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We study the large ’t Hooft coupling expansion of 1/2 BPS Wilson loops in the antisymmetric
representation in N = 4 super Yang–Mills (SYM) theory at the leading order in the 1/N
expansion. Via AdS/CFT correspondence, this expansion corresponds to the α′ expansion in bulk
type IIB string theory. We show that this expansion can be systematically computed by using
the low temperature expansion of the Fermi distribution function, known as the Sommerfeld
expansion in statistical mechanics. We check numerically that our expansion agrees with the
exact result of antisymmetric Wilson loops recently found by Fiol and Torrents.
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1. Introduction

1/2 BPS circular Wilson loops in 4D N = 4 super Yang–Mills (SYM) theory are interesting observ-
ables that can be computed exactly by a Gaussian matrix model [1–3]. ViaAdS/CFT correspondence,
1/2 BPS Wilson loops in the fundamental representation correspond to the fundamental string in type
IIB string theory on AdS5 × S5 [4,5]. When the rank of the representations becomes large, the corre-
sponding dual objects in the bulk are not fundamental strings but D-branes, and such Wilson loops
are sometimes called “giant Wilson loops”. In particular, 1/2 BPS Wilson loops in the rank-k sym-
metric and antisymmetric representations correspond to D3-branes and D5-branes, respectively, with
k units of electric flux on their world volumes [6–9]. The leading term in the ’t Hooft expansion of
N = 4 SYM side is successfully matched with the DBI action of D-branes in the bulk side. For
more general representations, a dictionary between Wilson loops in higher-rank representations and
bulk D-brane pictures was proposed in Refs. [10,11].

We are interested in the subleading corrections in this correspondence. Recently, there has been
some progress in the computation of one-loop corrections in the 1/N expansion of giant Wilson
loops [12–15]. Here we will focus on the subleading corrections in the large λ expansion (or 1/λ

expansion) with λ being the ’t Hooft coupling λ = g2
YMN , and we will restrict ourselves to the

leading order in the 1/N expansion. From the holographic dictionary R2
AdS/α′ = √

λ, the large λ

expansion on the SYM side corresponds to the α′ expansion in the bulk string theory side.
In this paper, we consider the large λ expansion of the 1/2 BPS Wilson loops in the antisymmetric

representation. Using the fact that the generating function of antisymmetric representations can
be written as a system of fermions, one can systematically compute the subleading corrections in
the large λ expansion by a low-temperature expansion of the Fermi distribution function, known
as the Sommerfeld expansion. Here the role of temperature is played by 1/

√
λ. We have checked
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numerically that the subleading corrections agree with the exact expression of the antisymmetric
Wilson loops recently found in Ref. [16].

The rest of the paper is organized as follows. In Sect. 2, we find a systematic large λ expansion
of antisymmetric Wilson loops using the Sommerfeld expansion of Fermi distribution function. Our
main result is Eq. (2.10). In Sect. 3, we compare our result (2.10) with the exact expression in
Ref. [16], and find nice agreement. We conclude in Sect. 4 and discuss some future directions.

2. Large λ expansion of Wilson loops in the antisymmetric representation

We consider the vacuum expectation value (VEV) of 1/2 BPS circular Wilson loops in N = 4 SYM
with gauge group U (N ). After applying the supersymmetric localization [3], the Wilson loop VEV
is reduced to a Gaussian matrix model〈

TrR P exp
[∮

ds
(

iAμẋμ + �I θ
I |ẋ|

)]〉
=
∫

dM exp
(

− 1

2πgs
Tr M 2

)
TrR(eM ). (2.1)

Here xμ(s) parametrizes a great circle of S4 on which N = 4 SYM lives, and �I (I = 1, . . . , 6)

denote the adjoint scalar fields in N = 4 SYM and θ I ∈ S5 is a constant unit vector. In Eq. (2.1), gs

denotes the string coupling, which is related to the Yang–Mills gauge coupling gYM by

gs = g2
YM

4π
. (2.2)

In this paper, we will focus on the Wilson loop VEV in the kth antisymmetric representation R = Ak ,

WAk =
∫

dM exp
(

− 1

2πgs
Tr M 2

)
TrAk (e

M ). (2.3)

It is convenient to define the VEV of SU(N ) part by removing the U (1) contribution:

WAk = WAk exp
(

−πkgs

2

)
. (2.4)

One can show that WAk is symmetric under k → N − k:

WAN−k = WAk . (2.5)

We are interested in the behavior of the Wilson loop VEV WAk in the limit

N → ∞ with λ = g2
YMN ,

k

N
fixed. (2.6)

In the large λ limit together with Eq. (2.6), the antisymmetric Wilson loop WAk is holographically
dual to a D5-brane in AdS5 × S5, whose world volume has the form AdS2 × S4 [7]. From the
computation of the DBI action of the D5-brane, the leading behavior of WAk is found to be

log WAk = 2N
√

λ

3π
sin3 θk = 1

gs

(
√

λ sin θk)
3

6π2 , (2.7)

where θk is given by

θk − sin θk cos θk = πk

N
. (2.8)
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From the bulk D5-brane picture, the angle θk parametrizes the position of the S4 part of the world
volume inside the S5 of bulk geometry AdS5 × S5.

We are interested in the subleading corrections of WAk . There are two expansion parameters gs

and 1/λ. In Ref. [12], it was reported that the one-loop correction in the gs expansion has the form

log WAk = 1

gs

(
√

λ sin θk)
3

6π2 + c log sin θk , (2.9)

where c is an order 1 constant. In this paper, we will consider subleading corrections of the 1/λ

expansion while we focus on the leading order in the gs-expansion.
As we will show below, the 1/λ expansion of WAk can be computed as

log WAk = 1

gs

[
(
√

λ sin θk)
3

6π2 +
√

λ sin θk

12
− π2(19 + 5 cos 2θk)√

λ sin3 θk

− π4(6788 cos 2θk + 35 cos 4θk + 8985)

362 880λ3/2 sin7 θk
+ · · ·

]
. (2.10)

This is our main result.
Let us explain how we obtained Eq. (2.10). To study the antisymmetric Wilson loops systematically,

it is convenient to introduce the generating function of WAk by summing over k with fugacity eμ,

N∑
k=0

ekμWAk = 〈det(1 + eμeM )〉mm, (2.11)

where 〈O〉mm denotes the expectation value in the Gaussian matrix model,

〈O〉mm =
∫

dM exp
(

− 1

2πgs
Tr M 2

)
O. (2.12)

Using the large N factorization we find

〈det(1 + eμeM )〉mm ≈ exp
[〈Tr log(1 + eμeM )〉mm

]
(2.13)

up to 1/N corrections, and the right-hand side of Eq. (2.13) in the planar limit becomes

〈Tr log(1 + eμeM )〉mm = N
∫ √

λ

−√
λ

dm ρ(m) log(1 + eμ−m), (2.14)

where ρ(m) is the Wigner semicircle distribution of the Gaussian matrix model

ρ(m) = 2

πλ

√
λ − m2. (2.15)

Then, as discussed in Ref. [8], the Wilson loop VEV in the kth antisymmetric representation is
written as an integral over the chemical potential μ:

WAk =
∫

dμ exp

[
−kμ + N

∫ √
λ

−√
λ

dm ρ(m) log(1 + eμ−m)

]
. (2.16)

By rescaling (m, μ) → (
√

λm,
√

λμ), we can further rewrite (2.16) as

WAk =
∫

dμ exp
[

N

(
− k

N

√
λμ + J (μ)

)]
, (2.17)
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where

J (μ) = 2

π

∫ 1

−1
dm
√

1 − m2 log
(

1 + exp
(√

λ(μ − m)
))

. (2.18)

In the regime of interest (2.6), the μ-integral in Eq. (2.17) can be evaluated by the saddle point
approximation since the exponent in Eq. (2.17) is multiplied by the large number N . Thus we
conclude that log WAk is essentially given by the Legendre transform of J (μ):

log WAk = −k
√

λμ∗ + NJ (μ∗), (2.19)

where μ∗ is determined by the saddle point equation

∂μJ (μ)

∣∣∣
μ=μ∗

= k
√

λ

N
. (2.20)

Note that the fluctuation of the μ-integral around the saddle point gives rise to a subleading correction
in gs, as in the case of the ABJM Fermi gas [17], and hence we can safely ignore such corrections
for our purpose of studying the leading-order behavior in the gs expansion.1

Noticing that the Fermi distribution function naturally appears in the derivative of J (μ),

∂μJ (μ) = 2
√

λ

π

∫ 1

−1
dm

√
1 − m2

1 + exp
(√

λ(m − μ)
) , (2.21)

one can easily compute the 1/λ expansion by the standard Sommerfeld expansion in statistical
mechanics, where 1/

√
λ plays the role of temperature.

The large λ expansion of the Fermi distribution function reads

1

1 + exp
(√

λ(m − μ)
) = π∂μ√

λ sin(π∂μ/
√

λ)
	(μ − m)

=
∞∑

n=0

(−1)nB2n(1/2)

(2n)!
(

4π2∂2
μ

λ

)n

	(μ − m)

=
(

1 + π2∂2
μ

6λ
+ 7π4∂4

μ

360λ2 + · · ·
)

	(μ − m), (2.22)

where B2n(1/2) is the value of the Bernoulli polynomial B2n(z) at z = 1/2, and 	(μ − m) is the
step function

	(μ − m) =
{

1 (μ > m),

0 (μ < m).
(2.23)

Introducing the variable θ as

μ = − cos θ , (2.24)

1 The overall constant of the integral (2.16) and the factor coming from the change of variable μ → √
λμ

from Eq. (2.16) to Eq. (2.17) are also subleading in the gs expansion, and we simply ignore them as well.
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one can easily show that ∂μJ (μ) is expanded as

∂μJ (μ) = 2
√

λ

π

[
1

2
(θ − sin θ cos θ)

+
∞∑

n=1

(−1)nB2n(1/2)

(2n)!
(

4π2

λ

)n( 1

sin θ

∂

∂θ

)2n−1

sin θ

]
, (2.25)

from which the expansion of J (μ) is found to be

J (μ) =
∫

dθ sin θ ∂μJ (μ)

= 2
√

λ

π

[
sin3 θ

3
− 1

2
(θ − sin θ cos θ) cos θ

+
∞∑

n=1

(−1)nB2n(1/2)

(2n)!
(

4π2

λ

)n( 1

sin θ

∂

∂θ

)2n−2

sin θ

]
. (2.26)

Finally, solving the saddle point equation (2.20) order by order in 1/λ expansion, and plugging
the solution μ∗ into (2.19), we arrive at our main result (2.10). In this way, we can compute the
1/λ expansion of WAk up to any desired order.

3. Comparison with the exact result

Let us compare our result (2.10) with the exact result of antisymmetric Wilson loops at finite N and
k found in Ref. [16].

It is found in Ref. [16] that the generating function of WAk , Eq. (2.11), is exactly written as a
characteristic polynomial of the N × N matrix A,

N∑
k=0

ekμWAk = det(1 + eμA), (3.1)

where the matrix element Ai,j is given by the generalized Laguerre polynomial

Ai,j = Lj−i
i−1(−πgs), (i, j = 1, . . . , N ). (3.2)

From expression (3.1), one can extract the exact value of the Wilson loop VEV WAk at arbitrary
values of N , k , and gs.

In Fig. 1, we show the plot of log WAk as a function of k/N for N = 300 andλ = 100, corresponding
to the value of string coupling gs = λ/4πN = 1/12π . The blue dots are the exact values obtained
from Eq. (3.1) while the red dots are the plot of our result (2.10) for the leading term (Fig. 1(a)) and
the leading + next-to-leading terms (Fig. 1(b)). One can clearly see that the leading + next-to-leading
terms in Fig. 1(b) exhibit nice agreement with the exact result (3.1). Interestingly, the leading term
alone is not enough to reproduce the behavior of the exact result (3.1), and the next-to-leading
correction has a rather large contribution for this choice of parameters N = 300, λ = 100. Note that
the leading and the next-to-leading terms in Eq. (2.10) are of order λ3/2/gs and λ1/2/gs, respectively,
while the higher-order terms have negative powers of λ; hence in the large λ limit higher-order
corrections in Eq. (2.10) are suppressed. Indeed we have checked that the inclusion of higher-order
corrections does not change the plot significantly, and the exact result (3.1) is well approximated
already at the next-to-leading order. We have performed similar numerical checks for various values
of N and λ (N , λ � 1) and find good agreement for all cases.
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(a) (b)

Fig. 1. This is the plot of log WAk as a function of k/N , for N = 300, λ = 100. The blue dots are the exact
values obtained from Eq. (3.1), while the red dots represent the behavior of (a) the leading term only and
(b) the leading + next-to-leading terms in the expansion (2.10). One can clearly see that the inclusion of the
next-to-leading correction improves the matching.

4. Conclusion

We have computed the 1/λ expansion (or the α′-expansion of bulk type IIB string theory) of the
Wilson loop VEV in the antisymmetric representation using the Sommerfeld expansion of the Fermi
distribution function. It would be very interesting to reproduce this result from the computation of
α′-correction of the D5-brane action in the AdS5 × S5 background.

There are many things to be studied further. It is important to develop a method to compute both
the 1/λ expansion and the gs expansion systematically. In particular, it would be interesting to find
the 1/λ expansion of the Wilson loop VEV in the symmetric representation by the low-temperature
expansion of the Bose distribution. However, the integrand of the μ-integral might have a singularity
corresponding to the onset of Bose–Einstein condensation. It would be interesting to understand
the analytic structure of the integrand in the case of symmetric representation (see Ref. [8] for a
discussion).

Also, it is interesting to understand the convergence property of the expansion. For the 1/2 BPS
Wilson loop in the fundamental representation, it is observed that the α′-expansion is not Borel

summable [2], reflecting the fact that there are corrections of order exp
(
−√

λ
)

, which is nonper-

turbative in α′. It would be very interesting to understand the Borel summability of α′-corrections at
fixed gs for Wilson loops in various representations. On the other hand, the gs expansion of 1/2 BPS
Wilson loops with fixed λ seems to have a finite radius of convergence,2 which is consistent with
the absence of Yang–Mills instanton corrections to Wilson loop VEV in N = 4 SYM [3]. We hope
that the study of Wilson loops in various representations will provide us with precious information
on the nonperturbative structure of string theory.

Finally, we would like to emphasize the importance of our findings. It was reported in Ref. [12]
that there is a discrepancy between the computation on the field theory side and the string theory side
of the one-loop correction in 1/N (2.9) (see [19] for the current status of this problem).3 However,

2 For theWilson loop in the fundamental representation, we have checked the convergence of the gs expansion
numerically using the result in Ref. [18].

3 Actually, understanding the origin of this discrepancy was one of the motivations for this work.
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before settling the issue of this problem of one-loop correction, we have to compute the leading term
at large N as a function of λ, including all 1/λ corrections (2.10). After having found the leading
term (2.10), one can try to study the one-loop correction in 1/N , either numerically or analytically,
by subtracting the leading term from the exact result (3.1). In this computation, it is important to
subtract the subleading terms in 1/λ since they are rather large and cannot be neglected, as we saw
in Sect. 3. We believe that our result (2.10) is an important first step to resolving the issue of the
one-loop discrepancy. We leave the study of the one-loop correction as an interesting future problem.

Acknowledgements

The work of K.O. was supported in part by JSPS KAKENHI Grant Number 16K05316, and JSPS
Japan–Hungary and Japan–Russia bilateral joint research projects.

Funding

Open Access funding: SCOAP3.

References
[1] J. K. Erickson, G. W. Semenoff, and K. Zarembo, Nucl. Phys. B 582, 155 (2000)

[arXiv:hep-th/0003055] [Search INSPIRE].
[2] N. Drukker and D. J. Gross, J. Math. Phys. 42, 2896 (2001) [arXiv:hep-th/0010274] [Search INSPIRE].
[3] V. Pestun, Commun. Math. Phys. 313, 71 (2012) [arXiv:0712.2824 [hep-th]] [Search INSPIRE].
[4] J. M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998) [arXiv:hep-th/9803002] [Search INSPIRE].
[5] S. J. Rey and J. T. Yee, Eur. Phys. J. C 22, 379 (2001) [arXiv:hep-th/9803001] [Search INSPIRE].
[6] N. Drukker and B. Fiol, J. High Energy Phys. 0502, 010 (2005) [arXiv:hep-th/0501109] [Search

INSPIRE].
[7] S. Yamaguchi, J. High Energy Phys. 0605, 037 (2006) [arXiv:hep-th/0603208] [Search INSPIRE].
[8] S. A. Hartnoll and S. P. Kumar, J. High Energy Phys. 0608, 026 (2006) [arXiv:hep-th/0605027]

[Search INSPIRE].
[9] K. Okuyama and G. W. Semenoff, J. High Energy Phys. 0606, 057 (2006) [arXiv:hep-th/0604209]

[Search INSPIRE].
[10] J. Gomis and F. Passerini, J. High Energy Phys. 0608, 074 (2006) [arXiv:hep-th/0604007] [Search

INSPIRE].
[11] J. Gomis and F. Passerini, J. High Energy Phys. 0701, 097 (2007) [arXiv:hep-th/0612022] [Search

INSPIRE].
[12] A. Faraggi, J. T. Liu, L. A. Pando Zayas, and G. Zhang, Phys. Lett. B 740, 218 (2015)

[arXiv:1409.3187 [hep-th]] [Search INSPIRE].
[13] E. I. Buchbinder and A. A. Tseytlin, Phys. Rev. D 89, 126008 (2014) [arXiv:1404.4952 [hep-th]]

[Search INSPIRE].
[14] A. Faraggi, W. Mueck, and L. A. Pando Zayas, Phys. Rev. D 85, 106015 (2012) [arXiv:1112.5028

[hep-th]] [Search INSPIRE].
[15] A. Faraggi and L. A. Pando Zayas, J. High Energy Phys. 1105, 018 (2011) [arXiv:1101.5145 [hep-th]]

[Search INSPIRE].
[16] B. Fiol and G. Torrents, J. High Energy Phys. 1401, 020 (2014) [arXiv:1311.2058 [hep-th]] [Search

INSPIRE].
[17] M. Marino and P. Putrov, J. Stat. Mech. 1203, P03001 (2012) [arXiv:1110.4066 [hep-th]] [Search

INSPIRE].
[18] K. Okuyama, J. High Energy Phys. 0609, 007 (2006) [arXiv:hep-th/0607131] [Search INSPIRE].
[19] K. Zarembo, arXiv:1608.02963 [hep-th] [Search INSPIRE].

7/7

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2016/11/113B05/2624096 by guest on 21 August 2022

http://dx.doi.org/10.1016/S0550-3213(00)00300-X
http://www.arxiv.org/abs/hep-th/0003055
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0003055
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0003055
http://dx.doi.org/10.1063/1.1372177
http://www.arxiv.org/abs/hep-th/0010274
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0010274
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0010274
http://dx.doi.org/10.1007/s00220-012-1485-0
http://www.arxiv.org/abs/0712.2824
http://www.inspirehep.net/search?p=find+EPRINT+0712.2824
http://www.inspirehep.net/search?p=find+EPRINT+0712.2824
http://dx.doi.org/10.1103/PhysRevLett.80.4859
http://www.arxiv.org/abs/hep-th/9803002
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9803002
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9803002
http://dx.doi.org/10.1007/s100520100799
http://www.arxiv.org/abs/hep-th/9803001
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9803001
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/9803001
http://dx.doi.org/10.1088/1126-6708/2005/02/010
http://www.arxiv.org/abs/hep-th/0501109
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0501109
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0501109
http://dx.doi.org/10.1088/1126-6708/2006/05/037
http://www.arxiv.org/abs/hep-th/0603208
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0603208
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0603208
http://dx.doi.org/10.1088/1126-6708/2006/08/026
http://www.arxiv.org/abs/hep-th/0605027
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0605027
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0605027
http://dx.doi.org/10.1088/1126-6708/2006/06/057
http://www.arxiv.org/abs/hep-th/0604209
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0604209
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0604209
http://dx.doi.org/10.1088/1126-6708/2006/08/074
http://www.arxiv.org/abs/hep-th/0604007
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0604007
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0604007
http://dx.doi.org/10.1088/1126-6708/2007/01/097
http://www.arxiv.org/abs/hep-th/0612022
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0612022
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0612022
http://dx.doi.org/10.1016/j.physletb.2014.11.060
http://www.arxiv.org/abs/1409.3187
http://www.inspirehep.net/search?p=find+EPRINT+1409.3187
http://www.inspirehep.net/search?p=find+EPRINT+1409.3187
http://dx.doi.org/10.1103/PhysRevD.89.126008
http://www.arxiv.org/abs/1404.4952
http://www.inspirehep.net/search?p=find+EPRINT+1404.4952
http://www.inspirehep.net/search?p=find+EPRINT+1404.4952
http://dx.doi.org/10.1103/PhysRevD.85.106015
http://www.arxiv.org/abs/1112.5028
http://www.inspirehep.net/search?p=find+EPRINT+1112.5028
http://www.inspirehep.net/search?p=find+EPRINT+1112.5028
http://dx.doi.org/10.1007/JHEP05(2011)018
http://www.arxiv.org/abs/1101.5145
http://www.inspirehep.net/search?p=find+EPRINT+1101.5145
http://www.inspirehep.net/search?p=find+EPRINT+1101.5145
http://dx.doi.org/10.1007/JHEP01(2014)020
http://www.arxiv.org/abs/1311.2058
http://www.inspirehep.net/search?p=find+EPRINT+1311.2058
http://www.inspirehep.net/search?p=find+EPRINT+1311.2058
http://dx.doi.org/10.1088/1742-5468/2012/03/P03001
http://www.arxiv.org/abs/1110.4066
http://www.inspirehep.net/search?p=find+EPRINT+1110.4066
http://www.inspirehep.net/search?p=find+EPRINT+1110.4066
http://dx.doi.org/10.1088/1126-6708/2006/09/007
http://www.arxiv.org/abs/hep-th/0607131
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0607131
http://www.inspirehep.net/search?p=find+EPRINT+hep-th/0607131
http://www.arxiv.org/abs/1608.02963
http://www.inspirehep.net/search?p=find+EPRINT+1608.02963
http://www.inspirehep.net/search?p=find+EPRINT+1608.02963

