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ABSTRACT In this paper, a face spoofing detection method called the Fully Convolutional Network with

Domain Adaptation and Lossless Size Adaptation (FCN-DA-LSA) is proposed. As its name suggests,

the FCN-DA-LSA includes a lossless size adaptation preprocessor followed by an FCN based pixel-level

classifier embedded with a domain adaptation layer. The FCN local classifier makes full use of the basic

properties of face spoof distortion namely ubiquitous and repetitive. The domain adaptation (DA) layer

improves generalization across different domains. The lossless size adaptation (LSA) preserves the high-

frequent spoof clues caused by the face recapture process. The ablation study shows that both DA and

the LSA are necessary for high-accuracy face spoofing detection. The FCN-LSA obtains competitive

performance among the state-of-the-art methods. With the help of small-sample external data in the target

domain (2/50, 2/50, and 1/20 subjects for CASIA-FASD, Replay-Attack, and OULU-NPU respectively), the

FCN-DA-LSA further improves the performance and outperforms the existing methods.

INDEX TERMS Domain adaptation, face anti-spoofing, face liveness detection, face presentation attack

detection, face spoofing detection, forensics, machine learning, pattern recognition.

I. INTRODUCTION

Faces can be captured conveniently by digital cameras, web

cameras, smart phones, etc. The convenience is a double-

edged sword. It makes faces become not only the most widely

used but also the most untrustful biometric modality.With the

fast development of face recognition, the modern face recog-

nition algorithms [1]–[3], especially deep networks trained

on large scale datasets, can surpass human performance, but

they may be easily fooled by face spoofing attacks which can

be easily launched by inexperienced attackers. The security of

the face modality become an important and practical problem

in these days. Attackers use photos, video records, 3D plastic

masks, etc. to mimic genuine faces, fool the face recogni-

tion algorithm and get the unauthorized system access. On

the defending side, the face spoofing detection, a.k.a. face

anti-spoofing, face liveness detection, or face presentation

attack detection, is an auxiliary task for securing the face
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verification systems. It classifies the detected faces into two

types: the genuine and the spoof. The spoof faces with spoof

clues including Moiré patterns, certain Local Binary Pat-

terns (LBPs), and compression/color degradation, etc. will be

rejected by the face spoofing detector before the face recog-

nition. Recently, deep learning-based face spoofing detection

has become popular. For example, some Convolutional Neu-

ral Networks (CNNs) [4]–[6] and some Fully Convolutional

Networks (FCNs) [7]–[10] are used for process static frames.

Some Recurrent Neural networks (RNNs) [7] are used for

aggregating all the frames in the video. These methods learn

the image features as well as the classifiers at the same time

in an end-to-end scheme. This work is focused on improving

the performance of the FCN-based face spoofing detection

methods. The main contributions of this work include

• A new face spoofing detection method called the

Fully Convolutional Network with Domain Adaptation

and Lossless Size Adaptation (FCN-DA-LSA) is pro-

posed. Its improvements are twofold. First, the domain

adaptation layer is designed and embedded in the FCN
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to improve generalization across different domains. Sec-

ond, the lossless size adaptation preprocessor preserves

the high-frequent spoof clues caused by the face recap-

ture process.

• The proposed method is empirically verified in the abla-

tion study and compared with the existing methods. The

ablation study compares four related methods includ-

ing FCN, FCN-LSA, FCN-DA, and FCN-DA-LSA

under the cross-dataset protocols on CASIA-FASD and

Replay-Attack dataset. It shows that both domain adap-

tation and the lossless size adaptation are necessary for

high-accuracy face spoofing detection. The proposed

methods are further compared with 21 existing methods

including DeepPixBiS [9], Auxiliary Supervision [7],

Noise Model [11], STASN [12], Colour Texture [13],

[14], IQM+IQA+SVM [15]–[17], KSA+DA+SVM

[18], MMD-AAE [19], and MADDoG [20] under both

the cross-dataset protocols and the standard protocols

of OULU-NPU. The FCN-LSA obtains competitive per-

formance among the state-of-the-art methods. With the

help of small-sample external training data in the target

domain, the FCN-DA-LSA further improves the perfor-

mance and outperforms the existing methods.

The rest of the paper is organized as follows. Section II

reviews the related work. In Section III, the main method

is proposed. The experiments are conducted, and results

are analyzed in Section IV. Finally, Section V gives the

conclusions.

II. RELATED WORK

A. FACE SPOOFING ATTACKS

Attackers use photos, video records, 3D plastic masks, etc.

to mimic specific genuine faces and fool the face recogni-

tion algorithms. These behaviors are all defined as the face

spoofing attacks. The face spoofing attacks can be generally

divided into three categories, namely photo attacks, video

attacks, and 3D mask attacks [21], [22]:

• In photo attacks, attackers take a photo of an authentic

person, or download a photo from social networking

sites, then display the photo on various screens, or print

it on a piece of paper. Without face spoofing detectors,

face recognition methods usually cannot differentiate

the genuine faces and the spoof faces on screens/papers.

Photo attacks are very easy to commit.

• To detect photo attacks, some face spoofing detectors

use the dynamic clues such as eye blinking. Video

attacks can pass such detectors. In video attacks, attack-

ers record a video of an authentic person, or download a

video from social networking sites, and then replay the

video on various screens. Video attacks are more real

than photo attacks. They are also not difficult to commit.

• 3D mask attacks are the advanced version of 2D

photo/video attacks. In 3D mask attacks, attackers make

a plastics mask or a silicon mask of an authentic person.

FIGURE 1. The face spoofing attacks and face spoofing detection task.

This kind of attacks is less prevalent as compared to the

photo attacks and the video attacks since it is relatively

difficult to make amask. 3Dmask attacks are usually not

included in common face spoofing detection datasets.

Fig. 1 demonstrated the detection of the above mentioned

as well as the recognition of a genuine face. The face spoofing

detection is a kind of firewall to keep the face recognition

system away from these attacks.

B. GENERAL FACE SPOOFING DETECTION

As shown in Fig. 2, the face spoofing detection meth-

ods are generally divided into two groups by their input

types, namely static images or dynamic videos). The

methods for images can be further divided into four cate-

gories, namely the frequency domain feature-based methods,

spatial domain feature-based methods, deep feature-based

methods, and transfer learning feature-based methods. For

photo/video attacks, faces are first captured by camera,

then printed/displayed on papers/screens are recaptured by

another camera. This process is a special cases of the image

recapture which has a wide variety of defending methods.

The mathematic model of the images recapturing from an

LCD screen was investigated by Muammar et al. [23]. Since

the RGB sub-pixels are used to compose the color pixels on

LCD screens, and the discrete pixels are recaptured by the

discrete Bayer color filter mosaic in the camera, the recap-

turing process generates a special kind of textural artifacts,

namely Moiré patterns. Similar to the LCD screen, the Moiré

patterns can also be found on printed materials in which the

halftone technique is used. Just as the name suggests, Moiré

patterns is a periodic noise in the image. In the frequency

domain, the Discrete Fourier Transform (DFT) is a useful tool

for analyzingMoiré patterns [24], [25]. In the spatial domain,

image features including LBP and Scale-Invariant Feature

Transform (SIFT) can also be used [26], [27]. Another useful

clue in the recaptured faces is the degradation of color and

image quality, which can be represented by the color texture

histogram features [14], the color moments feature [25], and

image quality assessment features [16], [17]. Recently, the

CNNs [4]–[6] and the FCNs [7]–[10] were used for directly
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FIGURE 2. The overview of the existing face spoofing detection methods according to the target media and the extracted features.

learning the classifier as well as the features for face spoofing

detection task. These deep learning-based methods will be

reviewed in Section II-C–II-D in detail. Finally, some stud-

ies [18], [28], [29] were focused on the adaptation between

different domains in which the input devices (cameras) and

the output devices (screens/printers) are different.

As shown in Fig. 2, the methods for videos can be

divided into three categories namely spatial-temporal feature-

based methods, geometry feature-based methods, and deep

feature-based methods. A straightforward way of detecting

the spoofing artifacts in videos is devised by extending the

2D spatial domain features into 3D spatial-temporal features.

De Freitas Pereira et al. [30] used LBP on Three Orthogonal

Planes (LBP-TOP) features to detect face spoofing attacks.

In a similar fashion, most histogram-based 2D features

can be extended to their 3D counterparts (e.g., HOG-TOP,

BSIF-TOP, LPQ-TOP, LDP-TOP). The spatial-temporal fea-

tures are extracted in the same manner of the spatial feature.

Besides, optical flow is a useful tool to extract motion in a

video [31]–[33]. Yin et al. [34] investigated the optical flow

to find the motion clues of face spoofing. Pinto et al. [35]

proposed a face spoofing detection method based on a low-

level motion feature and a mid-level visual codebook feature.

De Marsico et al. [36] detected the facial landmarks and

exploited geometric invariants for detecting replay attacks.

Liu et al. [7] used the RNN to aggregate the features and depth

maps predicted from single frames.

C. CNN-BASED FACE SPOOFING DETECTION

CNNs have become popular in many computer vision areas.

Using CNNs to classify the cropped faces into genuine and

spoof classes is a straightforward way. Menotti et al. [4]

use meta-parameter search methods to find suitable CNN

architectures for iris, face, and fingerprint spoofing detec-

tion, respectively. To limit the number of meta-parameters

to be searched, their CNN only has three convolutional lay-

ers. Rehman et al. [5] trained an 11-layer VGG network

with its two derivations for face anti-spoofing in an end-to-

end scheme. Nagpal et al. [6] explored deeper ResNet and

GoogLeNet for training the face spoof detector. In the above

work, decision of the CNNs are based on the whole face

crops. These CNNs are referred to as global classifiers and

the whole face crops is called global supervision.

Since the spoof clues, including Moiré patterns, certain

LBP patterns, and compression/color degradation, are ubiq-

uitous and repetitive (see Section II-D). Feeding the whole

face into CNNs is inefficient. Instead, we can feed small

face patches to the classifier. For example, Atoum et al. [8]

designed a patch-based CNN to detect the spoof patterns in

extracted face patches of 96 × 96 pixels. This is the basic

version of the local supervision which is the key to the high

performance. But we think the basic one is inefficient since

the pixels outside the small patches are wasted. In the next

section, the local supervised FCN-based face spoofing detec-

tion methods will be reviewed. They can avoid the problem

of data inefficiency.

D. FCN-BASED FACE SPOOFING DETECTION

The spoof distortion is a kind of high-frequency weak signal

added to the clean face image. Based on the case study

of Jourabloo et al. [11], there are two basic properties of

spoof distortion namely ubiquitous and repetitive. First, the

ubiquitous property makes the distortion exists everywhere in

the spatial domain. Second, the repetitive property makes the

distortion be a spatial repetition of certain regular patterns.

Thus, it is sensible to use FCNs to model the mapping from

the local patches to the local labels. The local labels located

in the same face form a map of all ones or zeros. For example,

George et al. [9] and Sun et al. [10] give a general theoretical

analysis to demonstrate that the local labels are more suitable

than the global labels for face spoofing detection. Pixel-level

local ternary labels are employed to train the FCN which

achieves state-of-the-art performance. Besides, Liu et al. [7]

and Atoum et al. [8] use depth map as the auxiliary labels

to train their FCN. The depth map is similar to the map of

local labels. It also enjoys the same benefits. The FCN-based

face spoofing detection methods are generally superior to the

CNN-based ones since they make full use of the basic proper-

ties of ubiquitous and repetitive. But the current FCN-based

methods still have two limitations. First, since the input size
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of the network is fixed, the face crops are resized from arbi-

trary size to fixed size in the preprocessing step. The image

resizing will reduce the intensity of Moiré patterns in the

high-frequency band and make the subsequent classification

hard. Second, the FCN-based method cannot eliminate the

domain shift which is an unsolved problem and promising

research direction. Based on our previous FCN-based study

[10], we are going to proposed a new method called Fully

Convolutional Network with Domain Adaptation and Loss-

less Size Adaptation (FCN-DA-LSA).

E. DOMAIN ADAPTATION-BASED FACE

SPOOFING DETECTION

Domain adaptation is a kind of transfer learning which

handles multi-distribution data. It transfers knowledge from

the source domain to the target domain. Most of them are

based on deep feature manipulation. Some methods learn

domain-invariant features by minimizing the distribution of

feature across domains [37]–[41], maximizing the differ-

ence between the private features and the shared features

[42], and learning adversarially against the domain classifier

[43], [44]. The domain-invariant features makes whole clas-

sification invariant to domain changes. Some other methods

[45], [46] concatenate the data/features in different domains,

and encourage the subsequent classifiers to recognize the

domains.

Since there are various cameras, lighting conditions, attack

types, etc. across different datasets, face spoofing detec-

tion performance degrades when the training and testing

datasets are different. Domain adaptation is an promising

research direction in face spoofing detection. Yang et al. [29]

learn person-specific face spoofing detectors for each subject

domain. Li et al. [18] introduce the Maximum Mean Dis-

crepancy (MMD) loss to face spoofing detection. Shao et al.

[20] learn a generalized feature space by adversarial learning.

The proposed domain adaptation layer is an extension of [46]

which has never been used in face spoofing detection nor deep

learning. Our augmented feature is a combination of shared

features, source private features, and target private features.

And the following neural network weights is a combination

of shared weights, source private weights, and target private

weights. The idea of modeling the private feature is similar to

[42], [45].

F. TRADITIONAL FRUSTRATINGLY EASY

DOMAIN ADAPTATION

The frustratingly easy domain adaptation [46] is closely

related to this work. The original method is devised for

traditional linear and kernel models. And we extend it to

deep learning. Let’s review the original linear and kernel

methods first. To adapt the source domain Ds and the tar-

get domain Dt , the original algorithm augments the input

x ∈ Ds ∪ Dt ∈ R
C by

F(x) =

{

[x, x,0] x ∈ Ds

[x,0, x] x ∈ Dt
(1)

where [·, ·, ·] is the vector concatenation operator,

0 = (0, 0, · · · , 0) ∈ R
C and F(x) ∈ R

3C . The augmentation

has a kernelized version. Let φ be the mapping from the input

space to the Reproducing Kernel Hilbert Space (RKHS),

and k(x, x′) = 〈φ(x), φ(x′)〉 be the kernel function. The

augmentation in the RKHS (perhaps infinite-dimensional) is

F(x) =

{

[φ(x), φ(x),0] x ∈ Ds

[φ(x),0, φ(x)] x ∈ Dt
(2)

Since the RKHS is expanded, the new kernel function after

augmentation is

K (x, x′) =

{

2k(x, x′) same domain

k(x, x′) different domains
(3)

III. METHODOLOGY

As its name suggests, the FCN-DA-LSA includes a loss-

less size adaptation preprocessor followed by an FCN-based

pixel-level classifier embedded with a domain adaptation

layer. The FCN-DA-LSA is divided into three individual parts

of FCN, DA, and LSA which will be respectively elaborated

in the following three subsections.

A. PIXEL-LEVEL CLASSIFICATION FCN BACKBONE

The depth estimating subnetwork proposed in [7] and the

pixel-level classification network proposed in [10] share the

same main architecture. To avoid create deep network arbi-

trarily and focus the attention on our contribution, we adopted

this network as our backbone. Similar to themost widely used

CNNs, the input of the FCN is a 256× 256× 3 RGB image.

The network contains thirteen 3 × 3 convolutional layers

and three max-pooling layers. While the layer goes deeper,

the spatial size of the feature maps gradually decreases to

32×32 pixels. Two short connections are placed in themiddle

of the network to encourage the network to learn features

in different scales. The final convolutional layer is followed

by sigmoid normalization rather than fully connected layers.

The total number of the trainable parameters is 2.2M which

is much smaller than most traditional CNNs with fully con-

nected layers. The depth and convolutional kernel size of the

network are close to the ones in 19-layered VGG [47]. The

face spoofing detection does not need a very deep network

since it is a low-level image task rather than a high-level

semantic task. The two skip connections in the FCN provide

extra flexibility for determining the network depth.

Pixel-wise cross-entropy loss is applied for optimization:

Ŷ = fcnθ (X ), (4)

l(X , y, θ)=−

W
∑

i=1

H
∑

j=1

(

y log(Ŷi,j)+(1−y) log(1−Ŷi,j)
)

, (5)

θ̂ = argmin
θ

∑

X ,y∈train set

l(X , y, θ), (6)

where X is the image, y ∈ {0, 1} is the ground-truth label,

and fcnθ is the FCN with parameter θ . The loss l compares
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the W × H FCN’s prediction map with the ground-truth

label y pixel by pixel. Finally, θ̂ is learned by minimizing the

empirical total loss over the training set.

The main difference between the FCN and the common

CNN is the prediction and the supervision labels. In face

spoofing detection task, the decision can be sufficiently made

when only a small local region is given, since the spoof

clues, including Moiré patterns, certain LBP patterns, and

compression/color degradation, etc. exist in every patch. The

FCN is suitable for such tasks. But, this property does not

generally exist in all the image classification tasks. For exam-

ple, we cannot determine the identity from only a small local

region of the face. To this end, the CNN is suitable for the

face recognition task. We believe that the FCN is applicable

for the face spoofing detection task for two reasons. First,

the pixel-level local supervision is stronger than the image-

level global supervision during training. It introduces similar

effects of patch-based learning in an efficient way. Second,

the decisions at different locations can be fused to further

improve the accuracy during testing.

B. DEEP FEATURE AUGMENTATION-BASED DOMAIN

ADAPTATION FOR DEEP NEURAL NETWORKS

In Fig. 3-(a), the domain adaptation layer embedded in

the network is a deep-neural-networks-oriented extension

of the frustratingly easy domain adaptation [46]. Based on

the definitions of the original linear and kernel versions in

Section II-F, it is straightforward to further derive a deep

neural network version of the above approach. For fully con-

nected neural networks, Let f be the non-linear mapping from

the input x to a deep feature f (x) ∈ R
C , the augmentation in

the deep feature space is

F(x) =

{

[f (x), f (x),0] x ∈ Ds

[f (x),0, f (x)] x ∈ Dt
(7)

For CNNs/FCNs, let f (x) ∈ R
W×H×C be C deep feature

maps of W × H . F(x) ∈ R
W×H×3C is obtained by extend-

ing the [·, ·, ·] to the deep feature map concatenation which

keep the spatial structure. The Eq. (1), Eq. (2), and Eq. (7)

show the linear, kernelized, and the deep neural network

version of the deep feature augmentation-based domain adap-

tation, respectively. They can be applied to a K -domain prob-

lem by simply expanding the deep feature space to R
(K+1)C

where C is the space dimension before expansion.

The domain adaptation layer can be defined based on

Eq. (7). It can be inserted to any sequential deep neural

networks to augment the deep features/feature maps by three

times. Since the domain adaptation layer is derivable and

parameterless, the whole network can be trained in an end-

to-end scheme. It is worth noting that, unlike some domain

adaptation methods [37]–[41] which learn domain-invariant

features, our augmented feature is a combination of shared

features, source private features, and target private features.

And the following fully connected/convolutional weights is a

combination of shared weights, source private weights, and

TABLE 1. The configuration details of the FCN.

target private weights. In Fig. 3-(a), the domain adaptation

layer is inserted in the middle of the network since we need

a stack of following layers to learn a non-linear classifier.

The network extracts the convolutional features in multi-

resolutions, expands and adapts the features, classifies the

features pixel by pixel, finally fuses the decisions spatially.

C. LOSSLESS SIZE ADAPTATION

In photo and video attacks, spoofing clues (such as Moiré

patterns, certain LBP patterns, and compression/color degra-

dation) exist in the face area. As demonstrate in Fig. 3-(b),

using face detector to crop faces from various backgrounds

and resizing the cropped faces to fixed spatial size are com-

mon practices. Since image resizing will reduce the intensity

of Moiré patterns in the high-frequency band and make the

subsequent classification hard, Atoum et al. [8] use unre-

sized face patches as the input of their patch-based CNN

to avoid resizing to the original images and maintain the

spoof patterns. But they only use ten random patches dur-

ing training and testing which is not enough for a high-

performance classification. Motivated by Atoum et al. [8],

we use more implicit patches in an efficient fully convo-

lutional scheme which fully utilizes the basic properties of

ubiquitous and repetitive. Since the pixel-level activations

are shared between adjacent sliding windows, thousands of

implicit patches can be computed with acceptable time and

space costs. To further preserve the original image scale, we

design an lossless size adaptation preprocessor for the FCN.

As demonstrate in Fig. 3-(c), after the face is detected and

cropped, if the image size (e.g. 200 × 200 pixels) is smaller

than the FCN’s input size (e.g. 256 × 256 pixels), the image

must be extended first. The extension on both x/y-axis will

be repeated until the width/height is greater than or equal
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FIGURE 3. The pipeline of the proposed method.

to the FCN’s input width/height. Since the face images are

non-stationary signals in nature, the common zero-padding

and periodic extension will bring discontinuous pixels in the

image boundaries. To avoid additional sharp edges and keep

the extended image smooth, we suggest using the symmetric

extension which is wildly used in LBP-based face analysis

[48], [49]. Then, a sub-image is randomly cropped to meet

the exact size of the FCN’s input. N color images in different

sizes are spatially normalized to W × H pixels and concate-

nated into a tensor of N × H × W × 3 which is compatible

with modern deep-learning frameworks based on mini-batch

gradient descent and parallel computing. The extension and

the subsequent cropping is based on the assumption of the

two basic properties of ubiquitous and repetitive which is

discussed in Section II-D. Such a four-step (detection, crop-

ping, extension, and cropping) size adaptation preprocessor

can keep the FCN’s input in its original scale, and preserve

all the original high-frequency band information in it. It is

essential for the performance of the whole system.

There are two alternative size adaptation schemes for test-

ing the images of arbitrary spatial sizes. The first one is

to use the same image sampling method during training:

cropping one or more sub-images on the extended images,

then fusing the decisions of all the crops to get a convincing

result. For example, the Alex-Net [50] extracts four cor-

ner crops and one center crop. For high-dimensional faces

(e.g. some 850 × 720 faces in the CASIA-FASD dataset

[51]) the above scheme ignores useful information outside

the crops. For low-dimensional faces (e.g. some 81 × 81

faces in the CASIA-FASD dataset) the extension makes it

redundant and inefficient. The second size adaptation scheme

is to directly feed the images of arbitrary spatial sizes into

the convolutional layers, and adjust the spatial sizes of the

activation maps correspondingly. Although the spatial size of

the final activation map, i.e. the probabilities, changes every

time, its average is still a good estimation of the whole face.

The latter one will get better performance since it equally

aggregates decisions at each location. Our experiment shows
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TABLE 2. The amount of samples in the CASIA-FASD, Replay-Attack, and OULU-NPU datasets.

the advantage of the proposed lossless size adaptation prepro-

cessor both in training and testing.

IV. EXPERIMENTS

A. DATASETS AND THE PREPROCESSING

Three datasets are used in the experiment, namely CASIA

Face Anti-Spoofing Dataset (CASIA-FASD) [51], the Idiap

Replay-Attack dataset [52], and theOULU-NPUdataset [53].

The CASIA-FASD dataset has 600 videos of 50 subjects. The

Replay-Attack dataset has 1,300 videos of 50 subjects. And

the OULU-NPU dataset has 4,950 videos of 55 subjects. The

length of the video is about 6.5 seconds × 25 frame per sec-

ond on average. A high-performance HOG+SVM based face

detector [54] is used to extract a genuine face or a spoof face

from each frame. A small portion (≈ 0.28%) of the frames

are rejected by the face detector. Most of them are spoof

ones. This will have negligible effects on the video-level per-

formance. Finally, we obtain 26,824/112,500/130,785 gen-

uine faces and 83,961/233,331/529,942 spoof faces from the

CASIA-FASD/Replay-Attack/OULU-NPU dataset, respec-

tively. The sizes of the datasets before/after the face detection

are listed in detail in Table 2. Some examples of the prepro-

cessed faces are illustrated in Fig. 4.

B. TRAINING AND TESTING PROTOCOLS

Let C and R be the abbreviation of the CASIA-FASD dataset

and the Replay-Attack dataset, respectively. A short notation

of ‘‘training set → testing set’’ is used to denote the training

and testing protocols. For example, C → R and R → C

are the commonly used cross-dataset protocols between

CASIA-FASD and Replay-Attack. There are 50 subjects in

each dataset. We choose 2/50 subjects from each dataset. The

subsets are briefly notated by the initial letterC or R followed

by a numeric subscript denoting the number of subjects in it.

The subsets of the two subjects, namely C2 and R2, are used

as the small-sample training data in the target domain. More

exactly, the domain adaptationmethod uses theC+R2 → R48
and R+ C2 → C48 protocols which are close to the C → R

and R → C protocols. Protocols of C → R48, R2 → R48,

C + R2 → R48, R → C48, C2 → C48, and R + C2 → C48

will be used in the ablation studies in Section IV-C. Protocols

of C → R and R → C will be used for comparing with the

existing methods in Section IV-D.

FIGURE 4. The examples of the preprocessed faces.

The OULU-NPU dataset provide four standard proto-

cols. The protocol I, II, and III are cross-backgrounds,

cross-Presentation-Attack-instrument (cross-PAI), and cross-

camera protocols, respectively. By combining these proto-

cols, we get the most challenging protocol IV which is very

close to a cross-dataset protocol. The four standard protocols

are followed for comparing with the existing methods in

Section IV-D. 1/20 subjects are redivided from the testing set

for training the domain adaptation models.

During training, the mini-batch Stochastic Gradient

Descent (SGD) with a learning rate of 0.001 and a mini-

batch size of 10 is employed to train the networks. According

to Table 2, The ratio between the number of genuine and

spoof faces is about 1:3, 1:2, and 1:4 in CASIA-FASD,

Replay-Attack, and OULU-NPU, respectively. The class
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TABLE 3. The HTER (%) of ablation study on CAISA-FASD dataset and Replay-Attack dataset.

TABLE 4. The HTER (%) of cross-dataset evaluation on CAISA-FASD
dataset and Replay-Attack dataset without domain-adaptation.

distributions of the datasets are imbalanced. To handle

this problem, a light-weight random sampling method is

employed [55]. More specifically, the training set is shuf-

fled once before training and then divided into groups of

genuine and spoof. In each iteration, a mini-batch is com-

posed of five positive and five negative samples which

are sequentially drawn from the genuine and spoof groups,

respectively. The training is stopped after 400,000 itera-

tions. During testing, we fix the trainable parameters and

predict the frame-level probabilities first. By following the

recent studies [7], [9], [11], [56], the frame-level proba-

bilities predicted by neural networks are temporally aver-

aged to get the better video-level decisions. Finally, the Half

Total Error Rate (HTER) are evaluated and reported for the

CASIA-FASD and Replay-Attack. The Average Classifica-

tion Error Rate (ACER), Attack Presentation Classification

Error Rate (APCER), and Bonafide Presentation Classifica-

tion Error Rate (BPCER) are evaluated and reported for the

OULU-NPU.

In Section IV-C, an ablation study about four related meth-

ods including FCN, FCN-LSA, FCN-DA, and FCN-DA-LSA

will be conducted under the cross-dataset protocol. And

then in Section IV-D, the proposed method will be fur-

ther compared with 21 existing methods including Deep-

PixBiS [9], Auxiliary Supervision [7], Noise Model [11],

STASN [12], Colour Texture [13], [14], IQM+IQA+SVM

[15]–[17], KSA+DA+SVM [18], MMD-AAE [19], and

MADDoG [20] under the cross-dataset protocols and the

standard protocols of OULU-NPU.

TABLE 5. The HTER (%) of cross-dataset evaluation on CAISA-FASD
dataset and Replay-Attack dataset with domain-adaptation.

C. ABLATION STUDY ABOUT FOUR RELATED NETWORKS

Since the Lossless Size Adaptation (LSA) works in the pre-

processing stage and the Domain Adaptation (DA) works in

the inferring stage, the DA and the LSA are two independent

improvements based on the FCN. In this ablation study, four

related networks, namely FCN, FCN-LSA, FCN-DA, and

FCN-DA-LSA, are created and compared under the protocols

of C → R48, R2 → R48, C + R2 → R48, R → C48,

C2 → C48, and R + C2 → C48 to show the advantage

of the DA and the LSA. The results in Table 3 are divided

into two horizontal groups in which the testing sets are the

same (left group: R48, right group: C48). The results can be

compared.

Analysis of the DA layer: in the left group of Table 3, FCN

with/without LSA obtains HTERs of 26.52%/28.37% under

the cross-dataset protocol C → R48, and obtains HTERs of

13.14%/13.46% under the intra-dataset protocol R2 → R48.

A new hybrid protocol C+R2 → R48 is defined by merging

the training set of the above two protocols. Usually, the testing

error will decrease once the training data are augmented. But

if the domain of the augmented training data is different,

the domain shift will poison the classifier and increase the

testing error by ≈ 2.85% (2nd column vs. 3rd column). The

domain adaptation is designed to make full use of the cross-

domain data. While the domain adaptation is introduced, the

testing error will decrease by ≈ 1.84% (2nd column vs. 3rd

column). With the help of small-sample external training

data in the target domain, the two domain adaptation-based

network obtained the best results. The similar result can also

be observed in the right group of Table 3 by switching the

training and testing data. The domain adaptation maintains

the dominant role in this ablation study.
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TABLE 6. The performance under four standard protocols of OULU-NPU
dataset.

Analysis of the LSA preprocessor: as listed in Table 3,

the FCN-LSA/FCN-DA-LSA generally outperform the

FCN/FCN-DA for each protocol. The LSA can further

decrease the HTER by ≈ 0.62% (1st row vs. 2nd row, 3rd

row vs. 4th row). It slightly improves the performance by

keeping the original patterns in the preprocessing step, and

plays a secondary role in this ablation study.

By combining the above two factors of DA and LSA, the

FCN-DA-LSA is the best method for face spoofing detection

in this ablation study. As listed in Table 3, with the help of

small-sample external training data in the target domain, the

FCN-DA-LSA obtains HTER of 11.22% and 21.92% under

two hybrid protocols, respectively. The margins between the

performances of the basic FCN and the improved FCN-DA-

LSA is about 5.67% (1st row vs. 4th row). This is mainly

achieved by making full use of the small-sample external

training data.

D. COMPARISON WITH THE EXISTING METHODS

The proposed FCN-LSA and FCN-DA-LSA are further

compared with 21 existing methods including DeepPixBiS

[9], Auxiliary Supervision [7], Noise Model [11], STASN

[12], Colour Texture [13], [14], IQM+IQA+SVM [15]–[17],

KSA+DA+SVM [18], MMD-AAE [19], and MADDoG

[20] under the cross-dataset protocols on CASIA-FASD and

Replay-Attack and the four standard OULU-NPU protocols.

Two conclusions can be made according to the results listed

in Table 4, 5 and 6. First, the basic FCN-LSA achieves

competitive performance among the compared ones. It wins

the 1/13 and 3/13 places under the two cross-dataset protocols

in Table 4. It also wins the 1/10, 4/10, 3/10, and 3/10 places

under the four OULU-NPUprotocols in Table 6. Second, with

the help of small-sample external training data in the target

domain, the FCN-DA-LSA outperforms three domain adap-

tation based face spoofing detection methods. It is currently

the best under all six protocols in Table 5 and 6. The domain

adaptation method extremely improves the performance. If

the domain shift is large enough, e.g. under the two cross-

dataset protocols and OULU-NPU protocol IV, the domain

adaptation almost halve the errors (from 27.31% to 11.23%

in protocol C → R, from 37.33% to 21.83% in protocol R →

C , and from 9.45% to 5.56% in OULU-NPU protocol IV).

The FCN-LSA and FCN-DA-LSA generalize well across

different domains.

V. CONCLUSION

The FCN-DA-LSA is proposed for face spoofing detection in

this paper. Its improvements are twofold. First, the Domain

Adaptation method makes full use of the small-sample exter-

nal training data in the target domain. Second, the Lossless

Size Adaptation method preserves the high-frequent spoof

clues caused by the face recapture process. The proposed

method is empirically verified in the ablation study and also

compared with the existing methods. The FCN-LSA obtains

competitive performance among the state-of-the-art methods.

With the help of small-sample external training data in the

target domain, the FCN-DA-LSA further improves the per-

formance and outperforms the existing methods.

The proposed deep feature augmentation is a kind of

supervised few-shot domain adaptation. It can be employed

when the target domain is already known. The requirement

of external data is its major limitation. For example, in the

cross-PAI or the cross-camera experiments, performance can

be greatly improved (almost halve the error in the experiment)

once fewer data (only one subjects in the experiment) in

the target domain are given. In the future, we can explore

some unsupervised few-shot domain adaptation methods or

some zero-shot learning methods to relieve the external data

limitation.
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