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Abstract: Superhydrophobic surfaces wit ordered hierarchical microstructures were prepared on
copper substrates by combining thermal transfer and etching. The surface morphology, wettability,
chemical composition and corrosion resistance were, respectively, characterized via scanning electron
microscopy, a three-dimensional confocal microscope, contact angle measurement, X-ray diffraction,
X-ray photoelectron spectroscopy, electrokinetic polarization and electrochemical impedance spec-
troscopy techniques. The contact angle of the obtained superhydrophobic surface is up to 153.3◦

with a reduction in the corrosion current density from 3.9105 × 10−5 A/cm2 to 3.5421 × 10−6 A/cm2

via the electrokinetic polarization curve test, and the maximum capacitive arc radius of the super-
hydrophobic surface is about 2.5 × 104 Ω cm2 via the electrochemical impedance spectroscopy test,
which is two orders of magnitude higher than that of bare copper substrate, and the maximum mod-
ulus value |Z| is also two orders of magnitude higher than that of bare copper substrate, indicating
that the superhydrophobic surface has better corrosion resistance. This method provides an effective
etching approach toward preparing superhydrophobic surfaces with ordered microstructures.

Keywords: copper; superhydrophobicity; thermal transfer; etching; ordered microstructure

1. Introduction

With excellent electrical and thermal conductivity and great mechanical properties,
copper and its alloys are used frequently in fields like aerospace, power electronics, ma-
rine, transportation and the energy industry [1,2]. However, due to their high surface
energy, copper and its alloys can be easily corroded in the air, which greatly limits their
service lives and practical applications. Therefore, the inhibition of copper corrosion
has become an important research direction. In recent years, superhydrophobic surfaces
fabricated via different surface modification techniques have been applied as a solution
to the problem of metal surface corrosion, receiving extensive research attention [3–5].
Inspired by the “lotus leaf effect” [6–8], superhydrophobic surfaces refer to solid sur-
faces with a high water contact angle (CA), particularly larger than 150◦, and a rolling
angle (SA) lower than 10◦. Superhydrophobic surfaces have applications in corrosion
resistance [9–12], self-cleaning [13,14], anti-icing [15,16], anti-bacterial uses [17,18] and
oil–water separation [19,20] due to their unique wetting properties. The preparation meth-
ods of superhydrophobic surfaces generally involve two steps: surface roughening and
physical deposition or chemical grafting of low-surface-energy substances on the rough
surface [21,22]. Superhydrophobic copper surfaces have been successfully obtained via dif-
ferent methods, including etching [22,23], electrochemical deposition [24–26], the template
method [27] and the mechanical approach [28,29]. After etching, Xia et al. [30] modified the
ammonia alkaline etching solution using low-surface-energy substances and produced a
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superhydrophobic surface with a grass-like structure and a maximum CA of 163.7◦. Its cor-
rosion current density was reduced by two orders of magnitude from 5.212 × 10−3 A/cm2

for bare copper to 5.101 × 10−5 A/cm2 for the superhydrophobic surface. Liu et al. [31]
obtained a rough surface with a hierarchical structure after etching copper using hy-
drochloric acid and hydrogen peroxide. Followed by the modification of stearic acid, the
surface had a CA of 170◦. The corrosion current density of the superhydrophobic copper
foil (2.9072 × 10−6 A/cm2) was substantially lower than that of the untreated copper foil
(1.081 × 10−4 A/cm2), and the corrosion potential shifted from −0.311 V for the bare Cu
foil to −0.311 V to −0.232 V for the superhydrophobic foil, indicating that the corrosion
resistance had improved. Wan et al. [32] combined chemical etching in ammonium solution
with hydrothermal treatment to prepare a copper superhydrophobic surface, which had
excellent corrosion resistance and a CA up to 157.7◦, and the corrosion current density was
reduced from 4.318 × 10−6 A/cm2 for bare copper to 8.018 × 10−9 A/cm2. Through etching
and electrochemical deposition, Yu et al. [33] obtained a superhydrophobic surface with a
maximum CA of 159.5◦, whose corrosion current density was reduced from 29.55 µA/cm2

of bare copper to 3.072 µA/cm2, and the corrosion inhibition rate reached 89.6%, which
improved the corrosion resistance. Due to the advantages of low cost, simple process and
no need for any complex instruments, chemical etching has been widely studied to prepare
superhydrophobic surfaces and improve the corrosion performance of copper substrates.
However, there are few reports on the preparation of controllable ordered microstructure
superhydrophobic surfaces using the conventional chemical etching approach.

At present, ordered microstructure superhydrophobic surfaces are mostly obtained
through mechanical processing or laser engraving methods, but these methods require
specialized equipment and high costs. In this paper, a method combining thermal transfer
and chemical etching is proposed to prepare ordered hierarchical bilayer microstructure
superhydrophobic surfaces with excellent corrosion resistance and self-cleaning capabilities
on copper substrates. The shape, size and spacing of ordered microstructures can be
controlled by changing parameters such as the shape, size and spacing of the transfer
protection patterns during the preparation process, which can provide a reference for the
preparation and engineering application of the ordered microstructure superhydrophobic
surfaces of other metals.

2. Materials and Methods
2.1. Materials

The H65 brass plates used were purchased from Dongguan Guangfeng Metal Materials
Co., Ltd. (Dongguan, China), and the chemical composition of H65 brass is shown in Table 1.
The brass was cut into 30 mm × 20 mm × 1.5 mm sheets via laser processing. The samples
were cut into sheets of 30 mm × 20 mm × 1.5 mm via laser processing. Anhydrous ferric
chloride (FeCl3, AR) and stearic acid (C18H36O2, AR) were obtained from Xilong Science
Co., Ltd. (Shantou, China). Concentrated hydrochloric acid (hydrochloric acid, 36%) was
supplied by Changzhou Xuhong Chemical Co Ltd. (Changzhou, China). Anhydrous
ethanol was purchased from Fuyu Fine Chemical Company Limited (Tianjin, China).

Table 1. Chemical composition of H65 brass (China GB/T 5231-2012).

Cu Fe Pb Total Impurity Zn

63.0~68.5 ≤0.07 ≤0.09 ≤0.45 residuals

2.2. Preparation Method
2.2.1. Thermal Transfer

The H65 copper sheets were polished with 400, 800, 1500 and 2000 grit sandpaper
to remove oxides and dirt from the surface, and an H65 brass bare sample was obtained.
Altium Designer (20.0.1) software was applied for the design of drawings of four different
dimensions. The drawings were printed on PCB transfer paper using a laser printer
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(Laser Jet MFP M226dw, Shanghai, China), and then transferred onto the polished copper
sheets using a thermal transfer machine (DM2100B, Zhengzhou, China) at 150 ◦C. Figure 1
shows the flow chart of the preparation process. The diameter ‘a’ of the black dots on the
copper substrate was 150 µm, the spacing ‘b’ was 150 µm, 200 µm, 250 µm, and 300 µm,
respectively, and the samples obtained via subsequent chemical treatment of the above four
sizes of copper sheets with good thermal transfer were defined as ES150, ES200, ES250, and
ES300, respectively.
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Figure 1. Flow chart of H65 copper surface modification process.

2.2.2. Chemical Treatment

(1) Preparation of chemical etching solution: To prevent the hydrolysis of ferric chlo-
ride, first put an appropriate amount of hydrochloric acid (5 mL/L) into water and stir
well to make the solution PH less than 2. Weigh an appropriate amount of anhydrous
ferric chloride powder according to the proportion of 200 g/L, and pour it into the above
solution, stirring continuously until all of the ferric chloride has been dissolved.

(2) Place the heat-transferred copper sheet face-up into the ferric chloride solution and
etch it for 45 min, stirring the etching solution continuously and slowly during the etching
process. After etching, remove and rinse it with anhydrous ethanol, and then perform
ultrasonic cleaning in anhydrous ethanol for 5 min to remove the ink on the surface.

(3) Soak the cleaned sample in 0.1 mol/L stearic acid solution for 5 h and then remove
it, rinse it with plenty of anhydrous ethanol and air dry it for use.

2.3. Sample Characterization

Water contact angle testing was carried out using a contact angle measuring in-
strument (SDC-200, Xin Ding Precision Instrument Co., Ltd., Dongguan, China). The
sample morphology was examined using a field emission scanning electron microscope
(SEM, KYKY-EM6900, CSCI, Beijing, China) and a three-dimensional confocal microscope
(microXAM-3D, Milpitas, CA, USA). The phase structure was determined using the X-ray
diffraction method (XRD, Smartlab9, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS,
Escalab 250Xi, Waltham, MA, USA) was also used for the analysis of the elements, valence
states and functional groups of the samples. Corrosion testing was performed using a
standard three-electrode system via an electrochemical workstation (CS2350H, Wuhan
CorrTest Instruments Ltd., Wuhan, China). The test was carried out at room temperature
using a 3.5 wt.% NaCl solution as the electrolyte with an exposed area of 1 cm2. The
corrosion potential (Ecorr) and corrosion current density (Icorr) were obtained using the
Tafel extrapolation method with the aid of CView software. The polarization resistance
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(Rp, Ω cm2) was calculated with an initial potential of −0.5 V and a terminal potential of
1 V. The potential interval for data collection was 0.5 mV. Electrochemical impedance spec-
troscopy (EIS) tests were performed at the open circuit potential (OCP) with a sinusoidal
voltage amplitude of 5 mV and a frequency range of 100 kHz to 0.01 Hz.

3. Results and Discussion
3.1. SEM Images

Figure 2 shows the SEM images of the surfaces of bare H65 copper samples and
samples ES150, ES200, ES250 and ES300, which are the H65 copper samples of different
dimensional parameters etched by FeCl3 solution after thermal transfer. It can be observed
that the surface of the bare copper sample after fine polishing is relatively flat at low
magnification (Figure 2b), but tiny pits can be observed in some places, while obvious
stripe scratches can be observed on the surface at high magnification (Figure 2a,c), which
were caused by sandpaper polishing. The surfaces of samples ES150, ES200, ES250 and
ES300 showed an orderly distribution of columnar microstructures (Figure 2e,h,k,n). These
columnar protrusions can vary in shape depending on the printing accuracy of the draw-
ings, transfer quality and etching, but the overall distribution is neat and orderly and the
size of the center distance of the protrusions can be controlled. Figure 2d,g,j,m show the
high-magnification SEM images of the columnar protrusion surface. It can be observed
that there are irregular microstructures distributed on the stripe scratches on the surface
of the protrusions, and etching marks appear on the local positions of the protective layer,
which are related to the graphic printing accuracy and thermal transfer printing quality of
the protective layer during the preparation process. In the high-magnification SEM images
(Figure 2f,i,l,o), many irregular sand-like microstructures can be seen on the surface of the
etched part, not protected by the layer of carbon powder. At the same time, the morphology
of the sandy microstructures on the etched part of the samples with different transfer sizes
is similar, indicating that different transfer sizes have little effect on the morphology of the
surface microstructures. The three-dimensional profile of the surface structure was tested
using a three-dimensional confocal microscope (Figure 3a). It can also be observed that
ordered microstructures appeared on the surface of the etched sample, and the height of
these ordered microstructures was about 60 µm (Figure 3b). The two tests show that the
ordered columnar protrusions, the microstructure of the protrusion surface and the sandy
microstructures, produced simultaneously via the thermal transfer treatment and etching
with FeCl3 etching solution, together form a bilayer microstructure surface.

3.2. Surface Wetting Performance

Figure 4 shows the contact angles (CAs) and sliding angles (SAs) of samples ES150,
ES200, ES250, and ES300 with different etching spacing modified with 0.1 mol/L stearic
acid. To ensure the accuracy of the test, each sample was tested at five different positions
and the average of five sets of data was taken. The CA of the untreated bare H65 copper
surface was 98.1◦. The contact angle of the bare H65 copper after stearic acid modification
(the sample H65-SA) was 108.2◦, which is about 10◦ higher due to the reduction in surface
energy of the brass surface by stearic acid. It can be observed that the contact angle of
the surface of the sample after thermal transfer treatment and etching with FeCl3 etching
solution, as well as modification using stearic acid, is substantially increased, with a
maximum contact angle of 153.3◦ and a rolling angle of 4.9◦, and the modified sample
has good hydrophobicity and low adhesion, which is in line with the Cassie model [34].
According to Equation (1) proposed by Cassie et al. [31,33], to obtain the CA of the droplet
for the liquid–solid three-phase composite interface,

cosθr = f1cosθ − f2 (1)

where f1 is the ratio of the liquid–solid contact area to total area, f2 is the ratio of liquid–gas
contact area to total area, f1 + f2 = 1 and θr and θ are the CAs of the hydrophobic copper
surface and the bare H65 copper substrate, respectively. If one substitutes θ = 98.1◦ and
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θr = 153.3◦ for the CA of sample ES200 into Equation (1), then f1 = 0.1241 and f2 = 0.8759.
The contact area between the liquid droplets and solid surfaces is about 12%, while the
remaining 88% is the contact area between the liquid droplets and air. This result further
confirms that the superhydrophobicity of the surface is caused by its unique microstructure.
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3.3. Surface Composition

The chemical composition of the bare (cleaned) and stearic acid (SA)-modified sam-
ples was analyzed via X-ray diffraction. Figure 5 shows the XRD patterns of copper in the
cleaned and SA-modified samples. Both samples show distinct diffraction peaks at 42.82◦,
49.75◦and 72.59◦, consistent with the standard Cu diffraction spectra (PDF#65-9026), corre-
sponding to copper crystallographic indices of (111), (200) and (220). The diffraction peaks
at 43.76◦ and 87.57◦ of the H65 bare sample are consistent with the diffraction spectra of
Cu0.64Zn0.36 (PDF#50-1333), corresponding to the crystallographic indices of (111) and (311),
respectively, and the diffraction peaks at 79.98◦ originate from Cu1.05Zn0.95, corresponding
to the crystallographic index of (211), indicating that H65 brass Zn is mainly present in the
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form of Cu0.64Zn0.36 and Cu1.05Zn0.95 alloy phases. Compared to the cleaned bare sample,
the SA-modified sample has an enhanced peak at 43.76◦. Two additional peaks appear
at 50.87◦and 74.49◦, and a diffraction peak weakens at 87.57◦. All are from Cu0.64Zn0.36
(PDF#50-1333), and the corresponding crystallographic indices are (111), (200), (220), and
(311), respectively. By comparing these two samples, diffraction peaks at 63.61◦and 79.98◦

are both enhanced. Both are from Cu1.05Zn0.95, with crystallographic indices of (200) and
(211), respectively. The XRD patterns of the SA-modified samples and the bare brass sam-
ples show that the samples modified with stearic acid after the thermal transfer and etching
treatment do not introduce new metal elements, which is consistent with the principle of
etching preparation. The diffraction peaks of Cu0.64Zn0.36 and Cu1.05Zn0.95 do not intensify
because the surface of the bare H65 copper sample is not completely exposed due to the
presence of the oxide layer. However, after etching, the brass surface is completely exposed,
which enhances the diffraction peaks of Cu0.64Zn0.36 and Cu1.05Zn0.95.
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XPS analysis was carried out to further examine the chemical composition of the
treated sample. The full scan spectra are displayed in Figure 6 and various elements like
C, O, Cu and Zn are detected. The fine scan spectra are shown in Figure 7a–d, where C1s,
O1s, Cu2p and Zn2p are present. The C1s include three characteristic peaks, as seen in
Figure 7a. The first has a binding energy of 284.8 ev, corresponding to a carbon–carbon
(C-C) single bond, the second is a carbon–oxygen (C-O-C) single bond at 285.2 ev and the
third is a characteristic peak of the carboxyl group (O-C=O) at 288.8 ev. The existence of
the carboxyl group can be associated with the presence of stearic acid, which may be due
to stearic acid (C18H36O2) or stearate (CH3(CH2)16COO−), and the weak intensity of its
peak indicates that the content is not high. Figure 7b shows three characteristic peaks for
O1s, with 529.5 ev for the oxide of Zn, 531.4 ev for the oxide of Cu and 532.4 ev for the
C-O single bond. Figure 7c shows the fine spectrum of element Cu2p, where the binding
energy of the Cu2p3/2 peak and Cu2p1/2 peak is, respectively, 932.1 ev and 951.8 ev, in the
oxidation state of copper. In the Zn2p fine spectrum, as shown in Figure 7d, the Zn2p3/2
peak and Zn2p1/2 peak appear at 1022.1 ev and 1045.4 ev, respectively, exhibiting the
oxidation state of zinc. Cu2+ and Zn2+ appear not only because of their oxides, but also
because of copper stearate (CH3(CH2)16COO2Cu) and zinc stearate (CH3(CH2)16COO2Zn)
compounds, which, due to their low content, are not observed as significant diffraction
peaks in XRD analysis due to the penetration of X-rays in XRD tests.

Based on the above analysis, it is known that because FeCl3 has strong oxidation, the
following chemical reactions occur during etching to obtain the bilayer micro–nanostructure
shown in Figure 2 in Section 3.1, and the presence of copper stearate and zinc stearate also
reduce the surface energy to obtain superhydrophobicity.

Cu + 2FeCl3 = 2FeCl2 + CuCl2

Zn + 2FeCl3 = 2FeCl2 + ZnCl2
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3.4. Surface Anti-Corrosion Performance

Figure 8 shows the dynamic potential polarization curves of bare copper sample and
ES150, ES200, ES250, and ES300 samples modified with stearic acid in 3.5 wt.% NaCl
solution. The detailed data of corrosion potential (Ecorr), corrosion current density (Icorr),
anode slope (ba) and cathode slope (bc) obtained via the Tafel extrapolation method are
shown in Table 2. The corrosion inhibition efficiency η is calculated by Equation (2) [35–37],
where I0corr is the corrosion current of the Cu substrate and Icorr is the corrosion current of
the superhydrophobic Cu sample.

η = (I0corr − Icorr)/I0corr × 100% (2)
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Table 2. Electrochemical data of polarization curves of bare copper samples and samples after surface
modification in 3.5 wt.% NaCl solution.

Sample Ecorr (V vs. Ag/AgCl) Icorr (A/cm2 ) ba (mV dec.−1) bc (mV dec.−1) η (%)

Bare Cu −0.3173 3.9105 × 10−5 425.26 −526.27 —
ES150 −0.3060 8.2692 × 10−6 160 −115.19 78.85
ES200 −0.2923 3.5421 × 10−6 205.66 −110.36 90.94
ES250 −0.2845 6.266 × 10−6 155.21 −133.82 83.98
ES300 −0.3136 6.8877 × 10−6 136.52 −76.69 82.39

According to electrochemical theory, materials with lower positive values of Icorr and
Ecorr have better corrosion resistance [35]. The test data in Table 2 show that the corrosion
performance of the surface-modified samples ES150, ES200, ES250 and ES300 is greatly
improved, which is the reason for the shift toward more positive values of Ecorr for the
modified samples. When the etching spacing is 200 µm, the ES200 superhydrophobic
copper sample has the lowest Icorr, which is about one order of magnitude lower than that
of the bare copper substrate, with corrosion resistance of 90.94% and the best corrosion
performance, which is mainly attributed to the larger water contact angle of the ES200
superhydrophobic sample, as described in the previous Section 3.2. The larger the contact
angle, the smaller the solid–liquid contact area, i.e., the contact area between the corrosive
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medium and the bare copper decreases, so that its corrosion current density becomes
smaller and the corrosion resistance is the best.

Electrochemical impedance spectroscopy (EIS) is also an effective method for con-
ducting anti-corrosion study and prediction. Figure 9a–c show the Nyquist plots, phase
angle plots and impedance modulus curves for bare copper and the SA-modified copper
sample after thermal transfer and etching in 3.5 wt.% NaCl solution, respectively. Fitted
data are shown as solid lines in the plots and scattering points are shown as measured
data points. The Nyquist plot for bare copper includes a capacitive loop in the high-
frequency range and a straight line (Warburg impedance) in the low-frequency range,
corresponding to the single charge transfer reaction of the Cu substrate and the diffusion
behavior in the corrosion interface, respectively [10,36,38]. The radius of capacitance in the
high-frequency range is associated with the charge transfer resistance. Generally, a larger
radius indicates better corrosion resistance [32,36,39]. As can be seen from the plots, the
capacitive radii of the experimental samples are all larger than the capacitive radius of the
samples (approximately 500 Ω cm2), and sample ES200 has the largest radius of approxi-
mately 2.5 × 104 Ω cm2, which is two orders of magnitude larger than that of the substrate
(Figure 9a). The high phase angle in the high-frequency domain of the phase angle plot
and impedance modulus curve indicates good repulsive properties. A large modulus in
the low frequency range shows that the corrosion resistance has been enhanced [9,32]. As
can be observed in Figure 9b, the phase angles of all four experimental samples are much
higher than those of the copper substrate, especially in the high-frequency region. The |Z|
values of all four experimental samples are higher than those of the copper substrate in
both the high and low frequencies, as seen in Figure 9c. Here, the equivalent circuit for
the bare copper substrate (Figure 9d) includes parallel resistors and capacitors, as well as
Warburg impedance. In this circuit, Rs and Rct represent the solution resistance and charge
transfer resistance, respectively, and CPEdl is a constant phase element that simulates a
double-layer capacitor. The equivalent circuit for the experimental sample, as seen in
Figure 9e, is used to analyze the corrosion behavior of the SA-modified copper surface after
thermal transfer and etching. In this circuit, the superhydrophobic film on the SA-modified
copper surface after thermal transfer and etching is characterized by a parallel combination
of the film constant phase element CPEf and the film resistance Rf, while the corrosion
interface is a parallel combination of the bilayer constant phase element CPEdl and the
charge transfer resistance Rct. The detailed fitted data parameters are shown in Table 3.
The experimental data show that the Rct of the copper substrate is 1647 Ω and the values of
all four experimental samples are higher than it. The sample ES200 has the largest value of
112,420 Ω, which is two orders of magnitude higher than the substrate.

Table 3. Fitting parameters of EIS results for bare copper samples and surface-modified samples in
3.5 wt.% NaCl solution.

Sample Rs (Ω cm2) Rf (Ω cm2) CPEdl (µF/cm2) CPEf (µF/cm2) Rct (Ω cm2) Zw (S cm–2 s0.5)

Bare Cu 18.92 ---- 0.64363 ---- 1647 0.61571
ES150 22.27 1049 0.51619 0.88168 23,919 ----
ES200 25.38 2946 0.52677 0.90579 112,420 ----
ES250 22.55 2091 0.56371 0.889 35,756 ----
ES300 24.32 1905 0.51605 0.89031 47,976 ----

Based on the analysis of the above data, it can be concluded that the modified brass
surface has better corrosion resistance than the bare copper substrate. Among them,
sample ES200 has the best corrosion resistance, as seen via the polarization curve and the
data regarding corrosion current, corrosion voltage, capacitive arc radius and impedance
modulus obtained from the EIS test. From the above surface wetting performance analysis
in Section 3.2, it can be obtained that due to the impact of the microstructure and the
low-surface-energy substances, sample ES200 has the largest water contact angle, which
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is up to 153.3◦. From the Cassie equation, it can be deduced that sample ES200 has the
smallest liquid–solid contact area, that is, the contact area of the corrosive liquid and the
copper substrate in the corrosive medium is the smallest. So, the sample shows the best
corrosion resistance.
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3.5. Self-Cleaning Effect

In order to test the anti-fouling properties of the surface-modified samples, the anti-
fouling properties of the ES200 superhydrophobic brass samples were tested with 370 mesh
silica powder. The silica powder was first sprinkled on the surface of the superhydrophobic
brass sample, and then the superhydrophobic copper sample was placed diagonally in a
Petri dish, as shown in Figure 10a. Figure 10b–e show the self-cleaning process by rolling
water droplets from the surface of the superhydrophobic brass. It can be seen that as the
water droplets rolled, the silica powder was adsorbed off the sample surface by the water
droplets as they rolled. As the number of water droplets increases, the silica powder can
be easily removed (Figure 10f). The results of this simple test show that the prepared
superhydrophobic brass sample has a good self-cleaning effect.
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4. Conclusions

This paper proposes a method of combining thermal transfer printing and etching to
prepare ordered hierarchical bilayer microstructures. Modified with stearic acid, a superhy-
drophobic surface was fabricated on the copper substrate. The shape, size, spacing and
other parameters of the ordered microstructure can be adjusted by the size parameters of
the transfer image. The contact angle of the copper superhydrophobic surface can reach
up to 153.3◦. The results show that the prepared superhydrophobic surface has good
anti-corrosion performance. The prepared superhydrophobic surface has good corrosion
resistance. The corrosion current density in the electrokinetic polarization curve test was
reduced from 3.9105 × 10−5 A/cm2 for bare copper to 3.5421 × 10−6 A/cm2, which is
one order of magnitude lower; the maximum radius of the capacitive arc resistance of the
superhydrophobic surface in the Nyquist plot was about 2.5 × 104 Ω cm2, which is two
orders of magnitude higher than that of the bare copper substrate, while the maximum
modulus value |Z| in the impedance diagram is also two orders of magnitude higher
than that of the bare copper substrate. In addition, the surface-modified brass surface
exhibits an excellent self-cleaning capability. As the preparation method is simple, eco-
nomical and environmentally friendly, it provides an effective way for using the chemical
etching method to prepare superhydrophobic surfaces with ordered microstructures, thus
providing reference for the engineering applications of other metals.
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