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Dedicated to my dear friend Mike Shub on the occasion of his 70th birthday.

Abstract. A breakthrough paper written in 1993 by Shub and Smale unveiled the relation-

ship between stable polynomials and points which minimize the discrete logarithmic energy
on the Riemann sphere (a.k.a. elliptic Fekete points). This relationship has inspired advances

in the study of both concepts, many of whose main properties are not well known yet. In this

paper I prove an equivalent formulation for the problem of elliptic Fekete points and some
consequences, including a (non-sharp) reciprocal of Shub and Smale’s result and some novel

nontrivial claims about these classical problems.

1. Introduction

1.1. Stable polynomials and elliptic Fekete points. A great deal of the work of Mike Shub
during the last decades has been devoted to an understanding of the properties of the condition
number of numerical problems. His efforts have produced many fundamental results (see for
example [22], [21] or the monograph [6]) and have inspired further advances by many authors.
One of the most fascinating outcomes of his work is the relation of the condition number of
polynomials to sets of elliptic Fekete points. Introducing this result requires some notation.

The condition number of a (complex) homogeneous polynomial

(1.1) h(z0, z1) =

N∑
k=0

akz
N−k
0 zk1 , ak ∈ C,

of degree N ≥ 1 at a projective point ζ = (ζ0, ζ1) ∈ IP(C2) was defined in [22] as

µ(h, ζ) = N1/2‖(Dh(ζ) |ζ⊥)−1‖‖h‖‖ζ‖N−1,

where Dh(ζ) |ζ⊥ is the derivative of h at ζ restricted to the orthogonal complement of ζ, ‖ζ‖ =

(|ζ0|2 + |ζ1|2)1/2 and ‖h‖ is the Bombieri norm (sometimes called Bombieri–Weyl or Kostlan
norm) of h given by

‖h‖2 =

N∑
k=0

(
N

k

)−1

|ak|2.
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If Dh(ζ) |ζ⊥ is not invertible we let µ(h, ζ) =∞. Note that µ is sometimes denoted by µproj or
µnorm but we keep the most simple notation here.

The Bombieri norm and the condition number of a degree N , one-variable polynomial f = f(z)
at some point z ∈ C are then defined by

‖f‖ = ‖h‖, µ(f, z) = µ(h, (1, z)),

where h is the homogeneous version of f , i.e.

h(z0, z) = zN0 f

(
z

z0

)
.

The condition number of a polynomial (and its extension to systems of polynomials) is of
essential importance for understanding the stability and complexity of polynomial solving, as
proved in [22] and widely studied subsequently. The following lemma (see Section 2.1 for a
proof) gives a simple formula for computing µ:

Lemma 1.1. For a degree N polynomial f and a complex point z ∈ C we have

µ(f, z) = N1/2 ‖f‖(1 + |z|2)
N
2

|f ′(z)(1 + |z|2)−Nz̄f(z)|
,

where z̄ is the complex conjugate of z (or µ(f, z) =∞ if the denominator equals 0). In particular,
if f(z) = 0 and f ′(z) 6= 0 then

µ(f, z) = N1/2 ‖f‖(1 + |z|2)
N
2 −1

|f ′(z)|
,

and µ(f, z) =∞ if z is a multiple root of f .

An (at first sight) unrelated concept is that of elliptic Fekete points; that is, N spherical
points x1, . . . , xN which maximise the product of their mutual affine distances (see for example
[15] for an introduction to the problem of distributing points on a sphere). To fix the notation,
we will consider points on the Riemann sphere S ⊆ R3 that is the sphere of radius 1/2 centered
at (0, 0, 1/2), and we will let X = (x1, . . . , xN ) ∈ SN . Maximising the product of the distances
is equivalent to minimising what is termed the (discrete) logarithmic energy

E(X) =
∑
i<j

log ‖xi − xj‖−1 = −
∑
i<j

log ‖xi − xj‖.

If we denote by dR the Riemannian distance on S when S is endowed with the metric inherited
from R3, we have

(1.2) ‖x− y‖ = sin dR(x, y), ∀x, y ∈ S.
Denoting

mN = min
X∈SN

E(X),

a given N–tuple X is called a set of elliptic Fekete points if E(X) = mN . The value of mN is not
well known for large N , but much effort has been devoted to understanding it. The first progress
in this field is sometimes attributed to a general method by Elkies (see the introduction of [12]),
but I have not found an appropriate reference. Subsequent works by Wagner [28], Rakhmanov,
Saff and Zhou [19], Dubickas [12] and Brauchart [7] have improved the bounds on mN . We
follow [8], but note that the result in that paper is for the unit sphere; we translate it here to the
Riemann sphere (which amounts to add (N2 −N) log(2)/2 to the bounds), and do the same for
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other cited results. Note also that some authors consider the energy as the sum of − log ‖xi−xj‖
for i 6= j, but we consider it just as the sum for i < j which halfs the bounds. Paying attention
to these considerations, we present the translation to our notation of the bounds in [8].

Theorem 1.2. Let CN be defined by

mN =
N2

4
− N logN

4
+ CNN.

Then

−0.4593423 . . . ≤ lim inf
N→∞

CN ≤ lim sup
N→∞

CN ≤ −0.3700708 . . .

If a global bound is wanted, one can use the following one which follows from [28]:

(1.3) mN ≥
N2

4
− N logN

4
− log(2π)

4
N.

In [8], it is conjectured that CN as defined in Theorem 1.2 does have a limit and that

lim
N→∞

CN = 2 log 2 +
1

2
log

1

3
+ 3 log

√
π

Γ(1/3)
= −0.4021788 . . .

In 1993, a remarkable paper [24] by Mike Shub and Steve Smale outlined a relationship between
stable polynomials (i.e., polynomials whose zeros all have a small – polynomial in N – value of
the condition number) and points with low energy values:

Theorem 1.3 ([24]). Let X = (x1, . . . , xN ) ∈ SN \ {(0, 0, 0)} satisfy

E(X) ≤ mN +K,

for some K ≥ 0. Let f(z) = (z−z1) · · · (z−zN ) be the monic polynomial with zeros z1, . . . , zN ∈ C
obtained from the points x1, . . . , xN by means of the North Pole stereographic projection (1.4).
Then

µ(f, zi) ≤
√
N(N + 1)eK , 1 ≤ i ≤ N.

The relation between the xi and the zi is

(1.4) xi =

(
<(zi)

1 + |zi|2
,
=(zi)

1 + |zi|2
,

1

1 + |zi|2

)
,

where <(zi) and =(zi) are respectively the real and imaginary parts of zi. Two well-known
identities which follow from the algebraic manipulation of (1.4) are

(1.5) ‖xi − xj‖ =
|zi − zj |√

(1 + |zi|2)(1 + |zj |2)
, ‖xi‖ =

1√
1 + |zi|2

.

The following result follows immediately from Theorem 1.3.

Corollary 1.4. Let c be some constant. If for every N ≥ 2 we can find an N–tuple XN such
that E(XN ) ≤ mN+c logN , then we can find a sequence of stable polynomials; that is, a sequence
of polynomials fN such that µ(fN , z) ≤ N c for every zero z of fN , for every N .

This fact motivated the inclusion of the problem of distributing points on the sphere in the
list of Smale’s problems for the twenty-first century [26]. Finding such a sequence of stable
polynomials is still an open problem, unless one is allowed to use randomisation (it has been
known since [23] that random polynomials are stable with high probability).



4 CARLOS BELTRÁN

Not much is known about the reverse to Theorem 1.3; namely, Do stable polynomials produce
low energy spherical points? But, a randomized version was proved in [2]: Random polynomials,
which are known to be stable, produce rather low values of the expected logarithmic energy.
More precisely:

Theorem 1.5 ([2]). Let f(z) =
∑N
k=0 akz

k be a random polynomial, the coefficients ak being
independent complex random variables, such that the real and imaginary parts of ak are inde-
pendent (real) Gaussian random variables centered at 0 with variance

(
N
k

)
. Then the associated

N–tuple X on the Riemann sphere given by (1.4) where z1, . . . , zN are the zeros of f have an
average value E of their discrete logarithmic energy such that

E =
N2

4
− N logN

4
− N

4
.

Another relationship between the condition number and the logarithmic energy comes from
the following formula.

Lemma 1.6. Let x1, . . . , xN , z1, . . . , zN and f be as in Theorem 1.3. Then

E(x1, . . . , xN ) =
1

2

N∑
i=1

logµ(f, zi) +
N

2
log

∏N
i=1

√
1 + |zi|2
‖f‖

− N logN

4
.

Note that the term ∏N
i=1

√
1 + |zi|2
‖f‖

in Lemma 1.6 is the quotient between the product of the Bombieri–Weyl norm of the factors of f
and the Bombieri–Weyl norm of f . This quantity is always greater than 1; see [3]. The formula
in Lemma 1.6 was first presented in [2] without a proof, so we include a short proof in Section
2.2 for completeness.

1.2. A facility location formulation. Facility location problems are an important family of
problems in operations research, and there are hundreds of publications devoted to them; see for
example [11] and references therein. Their main feature is: Given some space M (which is usually
assumed to have a metric and sometimes a measure), and given some (discrete or continuous)
distribution denoting the places where the customers live, one has to decide where in M to locate
N facilities according to some objective function.

My only experience with this field of mathematics comes from a comment by Giuseppe But-
tazzo. During the ADORT 2010 meeting in Barcelona, I was presenting the problem of well-
distributed spherical points and the main result of [2] when Giuseppe, who was in the audience,
pointed out, “This is a facility location problem”. His comment made me wonder: which of
the many ways of defining well-distributed spherical points might correspond to which location
problem? It has been known since [16] that different notions of the energy to be minimised (for
example,

∑
i<j log ‖xi − xj‖−1 as in elliptic Fekete points or

∑
i<j ‖xi − xj‖−1 as in Thomson’s

problem – see [30] for an early general review) produce different sets of points and therefore not
all of these sets can be expected to solve some particular, fixed facility location problem. Yet
Giuseppe’s comment kept dancing in my head for some time, and I finally decided that it was
too difficult a question or that it had too difficult an answer.

A few years later, Mike Shub and I were talking about the idea of using the heat equation to
describe some kind of normalized measure, beyond the condition number, of the hardness of a
numerical analysis problem. The same day we had also discussed recent progress on the problem
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of distributing spherical points and the following question arose in our conversation: what is the
best way to distribute points on a sphere in such a way that the heat is “well-distributed” if the
points are sources of heat?

It took me several weeks to realize that the answer to this last question is also an answer to
Giuseppe’s comment; stating and proving this claim and its consequences is the main aim of this
article.

Among the many different facility location problems, a frequent choice are what are called
minisum one-facility problems; that is, given some length space M with some finite measure, one
must choose some m1 ∈M such that the expected value of the distance d(m,m1) when m moves
in M is minimal. As the logarithm is an increasing function in (0,∞), one could also ask for the,
say, minilogsum problem; that is, looking for the point m1 in M such that the expected value
of log d(m,m1) is minimised. This is a similar problem to the classical minisum problem, but
different in that very short distances are heavily weighted due to the logarithm in the formula.
If we let each facility be not just a point but covering some circle of fixed radius r where no
customer can live, then our problem is to find

(1.6) m1 = argmin−
∫
{d(m,m1)≥r}

log d(m,m1) dm = argmax−
∫
{d(m,m1)≥r}

log d(m,m1)−1 dm,

where for a finite measure space X and an integrable function f : X → R we denote by

−
∫
X

f(x) dx =
1

V ol(X)

∫
X

f(x) dx

the average value of f over X.
A realistic example of interest is the problem of situating one source of heat in a two–

dimensional Riemannian manifold M . In R2, the solution of the heat equation ∆u = −δ0
(where δ0 is Dirac’s delta and ∆ is the usual Laplacian in R2) is (2π)−1 log ‖x‖−1. This is (ide-
alistically) the steady state temperature of the plane with an infinite heat source at the origin.
Neglecting the effect of the curvature in M , we may approximate the steady state temperature
at a point m ∈M by minus the logarithm of the distance to the source of heat m1. The point m1

in (1.6) is then the optimal source location in M if the average temperature is to be maximised,
once a “safety radius” r (that could correspond to the physical size of the heat source) around
the source of heat has been removed.

Let us now be more precise. Assume that N sources of heat have been placed at some points
x1, . . . , xN on the sphere S. Assume moreover that every point of the sphere is cooling at some
fixed rate λ > 0. The heat conduction equation then says that the temperature u = u(x, t), for
x ∈ S \ {x1, . . . , xN} and t ≥ 0, satisfies

(1.7) ut = ∆Su− λ,

where ∆Su is the Riemannian Laplacian of u as a function defined on S. The steady state solution
of this problem satisfies

(1.8) ∆Su = λ.

Recall from [5, Lemma 2.2] that for any i, ∆Slog ‖xi − x‖−1 = 2. Thus the function

u(x) = u(x, t) =
λ

2N

N∑
i=1

log ‖xi − x‖−1 + u0,
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u0 a constant, is one steady state solution of (1.7), but there are others. For uniqueness, we must
impose a condition to specify the limiting rate at which the heat sources raise the temperature
of the nearby points; i.e., we must impose some condition on the gradient of u. In our case, we
impose the condition that the gradient of u is essentially bounded above by the (unit) tangent
vector directed toward xi divided by the square distance to xi. We write this more precisely in
the following proposition, which will be proved in Section 3.

Proposition 1.7. Let ∇Su denote the gradient of u as a function defined on S. For x ∈ S,
let πTxS be the orthogonal projection onto the tangent space TxS to S at x. Every C2 function
u : S \ {x1, . . . , xn} → R which satisfies (1.8) and additionally satisfies

(1.9) lim sup
‖xi−x‖→0

∥∥∥∥‖xi − x‖1−ε∇Su(x)− λ

2N

πTxS(xi − x)

‖xi − x‖1+ε

∥∥∥∥ <∞, 1 ≤ i ≤ N,

for some ε ∈ (0, 1) is of the form

(1.10) u(x) = u(x, t) =
λ

2N

N∑
i=1

log ‖xi − x‖−1 + u0

for some constant u0. Namely, (1.8) and (1.9) define a function which is unique up to an additive
constant.

Remark 1.8. Note that if u satisfies (1.9) for some ε > 0 then

lim sup
‖xi−x‖→0

∥∥∥‖xi − x‖∇Su(x)− λ
2N πTxS

(
xi−x
‖xi−x‖

)∥∥∥
‖xi − x‖ε

<∞,

and as the denominator tends to 0 we conclude that so must the numerator. Thus, informally,
the meaning of (1.9) is:

∇Su(x) =
λ

2N
πTxS

(
xi − x
‖xi − x‖2

)
+ smaller terms as ‖xi − x‖ → 0.

A question that I have not explored further is whether the hypotheses (1.9) can be substituted by
some more natural assumption.

The following facility location problem arises naturally: how should N sources of heat be
located on S in such a way that the average temperature outside some safety radius r > 0
around the sources is maximal? More precisely:

Problem 1.9 (Location of heat sources to maximise average temperature). Fix r > 0. Situate
N points (sources of heat) x1, . . . , xN ∈ S in such a way that the average temperature outside a
cap of radius r around each xi is maximal, assuming a positive loss of heat which is independent
of the position. Equivalently, find x1, . . . , xN ∈ S, dR(xi, xj) ≥ 2r for i 6= j, in such a way that
the following quantity is maximised:

N∑
i=1

−
∫
{dR(x,xj)≥r ∀j}

log ‖x− xi‖−1 dx.

Remark 1.10. It can be seen (see (4.3) below) that for u given by (1.10) the average temperature
over the whole sphere S is equal to λ/4 + u0, independently of where the xi are located. The
problem becomes interesting when a small spherical cap (“safety region”) is deleted around each
heat source.
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Note also that Problem 1.9 is by nature a facility location problem: the facilities are the sources
of heat, the customers are uniformly distributed outside a given safety radius around each source,
and the objective is to enable the customers to enjoy the highest average temperature. Our main
result relates the problem of the logarithmic energy to the function in Problem 1.9.

Theorem 1.11 (Main). Let X = (x1, . . . , xN ) ∈ SN a configuration of distinct points and let
δ ∈ (0, 1) be such that

(1.11) dR(xi, xj) ≥ 2 arcsin

√
δ

N
∀ i 6= j.

Let

Bi =

{
x ∈ S : dR(x, xi) ≤ arcsin

√
δ

N

}
, B0 =

(
∪Ni=1Bi

)c
.

Thus B0 = B0(δ) is the complement of the union of the (Riemannian) balls of radius arcsin
√
δ/N

centered at the xi. Then

(1.12) E(X) = C1(N, δ) +
N

2
−
∫
x∈∪Bj

N∑
i=1

log ‖x− xi‖−1 dx

and

(1.13) E(X) = C2(N, δ)− 1− δ
2δ

N−
∫
x∈B0

N∑
i=1

log ‖x− xi‖−1 dx

where

C1(N, δ) = −N
2

4
+
N

4
log

δ

N
− N(N − 1)(N − δ)

4δ
log

(
1− δ

N

)
and

C2(N, δ) =
N2

4δ
+ C1(N, δ) =

1− δ
4δ

N2 +
N

4
log

δ

N
− N(N − 1)(N − δ)

4δ
log

(
1− δ

N

)
.

Note that the integration in (1.12) is over the union of all the balls Bj , while in (1.13) it is
over the complement of that union. It should be kept in mind that C1(N, δ) ≤ 0, see Lemma
1.16 below. The following result follows directly from Theorem 1.11.

Corollary 1.12 (Facility location formulation for elliptic Fekete points). The following problems
are equivalent:

• The N–tuple X = (x1, . . . , xN ) is a set of elliptic Fekete points.

• For any δ ∈ (0, 1) and r = arcsin
√
δ/N such that dR(xi, xj) ≥ 2r for i 6= j, the points

x1, . . . , xN solve Problem 1.9.
• For some δ ∈ (0, 1) and r = arcsin

√
δ/N such that dR(xi, xj) ≥ 2r for i 6= j, the points

x1, . . . , xN solve Problem 1.9.

A trivial remark following from Corollary 1.12 and Theorem 1.3 is:

Corollary 1.13. Let x1, . . . , xN solve Problem 1.9. Then the associated polynomial f is stable
in the sense that the condition number of f at all its roots is at most

√
N(N + 1).

We have thus stated a facility location formulation for stable polynomials and elliptic Fekete
points, as the title of this article claimed.
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Remark 1.14. From [10, Theorem 2], if X is an N–tuple of elliptic Fekete points, then ‖xi −
xj‖ ≥ 1/

√
N for i 6= j. Thus, from the convexity of arcsin,

dR(xi, xj) = arcsin ‖xi − xj‖ ≥ arcsin
1√
N
≥ 2 arcsin

1

2
√
N

i 6= j,

and we conclude that any δ ≤ 1/4 satisfies the hypotheses of Theorem 1.11. Moreover, it is
known from [14] that there exist points on the unit sphere which are√

8π√
3N

+O(N−2/3) =

√
8π√
3N

(
1 +O

(
N−1/6

))
apart (affine distance), and such a bound is asymptotically optimal. For the Riemann sphere we
must divide this quantity by 2. We thus have that δmax – the greatest δ for which there exist
points satisfying the hypotheses of Theorem 1.11 – asymptotically approaches the greatest δ such
that

2 arcsin

√
δ

N
≤ arcsin

(√
2π√
3N

(
1 +O

(
N−1/6

)))
.

That is,

(1.14) δmax =
π

2
√

3

(
1 +O

(
N−1/6

))
≈ 0.90689 . . . (N >> 1).

Note also that (1.12) and (1.13) hold for every δ satisfying the conditions of the theorem. In
particular, the right hand side of either relation is invariant under change of δ.

Remark 1.15. A simplified form of C1 and C2 can be obtained when noting the expansion

− log

(
1− δ

N

)
=

∞∑
k=1

δk

kNk
=

δ

N
+

δ2

2N2
+

δ3

3N3
+ · · · ,

which implies that for all δ ∈ (0, 1) and N ≥ 2,

δ

N
+

δ2

2N2
+

δ3

3N3
≤ − log

(
1− δ

N

)
≤ δ

N
+

δ2

2N2
+

δ3

3N3
+

δ4

2N4
.

(See Section 2.3 for a proof of the upper bound). With this, we have

(1.15)

∣∣∣∣C1(N, δ)−
(
−N logN

4
− 2 + δ − 2 log δ

8
N +

δ(1− δ/3)

8

)∣∣∣∣ ≤ 1

2N
;

that is,

(1.16) C1(N, δ) = −N logN

4
− 2 + δ − 2 log δ

8
N +O(1).

Similarly,

C2(N, δ) =
N2

4δ
− N logN

4
− 2 + δ − 2 log δ

8
N +O(1).

With some arithmetic one can also get the following bounds (see Section 2.3 for a proof).

Lemma 1.16. For δ ∈ (0, 1) and N ≥ 2, we have

C1(N, δ) ≤ −N logN

4
− 2 + δ − 2 log δ

8
N +

δ

8
≤ −N logN

4
− 3

8
N +

1

8
≤ −N logN

4
≤ 0.
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1.3. Some consequences. Theorem 1.11 yields several corollaries about the classical problem
of elliptic Fekete points, the classical Tammes problem (i.e. find x1, . . . , xN ∈ S which maximise
the minimum of their mutual distances) and the problem of stable polynomials. We list them
together here and leave the proofs for Section 5.

The first one is an upper bound for the value of the logarithmic energy of N spherical points
with the unique assumption that they are not too close to each other.

Corollary 1.17. Let δ ∈ (0, 1) and let X = (x1, . . . , xN ) ∈ SN be such that dR(xi, xj) ≥
2 arcsin

√
δ/N for i 6= j. Then

E(X) ≤ 1− log δ

4
N2 + C1(N, δ) ≤ 1− log δ

4
N2.

If additionally N is even and X is symmetric w.r.t. the origin, then

E(X) ≤ 1

4

(
1− 1

2
log

δ

2
+

2− δ
2δ

log

(
1− δ

2

))
N2 + C1(N, δ).

We have pointed out that since [16], one cannot expect a precise relationship between the
solutions to different spherical point problems. However, from (1.14) and Corollary 1.17 a solution
to the Tammes problem cannot have too large a logarithmic energy:

Corollary 1.18. Let (XN )N≥2, XN ∈ SN , be a sequence of solutions to the Tammes problem;
so, for N ≥ 2 and for 1 ≤ i 6= j ≤ N we have

dR((XN )i, (XN )j) ≥ 2 arcsin

√
δmax
N

,

where δmax = π/(2
√

3) +O(N−1/6). Then

E(XN ) ≤ 1− log δmax
4

N2 = 0.27443 . . . N2 + o(N2).

If additionally XN is symmetric w.r.t. the center of the sphere for all even N , then for all such
N we have

E(XN ) ≤ 1

4

(
1− 1

2
log

δmax
2

+
2− δmax

2δmax
log

(
1− δmax

2

))
N2 = 0.25783 . . . N2 + o(N2).

J. P. Dedieu proved in [9, Lemma 2.3] that if µ(h, ζ) ≤ c for every projective zero ζ of a
homogeneous polynomial h of degree N , then for every pair (ζ, ζ ′) of two different projective
zeros of h, we have:

(1.17) dR(ζ, ζ ′) ≥ arcsin
1

N3/2c
.

That is, if the condition number is small then the zeros cannot be too close to each other. Our
following result is a reciprocal bound: it bounds the value of the condition number in terms of
the minimal distance between the zeros of h.

Corollary 1.19. Let δ ∈ (0, 1). Let h be a degree N ≥ 2 homogeneous polynomial with projective

zeros ζ1, . . . , ζN where dR(ζi, ζj) ≥ 2 arcsin
√
δ/N for all i 6= j. Then

µ(h, ζi) ≤
√
N(N + 1)eN/4

δN2/4
, ∀ i, 1 ≤ i ≤ N.

The following result contains a (possibly non-sharp, yet seemingly non-trivial) reciprocal of
Theorem 1.3.
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Corollary 1.20. For any degree N homogeneous polynomial h such that maxµ(h, ζ) ≤ c for
every zero ζ of h, the associated spherical points x1, . . . , xN ∈ S satisfy

E(x1, . . . , xN ) ≤ 1 + log(4N2c2)

4
N2 =

1

2
N2 logN +

1

2
N2 log c+O(N2).

Note that from (1.17) in the hypotheses of Corollary 1.20 we have

E(x1, . . . , xN ) ≤
∑
i<j

log(N3/2c) ≤ 3

4
N2 logN +

1

2
N2 log c+O(N2),

while Corollary 1.20 proves that 3/4 in the formula above can be relaxed to 1/2.
In many practical optimisation problems, a useful numerical strategy is alternating optimisa-

tion. This method first fixes all the variables but one, and then optimises just in that variable
(presumably, an easier numerical problem), and repeats the process with the other variables in
turn until some equilibrium is reached. The resulting output is sometimes called a coordinate-
wise minimum but I prefer the term Nash equilibrium by analogy with the concept of the same
name in game theory. Of course, such a point need not be a global or even a local optimum:
the point (0, 0) is a Nash equilibrium of the problem of minimising x2 + y2 − 3xy but it is just a
saddle point of the function. In our context, we say that X = (x1, . . . , xN ) is a Nash equilibrium
of E if for every j ∈ {1, . . . , N}, we have

E(x1, . . . , xj−1, xj , xj+1, . . . , xN ) ≤ E(x1, . . . , xj−1, x, xj+1, . . . , xN ), ∀x ∈ S.

Our next result shows that if X has this property, then the value of E(X) cannot be arbitrarily
large. More precisely:

Corollary 1.21. Let N ≥ 2 and let X = (x1, . . . , xN ) be a Nash equilibrium of E. Then for
every δ ∈ (0, 1) satisfying (1.11), we have

E(X) ≤ δC2(N, δ) =
N2

4
+ δC1(N, δ) ≤

Lemma 1.16

N2

4
− δN logN

4
.

In particular we have E(X) ≤ N2/4.

1.4. Spherical cap discrepancy and logarithmic energy. A useful quantity to measure
how well distributed a configuration X = (x1, . . . , xN ) of spherical points is, is the spherical cap
discrepancy (see for example [7] and references therein):

DC(X) = sup
x∈S,r∈[0,π/2]

∣∣∣∣ ](i : xi ∈ B(x, r))

N
− Area(B(x, r))

π

∣∣∣∣ ;
that is, DC(X) is the supremum (extended over all spherical caps) of the difference between the
counting measure and the (normalized) area of the cap.

The spherical cap discrepancy is an important topic and it has received much attention.
Bounds for the least possible value of DC(X) were found by Beck [4]:

(1.18) cN−3/4 ≤ min
X∈SN

DC(X) ≤ CN−3/4
√

logN,

for some positive constants c, C. In [1] an explicit construction of N–tuples XN satisfying

DC(XN ) ≤ 44
√

2N−1/2 was given. In [7] it was proved that if (XN )N≥2 is such that XN ∈ SN
is a set of elliptic Fekete points for all N ≥ 2, then

DC(XN ) ≤ O(N−1/4).
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Moreover, it follows from [10, Theorem 2] that if X ∈ SN is a set of elliptic Fekete points, then
we have dR(xi, xj) ≥ N−1/2. That is, points with the lowest possible logarithmic energy have a
small cap discrepancy and are well separated.

Our next results investigate the reciprocal: we bound the value of E(X) in terms of DC(X)
and the separation distance, and state that points which are well separated and have a small
discrepancy also have a small value of E . See [17] for a similar result for Riesz s–energy instead
of the logarithmic energy, and [29, Theorem 4] for a similar bound in the case that instead of S
the points are assumed to lie on the unit circle in R2.

Theorem 1.22. Let X ∈ SN , N ≥ 2 and let δ ∈ (0, 1) be such that dR(xi, xj) ≥ 2 arcsin
√
δ/N

for i 6= j. Then,

E(X) ≤ mN +
N2

4
DC(X) log

N

2δ
+
N log(8πδ)

4
.

A direct consequence of Theorem 1.22 and (1.3) is now stated.

Corollary 1.23. Let (XN )N≥2 be a sequence of N–tuples of points on S, and assume that:

• XN is polynomially separated in the sense that there exist c,M > 0 such that for every
N ≥ 2 and for every 1 ≤ i < j ≤ N ,

dR((XN )i, (XN )j) ≥
c

NM
.

• The spherical cap discrepancy of XN tends to 0 as N →∞ faster than log(N)−1, that is

lim
N→∞

DC(XN ) logN = 0.

Then, E(X) is, in relative error, asymptotically minimal; that is:

lim
N→∞

E(XN )

mN
= 1.

It is easy to see that if the separation property is removed from the hypotheses of Corollary
1.23 the claim may fail. Here is a more interesting question:

Problem 1.24. Can limN→∞DC(XN ) logN = 0 be relaxed to limN→∞DC(XN ) = 0 in Corol-
lary 1.23?

We also prove the following alternative result:

Proposition 1.25. Let (XN )N≥2 be a sequence of N–tuples of points on S, and assume that
there exists a positive constant c > 0 such that

(1.19) lim
N→∞

DC(XN )c

δN
= 0,

for δN ∈ (0, 1) satisfying dR((XN )i, (XN )j) ≥ 2 arcsin
√
δN/N , i 6= j. Then,

lim
N→∞

E(XN )

mN
= 1.

Remark 1.26. Note that (1.19) can also be interpreted as

lim
N→∞

DC(XN )c

Nsep(XN )2
= 0,

where sep(XN ) is the separation distance of XN , that is the minimum distance between two
different points of XN . Compare this to the hypotheses of an “admissible and well–separated”
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sequence in [17] (with d = 2 in the notations of that paper): our hypotheses is less restrictive for
if a sequence is well separated then δN is bounded above and below for N ≥ 2.

Proposition 1.25 readily applies to many well–known collections of points including all those
cited in [17] (other interesting references treating the topic of separation and discrepancy of
different sequences are [1],[13]). For example, it is known that points minimizing the Coulomb
potential energy (i.e. points solving the famous and classical Thomson problem [27]) have dis-
crepancy tending to 0 as N → ∞ and are well separated with a lower bound cN−1/2 for some
constant c > 0. The same qualitative bounds are also valid for N–tuples minimising the Riesz
energy for 0 < s < 2. We thus have:

Corollary 1.27. If XN solves Thomson’s problem in S for N ≥ 2, then limN→∞ E(XN )/mN =
1. More generally, fix s ∈ (0, 2). If XN minimizes the Riesz s–energy∑

1≤i<j≤N

‖(XN )i − (XN )j‖−s

for N ≥ 2, then limN→∞ E(XN )/mN = 1.

Note that Corollary 1.27 is a reciprocal (in the Riemann sphere) to the claim in section “Mini-
mum logarithmic energy” in [17], where points minimizing E are proved to have an asymptotically
minimal Riesz energy. From [18, Theorem 3.3] and [20, p. 199] one can conclude a result analo-
gous to Corollary 1.27 for sets of (non–elliptic) Fekete points. Namely, following the notation in
[18], let L ≥ 2 and let πL be the dimension of the vector space of spherical harmonics of degree
at most L, and let QL1 , . . . , Q

L
πL be a basis of that vector space. A collection X = (x1, . . . , xπL) of

points in the unit sphere is called a set of Fekete points (a.k.a. extremal fundamental systems) if
it maximises the determinant |det(QLi (xj))i,j |. These tuples are known to have good properties
for cubature and interpolation formulas in the unit sphere, see [25]. Then, we have:

Corollary 1.28. For every L ≥ 2, let XL = (x1, . . . , xπL) be a set of (non–elliptic) Fekete
points in the unit sphere, and let YL = (y1, . . . , yπL) be the associated points in S (i.e. xi =
2yi − (0, 0, 1)T , 1 ≤ i ≤ πL). Then

lim
L→∞

E(YL)

mπL

= 1.

The proofs of Theorem 1.22 and Proposition 1.25 can be found in Section 6.

2. Proofs of the easy results

2.1. Proof of Lemma 1.1. Let f(z) =
∑N
k=0 akz

k, aN 6= 0. The homogeneous counterpart of

f is h(z0, z) =
∑N
k=0 akz

N−k
0 zk. Recall that we have defined

µ(f, z) = µ(h, (1, z)) = N1/2‖(Dh(1, z) |(1,z)⊥)−1‖‖h‖‖(1, z)‖N−1

and ‖f‖ = ‖h‖. Now,

Dh(1, z) |(1,z)⊥ : (1, z)⊥ → C
λ(−z̄, 1) 7→ λDh(1, z)(−z̄, 1).
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We first compute Dh(1, z)(−z̄, 1) ∈ C:

Dh(1, z)(−z̄, 1) = lim
t→0

h(1− tz̄, z + t)− h(1, z)

t
= lim
t→0

(1− tz̄)Nf
(
z+t
1−tz̄

)
− f(z)

t
=

d

dt

∣∣∣∣
t=0

(
(1− tz̄)Nf

(
z + t

1− tz̄

))
= f ′(z)(1 + |z|2)−Nz̄f(z).

We thus have:

Dh(1, z) |(1,z)⊥ (λ(−z̄, 1)) = λ(f ′(z)(1 + |z|2)−Nz̄f(z));

that is, for t ∈ C,

Dh(1, z) |−1
(1,z)⊥

(t) =
(−z̄, 1)

f ′(z)(1 + |z|2)−Nz̄f(z)
t

and ∥∥∥Dh(1, z) |−1
(1,z)⊥

∥∥∥ =

∥∥∥∥ (−z̄, 1)

f ′(z)(1 + |z|2)−Nz̄f(z)

∥∥∥∥ =
(1 + |z|2)1/2

|f ′(z)(1 + |z|2)−Nz̄f(z)|
.

We have proved that

µ(f, z) = N1/2 ‖f‖‖(1, z)‖N−1(1 + |z|2)1/2

|f ′(z)(1 + |z|2)−Nz̄f(z)|
.

The lemma follows.

2.2. Proof of Lemma 1.6. From Lemma 1.1 we have

1

2

N∑
i=1

logµ(f, zi)−
N logN

4
=

1

2

N∑
i=1

log

(
N1/2 ‖f‖(1 + |zi|2)

N
2 −1

|f ′(zi)|

)
− N logN

4
=

1

2

N∑
i=1

log
‖f‖(1 + |zi|2)

N
2 −1

|f ′(zi)|
=
N log ‖f‖

2
+

1

2

N∑
i=1

log
(1 + |zi|2)

N
2 −1

|f ′(zi)|
.

To prove the lemma, we then need:

E(x1, . . . , xN ) =
1

2

N∑
i=1

log
(1 + |zi|2)

N
2 −1

|f ′(zi)|
+
N

2
log

N∏
i=1

√
1 + |zi|2,

or equivalently

(2.1) E(x1, . . . , xN ) =
1

2

N∑
i=1

log
(1 + |zi|2)N−1

|f ′(zi)|
.

Indeed,

E(x1, . . . , xN ) =
∑
i<j

log ‖xi − xj‖−1 =
(1.5)

∑
i<j

log

√
(1 + |zi|2)(1 + |zj |2)

|zi − zj |
,

and reordering terms we get

E(x1, . . . , xN ) =
N − 1

2

N∑
i=1

log(1 + |zi|2) +
1

2

N∑
i=1

log
∏
j 6=i

|zi − zj |−1.
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Now relation (2.1) follows from this last formula, using that

f ′(zi) =
d

dz

∣∣∣∣
z=zi

N∏
j=1

(z − zj) =
∏
j 6=i

(zi − zj).

Lemma 1.6 is now proved.

2.3. Proof of Lemma 1.16. We first prove that for δ ∈ (0, 1) and N ≥ 2 we have

− log

(
1− δ

N

)
≤ δ

N
+

δ2

2N2
+

δ3

3N3
+

δ4

2N4
.

Indeed, the proof follows directly from the fact that

− log

(
1− δ

N

)
=

∞∑
k=1

δk

kNk
=

δ

N
+

δ2

2N2
+

δ3

3N3
+
δ4

N4

∞∑
k=0

δk

(k + 4)Nk
≤ δ

N
+

δ2

2N2
+

δ3

3N3
+

δ4

4N4

∞∑
k=0

1

2k
.

Now we prove Lemma 1.16. From the inequality above and the definition of C1(N, δ) in Theorem
1.11, we have

C1(N, δ) ≤ −N
2

4
+
N

4
log

δ

N
+
N(N − 1)(N − δ)

4δ

(
δ

N
+

δ2

2N2
+

δ3

3N3
+

δ4

2N4

)
=

N

4
log

δ

N
− 2 + δ

8
N +

(
δ3

24N
+

δ2

24N
− δ2

24

)
+

(
δ4

8N3
− δ4

8N2

)
+
δ

8
− δ3

24N2
,

where the terms have been rearranged. Note that the expressions inside the parentheses in the
last formula are bounded above by 0 (use the fact N ≥ 2). The lemma follows.

3. Proof of Proposition 1.7

We first prove that a function u satisfying (1.8) and (1.9) is unique up to an additive constant.
Indeed, let u, v be two solutions. Then the function w = u − v is harmonic (i.e., ∆Sw = 0) in
S \ {x1, . . . , xN}. Moreover, for every i, 1 ≤ i ≤ N , if we let

Ai(x) =
λ

2N

πTxS(xi − x)

‖xi − x‖1+ε
,

we have:

lim sup
‖xi−x‖→0

∥∥‖xi − x‖1−ε∇Sw(x)
∥∥ =

lim sup
‖xi−x‖→0

∥∥‖xi − x‖1−ε∇Su(x)−Ai(x)−
(
‖xi − x‖1−ε∇Sv(x)−Ai(x)

)∥∥ ≤
lim sup
‖xi−x‖→0

∥∥‖xi − x‖1−ε∇Su(x)−Ai(x)
∥∥+ lim sup

‖xi−x‖→0

∥∥‖xi − x‖1−ε∇Sv(x)−Ai(x)
∥∥ <∞.

In particular, there exists C ∈ R such that for sufficiently small ‖xi − x‖ (say, ‖xi − x‖ ≤ ri) we
have:

‖∇Sw(x)‖ ≤ C

‖xi − x‖1−ε
=

(1.2)

C

(sin dR(x, xi))1−ε ≤
2C

dR(x, xi)1−ε .
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Let γ : [−c, 0), c > 0, be an arclength parametrized geodesic contained in the set {x : ‖xi − x‖ ≤
ri} such that γ(t) → xi as t → 0. Thus dR(γ(t), xi) = |t|. Applying the Fundamental Theorem
of Vector Calculus then yields

|w(γ(t))| =
∣∣∣∣w(γ(−c)) +

∫ t

−c
∇Sw(γ(s)) · γ̇(s) ds

∣∣∣∣ ≤ |w(γ(−c))|+
∫ t

−c
‖∇Sw(γ(s))‖ ds ≤

|w(γ(−c))|+ 2C

∫ t

−c

1

dR(γ(s), xi)1−ε ds = |w(γ(−c))|+ 2C

∫ t

−c

1

|s|1−ε
ds ≤ |w(γ(−c))|+ 2Ccε

ε
.

It follows that the L∞(S \ {x1, . . . , xN}) norm of w is bounded:

‖w‖∞ ≤ sup
x:‖xi−x‖≥ri ∀i

|w(x)|+ 2Ccε

ε
<∞.

We thus have a harmonic function which is bounded in S \ {x1, . . . , xN}. By the maximum
principle, this implies w is constant and we have proved that u and v differ by a constant as
desired. It remains to prove that the function

u(x) =
λ

2N

N∑
i=1

log ‖xi − x‖−1

actually satisfies (1.8) and (1.9). Recall from [5, Lemma 2.2] that the function x 7→ log ‖xi−x‖−1

has, for every i, constant Laplacian equal to 2. Thus

∆Su =
λ

2N

N∑
i=1

2 = λ,

and therefore u satisfies (1.8). As for (1.9), note that (extending u to R3 \ {x1, . . . , xN} by the
same formula),

∇Su(x) = πTxS (∇R3u) =
λ

2N

N∑
j=1

πTxS(xj − x)

‖xj − x‖2
=

N∑
j=1

Aj(x)

‖xj − x‖1−ε
.

In particular, for every i, 1 ≤ i ≤ N and ε ∈ (0, 1), we have:

lim
‖xi−x‖→0

(
‖xi − x‖1−ε∇Su(x)−Ai(x)

)
= lim
‖xi−x‖→0

∑
j 6=i

Aj(x)‖xi − x‖1−ε

‖xj − x‖1−ε
= 0,

so (1.9) is trivially satisfied.

4. Proof of Theorem 1.11

For any x0 ∈ S and ε ∈ [0, π/2], let

B(x0, ε) = {x ∈ S : dR(x, x0) ≤ ε}.
Recall the following result:

Proposition 4.1. [5, see Proposition 3.2] Let x0, y ∈ S and let 0 < ε ≤ dR(x0, y) < π/2. Then,

Area(B(x0, ε)) = π sin2 ε,(4.1)

−
∫
x∈B(x0,ε)

log ‖x− y‖−1 dx = log ‖x0 − y‖−1 +
1

2
+

log cos ε

tan2 ε
.(4.2)
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Moreover,

(4.3) −
∫
x∈S

log ‖x− y‖−1 dx =
1

2
.

An easy consequence of this proposition is:

Lemma 4.2. Let x0 ∈ S and let ε ∈ (0, π/2). Then

−
∫
x∈B(x0,ε)

log ‖x− x0‖−1 dx =
1

2
− 1

2
log sin2 ε.

Proof. Let x̂0 be the point opposite from x0 in S. Note that∫
x6∈B(x0,ε)

log ‖x− x0‖−1 dx =

∫
x∈B(x̂0,π/2−ε)

log ‖x− x0‖−1 dx =
(4.1)

π cos2 ε−
∫
x∈B(x̂0,π/2−ε)

log ‖x− x0‖−1 dx.

By (4.2), this equals

π cos2 ε

(
log 1 +

1

2
+

log cos(π/2− ε)
tan2(π/2− ε)

)
= π cos2 ε

(
1

2
+ tan2 ε log sin ε

)
.

Hence,∫
x∈B(x0,ε)

log ‖x−x0‖−1 dx =
(4.3)

π

2
−π cos2 ε

(
1

2
+ tan2 ε log sin ε

)
=
π

2

(
sin2 ε− sin2 ε log sin2 ε

)
.

The lemma follows from (4.1). �

We now prove Theorem 1.11. First note that

−
∫
x∈∪Bj

N∑
i=1

log ‖x− xi‖−1 dx =
(4.1)

1

πδ

N∑
i=1

∫
x∈Bi

log ‖x− xi‖−1 dx+
∑
j 6=i

∫
x∈Bj

log ‖x− xi‖−1 dx

 =

1

N

N∑
i=1

−∫
x∈Bi

log ‖x− xi‖−1 dx+
∑
j 6=i

−
∫
x∈Bj

log ‖x− xi‖−1 dx

 ,

which, from Proposition 4.1 and Lemma 4.2, equals

1

N

N∑
i=1

1

2
− 1

2
log

δ

N
+
∑
j 6=i

(
log ‖xi − xj‖−1 +

1

2
+
N − δ

2δ
log

(
1− δ

N

)) =

1

2
− 1

2
log

δ

N
+

2E(X)

N
+ (N − 1)

(
1

2
+
N − δ

2δ
log

(
1− δ

N

))
=

N

2
− 1

2
log

δ

N
+

(N − 1)(N − δ)
2δ

log

(
1− δ

N

)
+

2E(X)

N
.
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Solving for E(X), we get (1.12). Now, (1.13) follows from (1.12) using that

−
∫
x∈∪Bj

N∑
i=1

log ‖x− xi‖−1 dx =
1

πδ

∫
x∈∪Bj

N∑
i=1

log ‖x− xi‖−1 dx =

1

πδ

(∫
x∈S

N∑
i=1

log ‖x− xi‖−1 dx−
∫
x∈B0

N∑
i=1

log ‖x− xi‖−1 dx

)
=

(4.3)

1

πδ

(
πN

2
− π(1− δ)−

∫
x∈B0

N∑
i=1

log ‖x− xi‖−1 dx

)
=
N

2δ
− 1− δ

δ
−
∫
x∈B0

N∑
i=1

log ‖x− xi‖−1 dx.

5. Proofs of the corollaries of Theorem 1.11

5.1. Proof of Corollary 1.17. Let δ and X be as in Corollary 1.17 and note that for every i,
1 ≤ i ≤ N , the function

x 7→ log ‖x− xi‖−1

decreases as x moves further from xi. Thus∫
x∈∪Bj

log ‖x− xi‖−1 dx ≤
∫
x∈S : dR(x,xi)≤r

log ‖x− xi‖−1 dx,

where r is chosen in such a way that

Area{x ∈ S : dR(x, xi) ≤ r} = Area (∪Bj) = πδ;

that is, π sin2 r = πδ or sin2 r = δ. Then

−
∫
x∈∪Bj

log ‖x− xi‖−1 dx ≤ −
∫
x∈S : dR(x,xi)≤r

log ‖x− xi‖−1 dx =
Lemma 4.2

1

2

(
1− log sin2 r

)
.

From (1.12) we thus have

E(X) ≤ C1(N, δ) +
1− log δ

4
N2.

The first claim of Corollary 1.17 follows from the fact that C1(N, δ) ≤ 0; see Lemma 1.16.
For the second claim, we first prove that for any fixed xi ∈ S with opposite point x̂i ∈ S, the

function

α(x) = log ‖x− xi‖−1 + log ‖x− x̂i‖−1

is a decreasing function of dR(x, xi) while 0 < dR(x, xi) < π/4 and an increasing function of
dR(x, xi) while π/4 < dR(x, xi) < π/2. Indeed, we can assume that xi = (0, 0, 1), x̂i = (0, 0, 0),
and from (1.5) we then have

α(x) = log

√
1 + |z|2
|z|

+ log
√

1 + |z|2 = log(1 + |z|2)− log |z|,

where z ∈ C is the point associated with x through (1.4). As a function of |z|, it is an exercise
to check that α(x) is decreasing if |z| < 1 (which corresponds to dR(x, (0, 0, 1)) < π/4) and
increasing if |z| > 1 (which corresponds to dR(x, (0, 0, 1)) > π/4).

We thus conclude that for every i, 1 ≤ i ≤ N ,

−
∫
x∈∪Bj

(log ‖x−xi‖−1+log ‖x−x̂i‖−1) dx ≤ −
∫
x∈B(xi,ε)∪B(x̂i,ε)

(log ‖x−xi‖−1+log ‖x−x̂i‖−1) dx =
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2−
∫
x∈B(xi,ε)∪B(x̂i,ε)

log ‖x− xi‖−1 dx.

where ε is such that Area(B(xi, ε) ∪B(x̂i, ε)) = Area(∪Bj) = πδ; that is, sin2 ε = δ/2. Now, for
such an ε, from Lemma 4.2 and Proposition 4.1 respectively we have:

−
∫
x∈B(xi,ε)

log ‖x− xi‖−1 dx =
1

2
− 1

2
log sin2 ε,

−
∫
x∈B(x̂i,ε)

log ‖x− xi‖−1 dx =
1

2
+

1

2
cot2 ε log cos2 ε.

We have thus proved:

−
∫
x∈∪Bj

(log ‖x− xi‖−1 + log ‖x− x̂i‖−1) dx ≤ 1

2
− 1

2
log sin2 ε+

1

2
+

1

2
cot2 ε log cos2 ε =

1 +
1

2

(
− log

δ

2
+

2− δ
δ

log

(
1− δ

2

))
.

Hence,

−
∫
x∈∪Bj

N∑
i=1

log ‖x− xi‖−1 dx ≤ N

2
+
N

4

(
− log

δ

2
+

2− δ
δ

log

(
1− δ

2

))
.

The second claim of Corollary 1.17 follows from this last inequality and (1.12).

5.2. Proof of Corollary 1.19. Let x1, . . . , xN be the points on S identified with ζ1, . . . , ζN ∈
IP(C2). Note that dR(xi, xj) equals the Riemannian distance from ζi to ζj . From Corollary 1.17,
we have

E(x1, . . . , xN ) ≤ 1− log δ

4
N2 + C1(N, δ),

which from Theorem 1.3 implies

µ(f, ζi) ≤
√
N(N + 1)e

1−log δ
4 N2+C1(N,δ)−mN ∀ i ∈ {1, . . . , N}.

Now note that for N ≥ 2,

N2

4
+C1(N, δ)−mN ≤

(1.3)

N logN

4
+

log(2π)

4
N +C1(N, δ) ≤

Lemma 1.16

2 log(2π)− 3

8
N +

1

8
≤ N

4
.

We thus conclude:

µ(f, ζi) ≤
√
N(N + 1)eN/4

δN2/4
,

as wanted. Note that this same proof shows thatN/4 may be replaced by cN with c ≈ (2 log(2π)−
3)/8 < 1/4.

5.3. Proof of Corollary 1.20. From (1.17), we have

dR(xi, xj) ≥ arcsin

√
δ

N
≥ 2 arcsin

√
δ/4

N
,

where δ = (N2c2)−1, and the second inequality comes from the fact that arcsin is a convex
function in [0, 1], which implies arcsin(2t) ≥ 2 arcsin(t) for t ∈ [0, 1/2]. Then Corollary 1.17
implies

E(x1, . . . , xN ) ≤ 1− log((4N2c2)−1)

4
N2 =

1 + log(4N2c2)

4
N2,
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as wanted.

5.4. Proof of Corollary 1.21. From the fact that X is a Nash equilibrium, we have that for
every x ∈ S \ {x1, . . . , xN} and for every j, 1 ≤ j ≤ N ,

N∑
i=1

log ‖x− xi‖−1 = log ‖x− xj‖−1 +
∑
i 6=j

log ‖x− xi‖−1 ≥ log ‖x− xj‖−1 +
∑
i 6=j

log ‖xj − xi‖−1.

Averaging over j we get

N∑
i=1

log ‖x−xi‖−1 ≥ 1

N

N∑
j=1

log ‖x−xj‖−1+
1

N

N∑
j=1

∑
i 6=j

log ‖xj−xi‖−1 =
1

N

N∑
j=1

log ‖x−xj‖−1+
2E(X)

N
.

We thus conclude that for every x ∈ S,(
1− 1

N

) N∑
i=1

log ‖x− xi‖−1 ≥ 2E(X)

N
;

that is,

N∑
i=1

log ‖x− xi‖−1 ≥ 2E(X)

N − 1
.

From (1.13), this implies

E(X) ≤ C2(N, δ)− 1− δ
2δ

N
2E(X)

N − 1
≤ C2(N, δ)− 1− δ

δ
E(X),

and solving for E(X) gives the desired result.

6. Spherical cap discrepancy

In this section we prove Theorem 1.22. We begin with a lemma.

Lemma 6.1. Let x ∈ S and let C ⊆ S be a measurable set. Then∫
y∈C

log ‖y − x‖−1 dy =

∫ π/2

0

cos θ

sin θ
Area(C ∩B(x, θ)) dθ,

where B(x, θ) = {y ∈ S : dR(x, y) ≤ θ}.

Proof. Let

V = {(θ, y) ∈ [0, π/2]× S : dR(x, y) ≤ θ}.

From Fubini’s theorem we have∫
V

cos θ

sin θ
χC(y) d(θ, y) =

∫ π/2

0

cos θ

sin θ

∫
y∈S : dR(x,y)≤θ

χC(y) dy dθ =

∫ π/2

0

cos θ

sin θ
Area(C∩B(x, θ)) dθ.
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Now, using Fubini’s theorem in the opposite order we also have∫
V

cos θ

sin θ
χC(y) d(θ, y) =

∫
y∈S

χC(y)

∫ π/2

0

cos θ

sin θ
χdR(y,x)≤θ(θ) dθ dy =∫

y∈S
χC(y)

∫ π/2

dR(y,x)

cos θ

sin θ
dθ dy =

∫
y∈C

[log sin θ]
π/2
dR(y,x) dy =∫

y∈C
− log sin dR(y, x) dy =

(1.2)

∫
y∈C
− log ‖y − x‖ dy,

and the lemma follows. �

6.1. Proof of Theorem 1.22. Let X ∈ SN and let 1 > u ≥ δ > 0 be such that dR(xi, xj) ≥
2 arcsin

√
u/N for i 6= j. We use the notations of Theorem 1.11. Note that for every i, 1 ≤ i ≤ N ,

we have

(6.1) −
∫
x∈∪Bj

log ‖x− xi‖−1 dx =
Lemma 6.1

1

πδ

∫ π/2

0

cos θ

sin θ
Area((∪Bj) ∩B(xi, θ)) dθ.

We divide the interval of integration in four pieces where the volume inside the integral is bounded
according to different regimes.

• For θ ∈ [0, arcsin
√
δ/N ] we have

Area((∪Bj) ∩B(xi, θ)) = Area(B(xi, θ)) = π sin2 θ.

Hence,

(6.2)
1

πδ

∫ arcsin
√
δ/N

0

cos θ

sin θ
Area((∪Bj)∩B(xi, θ)) dθ =

1

πδ

∫ arcsin
√
δ/N

0

cos θ

sin θ
π sin2 θ dθ =

1

2N
.

• For θ ∈ [arcsin
√
δ/N, 2 arcsin

√
u/N−arcsin

√
δ/N ], using that dR(xi, xj) ≥ 2 arcsin

√
u/N

for i 6= j we have

Area((∪Bj) ∩B(xi, θ)) = Area(B(xi, arcsin
√
δ/N)) =

πδ

N
.

Hence,

(6.3)
1

πδ

∫ 2 arcsin
√
u/N−arcsin

√
δ/N

arcsin
√
δ/N

cos θ

sin θ
Area((∪Bj) ∩B(xi, θ)) dθ =

1

πδ

∫ 2 arcsin
√
u/N−arcsin

√
δ/N

arcsin
√
δ/N

cos θ

sin θ

πδ

N
dθ =

1

2N
log

r1(u, δ)

δ/N
,

where

r1(u, δ) = sin2
(

2 arcsin
√
u/N − arcsin

√
δ/N

)
is, for fixed u, a continuous function of δ ∈ [0, u].

• For θ ∈ [2 arcsin
√
u/N − arcsin

√
δ/N, π/2− arcsin

√
δ/N ] we have

Area((∪Bj) ∩B(xi, θ)) ≤
πδ

N
q(θ + arcsin

√
δ/N),

where for s ∈ [0, π/2], we define

q(s) = ]{j : 1 ≤ j ≤ N, xj ∈ B(xi, s)}.
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Now, ∣∣∣∣q(s)N
− Area(B(xi, s))

π

∣∣∣∣ ≤ DC(XN ),

which implies

q(θ + arcsin
√
δ/N)

N
≤ DC(XN ) + sin2(θ + arcsin

√
δ/N).

We thus have

(6.4)
1

πδ

∫ π/2−arcsin
√
δ/N

2 arcsin
√
u/N−arcsin

√
δ/N

cos θ

sin θ
Area((∪Bj) ∩B(xi, θ)) dθ ≤ r2(u, δ),

where

r2(u, δ) =

∫ π/2−arcsin
√
δ/N

2 arcsin
√
u/N−arcsin

√
δ/N

cos θ

sin θ

(
DC(XN ) + sin2(θ + arcsin

√
δ/N)

)
dθ

is by Lebesgue’s Dominated Convergence Theorem, for fixed u, a continuous function of
δ ∈ [0, u).

• For θ ∈ [π/2− arcsin
√
δ/N, π/2] we have

Area((∪Bj) ∩B(xi, θ)) ≤ Area(∪Bj) = πδ,

which implies

(6.5)
1

πδ

∫ π/2

π/2−arcsin
√
δ/N

cos θ

sin θ
Area((∪Bj) ∩B(xi, θ)) dθ ≤ log

1

sin(π/2− arcsin
√
δ/N)

.

If we put together (6.2), (6.3), (6.4) and (6.5) in (6.1), we get:

−
∫
x∈∪Bj

log ‖x−xi‖−1 dx ≤ 1

2N

(
1 + log r1(u, δ)− log

δ

N

)
+r2(u, δ)−log sin(π/2−arcsin

√
δ/N).

From Theorem 1.11 we conclude that

E(X) ≤ −N
2

4
+
N

4
log

δ

N
− N(N − 1)(N − δ)

4δ
log

(
1− δ

N

)
+

N

4

(
1 + log r1(u, δ)− log

δ

N

)
+
N2

2
r2(u, δ)− N2

2
log sin(π/2− arcsin

√
δ/N).

One can then simplify the two terms containing log(δ/N) obtaining:

E(X) ≤ −N
2

4
− N(N − 1)(N − δ)

4δ
log

(
1− δ

N

)
+

N

4
(1 + log r1(u, δ)) +

N2

2
r2(u, δ)− N2

2
log sin(π/2− arcsin

√
δ/N).

This last formula holds for every δ ≤ u, so we can take the limit as δ → 0 and use the continuity
of r1 and r2 to get

E(X) ≤ N2

2
r2(u, 0) +

N

4
log r1(u, 0).
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Now, note that

r1(u, 0) = sin2
(

2 arcsin
√
u/N

)
<

4u

N
,

r2(u, 0) =

∫ π/2

2 arcsin
√
u/N

cos θ

sin θ

(
DC(XN ) + sin2 θ

)
dθ

=−DC(XN ) log(sin(2 arcsin
√
u/N)) +

1

2

(
1− sin2(2 arcsin

√
u/N)

)
<

1

2
−DC(XN ) log

(
2

√
u

N

√
1− u

N

)
<

1

2
+

1

2
DC(XN ) log

N

2u
,

where we have used 1− u/N > 1/2. We have thus proved:

E(X) ≤ N2

4
+
N2

4
DC(XN ) log

N

2u
− N logN

4
+
N log(4u)

4
.

By (1.3) we then have

E(X)−mN ≤
N2

4
DC(XN ) log

N

2u
+
N log(8πu)

4
.

The theorem follows after renaming u as δ.

6.2. Proof of Proposition 1.25. The proof follows along the lines of that of Theorem 1.22 but
uses a different subdivision of the interval of integration and avoids δ → 0 independently of N .
For every N ≥ 2, let wN = DC(XN )c/2 and let δN ∈ (0, 1) satisfy (1.19) and

dR((XN )i, (XN )j) ≥ 2 arcsin

√
δN
N

i 6= j.

For any N ≥ 2 and i, 1 ≤ i ≤ N :

• If θ ∈ [0, arcsinwN ] we bound

1

πδN

∫ arcsinwN

0

cos θ

sin θ
Area((∪Bj) ∩B(xi, θ)) dθ ≤

1

πδN

∫ arcsinwN

0

cos θ

sin θ
π sin2 θ dθ =

w2
N

2δN
.

• If θ ∈ [arcsinwN , π/2− arcsin
√
δN/N ], reasoning as in the proof of (6.4) we get:

1

πδN

∫ π/2−arcsin
√
δN/N

arcsinwN

cos θ

sin θ
Area((∪Bj) ∩B(xi, θ)) dθ ≤ r3(wN , δN ),

where

r3(wN , δN ) =

∫ π/2−arcsin
√
δN/N

arcsinwN

cos θ

sin θ

(
w

2/c
N + sin2(θ + arcsin

√
δN/N)

)
dθ.

We now compute the limit of r3(wN , δN ) as N →∞. Note that∫ π/2−arcsin
√
δN/N

arcsinwN

cos θ

sin θ
w

2/c
N dθ ≤

∫ π/2

arcsinwN

cos θ

sin θ
w

2/c
N dθ = −w2/c

N logwN → 0,

because wN → 0. On the other hand,

sin(θ + arcsin
√
δN/N) ≤ sin θ +

√
δN/N.
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Hence,∫ π/2−arcsin
√
δN/N

arcsinwN

cos θ

sin θ
sin2(θ + arcsin

√
δN/N) dθ ≤ AN +BN + CN ,

with

AN =

∫ π/2

0

cos θ sin θ dθ =
1

2
,

BN = 2

√
δN
N

∫ π/2

0

cos θ dθ → 0,

CN =
δN
N

∫ π/2

arcsinwN

cos θ

sin θ
dθ =

δN
N

log
1

wN
≤ c

2N
log

1

DC(XN )
→

(1.18)
0

We have proved that
lim sup
N→∞

r3(wN , δN ) ≤ 1/2.

• If θ ∈ [π/2− arcsin
√
δN/N, π/2], we get again (6.5) with δ replaced by δN .

Hence, we have

−
∫
x∈∪Bj

log ‖x− xi‖−1 dx ≤ w2
N

2δN
+ r3(wN , δN )− log sin(π/2− arcsin

√
δN/N),

which holds for every j, 1 ≤ j ≤ N . We then have from Theorem 1.11 and Lemma 1.16 that

E(XN ) ≤ N2

2

(
w2
N

2δN
+ r3(wN , δN )− log sin(π/2− arcsin

√
δN/N)

)
Using the hypotheses w2

N/δN = DC(XN )c/δN → 0 we conclude

lim sup
N→∞

E(XN )

N2/4
≤ 2 lim sup

N→∞
r3(wN , δN ) ≤ 1.

On the other hand, from Theorem 1.2 we have

lim
N→∞

mN

N2/4
= 1.

We thus conclude

lim sup
N→∞

E(XN )

mN
= lim sup

N→∞

E(XN )N2/4

mNN2/4
≤ lim sup

N→∞

E(XN )

N2/4
lim sup
N→∞

N2/4

mN
≤ 1.

Finally, from the definition, lim infN→∞ E(XN )/mN ≥ 1, and the proposition now follows.
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