absolute errors for all variables, for each year of the test

period and for all years combined, are all the same

within two significant digits. For 2-m temperature, mean

absolute error is between 2.1 and 2.2K. For water vapor

mixing ratio, it is between 1.1 and 1.2 g kg21. For wind

speed, the mean absolute error is between 1.4 and

1.5m s21. From these results we conclude that the effect

of the dynamic t formulation on the error in our simu-

lation of surface-level temperature, humidity, and wind

is negligible.

e. Effect on tropical systems

As mentioned above, Bacmeister et al. (2007) found

that use of a larger t led to marked improvements in

hurricane spinup time and intensity in a high-resolution

global climate simulation. Given that the hurricane

season of 2005 was extremely active for the United

States, it presents an opportunity to investigate the ef-

fect of our dynamic t formulation on simulated pre-

cipitation from landfalling tropical systems. We first

investigated the simulated precipitation pattern at the

time of landfall for Hurricane Katrina, one of the most

TABLE 1. Mean bias for surface meteorological variables simu-

lated with 12-km grid spacing based on comparisons to observa-

tions in MADIS.

KF RadKF RadTauKF

2-m temperature (K)

2005 20.0226 20.0793 20.0117

2006 0.0396 20.0034 0.0836

2007 20.1190 20.1552 20.0739

2005–07 20.0340 20.0793 20.0007

2-m water vapor mixing ratio (g kg21)

2005 0.1956 0.1977 0.1786

2006 0.2885 0.2714 0.2041

2007 0.4842 0.4587 0.4294

2005–07 0.3228 0.3092 0.2707

10-m wind speed (m s21)

2005 0.1729 0.1438 0.1474

2006 0.2283 0.2005 0.2067

2007 0.2467 0.2193 0.2236

2005–07 0.2160 0.1879 0.1926

TABLE 2. MAEs for surface meteorological variables simulated

with 12-km grid spacing based on comparison to observations

in MADIS.

KF RadKF RadTauKF

2-m temperature (K)

2005 2.1833 2.1630 2.1806

2006 2.1239 2.1059 2.1331

2007 2.1330 2.1154 2.1251

2005–07 2.1467 2.1281 2.1463

2-m water vapor mixing ratio (g kg21)

2005 1.1388 1.1284 1.1742

2006 1.1464 1.1333 1.1781

2007 1.1418 1.1263 1.1511

2005–07 1.1423 1.1293 1.1678

10-m wind speed (m s21)

2005 1.4225 1.4196 1.4205

2006 1.4553 1.4520 1.4543

2007 1.4726 1.4698 1.4693

2005–07 1.4501 1.4471 1.4480
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devastating hurricanes in the history of the United

States. Figure 10 shows the WSR-88D radar reflectivity

pattern fromMobile, Alabama (KMOB), at 1205UTC on

29 August 2005. Also shown in that figure are the simu-

lated 1-h total precipitation patterns as of 1300 UTC from

all three WRF test configurations using 12-km grid spac-

ing. While instantaneous radar reflectivity is not directly

comparable to hourly accumulated precipitation, this

sort of comparison can identify gross pattern discrep-

ancies. The pattern from the standard Kain–Fritsch

CPS (KF) and that from the addition of the subgrid

radiation treatment (RadKF) are nearly identical and

neither shows the extent of inland precipitation that

was on going at the time of landfall. However, when the

dynamic t formulation is also added (RadTauKF), the

simulation shows a much more realistic pattern of

heaviest precipitation inland and to the right of Katrina’s

position at landfall.

The primary motivation for dynamical downscaling

with WRF was to better resolve the effects of future

climate change as represented by global climate models.

Inland flooding is one of the most lethal aspects of

landfalling tropical systems. Therefore, it is important to

represent the accumulated precipitation from these

high-impact, short-duration events accurately. To better

evaluate our test simulations, we obtained hourly

precipitation data from the Multisensor Precipitation

Estimator (MPE). Figure 11 shows the accumulated

precipitation total from 0000 UTC 29 August to

0000 UTC 31 August 2005 from MPE data and the

FIG. 10. Comparison of a KMOB radar sweep at 1205 UTC 29 Aug 2005 to simulated precipitation from 1200 to 1300 UTC for eachWRF

test case using 12-km grid spacing.
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corresponding patterns of simulated precipitation from

our three test cases using 12-km grid spacing. It should be

noted that the MPE was missing data for the lower Mis-

sissippi River area during this time period. As with the

snapshot of precipitation at landfall, the RadTauKF case

shows more precipitation inland of the landfall point and

matches the MPE data much better than do the other

cases. To confirm this improved representation of Hur-

ricane Katrina was indicative of truly improved skill, we

also performed similar analyses for the three other major

hurricanes (category 31) thatmade landfall in theUnited

States during our study period (all were in 2005).

Figure 12 shows the accumulated precipitation for

Hurricane Dennis from 0000 UTC 10 July to 0000 UTC

12 July 2005, as represented by the MPE and the three

WRF test cases using 12-km grid spacing. Here again,

the case using the dynamic t formulation shows a much

more realistic pattern with heavy precipitation well

inland. The other cases once again are very similar

and show no heavy precipitation inland with only

moderate amounts near the coastline. Figures 13 and 14

show similar analyses for Hurricanes Rita and Wilma,

respectively. For Hurricane Rita, the difference in the

patterns of simulated precipitation from the RadTauKF

case and the other two cases is not quite so striking, but

the dynamic t formulation does provide a more realistic

result. For HurricaneWilma, the RadTauKF case shows

maximum precipitation amounts closer to the observed

values across central Florida.

Besides differences in the precipitation pattern, we

also found the highest simulated 10-m wind speeds from

the RadTauKF case (not shown) to be stronger and

closer to the center of circulation than for both of the

other cases. It appears that by allowing the resolved-

scale processes in WRF to produce more of the pre-

cipitation and release more latent heat, a more realistic

simulation of tropical storm structure is achieved.

4. Summary and conclusions

This work has evaluated the performance of a dy-

namically based convective adjustment time scale t for

FIG. 11. AccumulatedHurricaneKatrina landfall precipitation for the period 0000UTC29Aug–0000UTC31Aug based

on the MPE and simulated by each of the WRF test cases using 12-km grid spacing.
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the dissipation of CAPE in the Kain–Fritsch CPS. This

new formulation for t is linked to the strength of the

parameterized updraft, the physical height of the con-

vective cloud, and the time required for convective

overturning to stabilize the atmosphere. It is inspired by

the work of Bechtold et al. (2008) and Grant and

Lock (2004).

This study was motivated to investigate the parame-

terization of convection due to a positive bias in simu-

lated precipitation that was especially prevalent in the

summer months (June–August). Bullock et al. (2014)

showed this excess of simulated summertime pre-

cipitation became amplified as the model’s horizontal

grid spacing was reduced from 36 to 12km, to length

scales generally recognized as challenging to all con-

vective parameterization schemes. Alapaty et al. (2012)

previously implemented a treatment in WRF to address

the effect of subgrid-scale clouds on radiation. This

study applied that treatment at 12-km grid spacing and,

thus, reduced the positive precipitation bias across the

continental United States from 30% to 21% based on

comparisons to PRISM data during the entire 3-yr

simulation period. In the standard Kain–Fritsch

scheme, a shorter time is used for the dissipation of

CAPE as model grid spacing is reduced. However, less

vigorous parameterized convection should occur when

finer resolution is used. When the new dynamic formu-

lation is implemented, a marked increase occurs in the

convective time scale across nearly the entire model

domain. The new dynamic t, when used in addition to

the subgrid-scale cloud–radiation treatment, further

reduced the positive precipitation bias to 15% in our

12-km WRF simulation of 2005–07.

The effects of the subgrid radiation scheme and dy-

namic t formulation on summertime precipitation bias

were not the same in all locations. Whereas the effect of

the subgrid-scale cloud–radiation scheme on reducing

simulated precipitation was greater in the eastern and

Gulf Coast areas than in the central and northern plains,

the dynamic t formulation brought about a greater re-

duction in precipitation in the central region relative to

the eastern region of the United States. The effects from

both modifications were highly varied across the Rocky

Mountains and West Coast regions where topography

is a stronger driver of convection and where summer-

time convective precipitation is lighter.

FIG. 12. As in Fig. 11, but for Hurricane Dennis for the period 0000 UTC 10 Jul–0000 UTC 12 Jul.
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Besides providing an additional reduction to the posi-

tive precipitation bias beyond that found from the subgrid

radiation scheme alone, the dynamic t formulation also

further reduced the mean absolute error in precipitation

across the entire model domain. Of course, both of these

modifications had little effect on the winter months

when convection is nearly absent across most of North

America. But in the other portions of all 3 yr of the sim-

ulation, the dynamic t formulation provided a noticeable

improvement in simulated precipitation while also de-

livering some improvement in the bias of 2-m tempera-

ture and water vapor mixing ratio.

One interesting effect that was observed from the

dynamic t formulation that was not evident from the

subgrid radiation scheme was the redistribution of sim-

ulated precipitation from the convective form to the

resolved form. Using longer convective adjustment

times in the subgrid parameterization allowed the

model-resolved precipitation processes to be more

prevalent. While the standard Kain–Fritsch approach,

both with and without the subgrid radiation scheme,

showed 10% or less of the total precipitation in the

resolved form during the summer months, addition of

the dynamic t formulation brought that fraction up to

20%–30%. It appears that this allowance of resolved

precipitation processes also had a profound and positive

effect on the simulated patterns of inland precipitation

during the landfall of tropical storms. Overall, the dy-

namic t formulation was found to offer significant im-

provements in simulated summertime precipitation.

The specific physical dependencies in the t formulation

are difficult to justify quantitatively. There are simply

not enough empirical data available for a more robust

formula. Also, there are other aspects of the WRF

Model configuration that can strongly affect the

amount and type of simulated precipitation, such as the

cloud microphysics scheme. Nonetheless, these results

not only confirm previous studies showing sensitivity to

t, they provide important clues that could lead to a

more quantitatively robust formulation. Specifically,

they provide evidence to suggest that a parameterized

adjustment time scale that depends on CAPE and

cloud depth is useful. Undoubtedly, there are other

factors involved and more optimal ways of quantifying

FIG. 13. As in Fig. 11, but for Hurricane Rita for the period 1200 UTC 23 Sep–1200 UTC 25 Sep.
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key relationships. The positive bias in the water vapor

mixing ratio we found when comparing model simula-

tions to surface-level measurements remains a concern.

Future work should continue to investigate these fac-

tors and relationships, perhaps using cloud-resolving

models. There is significant potential for further im-

provements in convective parameterization, particu-

larly for model grid spacing near or below 10 km.
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