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Abstract

In the first continent-wide study of the golden jackal (Canis aureus), we characterised its

population genetic structure and attempted to identify the origin of European populations.

This provided a unique insight into genetic characteristics of a native carnivore population

with rapid large-scale expansion. We analysed 15 microsatellite markers and a 406 base-

pair fragment of the mitochondrial control region. Bayesian-based and principal compo-

nents methods were applied to evaluate whether the geographical grouping of samples cor-

responded with genetic groups. Our analysis revealed low levels of genetic diversity,

reflecting the unique history of the golden jackal among Europe’s native carnivores. The

results suggest ongoing gene flow between south-eastern Europe and the Caucasus, with

both contributing to the Baltic population, which appeared only recently. The population

from the Peloponnese Peninsula in southern Greece forms a common genetic cluster with

samples from south-eastern Europe (ΔK approach in STRUCTURE, Principal Components

Analysis [PCA]), although the results based on BAPS and the estimated likelihood in

STRUCTURE indicate that Peloponnesian jackals may represent a distinct population.

Moreover, analyses of population structure also suggest either genetic distinctiveness of

the island population from Samos near the coast of Asia Minor (BAPS, most STRUCTURE,

PCA), or possibly its connection with the Caucasus population (one analysis in STRUC-

TURE). We speculate from our results that ancient Mediterranean jackal populations have
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persisted to the present day, and have merged with jackals colonising from Asia. These

data also suggest that new populations of the golden jackal may be founded by long-dis-

tance dispersal, and thus should not be treated as an invasive alien species, i.e. an organ-

ism that is “non-native to an ecosystem, and which may cause economic or environmental

harm or adversely affect human health”. These insights into the genetic structure and

ancestry of Baltic jackals have important implications for management and conservation of

jackals in Europe. The golden jackal is listed as an Annex V species in the EU Habitats

Directive and as such, considering also the results presented here, should be legally pro-

tected in all EU member states.

Introduction

An implementation of molecular techniques to study population genetics has broadened our

knowledge about several aspects of wildlife biology and ecology, including breeding characteris-

tics [1, 2], population connectivity, and dispersal [3, 4]. Simultaneously, it enabled us to assess

effects of historical processes [5–7], habitat fragmentation and isolation on distribution of

genetic diversity (e.g. [8–10]) and to reconstruct routes of recent colonisations, range expansions

and biological invasions [11–14]. As a result, information provided from molecular markers is

frequently used in wildlife management and conservation of endangered species [15–19].

Changes in the geographical range are recognized as natural processes and have occurred in

the history of most species [20–23]. Theoretical aspects of genetic after-effects of range shifts

have been thoroughly analysed (e.g. [24]). It was shown that range expansions may lead to

changes in population genetic structure and diversity. Initially, genetic structure should be

clearly emphasized and genetic diversity in subdivided population will likely be reduced in

comparison with the main distribution range and/or source population due to repeated bottle-

necks. However, over time as new areas are occupied, connectivity among territories may be

established and spatial population structure might decrease due to balanced gene flow among

populations, causing homogenization and increased genetic diversity within populations [24–

26]. Surprisingly, the genetic consequences of natural, contemporary range expansions have

begun to be investigated only very recently [27–31] and results so far are equivocal and not

always concordant with theoretical expectations.

Several carnivore species are currently expanding their distributions, especially in Europe

[32]. It has been observed that such populations are characterized by particular genetic struc-

ture and processes, at least on the scale of individual countries. The study of the recently

expanding (most probably from Russia) brown bear (Ursus arctos) population in Finland

revealed disappearance of initial structuring and homogenization, as well as gradual increase of

genetic diversity [33], as expected on the basis of theoretical models of range expansion [24, 25,

34]. Moreover, Hagen et al. [33] have shown increasing admixture between two genetic clusters

occurring in Finland [35] as the range expansion proceeded. In contrast, the Finnish grey wolf

(Canis lupus) population, also expanding since the 1990’s after almost complete eradication in

the 19th century, exhibited decreased genetic diversity during the initial phase of expansion,

despite clearly lower estimated population size [36]. The authors attributed this result to a low

degree of connectivity with adjacent Russian wolf population.

The golden jackal (Canis aureus) is one of the most widely-distributed canid species, found

in many areas of Europe and southern Asia [37, 38]. The ongoing expansion of the species in

Europe has caused concerns in regard to possible negative effects its presence could exert, for
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example through excessive predation of other wildlife species or livestock, and the transmission

of pathogens. In addition, there are several uncertainties regarding jackal management and pol-

icies, often in association with the unknown origins of jackal populations [38].

Population genetics of this species has been so far poorly characterised, especially when

compared to Europe’s large carnivores, such as the grey wolf (e.g. [39–42]), the European lynx

(Lynx lynx) [43–47] or the brown bear (e.g. [35, 48–50]). The first study focused on jackals in

Serbia [51] suggested a low level of genetic diversity and weakly pronounced genetic structure

in this recently-spreading population (see also [52]). Low genetic differentiation was also

found in populations from Bulgaria, Croatia, and Italy [52]. A significant but weakly-pro-

nounced genetic structure was only observed in the population of jackals from Dalmatia (Adri-

atic coast of Croatia). Fabbri et al. [52] also discovered that the jackals in Italy have an admixed

origin from the Dalmatian and mainland populations. The genetic data in these cases were sug-

gestive of a colonization process in golden jackals that is predominantly of a ‘stepping-stone’

nature, with short-distance dispersal and intermediate admixture. This contrasts with the long-

distance dispersal observed in other canids, such as grey wolves [53, 54].

Genetic relationships of the European golden jackals with jackals from the Asiatic part of

the species’ range, were not yet determined. Moreover, none of the studies so far analysed

genetic structure of the population on the larger scale (i.e., the continental level). Consequently,

the understanding of historic development of jackal populations in Europe is lacking. One of

the hypotheses suggested that the European population goes back to the introduction of jackals

from northern Africa in the 15th century [55]. This was later rejected on the basis of morphol-

ogy [56, 57], but the origin of most of the European population remains unknown. Archaeolo-

gic data indicate that jackals were already present along the Mediterranean coast in Croatia

and Greece ca. 7,000–6,500 yBP [58, 59]. Jackals remained absent from most of Europe until

the 19th century, when the species started to expand slowly, followed by a rapid expansion at

the end of the 20th century, which continues today [38, 60]. However, it is unclear whether any

of the present European populations originate from this ancient Mediteranean population or if

they are decendants of the later Asian colonization, e.g. from the Middle East or the Caucasus.

Secondly, if there was a recent colonization from the east, it is unknown whether original small

Mediterranean populations survived and merged with the wave of recent expansion. It is also

unknown whether low genetic diversity and lack of distinct genetic structure in part of the

European golden jackal population [51, 52] is an after-effect of fragmentation and population

decline in the first half of 20th century, or rather resulted from recent expansion, interlinked

with the founder effect pertaining to a recently established population. Hence, samples from

potentially long-lasting, stable populations, such as southern Greece, should be analyzed.

Although it was suggested that Italy was colonised from the Dalmatian coast and the mainland

[52], the source of other expansions in Europe have not yet been identified. The lack of proper

knowledge about the history of golden jackals in Europe can significantly affect management

decisions and thus influence the conservation of the species. For example, the Estonian, Latvian

and Lithuanian governments, despite the lack of reliable data, consider the golden jackal to be

an alien species introduced to the Baltics by people, and based on this, these governments

recently allowed unlimited lethal removal with the goal of eradicating the species [38].

The aim of the present work is to characterise for the first time the population genetic struc-

ture of European golden jackals on the continental scale, with the incorporation of samples

from hitherto unstudied regions. Therefore, we included samples from the Peloponnesus Pen-

insula (southern Greece), which could possibly originate from the Neolithic population [59];

the insular population on the island of Samos located 1.7 km from the coast of Asia Minor,

which represents the first investigation of an island population of the species; and the popula-

tion from the Caucasus, a region known as a ‘hotspot’ for biodiversity [61]. An attempt is also
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made to identify the origin of the recently-established population in the Baltic States, and

hence to resolve its controversial status and aid management decisions.

Material and Methods

Samples
Tissue samples used in this study were obtained from 97 individuals originating from five geo-

graphical regions (Fig 1, Table A in S1 File), i.e. i) south-eastern Europe (SEE)—comprising

samples from Romania (country code ROU; n = 5), Croatia (HRV; n = 2), Slovenia (SVN;

n = 2), Ukraine (UKR; n = 12), Serbia (SRB; n = 25), Hungary (HUN; n = 10), and northern

Greece (GRC; Chalkidiki Peninsula, n = 1); ii) the Caucasus (CAU)—comprising samples from

Mountainous Karabakh (NKR; n = 6), Armenia (ARM; n = 3), and Georgia (GEO; n = 5); iii)

the Baltic States (BAL)—comprising samples from Lithuania (LTU; n = 1) and Estonia (EST;

n = 4); iv) southern Greece (GRE-P)—comprising samples from the Peloponnese (GRC;

n = 11); and v) the island of Samos (GRE-S, n = 10).

Molecular genetics protocols
Genomic DNA was extracted using NucleoSpin Tissue kit (MACHEREY-NAGEL) with stan-

dard protocol. We amplified 15 microsatellite loci: CPH4, CPH5, CPH8, CPH12, CPH6, CPH9

[62], CPH22 [63], FH2004, FH2088, FH2096, FH2137, FH2140 [64], CXX.213, C09.250,

C20.253 [65] (Table B in S1 File), as their polymorphism was shown in the golden jackal [52].

Fig 1. Distribution of sampling sites. Shaded areas represent areas with permanent presence of jackals (based on [38] and [37]).

doi:10.1371/journal.pone.0141236.g001
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This number of polymorphic markers is efficient to detect genetic structure and describe

genetic diversity within populations [66]. For 12 loci PCR were performed in 15 μl containing

1 μl of DNA, 1 μl of 8 μM primer mix, 7.5 μl of Multiplex PCR (Qiagen). Twelve loci were

amplified in three multiplexing sets at following thermal profile: 95°C for 15 min, 40 cycles at

94°C for 30s, 57°C for 90 s, 72°C for 90s and final extension at 72°C for 10 min. The last three

loci were amplified individually in total volume of 15 μl containing 1 μl of DNA, 0.5 μl of each

10 μM primers, 7.5 μl PCR Master Mix (EURx). The thermal profile was 95°C for 3 min, 35

cycles at 95°C for 30 s, 57°C for 45 s, 72°C for 45 s and final extension at 72°C for 5 min. PCR

products were analyzed in a CEQ8000 sequencer (Beckman Coulter) and allele sizes were esti-

mated using the Beckman Coulter Fragment Analysis Software.

Amplification of hypervariable domain of the mitochondrial DNA (mtDNA) control-region

was performed with primers WDLOOPL (5’-TCCCTGACACCCCTACATTC-3’) and H576

(5-CGTTGCGGTCATAGGTGAG-3’) [52]. The PCR reaction mixture containing 2 μl of DNA,

1 μl of each 10 μM primers, 20 μl of PCR Master Mix (EURx) and 16 μl of purified water. The

PCR profile was 94°C for 2 min, 40 cycles at 94°C for 15 s, 55°C for 20 s, 72°C for 60 s and final

extension at 72°C for 2 min. Amplified products were purified using Clean-up kit (A&A Bio-

technology), and then sequenced using BigDye Terminator v3.1 Cycle Sequencing Kit and

3500xL Genetic Analyzer (Applied Biosystems).

Statistical analysis—microsatellites
Polymorphism among microsatellite loci was estimated on three levels. Firstly, we estimated

the number of alleles (A), observed heterozygosity (HO), unbiased expected heterozygosity

(HE, [67]) and inbreeding coefficient (FIS) for each locus in the total sample (N = 96). The sig-

nificance of FIS was tested under a randomization procedure, with the Bonferroni correction

for multiple comparison. These analyses were performed using GenAlEx version 6.5 [68] and

FSTAT version 2.9.3.2 [69]. In addition, a probability test for deviation from the Hardy-Wein-

berg equilibrium (HWE) was evaluated for each locus using Genepop (Web version 4.2; [70,

71]). Secondly, we estimated polymorphism for each locus in groups of samples designated a

priori and corresponding with geographical regions. Aside from A,HO,HE and FIS, we also cal-

culated allelic richness (R; [72]) using FSTAT, as well as mean values for these parameters.

HWE was tested for each locus within each region, as well as for each region across all loci.

Between-populations genetic differentiation was estimated using FST [73] as implemented in

FSTAT.

To find out whether the geographical grouping of samples corresponded with genetic

groups, we applied a Bayesian-clustering method (STRUCTURE version 2.3.4; [74]). Structure

was run 15 times for each user-defined number of genetic groups (K = 1–6), with an initial

burn-in of 50,000, and 1,000,000 iterations of the total data set. The admixture model of ances-

try and the correlated model of allele frequencies were applied. Sampling location was not used

as prior information. Next, we examined ΔK statistics that identify the largest change in the

estimates of K produced by STRUCTURE (Fig 2A versus Fig 2B) [75]. To visualise the STRUC-

TURE results we used STRUCTURE HARVESTER 0.6.94 [76]. We then applied CLUMPP

1.1.2 [77] to average the multiple runs given by STRUCTURE and correct for the label switch-

ing. The output from CLUMPP was visualised using DISTRUCT v 1.1 [78].

The Bayesian-based method implemented in the Bayesian Analysis of Population Structure

software (BAPS, version 6.0; [79–81]) was used to check the spatial clustering of individuals,

and was followed by admixture analysis. In this analysis, geographical coordinates for each

sample were used. Ten replicates were run for every upper level of K (2, 3, 4, 5, 10, 15, and 20).

The number of iterations used to estimate the admixture coefficient for individuals, and the

Genetic Structure and Expansion of Golden Jackals
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Fig 2. STRUCTURE results: A—estimated likelihoods, ln P(D), of each number of inferred genetic clusters (bars are SD—only given when
exceeding the width of dots); B—the correspondingΔK curves as a function ofK; C—ancestry of individuals, estimated forK = 2 and 3 (based on
ΔK), and 6 (based on estimated likelihoods). SEE—south-eastern Europe; CAU—Caucasus; BAL—Baltics; GRE-P—Greece, Peloponnese; GRE-S—
Greece, Samos Island.

doi:10.1371/journal.pone.0141236.g002
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number of reference individuals from each location were 50 and 200, respectively. The number

of iterations applied to estimate the admixture for reference individuals was set at 15.

We also obtained an additional representation of the genetic structure using Principal Com-

ponents Analysis (PCA). This multivariate descriptive method is not dependent on any model

assumption and can thus provide a useful validation of the Bayesian clustering output [82–84].

We used the R package ADEGENET v1.3.4 [85] to carry out the standard PCA. The results of

the analysis were presented graphically along first and second axes in line with eigenvalues.

Statistical analysis—mitochondrial DNA
Sequences were aligned in BioEdit software v.7.0.5.3 [86], with alignments then being checked

manually. We amplified a 406 base-pair (bp) fragment of the control region for 93 samples also

genotyped with microsatellite markers. We were unable to obtain reliable sequences from one

sample from Estonia (EST), one from the Caucasus (CAU), and two from south-eastern

Europe (SEE). Numbers of haplotypes (H) in the total sample, as well as in particular geograph-

ical regions and genetic groups, haplotype diversity (h), nucleotide diversity (π) and mean

number of nucleotide differences among haplotypes (k) were all calculated using DNAsp 5.10

[87]. Haplotype frequencies in the overall sample and in each geographical region were calcu-

lated using ARLEQUIN v3.5.1.2 [88]. ARLEQUIN was also used to calculate pairwise θST
among regions using haplotype frequencies. The test for significance was performed with 1,000

permutations. The overall genetic structure, based on haplotype frequencies, was estimated in

DNAsp, using HST ([89]; equation 2). Significance for the global estimate was determined by

permutation test, on the basis of 1,000 replicates.

A median-joining haplotype network [90] was constructed in NETWORK v4.6.1.1. (Fluxus

Technology Ltd.). We also compared haplotypes identified in this study (GenBank accession

nos. KT362174–KT362176) with haplotypes for the golden jackal deposited in GenBank, and

originating from Bulgaria, Serbia, Croatia, and Italy (KF588364) [51, 52], Serbia (HQ845260)

[91], Bulgaria (AF184048) [92], Poland and Ukraine (KT268318 and KT268319) [93], the Cau-

casus (KJ490945 and KJ490946) [94], and India (AY289997 and AY289996) [95].

Ethics Statement
Tissue samples used in this study were obtained from individuals that died in vehicle collisions,

due to natural causes or as a result of legal hunting. No animal was killed for the purpose of

this study.

Results

Microsatellites
From 15 polymorphic microsatellite loci, amplified in 97 golden jackals (Fig 1), we identified

102 alleles (1.05 alleles per individual). At most loci the polymorphism was moderate (5 to 11

alleles). The greatest number of alleles (A = 14) was discovered at locus FH2137, the lowest

(A = 3) at CPH5 (Table C in S1 File). In most cases the observed heterozygosity was below

0.60, and at only three loci (FH2004, FH2096, FH2137) did the value exceed 0.70. When all

samples were analysed together, 11 of the 15 microsatellites were found not to be in HWE

(Table C in S1 File). Similarly, FIS values were found to differ significantly from zero at most

loci following Bonferroni correction, the effect being indicative of heterozygote deficiency.

Given that all the samples were examined together, and we subsequently found significant sub-

structure, this could be due to the Wahlund effect.

Genetic Structure and Expansion of Golden Jackals
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When samples were grouped by geographical distribution, a significant overall FIS was

found only in the case of jackals from the Caucasus (CAU). In south-eastern Europe (SEE)—

the region represented by the highest number of the samples studied—there were three loci

manifesting deviation from the HWE on account of heterozygote deficiency and one, FH2096,

indicative of heterozygote excess (Table D in S1 File). SEE was also the only group with signifi-

cant overall heterozygote deficiency, though FIS was low and non-significant. This group also

had the highest mean number of alleles (mean A = 5.40). Allelic richness was similar in SEE,

CAU and BAL, though slightly lower in two groups from southern Greece, i.e. from the Pelo-

ponnese (GRE-P) and Samos (GRE-S). Observed heterozygosity (HO) was highest in SEE. The

lowest HO was found in the insular GRE-S population.

Analysis of genetic structure using Bayesian methods and PCA indicated some grouping

patterns. In the STRUCTURE analysis the highest mean likelihood was indicated for six clus-

ters (Fig 2A). GRE-P and GRE-S formed two uniform genetic groups, whereas SEE consisted

mainly of individuals from two clusters (with most jackals from Hungary and Romania marked

in red, and the majority of those from Serbia and Ukraine shown in violet—Fig 2C; K = 6), but

also of individuals of mixed ancestry. Jackals from CAU and BAL were assigned to two other

clusters, with more or less equal probability of ancestry from each of them. The ΔK statistic

(Fig 2B) suggested two or three genetic groups. In the two-group scenario the first cluster com-

prised the majority of individuals from SEE and GRE-P, and the second comprised the major-

ity of individuals from GRE-S, CAU and BAL (Fig 2C; K = 2). On the basis of the K = 3 value,

BAL and CAU formed the first genetic group, SEE and GRE-P the second, and GRE-S the

third (Fig 2C; K = 3). In both of these cases, certain individuals from SEE had the highest prob-

ability of ancestry from the CAU/BAL group. These were four individuals from Ukraine (nos.

8599, 8607, 8608, 8927) and two individuals from Serbia (nos. 8620, 8625—Fig 1).

Geographical information about samples in Bayesian analysis (BAPS) suggested the pres-

ence of four genetic groups, with a very limited admixture among them (Fig 3A and 3B). In

general, the geographical groups designated a priori corresponded to genetic groups as indi-

cated by BAPS. However, one sample from SEE (Ukraine, no. 8608) was assigned to the CAU/

BAL cluster, one sample from SEE (northern Greece, no. 8986) was assigned to the GRE-S clus-

ter, and one sample from BAL (Lithuania, no. 9225) was assigned to SEE (Fig 1). A similar

result was obtained by way of admixture analysis (Fig 3B), although in this case two additional

individuals from SEE (nos. 8927 and 8625 from Ukraine and Serbia, respectively) were found

to be of mixed ancestry. Like STRUCTURE, PCA pointed to the genetic distinctness of GRE-S

(Fig 4). The remaining samples were divided by PCA into two groups corresponding with SEE/

GRE-P and CAU/BAL.

Genetic differentiation among the geographical regions was high (overall FST = 0.199, 95%

CI = 0.147–0.258). Pairwise FST ranged from 0.05 to 0.39 (Table 1). Low genetic differentiation

was found between BAL and CAU, whereas all pairwise comparisons with GRE-S indicated a

very high level of genetic differentiation (FST> 0.20). Similarly, marked genetic differentiation

was found between GRE-P and CAU and GRE-P and BAL, while moderate genetic differentia-

tion characterised the pairwise comparisons of data for SEE, as set against GRE-P, BAL or

CAU.

Mitochondrial DNA
Based on the mitochondrial DNA (mtDNA) control region fragment, we identified four unique

haplotypes in 93 samples. Both haplotype diversity and nucleotide diversity were low (Table 2),

as was the average number of pairwise nucleotide differences (k = 0.706). Apart from BAL, we

identified two haplotypes per region. The highest level of haplotype diversity was found in

Genetic Structure and Expansion of Golden Jackals
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GRE-P, while the most marked nucleotide diversity and highest average number of pairwise

nucleotide differences was found in CAU (Table 2).

Haplotype H1 proved to be most frequent, being absent only from GRE-S. In BAL this was

the only haplotype found. Haplotype H2 proved to be unique to GRE-S, while H3 was shared

between CAU and GRE-S, and H4 between SEE and GRE-P (Table 3, Fig 5).

Fig 3. Results of spatial analysis of genetic structure, using BAPS: A—assignment of specimens to four genetic clusters indicated by spatial
clustering; B—admixture analysis of identified clusters. SEE—south-eastern Europe; CAU—Caucasus; BAL—Baltics; GRE-P—Greece, Peloponnese;
GRE-S—Greece, Samos Island.

doi:10.1371/journal.pone.0141236.g003
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Comparing haplotypes identified in this study with those deposited in GenBank (homo-

logical sequences of the 250 bp of mtDNA CR), we found that H1 corresponds with a haplo-

type identified previously in Italy, Croatia, Serbia, Bulgaria, Ukraine, NW Poland, and the

Caucasus, while differing by just a single mutation from another haplotype from the

Fig 4. Results of Principal Components Analysis performed in ADEGENET. First and second axes and corresponding eigenvalues (inset) are shown.
SEE—south-eastern Europe; CAU—Caucasus; BAL—Baltics; GRE-P—Greece, Peloponnese; GRE-S—Greece, Samos Island.

doi:10.1371/journal.pone.0141236.g004

Table 1. Genetic differentiation among geographical regions: SEE—south-eastern Europe (Croatia, Serbia, Slovenia, Hungary, Romania, Ukraine,
northern Greece); CAU—Caucasus (Georgia, Armenia, Mountainous Karabakh); BAL—Baltics (Estonia, Lithuania); GRE-P—Greece, Pelopon-
nese; GRE-S—Greece, Samos Island. Above diagonal—genetic differentiation calculated frommtDNA haplotype frequencies, below diagonal—genetic
differentiation calculated frommicrosatellites. Significant values (1,000 permutations; P < 0.05) are shown in bold.

Region SEE CAU BAL GRE-P GRE-S

SEE 0.347 -0.199 0.507 0.961

CAU 0.125 -0.045 0.024 0.716

BAL 0.100 0.051 0.090 0.863

GRE-P 0.113 0.207 0.268 0.790

GRE-S 0.293 0.205 0.343 0.388

doi:10.1371/journal.pone.0141236.t001

Genetic Structure and Expansion of Golden Jackals

PLOS ONE | DOI:10.1371/journal.pone.0141236 November 5, 2015 10 / 22



Caucasus (H5). A haplotype observed previously in Indian jackals (H6) differed from H4 by

just four mutations (Fig 5).

Genetic structure as estimated on the basis of haplotype frequencies was found to be pro-

nounced and significant (HST = 0.486 for geographical groups, P< 0.001). Pairwise θST was

Table 2. Sample size (N) and genetic characteristics of mtDNA polymorphism inC. aureus in geographical regions and all samples: h—number of
identified haplotypes;H [SD]—haplotype diversity and corresponding standard deviation;π [SD]—nucleotide diversity and corresponding stan-
dard deviation; k—average number of pairwise nucleotide differences. SEE—south-eastern Europe; CAU—Caucasus; BAL—Baltics; GRE-P—
Greece, Peloponnese; GRE-S—Greece, Samos Island.

Region N h H [SD] π [SD] k

SEE 55 2 0.036 [0.035] 0.00009 [0.00009] 0.036

CAU 13 2 0.385 [0.132] 0.00189 [0.00065] 0.769

BAL 4 1 - - -

GRE-P 11 2 0.509 [0.101] 0.00125 [0.00025] 0.509

GRE-S 10 2 0.467 [0.132] 0.00115 [0.00032] 0.467

Total 93 4 0.344 [0.061] 0.0017 [0.00033] 0.706

doi:10.1371/journal.pone.0141236.t002

Table 3. Distribution of golden jackal mtDNA haplotypes in the investigated geographical regions. Frequency in the region and overall frequencies
are reported. SEE—south-eastern Europe; CAU—Caucasus; BAL—Baltics; GRE-P—Greece, Peloponnese; GRE-S—Greece, Samos Island.

Haplotype Motif SEE GRE-P CAU BAL GRE-S Total

H1 TGG 0.98 0.64 0.77 1.00 - 0.800

H2 CAA - - - - 0.70 0.076

H3 TAA - - 0.23 - 0.30 0.068

H4 TAG 0.02 0.36 - - - 0.056

doi:10.1371/journal.pone.0141236.t003

Fig 5. Theminimum spanning network of mtDNA haplotypes of golden jackals sampled in this study (SEE, CAU, BAL, GRE-P, GRE-S) as well as
those desposited in GenBank (Italy, Croatia, Serbia, Bulgaria, Ukraine, NW Poland, the Caucasus, and India). The length of each line between two
circles is proportional to the number of mutations.

doi:10.1371/journal.pone.0141236.g005

Genetic Structure and Expansion of Golden Jackals

PLOS ONE | DOI:10.1371/journal.pone.0141236 November 5, 2015 11 / 22



highest for the comparison of SEE with GRE-S. No genetic differentiation was noted between

BAL and CAU or between BAL and SEE (Table 1).

Discussion

Genetic diversity
Analysing the results obtained with both microsatellite and mitochondrial markers, we found

higher genetic diversity than has been reported previously for other European populations of

the golden jackal [51, 52], except in the case of the island population from Samos. In Serbia

[51] a total of 31 microsatellite alleles at eight loci were found in 120 individuals, giving 3.8

alleles per locus and 0.26 alleles per individual, compared with 6.8 alleles per locus and 1.05

alleles per individual stated in our study (Table C in S1 File). Similarly, in the Serbian popula-

tion the total observed heterozygosity was 0.28, compared with the 0.52 found in our study.

These differences can be explained by the fact that the populations of golden jackals analysed

in this study were historically older and larger than those from Serbia, or involved samples

from across a larger area, with the SEE geographical group encompassing individuals from a

large part of south-eastern, Central and Eastern Europe. Furthermore, the mean number of

alleles was higher in SEE and CAU (A = 5.40 and 4.67, respectively; Table C in S1 File) than

that found previously [52] in the contemporary samples from Bulgaria (A = 3.5), Slavonia

(continental eastern part of Croatia) and Serbia (A = 4.0), Dalmatia (A = 2.8), and Italy

(A = 3.7). Moreover, the analysis of the mitochondrial control region revealed four mitochon-

drial haplotypes (Table 3), as opposed to the one haplotype noted in previous studies [51, 52].

However, the population from Greece (both the Peloponnese and the island of Samos), had a

mean number of alleles of around 3.0 (Table C in S1 File), comparable with what was found in

Dalmatia [52], and hence slightly lower than the value characterising jackals in Slavonia and

Serbia, Bulgaria and Italy [52]. We observed the lowest level of genetic diversity in the island

population at Samos (mean A = 2.67,HO = 0.38; Table C in S1 File), which could be explained

by the isolation, as low genetic diversity often reflects colonisation of an island by a small num-

ber of individuals (the founder effect) and random processes reducing variability, such as

genetic drift [96–98].

In the present continent-wide study we supported previous findings of Zachos et al. [51]

and Fabbri et al. [52] in Serbia, Bulgaria, Croatia, and Italy, indicating that Europe’s golden

jackals harbor less genetic diversity compared to other wild canids, such as wolves [36, 39–41,

99, 100], or red foxes (Vulpes vulpes) [101, 102]. The genetic diversity of European jackals is

also clearly lower than that found in jackals from Israel [103], which show signals of hybridiza-

tion with grey wolves, dogs, and the African golden wolf (Canis anthus) [104]. For example,

the mean number of alleles in five populations from Israel ranged from 4.7 to 5.6 versus 2.6–

5.4 noted in our study, whereas observed heterozygosity ranged from 0.64 to 0.72 versus 0.38–

0.55 in our study. This is despite the dramatic population decline and bottleneck experienced

in Israel in the 1960s [55, 105]. Thus the low genetic diversity of Europe’s jackals does not

reflect species-specific characteristics, but may be related to the unique history of golden jackals

on this continent.

In contrast with the authors of previous studies [51, 52], we noted polymorphisms in the

mtDNA control region, even though overall haplotype diversity was low (H = 0.34) with just

four haplotypes despite the large sampling area. In jackals from the mainland sites (SEE, CAU,

BAL, GRE-P), it was the haplotype recorded in previous studies (H1) that was found to occur

most frequently. However, it was absent from the island population (Samos), where the unique

H2 haplotype is prevalent. Higher mtDNA diversity compared with previous studies is mainly

connected with the larger sampling area including the Caucasus (one ‘new’ haplotype H3) and
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Greece (three ‘new’ haplotypes: H2, H3 and H4). The highest level of haplotype diversity was

found in the Peloponnese. The greater number of haplotypes in the Aegean region could sug-

gest that the present population in Greece may, at least partially, descend from the ancient

Greek population. However, confirmation of this hypothesis requires further study, preferably

including fossil material. Moreover, in the south-eastern European population, alongside the

haplotype discovered by Zachos et al. [51] and Fabbri et al. [52], we identified the additional

haplotype H4, which appeared in one animal from the Biruchiy Peninsula (southern Ukraine),

i.e., an area outside the Balkan Peninsula, but also in the Peloponnese. Hence, it is possible that

the majority of the Balkan population of C. aureus is uniform in regard to control-region poly-

morphisms, as suggested by earlier studies [51, 52]. Hence, despite the discovery of additional

haplotypes, the genetic diversity in the mitochondrial control region in Europe’s golden jackals

should be regarded as low when compared with that in other canids [102, 106, 107]. However,

further sampling will probably result in the detection of new polymorphisms in mtDNA of the

golden jackal as a species, as the haplotype found in Indian jackals (denoted as H6 in Fig 5) dif-

fers by 4–6 substitutions from the haplotypes identified in the present study.

Genetic structure
Previous studies of golden jackals in Europe emphasized the limited degree of genetic structur-

ing, with only the coastal population from Dalmatia clearly differentiated from other Balkan

samples [51, 52]. A genetic identity relating to Dalmatia has also been suggested in the case of

the grey wolf [108], and was explained either by reference to an origin of this population in a

distinct refugium, or in terms of ecological and behavioural factors [41, 109, 110]. Fabbri et al.

[52] also noted markedly smaller number of alleles (A = 2.8) and more limited heterozygosity

(HO = 0.37) in Dalmatian jackals and suggested a long-term isolation of this population. In

respect to this, we also call to attention that golden jackals were present in southern Dalmatia

already in the Middle Ages [111] and possibly even much earlier [58].

Our analysis extending to the whole of Europe has pointed to the existence of a pronounced

genetic structure in relation to both nuclear and mitochondrial markers. Individuals from an

extensive area of south-eastern Europe generally form a uniform genetic group, as already

noted by Zachos et al. [51]. Fabbri et al. [52] also reported small genetic differentiation in

microsatellite markers among populations from Bulgaria, Slavonia and Serbia. This probably

reflects recent expansion of the species in this region. However, Greek samples indicate the

existence of a distinct population in the Peloponnese (STRUCTURE, BAPS) (see also [112]),

even if both haplotypes found in south-eastern Europe were also present in animals from this

peninsula. We can speculate that our results support the hypothesis that an ancient Greek pop-

ulation survived in the Peloponnese to the present day, recently merging with a population

expanding in from the east. A similar interpretation can be put forward in regard to Dalmatian

jackals, as already suggested by Fabbri et al. [52]. Thus the two known areas with the early

Holocene findings of jackals [58, 59] are also the only two areas in south-eastern Europe today

that show higher genetic differentiation, giving further support for the continuous presence of

ancient populations along the Mediterranean coast.

STRUCTURE and BAPS suggested ongoing gene flow between the Caucasus and Europe as

well—some individuals from SEE had the highest probability of ancestry from the CAU/BAL

cluster. Interestingly, when the microsatellite genotypes are concerned, an individual from

south-eastern Europe (no. 8927; Table A in S1 File) with the additional haplotype H4 (which is

frequently found in the Peloponnesus Peninsula), was identified as having ancestry from the

Caucasus (STRUCTURE: two-clade and three-clade scenarios) or mixed ancestry from the

Caucasus and Samos Island (BAPS: admixture analysis).
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The island population of golden jackals on Samos was highly differentiated from those from

other sampling sites (FST, STRUCTURE: three-clade scenario, PCA, BAPS). Unfortunately,

there was no access to samples from the Turkish mainland, so it remains unclear whether the

geographical barrier of water restrics gene flow between the island and that mainland. How-

ever, our genetic data indicate that there are or were some connections between Samos and

northern Greece (e.g. an individual no. 8986 sampled in Chalkidiki Peninsula [Fig 1, Table A

in S1 File] was assigned to the Samos cluster).

Stepping stone model or long-distance colonizers—on the origin of the
Baltic jackals
First possible observations of jackals in the Baltics are known from 2011, when groups of sev-

eral jackals were noted in Estonia [113]. In 2013 and 2014 several animals were shot, photo-

graphed, or detected during howling surveys in Estonia and Latvia [113, 114], and in 2015 the

first jackal was shot in Lithuania [115]. Although several carnivore experts suggested that natu-

ral expansion was likely, the governments of the Baltic States decided to assume that jackals

were introduced by humans [38].

The genetic data suggest that jackals from the Baltics originate from the Caucasus region

(Estonian samples), and from the population expanding out of south-eastern Europe (Lithua-

nian case). This dual origin does not support the idea that jackals were introduced by

humans, as it is unlikely that someone would capture jackals in different regions and smuggle

them to the Baltics. Additionally, recent records of jackal occurrence from Slovakia, Ukraine,

Belarus, and north-western and eastern Poland [38, 93, 113–116], suggest that both Cauca-

sian and southeastern European populations are spreading towards the north. The presence

of the Caucasian gene pool was also detected in animals from NE Ukraine, further supporting

the hypothesis of natural expansion from the Caucasian region through Ukraine towards

Estonia.

The dynamics of species’ range expansions depend on habitat connectivity, but also on dis-

persal ability [118] and habitat plasticity [119]. Two basic models were suggested for a dispersal

through fragmented environment, where suitable habitat is distributed as a series of patches. In

the ‘island model’ all patches are equally accessible, while in the stepping-stone model

exchanges of individuals are restricted to adjacent populations [120]. Although previous

genetic data suggested a ‘stepping-stone’ nature of golden jackal dispersal [52], our results indi-

cate the possibility of long-distance dispersal in this species. This can also be supported by a

review of literature data, which includes several records of sudden appearances of jackals far

from other known populations. Such example include the (re)colonization of Hungary in the

19th century [60] with the closest known populations at that time being in Dalmatia, Croatia

(at ca. a 300 km straight-line distance) or Bulgaria (400 km away).

Another case resembling the sudden occurrence of several jackals in the Baltics, refers to the

first colonization of Slovenia in the mid-20th century. In winter 1952/3 several jackals suddenly

appeared in Central Slovenia near Ljubljana, with reported observations of groups of up to six

animals [121] and later shooting of two animals near Ljubljana and one at the foothills of the

Julian Alps in NW Slovenia [122]. At that time, the closest jackal population was known from

Ravni Kotari in Dalmatia, Croatia [123], approximately 210 km from Ljubljana. In this proba-

ble case of long-distance dispersal, jackals seem to have dispersed in a group, as it would be

highly unlikely that several animals would appear independently at the same time in the same

place so far from the closest population.

More recent records that can be considered potential cases of long-distance dispersal of

jackals include:

Genetic Structure and Expansion of Golden Jackals

PLOS ONE | DOI:10.1371/journal.pone.0141236 November 5, 2015 14 / 22



- a male observed several times from 1996 and then shot in 1998 in Südbrandenburg in

Germany [124] and an individual photographed four times in 2012 in the Bavarian Forest

[125]. These records were 430 km and 270 km distant, respectively, from the closest-

known reproducing population in eastern Austria and western Hungary;

- five photo-records of a jackal in 2011 in the Northwestern Alps of Switzerland [126], with

the closest known reproducing population in NE Italy 450 km away;

- an individual shot in 2014 near Olevsk in Northern Ukraine [127], 430 km from the clos-

est known population in Southern Ukraine and Moldova;

- an individual shot in 2012 near Tomašovka in Belarus [117], 410 km from the closest

known reproducing population in Hungary;

- a young male found dead in April 2015 on a road in NW Poland, close to the German bor-

der [98], ca. 610 km from the reproducing population in NWHungary;

- GPS-GSM collared 1.5 year old female, which travelled 220 km during 12 days in Hungary

in 2014 (J. Lanszki unpubl. data).

Based on this review of jackal occurrences and our genetic data, we suggest that it is not

uncommon for golden jackals to disperse over several hundred kilometers in human-domi-

nated landscapes. This could explain the speed of jackal expansion in Europe that has been

observed in the last decades [38]. We also suggest that the recent colonization of the Baltic

States is most likely a case of long-distance dispersal. The first ‘wave’ of colonization of the Bal-

tics appears to have originated from the Caucasus region via Ukraine. The second wave on the

other hand seems to have originated from south-eastern Europe through an expansion front in

Romania, Hungary/western Ukraine, Slovakia, and Poland. According to available records it

even appears that a group of several jackals can disperse together (see also [116]). If true, this

would have important implications, as it would considerably increase probability of successful

colonization of new areas.

Management and conservation implications
The golden jackal has already been declared an alien, potentially invasive species in all Baltic

States (e.g. [128]). However, an Invasive Alien Species (IAS) needs to meet at least three crite-

ria: 1) it should be non-native, allochtonous, introduced by people; 2) it should threaten biolog-

ical diversity on the local scale; and 3) it should be characterised by rapid population growth

[129]. Although exponential increase in population size has been observed (e.g. in Hungary

[130]), the other two criteria have not been met. The movement north is evidently a result of

natural migration (as the present study shows), and there is no proof of a harmful effect on

local fauna [131–134]. Also there are no major complaints about golden jackals inflicting harm

on domestic animals reported from Europe [133–136]. Occasional reported claims of jackal

depredation of livestock are believed to be exaggerated often [134, 137], or connected with

erroneous identification, when reported cases have been inspected using forensic genetics

[138]. Recent genetic analysis [104] has also shown that the severe impacts on livestock

reported from Israel [139], are probably not connected with golden jackals per se, but rather

with individuals of admixed origin between several canid species. Furthemore, the parasite

load in the European golden jackal is similar to or lower than that in other carnivores (e.g. the

red fox, grey wolf, and wild cat [Felis silvestris]) in the region [140–143], and no attacks by jack-

als on people are known. For these various reasons, concerns regarding serious negative

impacts of the expansion of the golden jackal in Europe appear to be unfounded as yet.
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Nevertheless, results presented here have several management and conservation implica-

tions. The existence of long-distance dispersal in the golden jackal would seem to warrant the

initiation of international coordination in management of the species in Europe and more

focus on management at the population, rather than at the national level, especially considering

considerable differences that currently exist among countries [38]. We therefore suggest the

development of trans-boundary management strategies and documents similar to the popula-

tion-level management approaches developed in the case of Europe’s large carnivores [144].

We also call for a revision of the approach used in managing jackals in the Baltic States, given

that our results contradict the presumption of the local decision-makers about the human-

assisted origin of the Baltic population. Lastly, our results provide a basis for the development

of a conservation strategy for the golden jackal in the region. We propose that priority should

be given to the Caucasus region, which harbors high genetic diversity in terms of the number

of microsatellite alleles, as well as to the regions of the Peloponnese and Dalmatia [52], in

which a relict gene pool from ancient Mediterranean populations appears to have persisted.

The golden jackal is listed as an Annex V species in the EU Habitats Directive and as such, tak-

ing above into account, should be legally protected in all EU member states (for legal implica-

tions of range expansion in this species see [38]).
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