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Abstract

An experimental facility was constructed to study the corrosion of alloys in helium containing

part per million (ppm) levels of CO, CO2, CH4 and H2 as impurities, relevant to the

environment in the heat exchanger of the Very High Temperature Gas Cooled Reactor. The

system provides the capability of exposing multiple specimens in up to seven separate helium

environments, simultaneously, for durations of >1000 h and temperatures up to 1200 ◦C.

Impurity concentrations are controlled down to 1 ppm accuracy and analyzed using a

discharge ionization detector gas chromatograph. The utility and reliability of the facility in

quantitatively accounting for the masses of reactants and products involved in the oxidation of

alloy 617 at 900 ◦C and 1000 ◦C in the helium gas containing 15 ppm CO and 1.5 ppm CO2 is

confirmed by the weight-gain measurements, gas-phase analysis and post-test microstructural

analysis.
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1. Introduction

Helium gas is used as a coolant in the Very High Temperature

Gas Cooled Reactor (VHTR) and contains ppm levels of CO,

CO2, CH4, H2 and H2O as the main impurities. In this design,

the He gas with outlet temperature up to 1000 ◦C will pass

through an intermediate heat exchanger where it will transfer

heat to a secondary coolant. The viability of the VHTR concept

requires an understanding of the gas–metal reactions that will

take place between metal surfaces and impurities at these

high temperatures. The impurities react with the metallic

surfaces of the heat exchanger resulting in oxidation, oxide

reduction, carburization or decarburization depending on the

impurity concentration, temperature and alloy composition.

Oxidation consumes the metal and reduces the load-bearing

cross section of the component. Carburization leads to low-
temperature embrittlement [1] and decarburization reduces the
creep strength [2]. Thus, the assessment of the mechanisms
and rates of degradation are critical to the viability of this

concept.
Due to the emergence of the VHTR as a high-priority

advanced reactor concept, there is a growing level of interest
and activity in evaluating the corrosion and creep strength

of heat-exchanger materials in impure helium. Yet only
two other facilities exist with the capability of conducting
oxidation experiments in impure helium: the CORRALINE
facility at CEA, France [3, 4], and the impure helium loop
at Idaho National Laboratory (INL), USA [5]. Both facilities

are unique and control the impurity levels down to ∼1 ppm.
The CORRALINE facility consists of a horizontal quartz tube
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Figure 1. Schematic diagram of the controlled-impurity helium flow system. The three major sections, gas mixing section (A1 and A2),
exposure section (B), and the gas-analysis section (C1 and C2), are shaded in different colors.

reactor inserted in a high-temperature furnace and is capable

of exposing four corrosion coupons with total surface area

∼6 cm2 in two environments simultaneously [4]. The INL

facility, on the other hand, consists of concentric quartz tubes

housed in a vertical furnace and is capable of exposing multiple

samples simultaneously in one environment. Further, in this

set up provisions are made to achieve gas flow rate as high as

40 l min−1 to study the effect of flow rate [5]. Both facilities

have been validated by simple experiments and are currently

operational. However, the limitation of these facilities is that

at a given time only one or two environments can be evaluated

simultaneously. The goal of the facility at the University of

Michigan was to construct a system with high throughput in

which multiple specimens can be evaluated in multiple gas

environments simultaneously. The second goal was to control

the experimental variables such as impurity concentrations

(in ppm levels), flow rate and temperature for long exposure

duration, and to quantitatively evaluate the concentrations of

impurities in the range of 1 ppm level in both the inlet and

outlet gas streams.

The objective of this paper is to describe and demonstrate

the capabilities of the controlled-impurity helium flow system

built at the University of Michigan. The paper is divided

into the following major sections: section 2 focuses on

a description of the capabilities of the facility, section 3

documents on the reliability and repeatability of the system

and section 4 describes the dependability of the overall facility

determined via a 100 h oxidation experiment of alloy 617 in

the helium gas containing 15 ppm of CO and 1.5 ppm of CO2.

2. Description of the facility

The facility consists of three major sections: a gas mixing

section, an exposure section and a gas analysis section.

Figure 1 is a schematic of the facility in which the gas mixing

section is labeled as ‘A’, the exposure section as ‘B’ and

the analysis section as ‘C’. Figure 2 shows photographs of

these major sections of the system. The purpose of the

gas mixing section is to obtain the desired concentration of

each impurity inside the quartz tube using premixed, bottled

gases and a series of mass flow controllers. Helium with

controlled levels of impurities is then passed through the

exposure section in which the corrosion coupons in the quartz

tubes are exposed to the flowing gas mixture. A tee and a

needle valve at the furnace entrance control the flow rate of

the gas mixture through this section. The impurity levels

in the helium gas are analyzed continuously both before and

after the entry into the furnace using the discharge ionization

detector gas chromatograph (DIDGC) in the analysis section.

The experimental variables such as the flow rates of gases and

concentration levels of impurities are continuously monitored

using a personal computer (PC).
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Figure 2. Photograph of the assembled controlled-impurity helium flow system.

2.1. Gas mixing section

The gas mixing section consists of 7 premixed gas bottles (A1

in figures 1 and 2) and 18 mass-flow controllers (A2 in figures 1

and 2). To obtain the gas mixture with the target concentration

of each impurity, a certified level of one type of impurity, e.g.

100 ppm of CO, from a pre-mixed gas cylinder of helium

and a controlled amount of another impurity from a different

certified pre-mixed bottle are combined using electronic mass-

flow controllers from Omega, Inc. If required, the resulting

impurity gas mixture is diluted by mixing it with ultra-high

purity helium of 99.9999% purity. The electronic mass-flow

controller used for gas mixing has an accuracy of ±1 ml min−1

with a full scale operation range of 0–100 ml min−1, and is

capable of withstanding pressures up to 500 psig. All of the

components involved in transporting and mixing the gases

were made up of 316 stainless steel. Whenever possible,

weld fittings were used for connecting lines from different gas

bottles to avoid the in-leakage of air.

2.2. Exposure section

The exposure section consists of a horizontal, 75 cm long,

three-zone tube furnace housing seven 1.25 cm outer diameter

quartz tubes. Six out of the seven tubes are arranged along the

periphery of the process diameter in the furnace, whereas the

seventh tube is inserted in the middle. The six tubes arranged

along the periphery are attached to the premixed He gas,

thus enabling corrosion studies in six separate environments

simultaneously. The seventh tube is attached to an ultra-high

purity helium cylinder for reference. If required, this seventh

tube may also be used to expose samples in laboratory air. The

horizontal tube furnace is rated for temperatures up to 1200 ◦C

and is a split tube design, which can be opened for easy access

to the tubes. The three temperature zones of this furnace are

controlled by independent controllers with 1 ◦C resolution.

One R-type thermocouple is inserted into the middle of each

zone for temperature monitoring. The temperature of the three

zones can be tuned to obtain a uniform temperature zone of

length 15 cm, in which the temperature variation, as well as

that between tubes, is ±2 ◦C. This long uniform temperature

zone enables the exposure of multiple samples in each tube,

which can be moved from the hot zone to the cold zone at

different exposure durations. The length of the cold zone is

∼20 cm with a temperature less than 100 ◦C at a helium gas

flow rate of 100 ml min−1.

A custom-designed push rod is used to remove the

samples while maintaining an airtight seal to the tubes. The

push rod consists of a quartz rod with five hooks and an

encapsulated steel rod at the end and resides completely inside

the quartz tube. A magnet is used to manipulate the push rod.

Figures 3(a), (b) and (c) show a photograph of the push rod and

the magnet used to manipulate it. The manipulating magnet

is marked as ‘A’, the encapsulated steel rod is marked as

‘B’ and the five hooks are marked with the letters ‘C’ to

‘G’, respectively. The five-hook design of the push rod was

adopted to overcome the limitation of the small space available

for the manipulation of the push rod. The uniform hot zone,

where the corrosion coupons are exposed, lies between 30 and

45 cm from the exit of the furnace. This requires at least 45 cm

of the manipulation space beyond the furnace end so that the

corrosion coupons can be pulled out from the farthest position

in the uniform hot zone. However, the length of the cold zone

(the distance beyond the furnace end) is only 20 cm, which

is shorter than the required length of 45 cm by 25 cm. The

five-hook design in which the hooks are out of phase from

each other by 90◦ helps to overcome this limitation. When

the sample is at the farthest position from the furnace end, the

first hook (marked as ‘G’ in figure 3) is engaged in moving

the sample for ∼20 cm after which the second hook (‘D’ in

figure 3) is engaged in moving the sample for the next 20 cm.

Before the second hook can be engaged, the push rod is rotated
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(a)

(b)

(c)

Figure 3. (a) Custom-fabricated quartz push rod to move the
specimen from the hot zone to cold zone of the furnace without
breaking the seal. A is the high-strength magnet, B is the
encapsulated steel, C, D, E, F and G are five hooks used to move the
samples, (b) high magnification of the push rod showing the shape
of the hook, the manipulating magnet and encapsulated steel rod (c).

by 90◦ to disengage the first hook and engage the second hook.

If required, the third, fourth and fifth hooks are employed in a

similar manner to pull the coupons completely out in the cold

zone without having to break the seal of the system.

2.3. Gas analysis section

The third section is the gas-analysis section, consisting of the

DIDGC and the PC (figures 1 and 2). The DIDGC is used to

continuously analyze the gas mixture both before and after the

exposure section, and the PC is used to control the GC and to

record the data.

The important components in the DIDGC are the columns

(K1, K2 and K3 in figure 4) and the detector (DID in

figure 4). The columns, which are kept in a temperature-

controlled oven, separate the individual components in the gas

mixture by first adsorbing them and then later releasing them

during a controlled temperature ramp. The gas components

thus released are then transported to the detector by an inert

carrier gas where, by virtue of their characteristic ionization

energies, they are identified and quantified.

Figure 4 shows the details of the DIDGC used in the

facility. It consists of two sample loops where a total of

0.25 ml of an unknown gas mixture is retained for the analysis,

three capillary columns K1, K2, K3 that reside in an oven with

temperature control of ±0.1 ◦C and separate out the individual

components in the gas mixture, and a pulsed discharge

ionization detector (DID) which identifies and quantifies the

components of the unknown gas mixture. Two pneumatically

actuated valves (eight-port and six-port valves in figure 4)

are provided for facilitating the appropriate routing of gases

during analysis. Helium gas with total impurity <10 ppb is

used as the carrier gas. The impurity level is obtained by

additional purification of research grade helium of 99.9999%

purity through an impurity trapper (HP2, from Valco, Inc.),

which traps H2O, H2, O2, N2, NH3, CO, CO2 and CH4 from

helium.

The flow path of the carrier gas during the analysis of

an unknown gas mixture through the DIDGC is shown by

different colors in figure 4. The arrows on the diagram show

the flow direction of the gases during analysis. First the carrier

gas from the bottle is divided (‘T’ in figure 4) into two streams

(colored in blue and green). The blue stream flows through

sample loop 1, which transports the unknown gas mixture to

columns K1 and K2 via port numbers 1′ and 2′. Column K2

is a molecular sieve column where the actual separation of

H2, Ar, O2, N2 and CH4 occurs, whereas column K1 acts as

a trap which stops the unwanted hydrocarbons from going to

column K2. Column K2 cannot separate out CO2 from the

gas mixture. Another column, K3, is used to separate CO2

from the gas mixture. The green flow path shows the routing

of the carrier gas in column K3 and the arrows show its flow

direction.

Figure 5 shows a representative chromatogram obtained

from the DIDGC for a gas mixture containing 2 ppm of

CO2, H2, O2, N2, CH4 and H2 in helium. The elution of

the components from the columns was done by holding the

oven at 50◦C for the first 5 min, followed by ramping to

120 ◦C at 7 ◦C min−1 until all gases elute completely from

columns K2 and K3. Peaks 1 and 2 in this chromatogram

correspond to the unresolved gas mixture peak of the helium

matrix and other unresolved trace gases, such as Ne and heavy

hydrocarbons. As shown in figure 5(a), the first peak of interest

in this chromatogram is CO2 followed by H2, O2, N2, CH4 and

CO. The CO2 and H2 gases are eluted at the oven temperature

of 50 ◦C, whereas other gases come out during ramping of the

oven temperatures. The effect of temperature ramping results

in a rise of the baseline of the detector’s response; however,

the quantification of the gases remains unchanged as the shape

and area of the peaks above the background do not alter.
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Figure 4. Flow path of the carrier gas inside the DIDGC during analysis of an unknown gas mixture. The carrier gas from the bottle splits in
two streams at position ‘T’ and flows in the sample loops 1 (colored in blue) and 2 (colored in light green). The separation of Ar, O2, N2 and
CH4 occurs in column K2, whereas column K3 is used to separate CO2 from the unknown gas mixture.

For good repeatability of the DIDGC, it is important

to completely resolve the individual components in the gas

mixture. Figure 5 shows the separation of the CO2, H2, Ar,

O2, CH4 and CO from each other. The magnified portion of

the chromatogram near the CO2 peak and Ar/O2 peak is also

shown in figures 5(b) and (c). As is evident from the figure,

peaks 1 and CO2 are well separated from each other, but the

peaks for O2 and Ar lie very close to each other. Proper care is

taken to separate these two peaks; particular attention is paid

on maintaining the constant flow rate of the carrier gas through

the columns and the precise controlling of the oven temperature

which collectively control the elution of components from the

columns and hence their separation.

3. Characterization of the facility

The controlled-impurity flow system is designed to control

the impurity concentration in the gas stream to ∼1 ppm.

At these low concentrations of impurities it is important to

establish the repeatability and reliability of the system. The

important capabilities that should be determined are as follows:

repeatability of gas analysis through the DIDGC, the tightness

to which the concentration levels of reacting species can be

controlled in the reaction zone over a long experiment and the

adsorption or desorption of gases in an empty quartz tube at

high temperatures. Further, since high-temperature oxidation

in a dilute environment is subjected to a rapid depletion of

the reactive species in the environment [6], which might

alter the oxidation mechanism/kinetics, an experiment was

conducted to determine the minimum flow rate of the helium

gas required to avoid significant depletion of the reactants

during an exposure experiment.

3.1. Repeatability of the gas analysis

The repeatability of the gas analysis through the DIDGC was

determined for CO, CO2, H2, O2 and CH4 by analyzing the

certified gas mixture, from Matheson–Trigas, Inc., in five

Table 1. Composition of the gases used to calibrate the DIDGC.

CO2

(ppm)
H2

(ppm)
CH4

(ppm)
O2

(ppm)
CO
(ppm)

Cylinder 1 2 50.5 10.1 2 10.1
Cylinder 2 20.1 7492.8 199.8 15 3012.3

Table 2. Repeatability of the gas analysis through the DIDGC in the
low concentration range of impurities.

Gas

Certified
concentrations
(ppm)

Average and standard deviation
of five measurements by DIDGC
(ppm)

CO 10.1 9.9 ± 0.3
CO2 2.0 2.2 ± 0.1
CH4 10.1 10.1 ± 0.1
H2 50.5 48.4 ± 0.9
O2 2.0 2.7 ± 0.8

Table 3. Repeatability of gas analysis through the DIDGC in the
high concentration range of impurities.

Gas Expected concentration (ppm) Average of five runs (ppm)

CO 3012.3 2998.4 ± 4.6
CO2 20.1 20.7 ± 0.3
CH4 199.8 193.1 ± 1.8
H2 3003.2 3017.5 ± 8.0
O2 15.0 16.7 ± 1.26

separate runs. The temperature was maintained at 21 ◦C and

the flow rate of the gas mixture during analysis was set at

50 ml min−1. Table 1 shows the composition of the certified

cylinders 1 and 2 used for the analysis. The composition of

the cylinders was chosen such that the repeatability of the

DIDGC could be determined at both low (cylinder 1) and high

concentrations (cylinder 2) of gases.

Tables 2 and 3 present the results of the analysis of

the gases given in column 1. In these tables, columns 2
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(a)

(b)

(c)

Figure 5. (a) A representative chromatogram obtained for a gas
mixture containing 2 ppm of CO2, H2, O2, Ar, N2, CH4 and CO in
helium. Peaks 1 and 2 are the unresolved gas mixture peaks,
(b) portion of the chromatogram showing the peak separation
between peak 1 and CO2 and (c) portion of the chromatogram
showing the peak separation between Ar and O2.

and 3 show the certified concentration of the gases, and the

average and standard deviation of the five runs measured by

the DIDGC, respectively. The difference between the average

of the measured runs and the certified concentration represents

the DIDGC’s quantification reliability. The standard deviation

of the runs (column 3 in tables 2 and 3) represents the

repeatability of the gas analysis through the DIDGC. As is

evident from the data in table 2, at the low concentration

of impurities, the average concentration measured by the

DIDGC is close to the certified concentration demonstrating

the reliability of the DIDGC in quantifying the gases. Further,

the standard deviations of the five runs for various gases are

<1 ppm, suggesting that from a practical standpoint, the

readings from the DIDGC are reliable up to 1 ppm.

Figure 6. Plot of the percentage deviation of CO2 at the inlet of the
quartz tube over 500 h of exposure duration. The absolute deviation
of the inlet concentration is shown on the right-hand side y-axis.
The maximum deviation of concentration from the target value of
1.5 ppm was 8%, which corresponds to an absolute deviation of
0.1 ppm.

Table 3 shows the repeatability of the DIDGC at the higher

concentrations of impurities. As shown in this table, the

average concentrations of the five measurements are very close

to the certified concentration and also the standard deviation

<10 ppm showing that at the high concentrations it is reliable

up to 10 ppm.

3.2. Control of gas chemistry in the reaction zone

One of the goals of the facility is to control the inlet

impurity concentrations tightly in a long exposure duration

experiment so that the oxygen and carbon potentials in

helium (set by the impurity concentrations) can be maintained

throughout the experiment. Corrosion of alloys in impure

helium is governed by the oxygen or carbon potentials in

the environment (proportional to the CO/CO2 ratio for a

He+CO+CO2 environment). To evaluate this capability, the

deviation of the CO and CO2 concentrations from the target

value was recorded at the inlet of the reaction zone in a 500 h

long experiment. Figures 6 and 7 present the deviation of the

inlet concentrations of CO2 and CO from the target values as

a function of exposure duration. The target values in this case

were 1.5 ppm of CO2 and 1908 ppm of CO, respectively. As

shown in figure 6, the maximum deviation of CO2 at the inlet

was 0.1 ppm at the target value of 1.5 ppm, which is below the

resolution of the DIDGC. The maximum deviation of CO from

the target value of 1908 ppm was 3.5%, which corresponds to

an absolute deviation of 69 ppm (figure 7). These results

show that in long exposure duration experiments the impurity

levels in the reaction zone can be tightly controlled with a

maximum deviation of ±3.5% from the target value. The

maximum deviation of 3.5% of impurities in the reaction zone

corresponds to <10% deviation in the target oxygen or carbon

potentials over the exposure duration of 500 h, which from the

experimental point of view is acceptable.
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Figure 7. Plot of the percentage deviation of CO at the inlet of the
quartz tube over 500 h of exposure duration. The absolute deviation
of the inlet concentration is shown on the right-hand side y-axis.
The maximum deviation of concentration from the target value of
1908 ppm was 3.5%, which corresponds to an absolute deviation of
69 ppm.

Table 4. Measured concentration of CO at the inlet and outlet of the
tube at four temperatures.

Temperature
(◦C) Inlet (ppm) Outlet (ppm)

% change
from the inlet

RT 241 ± 1.6 243 ± 1.6 0.8
900 241 ± 2.1 242 ± 2.4 0.4
950 243 ± 1.8 237 ± 1.9 2.5
1000 242 ± 1.7 234 ± 2.9 3.3

3.3. Characterization of the quartz tubes

In order to verify that there was no significant adsorption

or desorption of gases from the quartz tubes, helium gas

containing 242 ppm CO and 1.5 ppm CO2 was flowed through

an empty quartz tube, and the inlet and outlet concentration of

CO at four temperatures, 20 ◦C, 900 ◦C, 950 ◦C and 1000 ◦C,

were measured. Prior to the measurements at high temperature

the tube was baked at 1050 ◦C under the nitrogen gas at a

flow rate of 90 ml min−1. Table 4 shows the average and

standard deviation of the measured CO concentration at the

inlet and outlet of the tube for each of the four temperatures.

At each temperature seven separate measurements were made.

As is evident from this table, the variation of the inlet and

outlet concentrations at the four temperatures is ∼3% which

is comparable to the repeatability of gas analysis through the

DIDGC. Thus, baking of the tube at a temperature above that

for the experiment ensures that the quartz tube neither adds

nor removes gas from the stream.

3.4. Determination of minimum flow rate to avoid starvation

A rapid depletion of the reacting species adjacent to the metal

surfaces can occur when a reactive metal surface is exposed

to a flowing gas mixture containing dilute amount of reactive

species (in ppm level) in inert gas [6]. In this case the reaction

Figure 8. Plot of percentage depletion of CO versus time at different
gas flow rates for a gas mixture consisting of 70 ppm CO and
0.7 ppm CO2 and an empty tube. Flow rate of gas in the tube in time
steps A and C was maintained at 106 ml min−1, whereas the flow
rate in the time steps B and D was maintained at 24 ml min−1 and
52 ml min−1, respectively.

becomes starved and the oxidation behavior shown by the

metal will not be the representative of the performance in the

plant. A sufficiently high flow rate of gases must be used to

avoid a significant depletion of the reacting species in the gas

mixture.

An experiment was conducted to determine the minimum

flow rate of the gas mixture required to avoid the significant

depletion of the reactants CO and CO2, which could cause

starvation of the reactant during an experiment. The onset

of starvation of reactive species inside the reaction zone

was determined by the variation in the degree of depletion

(difference in the inlet and outlet concentration) of the reacting

species with the flow rate of the gas mixture. The flow rate

at which the reactive species at the outlet is depleted by more

than 10% from the inlet level was considered to be the onset

of starvation and represents the minimum flow rate of the gas

mixture that should be maintained in the experiment [7, 8].

A helium gas chemistry of He + 70 ppm CO + 0.7 ppm

CO2 was chosen to determine the starvation limit. A total

of seven alloy 617 corrosion coupons, each with dimension

6.25 mm × 6.25 mm × 1.5 mm, were exposed at 950 ◦C

with the gas flow rate varying between 24 ml min−1 and

106 ml min−1. The surfaces of the samples were prepared

by grit 800 SiC paper. Prior to the experiment, the quartz

tubes were baked for 30 h at 1000 ◦C under nitrogen gas at a

flow rate of 90 ml min−1.

Figure 8 is a plot of the percentage depletion of CO at

the outlet as a function of the exposure duration at different

gas flow rates during the experiment. The flow rate of the gas

mixture over the specimens was changed in four successive

time steps ‘A’, ‘B’, ‘C’ and ‘D’ in figure 8. Proper care was

taken to ensure that the concentrations of CO and CO2 at the

inlet remained constant, while changing the flow rate in the

tube. In time step A, which lasted for the first 56 h, the gas
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flow rate of 106 ml min−1 was maintained over the corrosion

coupons, and then in time step B the flow rate was decreased

to 24 ml min−1 for ∼170 h. In time step C, the flow rate

was brought back to an initial flow rate of 106 ml min−1 to

replicate the behavior seen in time step A, and finally, in time

step D, a flow rate of 52 ml min−1 was maintained over the

corrosion coupons and the inlet and outlet CO concentrations

were recorded.

As shown in figure 8, during time steps A, C and D, where

the flow rate of the gas mixture was either 106 ml min−1 or

52 ml min−1, the difference in the inlet and outlet concentration

of CO was less than 10%. However, in time step B with a gas

flow rate of 24 ml min−1 the inlet and outlet concentration

levels differed by more than 10%. Based on the criterion that

the environment should not be depleted in CO by more than

10%, the flow rate in region D (52 ml min−1, corresponding to

the flow rate of 6.3 ml cm−2 surface area of the sample) was

determined to be the minimum flow rate to avoid starvation.

4. Validation of the facility

The utility of the system is its capability to determine increases

or decreases in the reacting gases between inlet and outlet, and

to integrate those values over time to obtain a quantitative

measure of the reaction products forming on the exposure

coupons. This capability was validated by comparing the

amount of the reaction gas produced or consumed with

the weight change and microstructural characterization of

the samples during the exposure of alloy 617 coupons to helium

+15 ppm of CO and 1.5 ppm of CO2 at 900 ◦C and 1000 ◦C.

4.1. System reliability for experiments in He–CO–CO2

gas at 900 ◦C and 1000 ◦C

The capability and reliability of the integrated system was

verified by comparing the weight of the gases consumed or

produced with the measured weight gain in the samples and

the post-test microstructural characterization. To accomplish

this verification, a total of five corrosion coupons of alloy

617, each of dimension 6.25 mm × 6.25 mm × 1.5 mm,

were first oxidized for 100 h at 900 ◦C and then in the

subsequent step were decarburized at 1000 ◦C for additional

100 h. The gas chemistry and flow rate used in this test was He

+15 ppm of CO + 1.6 ppm of CO2 and 5.8 l h−1, respectively.

Before the experiment was started, the system was conditioned

in the following manner: the tube was baked at 1025 ◦C

for 24 h under the nitrogen gas flowing at a rate of 90 ml

min−1, and then ultra-pure helium of 99.9999% purity was

flowed to flush out the nitrogen and oxygen from the sealed

tube. After the oxygen level dropped below the detection

limit of ∼1 ppm, the furnace was brought down to 900 ◦C,

and the CO and CO2 concentration levels of 15 ppm and 1.6

ppm, respectively, were established. The corrosion coupons,

which were initially placed in the cold zone of the tube, were

inserted inside the hot zone using the custom push rod shown in

figure 3.

After 100 h of exposure at 900 ◦C, all the samples were

pushed out of the furnace and into the cold zone. The furnace

Figure 9. Plot of the difference of CO concentration at the outlet
and inlet of the tube as a function of exposure duration. For the first
100 h the samples were exposed at 900 ◦C and for the next 100 h the
samples were exposed at 1000 ◦C.

temperature was then raised to 1000 ◦C and four out of

the five oxidized samples were returned to the hot zone of the

furnace for further exposure at 1000 ◦C for an additional 6, 16,

45 and 100 h, respectively. At the completion of the exposure

at 1000 ◦C, the samples were removed from the hot zone and

were cooled under flowing helium, followed by retrieval and

weighing on a microbalance with a resolution of 0.01 mg.

4.1.1. Weight change after exposure at 900 ◦C and 1000 ◦C.

In order to determine the reliability of the gas analysis through

the DIDGC, the measured weight gains in the samples during

the experiment were compared with the weight of the gases

consumed or produced. The increase in the weight of the

sample was measured by a microbalance with a resolution of

0.01 mg, and the weight of the gases consumed or produced

was calculated from the analysis of gases through the DIDGC.

Figures 9 and 10 present the difference in the concentration

levels of CO and CO2 at the outlet and inlet of the exposure

section at 900 ◦C and 1000 ◦C, respectively. A negative

value in figures 9 and 10 denotes a net consumption of

CO or CO2 causing the concentration level at the outlet to

be lower than that at the inlet, whereas a positive value

denotes a net production of CO or CO2 inside the reaction

zone.

For the entire 100 h exposure duration at 900 ◦C, a net

consumption of CO and CO2 occurred by their reaction with

the alloy. With the assumption that Cr is the primary reactive

element in alloy 617 which forms oxides and carbides, the

reaction of CO and CO2 with the sample increases the weight

of the sample as per the following reactions:

2Cr + 3CO2 → Cr2O3 + 3CO, (1)

27Cr + 6CO → 2Cr2O3 + Cr23C6. (2)

Reaction of CO2 increases the weight of the sample via

incorporation of oxygen in the sample in the form of Cr2O3

(equation (1)), whereas the reaction of CO increases the weight

8
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Table 5. Balance sheet between the weight gain measured by microbalance and that calculated by the gas-phase analysis using equations (3)
and (4).

Temperature,
time

Net weight of the
sample measured by
microbalance
(mg mm−2) × 10−3

Wt gain calculated from CO
consumption measured by the
DIDGC as per equation (3)
(�WCO) (mg mm−2) × 10−3

Wt gain calculated from CO2

consumption measured by the
DIDGC as per equation (4)
(�WCO2

) (mg mm−2) × 10−3

Net weight of the sample
calculated from the gas-phase
analysis (mg mm−2) × 10−3.
Net weight = initial wt +
�WCO + �WCO2

900 ◦C, 100 h 1.6 ± 0.2 1.2 0.1 1.2 + 0.1 = 1.3
1000 ◦C, 100 h 0.4 ± 0.2 −2.6 1.1 1.6 – 2.6 + 1.1 = 0.1

Figure 10. Plot of the difference of CO2 concentration at the outlet
and inlet of the tube as a function of exposure duration. For the first
100 h the samples were exposed at 900 ◦C and for the next 100 h the
samples were exposed at 1000 ◦C.

of the sample via incorporation of both carbon and oxygen in
the sample in the form of Cr2O3 and internal carbides, which
are assumed to be primarily Cr23C6 (equation (2)). Figure 11
shows the low- and high-magnification microstructures of the
sample exposed for 100 h at 900 ◦C. As is evident from
the low-magnification image, the inward diffusion of carbon
resulted in the precipitation of internal carbides along the grain
boundaries and the twin boundaries. The white carbides seen
in the microstructure are M6C carbides, whereas the black
carbides are M23C6 type of carbides (where M = Cr, Mo).
Further, the high-magnification image in figure 11 shows that
the oxygen was mainly present in the sample in the form of an
external Cr2O3 film.

The importance of tracking the changes in reactant and
product gases is that it will provide information on the reactions
occurring in the sample. So the change in reactants and
products should match those measured on the sample itself
by changes in its weight. The increase in weight of the sample
due to reaction with CO (equation (1)) and CO2 (equation (2))
was calculated from the area under the CO and CO2 curves in
figures 9 and 10 using

the weight gain due to CO consumption (�WCO)

=
ICO ×

•

V ×MCO

Vm × A
, (3)

Figure 11. Low- and high-magnification back scattered electron
(BSE) image of the sample oxidized at 900 ◦C for 100 h in He +
15 ppm CO + 1.6 ppm CO2 gas mixture. Low-magnification image
shows the formation of internal carbides along the grain boundaries.
The white carbides are M6C type of carbides, and black carbides are
M23C6 (where M is Cr, Mo) type of carbides. The
high-magnification image shows the microstructure of the sample
near the surface. An external film of Cr2O3 of thickness 0.56 μm
formed due to exposure.

the weight gain due to CO2 consumption
(

�WCO2

)

=
ICO2

×
•

V ×MO2

2 × Vm × A
, (4)

where ICO and ICO2
correspond to the area between the x-axis

and the CO (figure 9) and CO2 (figure 10) curve (in mole-h),
•

V is the flow rate of the gas mixture (in l h−1), MCO and MO2

are the molar weights of CO and O2, respectively, Vm is the

molar volume of the gas mixture (in l mol−1) (Vm =
R×T

P
, R

is the universal gas constant, T is 298 K and P is 1 atm) and

A is the surface area of the sample (in mm2). The factor 1
2

in

equation (4) indicates that only half of the oxygen contained

in CO2 is incorporated in the sample in the form of Cr2O3 (see

equation (1)).

A balance sheet describing the measured weight gain and

the calculated weight gain due to the CO and CO2 reaction

is shown in columns 2 and 4 of table 5, respectively. The

net weight gain measured by the microbalance after the 100 h

exposure at 900 ◦C was 1.6 ± 0.3 × 10−3 mg mm−2, which

is in reasonably good agreement with the calculated weight

gain of 1.3 × 10−3 mg mm−2 from the gas phase analysis.

This analysis shows that in impure helium the CO acts as

9



Meas. Sci. Technol. 20 (2009) 095708 D Kumar et al

an oxidizing and carburizing gas, whereas CO2 acts as an

oxidizing gas.

A similar mass balance for the 100 h exposure at

1000 ◦C was also performed. As shown in figure 9, in contrast

to oxidation at 900 ◦C where CO reacted with the sample,

exposure at 1000 ◦C resulted into a net production of CO inside

the reaction zone. The production of CO at 1000 ◦C has been

associated with decarburization of the sample [9, 10], whereas

the reaction of CO2 results into oxidation of the sample as per

equation (2). The production of CO will result in a weight

loss in the sample, whereas the reaction of CO2 results in a

weight gain in the sample (figure 10). Thus, the total weight

of the sample measured by the microbalance is the sum of the

weight loss due to CO production and the weight gain due to

the reaction with CO2. Table 5 shows the balance sheet for the

weight change associated with the CO and CO2 reaction and

the weight change measured by the microbalance in the sample

exposed at 1000 ◦C for 100 h. The weight loss in the sample

due to CO production was −2.6 × 10−3 mg mm−2 (calculated

using equation (3)) and the weight gain in the sample due

to CO2 reaction was 1.1 × 10−3 mg mm−2(calculated using

equation (4)), which amounts to a net weight loss of −1.5 ×

10−3 mg mm−2 in the sample. Adding this weight loss to the

total weight of the sample prior to the exposure at 1000 ◦C

(1.6 × 10−3 mg mm−2) gives a sample weight of 0.1 × 10−3

mg mm−2, which is comparable to the measured weight of the

sample of 0.4 ± 0.2 × 10−3 mg mm−2.

Thus, the good agreement between the weight of the

samples calculated through gas-phase analysis and the weight

change measured by the microbalance confirms the reliability

of the system to quantitatively account for the masses of

reactants and products involved in the oxidation reaction.

4.1.2. Metallographic analysis of the sample exposed at

900 ◦C for 100 h. To gain greater confidence in the

reliability of the facility to quantitatively account for masses of

reactants and products during the high-temperature exposure

experiment, the weight of the gases reacted/produced was

compared with the weight of the oxygen and carbon content

in the alloy from the microstructural analysis.

The weight of oxygen in the alloy can be calculated from

the total weight gain in the sample using the identity that

1 mole of CO has an oxygen weight fraction of 0.57 (16/28)

and as per equation (2), it should be present in the sample in

the form of Cr2O3. Further, 1 mole of CO2 has an oxygen

weight fraction of 0.72 (32/44), out of which only half, i.e.

0.36, is associated with Cr2O3 (equation (1)) and the other

half is associated with CO. The total weight of oxygen in the

sample after 100 h of exposure at 900 ◦C was calculated to be

0.8 × 10−3 mg mm−2 by the gas phase analysis. The weight

of oxygen in the sample was also calculated by measuring the

thickness of the Cr2O3 film formed (figure 11) according to

the following equation:

weight of oxygen contained in the Cr2O3 film

= ρCr2O3
× tCr2O3

×
3MO

MCr2O3

, (5)

where ρCr2O3
is the density of Cr2O3 (5.21 mg mm−3), tCr2O3

is the thickness of the Cr2O3 film (in mm), MO is the atomic

Table 6. Balance sheet describing the weight of oxygen in the
sample calculated by the gas-phase analysis and microstructural
analysis using equation (5).

Temperature,
time

Wt of oxygen in the
sample
(mg mm−2) × 10−3

Wt of oxygen contained in the
Cr2O3 film as per equation (5)
(mg mm−2) × 10−3

900 ◦C,
100 h

0.8 0.9 ± 0.3

weight of oxygen and MCr2O3
is the molar weight of Cr2O3 (in

mg mol−1).

The weight of oxygen associated with the Cr2O3 film

was estimated to be 0.9 ± 0.3 × 10−3 mg mm−2, which is in a

good agreement with the 0.8 × 10−3 mg mm−2 of oxygen from

reaction with CO and CO2 (table 6). Thus, the microstructural

analysis also substantiates that the facility can reliably quantify

the masses of reactants and products during oxidation.

5. Summary

A controlled environment facility was constructed for

determining the high-temperature corrosion of alloys in helium

gas containing part per million levels of CO, CO2, H2 and CH4

as impurities. The key features of the facility are as follows:

(i) capability of exposing multiple specimens in up

to seven different controlled impurity environments

simultaneously (the exposure of multiple specimens

facilitates the determination of the oxidation kinetics as a

function of helium gas chemistry);

(ii) control of experimental variables such as inlet gas

chemistry (±3.5% of the target value), flow rate (±10 ml

min−1) and temperature (1200 ± 2 ◦C) for long exposure

durations (>1000 h), which ensures the reliability of the

experiment; and

(iii) reliable gas analysis for quantifying the concentrations of

impurities in the range of 1 ppm level in both the inlet and

outlet gas streams.

A comparison between the weight gain in a nickel-base alloy

617 sample exposed at 900 ◦C and 1000 ◦C measured by

microbalance, and by the difference in the inlet and outlet

concentrations of the reactants and the products via gas-

phase analysis demonstrates the utility and reliability of the

integrated facility.
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