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A DYNKIN GAME WITH ASYMMETRIC INFORMATION

JUKKA LEMPA AND PEKKA MATOMÄKI

Abstract. We study a Dynkin game with asymmetric information. The game has a random expiry time,

which is exponentially distributed and independent of the underlying process. The players have asymmetric

information on the expiry time, namely only one of the players is able to observe its occurrence. We propose

a set of conditions under which we solve the saddle point equilibrium and study the implications of the

information asymmetry. Results are illustrated with an explicit example.

1. Introduction

Dynkin games are game variants of optimal stopping problems, for the seminal study see [6]. Such a

game has two players, ”buyer” and ”issuer”, and both of them can stop the underlying process prior the

terminal time. In this paper we study the following formulation of the game. First, we assume that the

underlying process X is a time homogenous diffusion; we will elaborate the assumptions on X in the next

section. At the initial time t = 0, the players choose their own stopping times τ (buyer) and γ (issuer) and

at the time of the first exercise, i.e. at τ ∧ γ, the issuer pays the buyer the amount

(1.1) g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ};

we will pose assumptions on the payoff functions gi in the next section. An interpretation of this is that, at

any stopping time γ, the issuer can cancel the buyer’s right to exercise, but she has to pay the cost g2(Xγ)

to do so. Now, it is the buyers (issuers) objective to choose the stopping time τ (γ) such that the expected
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present value of the exercise payoff

(1.2) Π(x, τ, γ) = Ex

{

e−r(τ∧γ)
[

g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}

]

}

is maximized (minimized). Here, r > 0 is the constant rate of discounting.

The objective of this paper is to study a version of this game with random time horizon, the infinite

horizon game given by the expression (1.2) being already analysed comprehensively e.g. in [1] and [8]. In

financial terminology the random time horizon game can be interpreted as a perpetual game option with

default risk, for studies on game options see e.g. [7], [12] and [13]. We remark that our problem can be

regarded also as a Canadized version of a finite horizon game – for studies considering Canadization of options,

see [4], [13] and [14]. To introduce the random time horizon, we assume that, in addition to the diffusion X ,

there is also an independent Poisson process N defined on the underlying probability space. Furthermore,

we assume that the game expires at the first jump time of the Poisson process, that is we assume that the

game has an exponentially distributed random time horizon. The existence of the terminating event and its

rate is assumed to be known to the players, while the information of it is asymmetric: we assume that the

occurrence of the expiring event is observable only to one of the players. Here, the information asymmetry

has an interpretation as inside information. Indeed, the player who observes the default taking place has

more information than is commonly available on the market and can be considered as an insider. We make

a distinction between the cases when either buyer (Game 1) or issuer (Game 2) observes the jump of the

Poisson process and study both of these cases separately.

Our approach to the problem is built on Markovian approach to Dynkin games. There is a substantial

literature in this area highlighting various parts of the theory. For instance, studies [1] and [2] are concerned

with deriving explicit characterization for the value and saddle point equilibrium using classical theory of

diffusions and standard nonlinear programming techniques. A generalized concavity approach is used in [7]

and [8] to produce the optimal solution via the theory of excessive functions. In [9] and [17], the authors

study equilibrium properties of Dynkin games under very general Markovian setup. Our setup and approach

is closely related to [1] and can be regarded as a partial extension of it. We start our analysis by first deriving

partly heuristically a free boundary problem which gives us a candidate for the solution. To set up the free

boundary problem, we assume that the optimal continuation region is an interval with compact closure with

constant thresholds. Given the time homogeneity of the diffusion X and the fact that the discount rate r and

the jump rate of N are constants, this is indeed a reasonable assumption.
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We derive necessary and sufficient conditions for the existence of a unique Nash equilibrium for Games

1 and 2. We also carry out a comparison of the solutions showing that whenever Games 1 and 2 have a

saddle point solution, the value of Game 1 dominates the value of Game 2. Furthermore, we show that if the

payoff g2 is non-negative, the value of the infinite horizon game dominates both the value of Game 1 and 2.

Interestingly, we find that if g2 admits also negative values, then the value of the infinite horizon game can

even be the smallest of the three. We discuss also the symmetric information case where the expiring event

is not observable to either of the players – denote this as Game 3. In this case, we find that the value is in

between the values of Game 1 and Game 2. We also show that the optimal continuation regions of Games 1

– 3 are related in a way that can be described as follows: If you are able to observe the terminating event,

you will wait longer – The more you know, the longer you wait.

The reminder of the paper is organized as follows. In Section 2 we set up the underlying dynamics and

introduce the Dynkin games. In Sections 3 and 4 we study the solvability of the games and discuss some

implications of the information asymmetry. In Section 5 we compare the optimal solutions of the games and

study limiting behavior of the solutions. In Section 6 we illustrate the main results of the study with an

explicit example.

2. The Games

2.1. Underlying Dynamics. Let (Ω,F ,F,P), with F = {Ft}t≥0, be a complete filtered probability space

satisfying the usual conditions, see [3], p. 2. In addition, let W be a Wiener process on (Ω,F ,F,P). We

assume that the state process X is a regular linear diffusion defined on (Ω,F ,F,P), evolving on R+, and

given as the solution of the Itô equation

(2.1) dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x,

where the coefficients µ : R+ → R and σ : R+ → R+ are assumed to be sufficiently smooth to guarantee the

existence of a unique (weak) solution of (2.1), see [3], pp. 46 – 47. In line with most economical and financial

applications, we assume that X does not die inside the state space R+, i.e., that killing of X is possible only

at the boundaries 0 and ∞. Therefore the boundaries 0 and ∞ are either natural, entrance, exit or regular.

In the case a boundary is regular, it is assumed to be killing, see [3], pp. 18–20, for a characterization of the

boundary behavior of diffusions. The assumption that the state space is R+ is done for reasons of notational

convenience. In fact, we could assume that the state space is any interval I in R and all our subsequent

analysis would hold with obvious modifications. Denote as A = 1
2σ

2(x) d
2

dx2 +µ(x) d
dx

the differential operator

associated to the process X . For notational convenience we denote Gβ = A− β for a given constant β > 0.
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For any given constant β > 0, we denote as Lβ1 the class of real valued measurable functions f on R+

satisfying the condition

Ex

{

∫ ζ

0

e−βt |f(Xt)| dt
}

<∞,

where ζ := inf{t > 0 : Xt /∈ R+} denotes the lifetime of X . In addition, for any given constant β > 0, we

denote, respectively, as ψβ and ϕβ the increasing and the decreasing solution of the ordinary second-order

linear differential equation Gβu(x) = 0 defined on the domain of the characteristic operator of X – for the

characterization and fundamental properties of the minimal β-excessive functions ψβ and ϕβ , see [3], pp.

18–20. Denote as Bβ =
ψ′

β(x)

S′(x) ϕβ(x) −
ϕ′

β(x)

S′(x) ψβ(x) the Wronskian determinant, where

S′(x) = exp

(

−
∫ x 2µ(y)

σ2(y)
dy

)

denotes the density of the scale function of X , see [3], p. 19. We remark that the value of the Wronskian does

not depend on the initial state x but on the constant β. For a function f ∈ Lβ1 , the resolvent Rβf : R+ → R

is defined as

(2.2) (Rβf)(x) = Ex

{

∫ ζ

0

e−βtf(Xt)dt

}

,

for all x ∈ R+. The resolvent Rβ and the solutions ψβ and ϕβ are connected in a computationally very useful

way. Indeed, we know from the literature, see [3], pp. 17 – 20 and p. 29, that for given f ∈ Lβ1 the resolvent

Rβf can be expressed as

(Rβf)(x) = B−1
β ϕβ(x)

∫ x

0

ψβ(y)f(y)m
′(y)dy +B−1

β ψβ(x)

∫ ∞

x

ϕβ(y)f(y)m
′(y)dy,

for all x ∈ R+, where m
′(x) = 2

σ2(x)S′(x) denotes the speed density of X .

To close the subsection, we denote as N a Poisson process with intensity λ > 0, and assume that N is

independent of the underlying X . Now, the first jump time T of N is an exponentially distributed random

time with mean 1
λ
. Denote as F̂ =

{

F̂t
}

t≥0
the enlarged filtration defined as F̂t = Ft ∨ σ({T ≤ s} : s ≤ t).

In other words, the filtration F̂ carries the information of the evolution of underlying X and the first jump

of the Poisson process N . We denote as T0 as the set of all F-stopping times and as T1 the set T0 augmented

with T , i.e., the set of all F̂-stopping times.

2.2. The Games. Dynkin game is an optimal stopping game between two players, ”buyer” and ”issuer”. In

contrast to classical optimal stopping problems, also the issuer can now exercise. Recall now the definition
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of the expected present value of the exercise payoff from (1.2). Throughout the study, we make the following

standing assumptions for the payoffs gi.

Assumption 2.1. We assume that the payoffs gi : R+ → R, i = 1, 2, 3, are continuous and non-decreasing

functions satisfying the ordering g1 ≤ g3 ≤ g2 and that g1 is bounded from below. Furthermore, we assume

that gi ∈ Lr1 and gi ∈ C1(R+) ∩ C2(R+ \D), where the set D is finite.

In order to propose a value and notions of equilibrium for the considered games, define first the lower

and upper values V and V as

(2.3) V (x) = sup
τ∈T

inf
γ∈T

Π(x, τ, γ), V (x) = inf
γ∈T

sup
τ∈T

Π(x, τ, γ),

where T is the class of admissible stopping times. Following [8], pp. 1578, we remark that g1 ≤ V ≤ V ≤ g2.

If, on the other hand, the values satisfy V ≥ V , we say that the game has the value V := V = V , i.e. has a

Stackelberg equilibrium. Moreover, if there exists stopping times τ∗ and γ∗ such that

Π(x, τ, γ∗) ≤ Π(x, τ∗, γ∗) ≤ Π(x, τ∗, γ),

for all x ∈ R+, then the pair (τ∗, γ∗) constitutes the saddle point, i.e., the Nash equilibrium of the game.

We remark that the existence of the saddle point implies the existence of the value but the converse does

not hold in general – for a study addressing this problem in a general Markovian setting, see [9]. However,

in our setting the underlying process is nice enough so that Stackelberg equilibrium is equivalent to Nash

equilibrium.

The main objective of this paper is to study two Dynkin games which are associated via a certain type of

information asymmetry. To make a precise statement, recall the Poisson process N from the previous section.

At the initial time t = 0, the underlying X and exogenous N are both started. At the first jump time T ,

the game ends. Thus, the considered games have an exponentially distributed random time horizon which is

independent of X . The information asymmetry is introduced as follows: we assume that the occurrence of

the expiring event is observable only to one of the players. Let us formalize this setting first in the case when

T is observable to the buyer ; later this case will be referred to as Game 1. First, recall the definitions of the

sets T0 and T1 from the previous subsection. At the start of the game, issuer choose a stopping time from set

T0 and the buyer from the set T1. The expected present value Π1 of the exercise payoff is written as

(2.4) Π1(x, τ, γ) = Ex

{

e−r(τ∧γ)
[

g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}

]

1{τ∧γ≤T}

}

,
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and the upper and lower values are defined as

(2.5) V 1(x) = sup
τ∈T1

inf
γ∈T0

Π1(x, τ, γ), V 1(x) = inf
γ∈T0

sup
τ∈T1

Π1(x, τ, γ).

For Game 1, we denote the value function as V1 and the saddle point equilibrium as (τ∗1 , γ
∗
1 ).

The setup of the second game, which will be referred to as Game 2, is completely analogous. For Game 2,

we assume that the random time T is a stopping time to issuer. Similarly to Game 1, we define the expected

present value Π2 of the exercise payoff as

(2.6) Π2(x, τ, γ) = Ex

{

e−r(τ∧γ)
[

g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}

]

1{γ∧τ≤T}

}

,

and the upper and lower values are defined as

(2.7) V 2(x) = sup
τ∈T0

inf
γ∈T1

Π2(x, τ, γ), V 2(x) = inf
γ∈T1

sup
τ∈T0

Π2(x, τ, γ).

Analogously to Game 1, the value function of Game 2 is denoted as V2 and the saddle point equilibrium as

(τ∗2 , γ
∗
2 ).

3. Game 1

3.1. Equivalent formulation of the game. First, we introduce some additional definitions and notations.

Following [1] (see also [19]), define the operators Lβψ and Lβϕ for sufficiently smooth functions f : R+ → R as

(3.1)



















(Lβψf)(x) =
f ′(x)

S′(x)
ψβ(x)−

ψ′
β(x)

S′(x)
f(x),

(Lβϕf)(x) =
f ′(x)

S′(x)
ϕβ(x)−

ϕ′
β(x)

S′(x)
f(x),

for a given constant β > 0. In order to simplify the upcoming notation, define the functions ĝi : R+ → R,

i = 1, 2, as

(3.2)











ĝ1(x) = g1(x) − λ(Rr+λg
+
1 )(x),

ĝ2(x) = g2(x) − λ(Rr+λg
+
1 )(x),

where g+1 (x) = max{g1(x), 0}. We remark that since we assumed g1 ≤ g2, also ĝ1 ≤ ĝ2.

In this subsection, we transform Game 1 into an adjusted perpetual game and study its solvability. To

this end, we derive first a candidate G1 for the optimal value function in a partly heuristic way – for a related

study in a different context, see [10]. We start with the ansatz that the game has a saddle point equilibrium.

Because the exponential distribution has memoryless property and the underlying dynamic structure is time
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homogeneous, we assume that the state space R+ is partitioned into continuation and action regions, where

the continuation region (z∗1 , y
∗
1) ⊂ R+ has compact closure. If x ∈ (z∗1 , y

∗
1), the players wait by definition.

Now, in an infinitesimal time interval dt, the Poisson process jumps (expiring the exercise opportunities)

with probability λdt. Because the buyer can exercise at time T , she will exercise at that time if and only if

g1 ≥ 0; this yields the terminal payoff g+1 (x). On the other hand, with probability 1− λdt the contract lives

on yielding additional expected present value. Denote as G1 the candidate for the value function. Formally,

this suggests with a heuristic use of Dynkin’s theorem, see e.g. [16], that

G1(x) = g+1 (x)λdt + (1 − λdt)Ex[e
−rdtG1(Xdt)] = λg+1 (x)dt+ (1 − λdt)[G1(x) + GrG1(x)dt]

= G1(x) + GrG1(x)dt + λ(g+1 (x) −G1(x)),

for all x ∈ (z∗1 , y
∗
1) under the intuition dt2 = 0. This yields the condition

(3.3) Gr+λG1(x) = −λg+1 (x),

for all x ∈ (z∗1 , y
∗
1). The solutions of the equation (3.3) can be expressed as G1(x) = λ(Rr+λg

+
1 )(x) +

c1ψr+λ(x) + c2ϕr+λ(x) for some positive constants c1 and c2. We assume that the candidate G1 satisfies the

value-matching condition, i.e., is continuous over the boundary of (z∗1 , y
∗
1). This condition can be expressed

as














λ(Rr+λg
+
1 )(z

∗
1) + c1ψr+λ(z

∗
1) + c2ϕr+λ(z

∗
1) = g2(z

∗
1),

λ(Rr+λg
+
1 )(y

∗
1) + c1ψr+λ(y

∗
1) + c2ϕr+λ(y

∗
1) = g1(y

∗
1).

Using the notation from (3.2), it is a matter of elementary algebra to show that

(3.4)















c1 =
ϕr+λ(y

∗
1)ĝ2(z

∗
1)− ϕr+λ(z

∗
1)ĝ1(y

∗
1)

ϕr+λ(y∗1)ψr+λ(z
∗
1)− ϕr+λ(z∗1)ψr+λ(y

∗
1)

:= h1(z
∗
1 , y

∗
1)

c2 =
ψr+λ(z

∗
1)ĝ1(y

∗
1)− ψr+λ(y

∗
1)ĝ2(z

∗
1)

ϕr+λ(y∗1)ψr+λ(z
∗
1)− ϕr+λ(z∗1)ψr+λ(y

∗
1)

:= h2(z
∗
1 , y

∗
1).

To proceed, denote as τ(z∗1 ,y∗1 ) the first exit time of X from the interval (z∗1 , y
∗
1). We know from [5], Theorem

13.11, p. 46–47, that the function x 7→ Ex

[

e
−(r+λ)τ(z∗1 ,y∗1 )

]

solves the boundary value problem Gr+λu(x) = 0

on (z∗1 , y
∗
1) with boundary conditions u(z∗1) = u(y∗1) = 1. Using this, we find that

Ex

{

e
−(r+λ)(τy∗

1
∧γz∗

1
)
1{τy∗

1
<γz∗

1
}

}

=
ϕr+λ(x)ψr+λ(z

∗
1)− ϕr+λ(z

∗
1)ψr+λ(x)

ϕr+λ(y∗1)ψr+λ(z
∗
1)− ϕr+λ(z∗1)ψr+λ(y

∗
1)
,

Ex

{

e
−(r+λ)(τy∗1

∧γz∗1
)
1{τy∗1

>γz∗1
}

}

=
ϕr+λ(y

∗
1)ψr+λ(x)− ϕr+λ(x)ψr+λ(y

∗
1)

ϕr+λ(y∗1)ψr+λ(z
∗
1)− ϕr+λ(z∗1)ψr+λ(y

∗
1)
,
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see also [15]. Consequently, the candidate G1 can be rewritten as

G1(x) = λ(Rr+λg
+
1 )(x) + ĝ1(y

∗
1)Ex

{

e
−(r+λ)(τy∗1

∧γz∗1
)
1{τy∗

1
<γz∗

1
}

}

+ ĝ2(z
∗
1)Ex

{

e
−(r+λ)(τy∗1

∧γz∗1
)
1{τy∗1

>γz∗1
}

}

,

(3.5)

for all x ∈ (z∗1 , y
∗
1). Since the sample paths of X are (almost surely) continuous, an application of the strong

Markov property of the underlying X yields

G1(x) = Ex

{

λ

∫ τy∗1
∧γz∗1

0

e−(r+λ)sg+1 (Xs)ds+ e
−(r+λ)(τy∗1

∧γz∗1
)
[

g1(Xτy∗1
)1{τy∗1

<γz∗1
} + g2(Xγz∗1

)1{τy∗1
>γz∗1

}

]

}

(3.6)

for all x ∈ R+. This result indicates the form of the equivalent perpetual game. The next proposition

confirms that this partly heuristic derivation gives the correct form of the adjusted perpetual problem. For

a rigorous proof we though need an auxiliary lemma.

Lemma 3.1. For τ ∈ T1, there exists τ ′ ∈ T0 such that τ ∧ T = τ ′ ∧ T a.s.

Proof. See [18], Lemma, Section VI.3, p. 378. �

Proposition 3.2. The upper and lower values for Game 1 can be rewritten as

V 1(x) = inf
γ∈T0

sup
τ∈T0

Π̃1(x, τ, γ), V 1(x) = sup
τ∈T0

inf
γ∈T0

Π̃1(x, τ, γ),

where

Π̃1(x, τ, γ) = Ex

{

λ

∫ τ∧γ

0

e−(r+λ)sg+1 (Xs)ds+ e−(r+λ)(τ∧γ)
[

g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}

]

}

for all x ∈ R+.

Proof. Let T̂1 denote the set containing F̂-stopping times satisfying τ ≤ T for all ω. We know that for all

τ ∈ T̂1, there is a τ ′ ∈ T1 for which τ ′ = τ ∧T . Because buyer’s objective is to maximize the expected present

value of the payoff and she is aware that after the observable expiry time T the payoff will be zero, we reason
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that

V1(x) = sup
τ∈T1

inf
γ∈T0

Ex

{

e−r(τ∧γ)[g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}]1{τ∧γ≤T}

}

= sup
τ∈T1

inf
γ∈T0

Ex

{

e−r(τ∧γ)
[

(g1(Xτ )1{τ<T} + g+1 (XT )1{τ≥T})1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}

]

1{τ∧γ≤T}

}

= sup
τ̂∈T̂1

inf
γ∈T0

Ex

{

e−r(τ̂∧γ)
[

(g1(Xτ̂ )1{τ̂<T} + g+1 (XT )1{τ̂≥T})1{τ̂<γ} + g2(Xγ)1{τ̂>γ} + g3(Xγ)1{τ̂=γ}

]

1{τ̂∧γ≤T}

}

= sup
τ̂∈T̂1

inf
γ∈T0

Ex

{

e−r(τ̂∧γ)
[

(g1(Xτ̂ )1{τ̂<T} + g+1 (XT )1{τ̂≥T})1{τ̂<γ} + g2(Xγ)1{τ̂>γ} + g3(Xγ)1{τ̂=γ}

]

}

= sup
τ∈T1

inf
γ∈T0

Ex

{

e−r((τ∧T )∧γ)
[

(g1(Xτ )1{τ<T} + g+1 (XT )1{τ≥T})1{τ∧T<γ} + g2(Xγ)1{τ∧T>γ} + g3(Xγ)1{τ∧T=γ}

]

}

(3.7)

Now, it follows from Lemma 3.1 that the last expression is equivalent with the form

sup
τ∈T0

inf
γ∈T0

Ex
{

e−r((τ∧T )∧γ)
[ (

g1(Xτ )1{τ<T} + g+1 (XT )1{τ≥T})
)

1{τ∧T<γ} + g2(Xγ)1{τ∧T>γ} + g3(Xγ)1{τ∧T=γ}

]}

.

Finally, let τ, γ ∈ T0. Since T is independent of X , we conclude that

Ex
{

e−r((τ∧T )∧γ)
[ (

g1(Xτ )1{τ<T} + g+1 (XT )1{τ≥T})
)

1{τ∧T<γ} + g2(Xγ)1{τ∧T>γ} + g3(Xγ)1{τ∧T=γ}

]

(1{τ≥T} + 1{τ<T})
}

=Ex

{

e−rT g+1 (XT )1{τ∧γ≥T} + e−r(τ∧γ)
[

g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}

]

1{τ∧γ<T}

}

=Ex

{

λ

∫ τ∧γ

0

e−(r+λ)sg+1 (Xs)ds+ e−(r+λ)(τ∧γ)
[

g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}

]

}

,

for all x ∈ R+. This computation proves the claimed result for the lower value V 1. The result for the upper

value V 1 is proved completely similarly. �

In Proposition 3.2 we showed that the random horizon game can be transformed into an equivalent

adjusted perpetual game. Moreover, we observe that the form the value function (3.6) associated with

constant threshold policy is consistent with Proposition 3.2. It is also worth mentioning that the buyer follows

actually a stopping rule ”Stop at time τ ∧ T” which results into the payoff g1(Xτ )1{τ<T} + g+1 (XT )1{τ≥T}.

This property was used in (3.7).

3.2. Necessary Conditions. Having the expression (3.6) at hand, we proceed with the derivation of neces-

sary conditions. Define the function Q1 : R3
+ → R+ as

Q1(x, z, y) = Ex

{

e−(r+λ)(τy∧γz)
[

ĝ1(Xτy)1{τy<γz} + ĝ2(Xγz)(Xγz ))1{τy>γz}

]

}

= h1(z, y)ψr+λ(x) + h2(z, y)ϕr+λ(x),
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recall the definition of the functions ĝi and hi, i = 1, 2, from (3.2) and (3.4), respectively (see [1], expression

(15)). Function Q1 is the value function associated to the strategy constituted by the first hitting times τy and

γz to arbitrary boundaries y and z satisfying z < y. We assume now that the thresholds z∗1 and y∗1 give rise

to an extremal expression for Q1 in the sense that for all fixed (initial) state x, the point (z∗1 , y
∗
1) is a saddle

point for the surface (z, y) 7→ Q1(x, z, y). In other words, given the family of surfaces (z, y) 7→ Q1(x, z, y),

indexed by the initial states x, we assume that the point (z∗1 , y
∗
1) is saddle point for all of these surfaces. To

determine first order necessary conditions for the saddle point, denote as xo the unique point satisfying the

condition ψr+λ(xo) = ϕr+λ(xo). Now, the conditions ∂Q1

∂z
(xo, z

∗
1 , y

∗
1) =

∂Q1

∂y
(xo, z

∗
1 , y

∗
1) = 0 result into

(3.8)















∂h1
∂z

(z∗1 , y
∗
1) +

∂h2
∂z

(z∗1 , y
∗
1) = 0,

∂h1
∂y

(z∗1 , y
∗
1) +

∂h2
∂y

(z∗1 , y
∗
1) = 0.

Using the notation from (3.1), we find after differentiation and some elementary manipulations that the

conditions (3.8) can be rewritten as















(Lr+λϕ ĝ2)(z
∗
1)ψr+λ(y

∗
1)− (Lr+λψ ĝ2)(z

∗
1)ϕr+λ(y

∗
1) = Br+λĝ1(y

∗
1),

(Lr+λϕ ĝ1)(y
∗
1)ψr+λ(z

∗
1)− (Lr+λψ ĝ1)(y

∗
1)ϕr+λ(z

∗
1) = Br+λĝ2(z

∗
1),

(3.9)

Following [1], Lemma 4.1, we readily verify that the conditions (3.9) can be expressed as



















∫ y∗1

z∗1

(

Gr+λĝ2
)

(t)
(

ϕr+λ(t)− ϕr+λ(y
∗

1 )
ψr+λ(y∗1 )

ψr+λ(t)
)

m′(t)dt = B
ψr+λ(y∗1 )

(ĝ2(y
∗
1)− ĝ1(y

∗
1)) ,

∫ y∗1

z∗1

(

Gr+λĝ1
)

(t)
(

ψr+λ(t)− ψr+λ(z
∗

1 )
ϕr+λ(z∗1 )

ϕr+λ(t)
)

m′(t)dt = B
ϕr+λ(z∗1 )

(ĝ1(z
∗
1)− ĝ2(z

∗
1)) .

(3.10)

Denote now the candidate

(3.11) G1(x) =































g1(x), x ≥ y∗1 ,

λ(Rr+λg
+
1 )(x) +Q1(x, z

∗
1 , y

∗
1), x ∈ (z∗1 , y

∗
1),

g2(x), x ≤ z∗1 .

Finally, the r-harmonicity of the candidate G1 on the continuation region (z∗1 , y
∗
1) implies that the necessary

conditions (3.8) can be rewritten as

(3.12)











(Lr+λϕ ĝ2)(z
∗
1)− (Lr+λϕ ĝ1)(y

∗
1) = 0,

(Lr+λψ ĝ2)(z
∗
1)− (Lr+λψ ĝ1)(y

∗
1) = 0,
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see also [1], Corollary 4.2.

The next proposition contains our main result on the necessary conditions for the optimal solution for

Game 1.

Proposition 3.3. Assume that there is a pair (z∗1 , y
∗
1) satisfying the conditions (3.12) and that there exist

thresholds x̂i, i = 1, 2, such that

(3.13) Gr+λĝi(x) T 0, whenever x S x̂i.

Then the pair (z∗1 , y
∗
1) is unique and z∗1 < x̂2 and x̂1 < y∗1 . Moreover the value of Game 1 reads as V1(x) =

G1(x) for all x ∈ R+, where G1 is defined in (3.11).

Proof. We know from [1], Theorem 4.3 that under assumption (3.13) a pair satisfying (3.12) is necessary

unique and that z∗1 < x̂2 and x̂1 < y∗1 . To prove that the value of the game reads as (3.11), we follow the

lines of the proof of Theorem 4.3 in [1]. First, assume that x ∈ (z∗1 , y
∗
1) and define the functionals

∆1(x) = λ(Rr+λg
+
1 )(x) + h1(z

∗
1 , y

∗
1)ψr+λ(x) + h2(z

∗
1 , y

∗
1)ϕr+λ(x) − g1(x)

= ĝ2(z
∗
1)
ϕ̂y∗1 (x)

ϕ̂y∗1 (z
∗
1)

+ ĝ1(y
∗
1)
ψ̂z∗1 (x)

ψ̂z∗1 (y
∗
1)

− ĝ1(x)

∆2(x) = λ(Rr+λg
+
1 )(x) + h1(z

∗
1 , y

∗
1)ψr+λ(x) + h2(z

∗
1 , y

∗
1)ϕr+λ(x) − g2(x)

= ĝ2(z
∗
1)
ϕ̂y∗1 (x)

ϕ̂y∗1 (z
∗
1)

+ ĝ1(y
∗
1)
ψ̂z∗1 (x)

ψ̂z∗1 (y
∗
1)

− ĝ2(x),

where

ϕ̂y(x) = ϕr+λ(x) −
ϕr+λ(y)

ψr+λ(y)
ψr+λ(x),

ψ̂z(x) = ψr+λ(x) −
ψr+λ(z)

ϕr+λ(z)
ϕr+λ(x).

The saddle point condition (3.8) implies that the candidate G1 is once continuously differentiable in R+ and,

consequently, that ∆1(y
∗
1) = ∆′

1(y
∗
1) = 0 = ∆2(z

∗
1) = ∆′

2(z
∗
1). By standard differentiation we find that

d

dx

[

∆1(x)

ψ̂z∗1 (x)

]

=
S′(x)

ψ̂2
z∗1
(x)

[

−Bĝ2(z∗1)
ϕr+λ(z∗1)

− ĝ′1(x)

S′(x)
ψ̂z∗1 (x) +

ψ̂′
z∗1
(x)

S′(x)
ĝ1(x)

]

,

d

dx

[

∆2(x)

ϕ̂y∗1 (x)

]

=
S′(x)

ϕ̂2
y∗1
(x)

[

Bĝ1(y
∗
1)

ψr+λ(y∗1)
− ĝ′2(x)

S′(x)
ϕ̂y∗1 (x) +

ϕ̂′
y∗1
(x)

S′(x)
ĝ2(x)

]

,
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which imply together with (3.10) that

d

dx

[

∆1(x)

ψ̂z∗1 (x)

]

=
S′(x)

ψ̂2
z∗1
(x)

∫ y∗1

x

ψ̂z∗1 (t)
(

Gr+λĝ1
)

(t)m′(t)dt < 0,

d

dx

[

∆2(x)

ϕ̂y∗1 (x)

]

= − S′(x)

ϕ̂2
y∗1
(x)

∫ x

z∗1

ϕ̂y∗1 (t)
(

Gr+λĝ2
)

(t)m′(t)dt < 0.

(3.14)

To see that the inequalities in (3.14) hold, we observe first using (3.10) that

(

∆1

ψ̂z∗1

)′

(z∗1) < 0 and

(

∆2

ϕ̂y∗1

)′

(y∗1) <

0. Moreover, since 0 < z∗1 < x̂2 and x̂1 < y∗1 < ∞, where x̂2 and x̂1 are given in (3.13), and x ∈ (z∗1 , y
∗
1), the

examination of the derivatives of the integrals reveals that the inequalities in (3.14) hold.

To conclude, we observe first that the condition (3.14) implies that ∆1(x)

ψ̂z∗1
(x)

≥ ∆1(y
∗

1 )

ψ̂z∗1
(y∗1 )

= 0. Furthermore,

since ψ̂z∗1 (x) > 0, we find that ∆1(x) ≥ 0 for all x ∈ (z∗1 , y
∗
1). Similarly we find that ∆2(x) ≤ 0 for all

x ∈ (z∗1 , y
∗
1). These properties of ∆i imply that g1(x) ≤ G1(x) ≤ g2(x) for all x ∈ (z∗1 , y

∗
1). Moreover, since

z∗1 < x̂2 and y∗1 > x̂1, we observe that G1 is r-superharmonic on (z∗1 ,∞) where the value is strictly smaller

than g2(x) and r-subharmonic on (0, y∗1) where the value is strictly larger than g1(x). Thus the thresholds z
∗
1

and y∗1 give rise to a unique saddle point strategy and the value V1(x) = G1(x) for all x ∈ R+.

�

In Proposition 3.3 we showed that given the additional condition (3.13), a solution of the pair (3.12)

is necessarily unique. From a practical point of view this is a convenient result. Indeed, if we attempt to

solve the pair (3.12) numerically for a particular example and our scheme converges to a solution, we can

be sure that it is the unique optimal one. The condition (3.13) was needed in the proof of Proposition 3.3

to assure that functionals Lr+λ· ĝi behave nicely enough for the uniqueness result to hold - remember that

(Lr+λĝi)
′(x) ∝

(

Gr+λĝi
)

(x). We propose in the next lemma a set of sufficient conditions for the assumption

(3.13).

Lemma 3.4. Assume that there are thresholds x̃i, i = 1, 2, such that

Grgi(x) T 0, whenever x S x̃i.

In addition, assume that

• g1(x) ≥ 0 for all x > 0 or that Grg1 is non-increasing, and

• (g+1 − g2) and Grg2 are non-increasing.

Then the condition (3.13) holds.
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Proof. The result follows from the expressions Gr+λĝ1 = Grg1 + λ(g+1 − g1), where g
+
1 − g1 is non-increasing

and Gr+λĝ2 = Grg2 + λ(g+1 − g2). �

We note also from Proposition 3.3 that the stopping times τy∗1 and γz∗1 do not tell the entire story about

the optimal stopping rules. Indeed, the optimal stopping rule for the issuer is ”stop at time γz∗1 = inf{t ≥ 0 |

Xt ≤ z∗1}”, but for the buyer optimal rule is ”stop at time τy∗1 = inf{t ≥ 0 | Xt ≥ y∗1}, but if T < τy∗1 , stop at

time T whenever g1(XT ) > 0” so that the optimal rule for the buyer is not pure threshold rule.

While Proposition 3.3 catches a relatively large range of problems, our assumptions are not usually

satisfied if exercise payoffs have option characteristics – for example if gi(x) = (x− ci)
+, where c1 > c2 > 0.

In the next result we propose a set of necessary conditions for a class of problems of this kind.

Corollary 3.5. Assume that there exists x̄i < x̂i so that gi(x) = 0 on (0, x̄i), (Cr+λĝi) > 0 on (x̄i, x̂i), and

(Cr+λĝi) < 0 on (x̂i,∞), i = 1, 2. Assume also that the threshold

ŷ∗x̄2
= argmax

y







ĝ1(y)

ψr+λ(y)− ψr+λ(x̄2)
ϕr+λ(x̄2)

ϕr+λ(y)







exists. If there exists a pair (z∗1 , y
∗
1) ∈ (x̄2, x̂2)× (x̂1, ŷ

∗
x̄2
) satisfying the first order conditions (3.12), then the

conclusion of Proposition 3.3 are satisfied and the value of the game reads as in (3.11).

Proof. The result follows from Proposition 3.3 after noticing that ŷ∗x̄2
is the corner solution to the lower

equation of (3.9). �

If there does not exist an internal solution, then the pair (x̄2, ŷ
∗
x̄2
) constitutes a corner solution, which

is the saddle point solution and the solution reads as

V1(x) =































g1(x), if x ≥ ŷ∗x̄2

λ(Rr+λg
+
1 )(x) +

ψr+λ(x̄2)ϕr+λ(x)−ϕr+λ(x̄2)ψr+λ(x)
ϕr+λ(ŷ∗x̄2

)ψr+λ(x̄2)−ϕr+λ(x̄2)ψr+λ(ŷ∗x̄2
) ĝ1(ŷ

∗
x̄2
), if x ∈ (x̄2, ŷ

∗
x̄2
)

0, if x ≤ x̄2.

3.3. Sufficient Conditions. The main objective of this section is to propose a set of sufficient conditions

for the solvability of the game. To this end, we prove first the following lemma.

Lemma 3.6. Let b ∈ R+. Then ψr(x)
ψr(b)

> ψr+λ(x)
ψr+λ(b)

for all x < b and the function x 7→ ψr+λ(x)
ψr(x)

is monotonically

increasing.
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Proof. Let x < b <∞. From [3], p. 18, we have Ex {e−rτb} = ψr(x)
ψr(b)

, where τb = inf{t ≥ 0 | Xt = b}. Then

ψr(x)

ψr(b)
= Ex

{

e−rτb
}

> Ex

{

e−(r+λ)τb
}

=
ψr+λ(x)

ψr+λ(b)
.

From this we also see that ψr+λ

ψr
is monotonically increasing. �

The next theorem, which is the main result of this subsection, gives a set of conditions under which the

optimal solution for Game 1 is given by (3.12) and (3.11).

Theorem 3.7. Assume that the boundaries 0 and ∞ are natural for the underlying X, that condition (3.13)

holds, and that for i = 1, 2,

(1) Grgi ∈ Lr1,

(2) limx→∞

∣

∣

∣

gi(x)
ψr(x)

∣

∣

∣
= 0,

(3) Grg1(x) > Grg2(x) for all x ∈ R+ \D.

Then there exist a unique pair (z∗1 , y
∗
1) satisfying the first order conditions (3.12) and the value V1 of Game

1 reads as in (3.11).

Proof. First, we find by coupling the assumption (3) with the inequality g2 ≥ g1 that

(3.15)
(

Gr+λĝ1
)

(x) = (Grg1)(x) + λ(g+1 (x)− g1(x)) > (Grg2)(x) + λ(g+1 (x) − g2(x)) =
(

Gr+λĝ2
)

(x),

for all x ∈ R+ \D. Furthermore, since the functions gi ∈ Lr1, the assumption (1) implies that

(3.16) Gr+λĝi = Grgi + λ(g+1 − gi) ∈ Lr+λ1 ,

for i = 1, 2. Our next objective is to show that

(3.17) lim
x→∞

(Lr+λϕ ĝi)(x) = lim
x→0

(Lr+λψ ĝi)(x) = 0.

To this end, let b ∈ R+. Since the function ψr(x)
ψr+λ(x)

is decreasing, see Lemma 3.6, we find

(3.18) 0 ≤ lim
x→∞

∣

∣

∣

∣

ĝi(x)

ψr+λ(x)

∣

∣

∣

∣

≤ ψr(b)

ψr+λ(b)
lim
x→∞

∣

∣

∣

∣

gi(x)− λ(Rr+λg
+
1 )(x)

ψr(x)

∣

∣

∣

∣

= 0,

for i = 1, 2. Here, the last inequality follows from the assumption (2) and Proposition 4 from [11]. By

coupling (3.18) with (2.1) and (3.16), we find that

(Lr+λϕ ĝi)(x) = −
∫ ∞

x

ϕr+λ(y)(Gr+λĝi)(y)m′(y)dy → 0, as x→ ∞,
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where the integral representation follows from [1], Corollary 3.2. In addition, since g1 and g2 are bounded

from below, Corollary 3.2 from [1] implies that

(Lr+λψ ĝi)(x) =

∫ x

0

ψr+λ(y)(Gr+λĝi)(y)m′(y)dy → 0, as x→ 0.

Thus we have established the condition (3.17). Now, the conditions (3.13) and (3.15) – (3.17) guarantee that

the claimed result follows from [1], Theorem 4.4. �

Theorem 3.7 states a set of conditions under which a unique pair (z∗1 , y
∗
1) satisfying the first order

conditions (3.12) exists and under which the value of the Game 1 can be written as (3.11). We remark

that these conditions do not depend on the jump rate λ. Furthermore, we know from Lemma 3.4 that the

condition (3.13) can be substituted with a set of conditions that are also independent of λ. Thus, when using

our results to check whether a particular example of Game 1 has a (unique) solution, the value of λ does not

play any role.

4. Game 2

4.1. Equivalent formulation of the game. This section is devoted to the study of the solvability of Game

2. The analysis is completely analogous to the Section 3. Again, we begin with the ansatz that the game has

a saddle point equilibrium and that the continuation region (z∗2 , y
∗
2) ⊂ R+ has compact closure. Now, because

the terminal date T is observable to the issuer and she knows that after that time the buyer cannot exercise,

it is clear that she will exercise at time T if and only if g2(XT ) < 0. Thus, in an infinitesimal time interval dt,

the Poisson process jumps with probability λdt leaving the buyer with payoff g−2 (x) = min{g2(x), 0}. With

probability 1−λdt there is no jump which results in additional expected present value. Analogously to Game

1, we deduce that the candidate G2 must satisfy the condition Gr+λG2(x) = −λg−2 (x) for all x ∈ (z∗2 , y
∗
2) and,

consequently, the candidate can be represented as

(4.1)

G2(x) = Ex

{

λ

∫ τy∗2
∧γz∗2

0

e−(r+λ)sg−2 (Xs)ds+ e
−(r+λ)(τy∗2

∧γz∗2
)
[

g1(Xτy∗
2
)1{τy∗2

<γz∗2
} + g2(Xγz∗

2
)1{τy∗2

>γz∗2
}

]

}

for all x ∈ R+. As in Game 1, this form is the correct form of the value function for the associated perpetual

game.

Proposition 4.1. The upper and lower values can for Game 2 be rewritten as

V 2(x) = inf
γ∈T0

sup
τ∈T0

Π̃2(x, τ, γ), V 2(x) = sup
τ∈T0

inf
γ∈T0

Π̃2(x, τ, γ),
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where

Π̃2(x, τ, γ) = Ex

{

λ

∫ τ∧γ

0

e−(r+λ)sg−2 (Xs)ds+ e−(r+λ)(τ∧γ)
[

g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}

]

}

for all x ∈ R+.

Proof. Completely similar to the proof of Proposition 3.2. �

Similarly to Game 1, we remark that the issuer follows now a stopping rule ”Stop at time γ ∧ T” which

results into the payoff g2(Xγ)1{γ<T} + g−2 (XT )1{γ≥T}.

4.2. Necessary conditions. In order to simplify the notations, we denote















ǧ1(x) = g1(x) − λ(Rr+λg
−
2 )(x),

ǧ2(x) = g2(x) − λ(Rr+λg
−
2 )(x).

(4.2)

Moreover define the function Q2 : R3
+ → R+ as

Q2(x, z, y) = Ex

{

e−(r+λ)(τy∧γz)
[

(ǧ1(Xτy )1{τy<γz} + ǧ2(Xγz)(Xγz ))1{τy>γz}

]

}

= k1(z, y)ψr+λ(x) + k2(z, y)ϕr+λ(x),

where the functions k1 : R2
+ → R are defined as

(4.3)















k1(z, y) =
ϕr+λ(y)ǧ2(z)− ϕr+λ(z)ǧ1(y)

ϕr+λ(y)ψr+λ(z)− ϕr+λ(z)ψr+λ(y)
,

k2(z, y) =
ψr+λ(z)ǧ1(y)− ψr+λ(y)ǧ2(z)

ϕr+λ(y)ψr+λ(z)− ϕr+λ(z)ψr+λ(y)
.

Analogously to Section 3, we assume that for every fixed x, the (z, y) → Q2(x, z, y) has a unique saddle

point (z∗2 , y
∗
2), which does note depend on x. Then the first order necessary conditions for this saddle point

can be written as















(Lr+λϕ ǧ2)(z
∗
2)− (Lr+λϕ ǧ1)(y

∗
2) = 0,

(Lr+λψ ǧ2)(z
∗
2)− (Lr+λψ ǧ1)(y

∗
2) = 0.

(4.4)

The next proposition contains our main result on the necessary conditions for the optimal solution for Game

2.
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Proposition 4.2. Assume that there is a pair (z∗2 , y
∗
2) satisfying the conditions (4.4) and that there are

thresholds x̌i, i = 1, 2, such that

(4.5) Gr+λǧi(x) T 0, whenever x S x̌i.

Then the pair (z∗2 , y
∗
2) is unique and z∗2 ≤ z∗1 and y∗2 ≤ y∗1 . Furthermore the value V2 of Game 2 reads as

(4.6) V2(x) =































g1(x), x ≥ y∗2 ,

λ(Rr+λg
−
2 )(x) + k1(z

∗
2 , y

∗
2)ψr+λ(x) + k2(z

∗
2 , y

∗
2)ϕr+λ(x), x ∈ (z∗2 , y

∗
2),

g2(x), x ≤ z∗2 ,

where the functions ki, i = 1, 2, are defined in (4.3).

Proof. Completely analogous to the proof of Proposition 3.3. �

Similarly to Proposition 3.3, we posed in Proposition 4.2 the additional assumption (4.5) to assure that

the functionals Lr+λ· ǧi behave well enough so that the uniqueness of the solution is guaranteed. In this case,

as in Game 1, we propose sufficient conditions to (4.5) which do not depend on λ. These conditions are listed

in the next lemma.

Lemma 4.3. Assume that there are thresholds x̃i, i = 1, 2, such that (Gr)gi(x) T 0, whenever x S x̃i. In

addition, assume that

• (Grg1) and g−2 − g1 are non-increasing, and

• (Grg2) is non-increasing or g2 ≤ 0 for all x > 0.

Then the condition (4.5) holds.

Proof. Similar to the proof of Lemma 3.4. �

Similar to Proposition 3.3, the optimal thresholds times τy∗2 and γz∗2 do not tell the whole truth about

the optimal stopping times. The optimal stopping time for the issuer is now ”stop at time γz∗2 , but if T < γz∗2

and g2(XT ) < 0, stop at time T , else do not stop”, whilst the optimal stopping time for the buyer is ”stop at

time τy∗2 = inf{t ≥ 0 | Xt ≥ y∗2}”.

Corollary 4.4. Assume that there exists x̄i < x̌i so that gi(x) = 0 on (0, x̄i), (Cr+λǧi) > 0 on (x̄i, x̌i), and

(Cr+λĝi) < 0 on (x̌i,∞), i = 1, 2. Assume also that the threshold

y̌∗x̄2
= argmax

y







ǧ1(y)

ψr+λ(y)− ψr+λ(x̄2)
ϕr+λ(x̄2)

ϕr+λ(y)






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exists. If there exists a pair (z∗2 , y
∗
2) ∈ (x̄2, x̌2)× (x̌1, y̌

∗
x̄2
) satisfying the first order conditions (4.4), then the

conclusion of Proposition 4.2 are satisfied and the value of the game reads as in (4.6).

Proof. Proof is similar to that of Corollary 3.5. �

If there does not exist an internal solution, then the pair (x̄2, y̌
∗
x̄2
) constitutes a corner solution, which

is the saddle point solution and the solution reads as

V2(x) =































g1(x), if x ≥ y̌∗x̄2

λ(Rr+λg
−
2 )(x) +

ψr+λ(x̄2)ϕr+λ(x)−ϕr+λ(x̄2)ψr+λ(x)
ϕr+λ(y̌∗x̄2

)ψr+λ(x̄2)−ϕr+λ(x̄2)ψr+λ(y̌∗x̄2
) ǧ1(y̌

∗
x̄2
), if x ∈ (x̄2, y̌

∗
x̄2
)

0, if x ≤ x̄2.

4.3. Sufficient conditions. The next theorem contains a set of sufficient conditions for the optimal solution

for Game 2.

Theorem 4.5. Assume that the boundaries 0 and ∞ are natural for the underlying X, that condition (4.5)

hold, and that the conditions 1–3 in Theorem 3.7 holds for i = 1, 2. Then there exist a unique pair satisfying

the first order conditions (4.4) and the value V2 of Game 2 reads as in (4.6).

Proof. The proof is analogous to that of Theorem 3.7. �

Theorem 4.5 states sufficient conditions under which an optimal pair (z∗2 , y
∗
2) uniquely exists and under

which the value of Game 2 can be expressed as in (4.6). Using Lemma 4.3 the condition (4.5) can be expressed

independent of λ. Therefore, similar to Game 1, we remark that with a particular example, the conditions of

the theorem can be checked without any reference to the jump rate λ.

5. Comparison and asymptotics

In the previous sections we studied the solvability of Games 1 and 2. In particular, we derived necessary

and sufficient conditions for the solutions to be given by (3.11) and (4.6). In this section, we study further the

properties of these solutions. In particular, we are interested in finding orderings of the stopping thresholds

and the value functions. Furthermore, we study the asymptotic behavior of the optimal characteristics with

respect to jump rate λ. To this end, we define two more Dynkin games. First of these is the infinite horizon

Dynkin game, which is defined using (1.2) and (2.3) in the absence of terminating event taking place at time

T . For a comprehensive analysis of this game, see [1]. Denote the value of this game as V and the optimal

exercise thresholds as (z∗, y∗). The second additional game is the game with random time horizon in the case

where the terminating event is not observable to either of the players – we refer to this game as Game 3. The
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upper and lower values of Game 3 are infγ∈T0 supτ∈T0
Π̃3(x, τ, γ) and supτ∈T0

infγ∈T0 Π̃3(x, τ, γ) respectively,

where

Π̃3(x, τ, γ) = Ex

{

e−(r+λ)(τ∧γ)
[

g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}

]

}

.

In fact, Game 3 is an infinite horizon game with discount rate r + λ. Hence we know from [1] that under

certain assumptions this game has a Nash equilibrium given by the unique thresholds (z∗3 , y
∗
3). We denote

the value of this game as V3. It is worth pointing out that Proposition 3.2 implies that if the function g1 is

nonpositive, the value of Game 1 coincides with the value of Game 3. Similarly, Proposition 4.1 implies that

if the function g2 is nonnegative, the value of Game 2 coincides with the value of Game 3.

5.1. Ordering of the thresholds and the values. The following proposition is our main result on the

ordering of optimal characteristics of the games.

Proposition 5.1. (A) Assume that Game 1, Game 2 and Game 3 have unique saddle point solutions. Then

the following orderings hold

• V1(x) ≥ V3(x) ≥ V2(x) everywhere.

• z∗1 ≥ z∗3 ≥ z∗2 and y∗1 ≥ y∗3 ≥ y∗2 always.

(B) If in addition the infinite horizon game has a unique saddle point solution and g2 is non-negative, then

• V (x) ≥ V1(x) ≥ V3(x) ≥ V2(x) for all x ∈ R+.

• z∗ ≥ z∗1 ≥ z∗3 ≥ z∗2 and y∗ ≥ y∗1 ≥ y∗3 ≥ y∗2 .

Proof. (A) Let us first prove the orderings between Game 1 and Game 2. Recall the definitions of Π̃1(x, τ, γ)

and Π̃2(x, τ, γ) from Propositions 3.2 and 4.1 respectively. Now

Π̃1(x, τ, γ) = Ex

{

λ

∫ τ∧γ

0

e−(r+λ)sg+1 (Xs)ds+ e−(r+λ)(τ∧γ)
[

g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}

]

}

≥ Ex

{

λ

∫ τ∧γ

0

e−(r+λ)sg−2 (Xs)ds+ e−(r+λ)(τ∧γ)
[

g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}

]

}

= Π̃2(x, τ, γ),

for all x ∈ R+ and τ, γ ∈ T0. Thus

V1(x) = sup
τ∈T0

inf
γ∈T0

Π̃1(x, τ, γ) ≥ sup
τ∈T0

inf
γ∈T0

Π̃2(x, τ, γ) = V2(x)(5.1)

Suppose now, contrary to our claim, that y∗1 < y∗2 and let x ∈ (y∗1 , y
∗
2) so that x is in the continuation

region of Game 1, and in the stopping region of Game 2. Then V1(x) = g1(x) < V2(x), contrary to (5.1). The

same reasoning applies to the case z∗2 ≤ z∗1 . Next, recall the definition of Π̃3 from beginning of the section.
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We see that Π̃1 ≥ Π̃3 ≥ Π̃2 and using reasoning as above we find that V1 ≥ V3 ≥ V2. The claimed inequalities

for the thresholds follows as above.

(B) Let g2 be non-negative and recall the definition of Π(x, τ, γ) from (1.2). We shall compare it to

Π1 from (2.4). We know that the value function satisfies V (x) = supτ∈T0
infγ∈T0 Π(x, τ, γ) and similarly

V1(x) = supτ∈T1
infγ∈T0 Π1(x, τ, γ). Letting T̂1 = {τ ∈ T1 | τ ≤ T } and T̂ c

1 = T1 \ T̂1 we can write

V1(x) = max

{

sup
τ∈T̂1

inf
γ∈T0

Π1(x, τ, γ); sup
τ∈T̂ c

1

inf
γ∈T0

Π1(x, τ, γ)

}

,(5.2)

the last term being zero due to non-negativeness of g2. For the first term on the right hand side we get

sup
τ∈T̂1

inf
γ∈T0

Π1(x, τ, γ) = sup
τ∈T̂1

inf
γ∈T0

Π(x, τ, γ)

and again due to non-negativeness of g2 for the second term we get the inequality

sup
τ∈T̂ c

1

inf
γ∈T0

Π1(x, τ, γ) = 0 ≤ inf
γ∈T0

Π(x,∞, γ) ≤ sup
τ∈T̂ c

1

inf
γ∈T0

Π(x, τ, γ)

Substituting these to (5.2) we get

V1(x) ≤ max

{

sup
τ∈T̂1

inf
γ∈T̂0

Π(x, τ, γ); sup
τ∈T c

1

inf
γ∈T0

Π(x, τ, γ)

}

= sup
τ∈T1

inf
γ∈T0

Π(x, τ, γ) = V (x),(5.3)

the first equality being true, since in the maximization we have two disjoint sets for which T̂1 ∪ T̂ c
1 = T1 and

the last equality follows from the fact that T1 = T0 in the absence of terminating event.

Suppose, contrary to our claim, that y∗ < y∗1 and let x ∈ (y∗, y∗1), so that x is in the continuation region

of stochastic time horizon case, and in the stopping region of infinite time horizon case. Then V (x) = g1(x) <

V1(x), contrary to (5.3). The same reasoning applies to the case z∗1 ≤ z∗. �

Intuitively, the item (A) of Proposition 5.1 is not surprising. Indeed, if the issuer has inside information

about the terminating event, it will make the value of the game smaller as there is one additional stopping

time in the set over which the issuer minimizes. Similarly, if the buyer has inside information about the

terminating event, the value will be larger. In Game 3, the value is naturally in between these two extremes.

Furthermore, the exercise thresholds are ordered as one could guess from orderings of the value functions,

the principal idea being: The more you know, the longer you wait.

The item (B) is also intuitively quite clear. Since g2 ≥ 0, there is no risk of ending up on trajectory

leading inevitably into negative payoff. By coupling this with the fact that Game 1 will end in finite time

almost surely, the ordering V ≥ V1 becomes evident as the less time to maximize the payoff which is bound
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to be nonnegative. We stress here that the positiveness of g2 is indeed required for the inequalities V ≥ V1,

z∗ ≥ z∗1 and y∗ ≥ y∗1 to hold. We will give a numerical example at the end of Section 6 where these inequalities

are reversed for a function g2 that takes also negative values.

5.2. Some asymptotics. In this subsection we study the limiting behavior of the optimal characteristics of

Games 1 and 2 when the jump rate λ tends to infinity as well as when it tends to zero. The next proposition

is our main result on this matter.

Proposition 5.2. Let x̄i be the greatest point such that gi(x̄i) = 0. The value functions Vi, i = 1, 2, and the

corresponding optimal thresholds satisfy the limiting properties

lim
λ→∞

Vi(x) = V∞(x) :=































g1(x) if x ≥ x̄1

0 if x ∈ (x̄2, x̄1)

g2(x) if x ≤ x̄2.

and

lim
λ→0

Vi(x) = V (x) and















lim
λ→0

z∗i = z∗

lim
λ→0

y∗i = y∗.

Proof. We will prove the proposition only for Game 1; Game 2 is handled similarly. Let us first prove the

case λ→ ∞. Recall from (2.4) and (2.5) that the value of the Game 1 reads as

V1(x) = sup
τ∈T1

inf
γ∈T0

Π1(x, τ, γ) = inf
γ∈T0

sup
τ∈T1

Π1(x, τ, γ),

where Π1(x, τ, γ) = Ex
{

e−r(τ∧γ)
[

g1(Xτ )1{τ<γ} + g2(Xγ)1{τ>γ} + g3(Xγ)1{τ=γ}

]

1{τ∧γ≤T}

}

. Letting λ →

∞, we see that

Π1(x, τ, γ) = 0, if τ, γ > 0

Π1(x, τ, γ) = g1(x), if τ = 0 < γ

Π1(x, τ, γ) = g2(x), if τ > 0 = γ

Π1(x, τ, γ) = g3(x), if τ = 0 = γ.

(5.4)

In light of these findings, let us show that the claimed function V∞ is indeed the saddle point solution when

λ approaches to infinity. There are three cases to be considered depending whether x ≤ x̄2, x ∈ (x̄2, x̄1) or

x ≥ x̄1. (Note that since g2 ≥ g1, we always have x̄2 ≤ x̄1.)
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Let x ≤ x̄2. Now g1(x) ≤ g3(x) ≤ g2(x) ≤ 0 and so we can check straightforwardly, using (5.4), that

supτ∈T1
infγ∈T0 Π1(x, τ, γ) = g2(x) = infγ∈T0 supτ∈T1

Π1(x, τ, γ). The same reasoning applies also to the cases

x ∈ (x̄2, x̄1) and x ≥ x̄1, and the claimed limiting property follows.

Next we turn our eyes on the case λ → 0. Since g+1 ∈ Lr1, we find that λ(Rr+λg
+
1 )(x) → 0 as λ→ 0 for

all x ∈ R+. Given this limiting property together with the definition of V1 in (3.11), we find that the claimed

limiting property holds. Finally given the convergence result of value function V1, the claimed convergence

results hold also for the thresholds z∗1 and y∗1 . �

It is interesting to observe that the values of Game 1 and Game 2 are the same at the limit λ → 0

and also at λ → ∞. In the limit λ → 0, this result is intuitively plausible: If the expected waiting time for

the Poisson process to jump is infinite, the game will not expire unexpectedly, and as a result we get the

solution of an infinite horizon game. Also the limit λ→ ∞ has a natural explanation: There is no advantage

of observing the jump, since both players already know that the jump will occur at the time zero.

6. Explicit Example with Geometric Brownian Motion

We illustrate the main results of the study in this section with an explicit example. Let the underlying

diffusion be geometric Brownian motion, that is, let X be the solution of the Itô equation

dXt = µXtdt+ σXtdWt,

where W is the Wiener process. Furthermore we assume that r > µ. Further let g1(x) = x − c1 and

g2(x) = x− c2 and assume that c1 > c2 > 0, so that g2 > g1. Given this setup, we find that (Rr+λgi)(x) =

x
r+λ−µ − ci

r+λ .

In this case the decreasing and increasing fundamental solutions of the ordinary second order differential

equation (A− β)u = 0 are ϕβ(x) = xγ
β
1 and ψβ(x) = xγ

β
2 respectively. Here

γβi =
1

σ2

(

1
2σ

2 − µ+ (−1)i
√

(12σ
2 − µ)2 + 2σ2β

)

,

for i = 1, 2, are the solutions of the characteristic equation 1
2σ

2γi(γi − 1) + µγi − r = 0. Finally, the scale

density reads as S′(x) = x−
2µ

σ2 .
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6.1. Game 1 has a solution. We know that (Rr+λg
+
1 )(x) satisfies the differential equation

1
2σ

2x2(Rr+λg
+
1 )

′′+

µx(Rr+λg
+
1 )

′ − (r + λ)(Rr+λg
+
1 ) = −g+1 . Therefore (Rr+λg

+
1 ) satisfies the following conditions:

(Rr+λg
+
1 ) =















a1ψr+λ(x) + a2ϕr+λ(x) if x ≤ c1

a3ψr+λ(x) + a4ϕr+λ(x) + (Rr+λg1)(x) if x > c1.

Since (Rr+λg
+
1 )(0+) 6= ∞, we must have a2 = 0 and since limx→∞

(

(Rr+λg
+
1 )(x) − (Rr+λg1)(x)

)

= 0+, we

must have a3 = 0. Furthermore (Rr+λg
+
1 ) is continuous and differentiable. Thus the coefficients a1 and a4

can be solved from conditions limx→c1+(Rr+λg
+
1 )(x) = limx→c1−(Rr+λg

+
1 )(x) and limx→c1+(Rr+λg

+
1 )

′(x) =

limx→c1−(Rr+λg
+
1 )

′(x). It is a matter of elementary calculation to show that

a1 = 1
ψr+λ(c1)

(

(Rr+λg1)(c1) +
(Rr+λg1)

′(c1)ψr+λ(c1)−(Rr+λg1)(c1)ψ
′

r+λ(c1)

ϕr+λ(c1)ψ′

r+λ
(c1)−ϕ′

r+λ
(c1)ψr+λ(c1)

ϕr+λ(c1)
)

a4 =
(Rr+λg1)

′(c1)ψr+λ(c1)−(Rr+λg1)(c1)ψ
′

r+λ(c1)

ϕr+λ(c1)ψ′

r+λ
(c1)−ϕ′

r+λ
(c1)ψr+λ(c1)

.

Next we show that the presented setup satisfies the sufficient conditions of Theorem 3.7. Since Grgi(x) =

(µ−r)x+rci, for i = 1, 2, we find that Grgi ∈ Lr1, for i = 1, 2. The assumption c1 > c2 implies that Grg1 > Grg2
– thus the conditions (1) and (3) in Theorem (3.7) hold. Moreover, since we assumed r > µ, we have that

γr2 > 1, therefore gi(x)
ψr(x)

= x1−γ
r
2 + cix

−γr
2 , for i = 1, 2, satisfy condition (2) in Theorem 3.7. Finally for the

condition (3.13) recall that ĝi = gi − λ(Rr+λg
+
1 ). Thus Gr+λĝi = Grgi + λ(g+1 − gi) and we get

Gr+λĝ1(x) =















(µ− r − λ)x + (r + λ)c1 if x < c1,

(µ− r)x + rc1 if x ≥ c1,

Gr+λĝ2(x) =















(µ− r − λ)x + (r + λ)c2 if x < c1,

(µ− r)x + (r + λ)c2 − λc1 if x ≥ c1.

From these expressions we see that the condition (3.13) holds and x̂1 > c1.

It follows that we can apply Theorem 3.7 and, consequently, that there exists a unique pair (z∗1 , y
∗
1)

satisfying the necessary optimality conditions (3.12). If z∗1 < c1, the conditions (3.12) can be written as (to

simplify notation, we write γi := γr+λi )



















(

yγ1λa4(γ1 − γ2) +
y(γ2−1)(r−µ)

r+λ−µ − rγ2c1
r+λ

)

yγ2+
2µ

σ2 −1 = zγ2+
2µ

σ2 −1(z(γ2 − 1)− γ2c2
)

(

y(γ1−1)(r−µ)
r+λ−µ − rγ1c1

r+λ

)

yγ1+
2µ

σ2 −1 = zγ1+
2µ

σ2 −1
(

z(γ1 − 1)− γ1c2 + zγ2λa1(γ2 − γ1)
)

.
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If, on the other hand, z∗1 ≥ c1, conditions (3.12) take the form



















(

yγ1λa4(γ1 − γ2) +
y(γ2−1)(r−µ)

r+λ−µ − rγ2c1
r+λ

)

yγ2+
2µ

σ2 −1 = zγ2+
µ

σ2 −1
(

(γ2−1)(r−µ)z
r+λ−µ + γ2λc1

r+λ − γ2c2 + zγ1(γ1 − γ2)λa4

)

(

y(γ1−1)(r−µ)
r+λ−µ − rγ1c1

r+λ

)

yγ1+
2µ

σ2 −1 = zγ1+
2µ

σ2 −1
(

z(γ1−1)(r−µ)
r+λ−µ + γ1λc1

r+λ − γ1c2

)

.

Indeed, the function (Rr+λg
+
1 ) is piecewise linear with conversion point at c1. Furthermore y∗1 > x̂1 > c1

(see Proposition 3.3), but we do not know whether z∗1 < c1 or the other way around. Therefore we have two

alternative formulation for (3.12). Nevertheless, only one of these have solution, since Theorem 3.7 guarantees

the uniqueness of the solution. Furthermore at the point z = c1, these two pair of equations become the same.

Unfortunately solving the optimal boundaries from these equations explicitly does not seem to be possible.

Therefore we illustrate the results numerically. But before that, let us see through the solvability of Game 2.

6.2. Game 2 has a solution. Similarly to Game 1, we find that

(Rr+λg
−
2 )(x) =















a5ψr+λ(x) + (Rr+λg2)(x) if x < c2

a6ϕr+λ(x) if x ≥ c2,

where

a5 = 1
ψr+λ(c2)

(

−(Rr+λg2)(c2) +
(Rr+λg2)

′(c2)ψr+λ(c2)−(Rr+λg2)(c2)ψ
′

r+λ(c2)

ϕ′

r+λ
(c2)ψr+λ(c2)−ϕr+λ(c2)ψ′

r+λ
(c2)

ϕr+λ(c2)
)

a6 =
(Rr+λg2)

′(c2)ψr+λ−(Rr+λg2)(c2)ψ
′

r+λ(c2)

ϕ′

r+λ
(c2)ψr+λ(c2)−ϕr+λ(c2)ψ′

r+λ
(c2)

.

In particular a5, a6 < 0.

Next, we verify that the sufficient conditions in Theorem 4.5 hold. We already showed with the Game

1 that the conditions (1)–(3) hold, so it suffices to check whether the condition (4.5) holds. Recall that

ǧi = gi − λ(Rr+λg
−
2 ) so that Gr+λǧ1 = Grgi + λ(g−2 − gi). Thus

Gr+λǧ1(x) =















(µ− r)x + (r + λ)c1 − λc2 if x < c2,

(µ− r − λ)x + (r + λ)c1 if x ≥ c2,

Gr+λǧ2(x) =















(µ− r)x + rc2 if x < c2,

(µ− r − λ)x + (r + λ)c2 if x ≥ c2.

From these expressions we see that the condition (4.5) holds and x̌1 > c2.
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Again, we can apply Theorem 4.5 and there exists a unique pair (z∗2 , y
∗
2) which satisfies the necessary

optimality condition (4.4). This time, if z∗2 < c2, the condition can be written as (to simplify notation we

write γi := γr+λi )



















(

yγ1(γ1 − γ2)λa6 + y(γ2 − 1)− γ2c1
)

yγ2+
2µ

σ2 −1 = zγ2+
2µ

σ2 −1
(

z(r−µ)(1−γ2)
r+λ−µ − rγ2c2

r+λ

)

(

y(γ1 − 1)− γ1c1
)

yγ1+
2µ

σ2 −1 = zγ1+
2µ

σ2 −1
(

z(r−µ)(γ1−1)
r+λ−µ − rγ1c2

r+λ + zγ2(γ2 − γ1)λa5

)

.

If, on the other hand, z∗2 ≥ c2, the condition (4.4) takes the form



















(

yγ1(γ1 − γ2)λa6 + y(γ2 − 1)− γ2c1
)

yγ2+
2µ

σ2 −1 = zγ2+
2µ

σ2 −1
(

z(γ2 − 1)− γ2c2 + zγ1(γ1 − γ2)λa6
)

(

y(γ1 − 1)− γ1c1
)

yγ1+
2µ

σ2 −1 = zγ1+
2µ

σ2 −1(z(γ1 − 1)− γ1c2
)

.

Similarly to Game 1, we know that y∗2 > x̌1 > c2 (cf. Proposition 4.2), but we do not know whether z∗2 < c2

or not. Therefore we have two alternative formulation of (4.4), but only one of these have a solution. Again,

solving the optimal boundaries from these equations explicitly does not seem to be possible and so we are

prompted to do numerical illustrations.

6.3. Numerical illustration. To illustrate the optimal characteristics numerically, we fix the parameter

configuration µ = 0.03, r = 0.08, σ = 0.35, c1 = 3, c2 = 2 and λ = 0.1. Under this choice, the value functions

for Game 1 and Game 2 are given in Figure 1(a)–(b).

Figure 1. (a) The solution of Game 1; (b) The solution of Game 2. Now (z∗1 , y
∗

1) = (1.52, 8.34),
whereas (z∗2 , y

∗

2) = (1.34, 5.68). For comparison in infinite horizon game (z∗, y∗) = (1.60, 8.99) so
that now z∗2 < z∗1 < z∗ and y∗

2 < y∗

1 < y∗.

The values V , V1, V2 and V3 are compared graphically in Figure 2, recall the definition of V and V3 from

Section 5.
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Figure 2. The differences V − V2, V1 − V2 and V3 − V2.

In line with Proposition 5.1, we observe that the inequalities V ≥ V1 ≥ V3 ≥ V2 hold in this case. We

point out that V ≥ V1 in this case even though g2 takes also negative values. The values V , V1 and V2

appear to differ quite significantly from each others, which indicates that the mere existence of the expiry

time and the inside information on it can have substantial impact on the optimal exercise rule. For example,

if x = 4 for the given parameters, we have V (4) ≈ 1.55 and V1(4) ≈ 1.41 the difference being 0.14, so that

V (4) is about 10% greater. However, we observe that the value V3 does not differ much from V2. This means

that in this example when the issuer have inside knowledge about Poisson clock (Game 2), she rarely takes

advantage of this information. This, in turn, is because she exercises at the jump time T only if g2(XT ) < 0.

This happens rarely, since g2 is usually positive.

In Figure 3 we illustrate the sensitivities of the exercise thresholds with respect to parameters σ and λ

in Game 1 and in the infinite horizon game. We notice that the order of the lower thresholds change as σ

increases. This is possible, since g2 takes also negative values (cf. Proposition 5.1). Moreover we see that as

σ increases, the continuation region gets wider. This result is in line with the literature. Furthermore, we

observe that the continuation region shrinks as λ increases which is again natural in the current example. In

particular, the issuer lets her exercise threshold grow towards c2 so that she could increase her chances of

exercising with negative payoff.

6.4. Counterexample for inequalities z∗1 ≤ z∗ and y∗1 ≤ y∗. In Proposition 5.1 we prove that if g2 ≥ 0,

then for the optimal stopping boundaries we have the inequalities z∗1 ≤ z∗ and y∗1 ≤ y∗ and for the values we
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Figure 3. The changes of thresholds in Game 1 and in infinite horizon game, when changing σ and λ.

have V (x) ≥ V1(x). In this subsection we show that if g2 is allowed to be negative, then these inequalities

are not necessary true, a hint of this can also be seen from Figure 3.

Let the underlying diffusion still be a geometric Brownian motion and the parameter configuration as

µ = 0.03, σ = 1.0, λ = 0.1 and r = 0.08. Furthermore, let g1 = 3
√
x − 3 and g2 =

√
x − 2; in particular,

g2 > g1. It is a straightforward task to check that there exist unique saddle point solutions for Game

1, Game 2 and infinite time horizon game and that the optimal thresholds read as (z∗1 , y
∗
1) ≈ (0.56, 44.7);

(z∗2 , y
∗
2) ≈ (0.24, 39.4) and (z∗, y∗) ≈ (0.21, 30.0). Now contrary to Proposition 5.1(B), we have z∗1 > z∗ and

y∗1 > y∗. Moreover, we have also that z∗2 > z∗ and y∗2 > y∗. On the other hand, the boundaries of Game 2

are lower than the ones of Game 1, see Proposition 5.1(A). Moreover, we find that V (x) ≤ V2(x) ≤ V1(x)

which is illustrated in Figure 4.

It is interesting to observe that the value of a random time horizon game can dominate the value of an

infinite horizon game. In fact, it can be that the infinite horizon game can have the smallest value of the

games considered in this paper, which seems first rather counterintuitive. However, this is all due to the

”sufficient negativeness” of g2. Indeed, as the game will end almost surely in finite time, the issuers chances

of exercising with a very negative payoff is reduced in comparison to the infinite horizon game.
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Figure 4. The differences V − V2 and V1 − V2. We have V ≤ V2 ≤ V1 in contrast to Proposition 5.1.
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