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Abstract

This paper presents an approach for including 3D prior

models into a factorization framework for structure from

motion. The proposed method computes a closed-form

affine fit which mixes the information from the data and the

3D prior on the shape structure. Moreover, it is general in

regards to different classes of objects treated: rigid, articu-

lated and deformable. The inclusion of the shape prior may

aid the inference of camera motion and 3D structure com-

ponents whenever the data is degenerate (i.e. nearly planar

motion of the projected shape). A final non-linear optimiza-

tion stage, which includes the shape priors as a quadratic

cost, upgrades the affine fit to metric. Results on real and

synthetic image sequences, which present predominant de-

generate motion, make clear the improvements over the 3D

reconstruction.

1. Introduction

Extracting 3D data from monocular image sequences is a

problem extensively studied in Computer Vision. The idea

embracing various scenarios is relatively similar: to infer

both the 3D structure parametrization and the camera pa-

rameters from a set of 2D points extracted from a sequence

which depicts a moving object. In this context, methods

based on the bilinear factorization of the image data have

been very successful in both proposing simple and closed-

form approaches with the least assumptions as possible.

Back in the early ’90s, Tomasi and Kanade [14] intro-

duced the first factorization algorithm dealing with a rigid

object viewed by a simple orthographic camera. Later on,

studies were mostly focused on upgrading the approach to

more complex viewing conditions such as paraperspective

[11] and projective [13]. Only recently, the framework was

extended to deal with objects which may also vary their

shape. Deformable [5] and articulated [17, 20] factoriza-
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tions are among these examples.

However, one of the main problems of Structure from

Motion (SfM) consists in the higher complexity in which

shapes may vary their 3D structure. This may add non-

linearities and strong dependencies between both shape and

motion components resulting in non-trivial solutions of the

problem. Likewise, the higher number of degrees of free-

dom and the possible motion degeneracies in the measured

data may lead to a local solution which correctly minimizes

the 2D reprojection error but, however, results in a poor or

even meaningless 3D reconstruction.

In order to counter this effect, prior information may be

included to obtain reliable 3D reconstructions. Different

priors have been shown to improve performances in rigid

and non-rigid SfM. Forsyth et al. [7] first proposed priors

over the specific camera constraints in a consistent Bayesian

framework. Xiao et al. [19] use the prior information over

a set of independent shapes to compute a closed-form solu-

tion. In a face modelling context, Solem and Kahl [12] used

a learned shape model to aid the 3D inference over regions

with no 2D information available. Del Bue et al. [6] enforce

priors over the rigidity of some points to obtain reliable es-

timations of the object rigid components. Torresani et al.

[15] propose the use of gaussian priors over the deformation

parameters in order to avoid arbitrarily variations. Finally,

Olsen and Bartoli [10] impose a prior over temporal vari-

ations of the camera parameters combined with constraints

over the proximity of projected 2D points and reconstructed

3D points.

Differently from the mentioned solutions, priors are here

introduced in the form of previously computed 3D shapes.

In such way, it is possible to obtain a description of the ob-

ject shape jointly given by the measured data and the prior

information available. This approach especially supports

the computation of reliable 3D shapes whenever the im-

age sequence contains strong degeneracies. For instance,

a common case is a talking head in front of a camera per-

forming tiny pose changes. In this case depth would be lost

if not irremediably mixed with the ongoing deformations. A

known 3D metric description of the subject face may how-
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ever recover the lost depth and disambiguate better motion

and shape components. At this end, the proposed compu-

tational methods directly include the 3D metric priors in a

factorization framework for SfM. First, the approach uses

the data and the prior to compute an initial affine solution

which is then upgraded to metric with an iterative non-linear

optimization procedure.

The next section provides an introduction to SfM meth-

ods showing how different problems can be treated with a

unique approach. Section 3 shows how to compute a met-

ric solution for the motion and structure components The

proposed algorithm is then explained in Section 4 show-

ing computational tools to compute 3D models given prior

information. The experiments in Section 5 show real and

synthetic examples of 3D reconstruction in such cases.

2. Factorization for SfM

The key idea in SfM is to gather all the 2D image coor-

dinates lying on a generic shape at each frame in a single

measurement matrix W. The location of a point j in a cer-

tain frame i can be defined by a vector wij = (uij vij)
T

where uij and vij are the horizontal and vertical image co-

ordinates respectively. A compact matrix representation can

be expressed as:

W =







w11 . . . w1p

...
. . .

...

wf1 . . . wfp






=







W1

...

Wf






(1)

where f is the total number of image frames and p the num-

ber of image points. The image trajectories stored in W can

be expressed as a bilinear product as W = M2f×r Sr×p. The

matrices M and S refer to the motion and shape subspaces

respectively with dimension r where r ≪ min{2f, p}. As

a result, the rank of W is constrained to be rank{W} ≤ r.

The matrices M and S can be further decomposed in:

M =







M1

...

Mf






S =

[

S1 · · · Sp

]

(2)

where Mi with i = 1 . . . f is a 2 × r matrix projecting the

shape onto the image frame i. The size of Mi directly de-

pends on the type of camera and motion that appears in the

scene. The component Sj with j = 1 . . . p is a r-vector that

defines the 3D parametrization for each point j and its size

depends on the shape properties (i.e. rigid or non-rigid).

2.1. Rigid factorization

The projection of a 3D rigid shape by means of an ortho-

graphic camera is historically the first factorization problem

studied [14]. In this case the camera motion Mi and the 3D

point Sj can be expressed as:

Mi =

[

ri1 ri2 ri3 tui

ri4 ri5 ri6 tvi

]

=
[

Ri ti

]

Sj =
[

Xj Yj Zj 1
]T

=

[

Xj

1

] (3)

where Ri contains the first two rows of a rotation matrix

(i.e. RiR
T
i = I2×2), Sj is a 4-vector containing the homo-

geneous metric coordinates of the 3D point Xj , and ti is

a 2-vector representing a translation into the image plane.

Every point belonging to the rigid structure shares the same

rotation and translation, thus we can compact 3D points in

a single 4 × p matrix S giving:

Wi =
[

Ri ti

] [

S1 · · · Sp

]

= MiS. (4)

Stacking the rows of Wi for every frame, we obtain the full

measurement matrix as:

W = MS =
[

R t
]

S (5)

where R is the 2f × 3 collection of f rotation matrices, t is

a 2f -vector which contains the translation for every frame.

The dimension of M and S is fixed to r = 4. If the 2D points

in W are registered to the shape centroid (i.e. W1T = 0),

the maximum dimensionality of each subspace is r = 3 and

equation (5) can be written as:

W = MS = R
[

X1 · · · Xp

]

. (6)

2.2. Articulated factorization

If the measurements in W belong to two independent

moving objects, the overall rank sums to eight since it is

possible to write motion and shape components as:

Mi =
[

R
(1)
i t

(1)
i R

(2)
i t

(2)
i

]

S =

[

S(1) 0

0 S(2)

] (7)

such that:

W =
[

W
(1)
i W

(2)
i

]

= MiS (8)

where W
(1)
i and W

(2)
i are the measured data at frame i for

the first and second shape respectively. The components

of Mi and S for each shape are in the form as shown by

equation (4) for a single rigid object. However, the rank

r may decrease if the moving objects show a dependency

such as a common rotational axis.

In articulated SfM [17, 20], this dependency is given by

the joints which constrain the degrees of freedom of the

moving objects. In the case of a universal joint [17] the

distance between the center of the shapes is constant (for

instance, the head and the torso of a human body) but they



show independent rotation components. At each frame the

shapes connected by a joint satisfy:

t
(1) + R

(1)
d

(1) = t
(2) + R

(2)
d

(2) (9)

where t
(1) and t

(2) are the 2D image centroid of the two

objects, R(1) and R(2) the 2 × 3 orthographic camera matri-

ces and d
(1) and d

(2) the 3D displacement vectors of each

shape from the joint. The relation in equation (9) gives the

reduced dimensionality in the motion and shape subspaces.

Thus, the shape matrix S can be written as:

S =





S(1)
d

(1)

0 S(2) − d
(2)

1 1



 (10)

where S is a full rank-7 matrix. The motion for a frame i
has to be accordingly arranged to satisfy equation (9) as:

Mi =
[

R
(1)
i R

(2)
i t

(1)
i

]

. (11)

Further details can be found in [17], alongside a description

of additional joint models. Notice that is necessary to solve

an assignment problem in order to form W as in equation

(8). At this end, a recent approach able to detect articulated

parts from images is presented in [20].

2.3. Deformable factorization

In the case of deformable objects, a single shape varies

its 3D structure with respect to a set of deformation modes.

The number of modes used to define the shape deformations

results in a specific rank-constraint over the image trajecto-

ries in W. The representation for the deformations is a sim-

ple model where any specific 3D configuration X is approx-

imated by a linear combination of a set of k basis shapes Bd

which represent the principal modes of deformation:

X =

k
∑

d=1

cdBd X, Bd ∈ ℜ3×p cd ∈ ℜ (12)

Bregler et al. [5] were the first to propose an extension

of factorization algorithms able to deal with the case of de-

formable shapes assuming an orthographic camera model.

In this case, the coordinates of the 2D image points ob-

served at each frame i are related to the coordinates of the

3D points according to the following equation:

Wi = Ri

(

k
∑

d=1

cidBd

)

+ Ti (13)

where cid is the configuration weight for basis d at frame

i. When the image coordinates are registered to the object’s

centroid, equation (13) can be rewritten as:

Wi =
[

ci1Ri . . . cikRi

]







B1

...

Bk






= MiS (14)

Again, by stacking the measurements at each frame we ob-

tain the following compact matrix form:

W =







c11R1 . . . c1kR1

...
. . .

...

cf1Rf . . . cfkRf













B1

...

Bk






= MS (15)

Since M is a 2f × 3k matrix and S is a 3k × p matrix, the

rank of W when no noise is present must be r ≤ 3k.

3. Affine and metric reconstruction

In order to extract the motion and shape components, the

classical procedure solves two separate problems:

1. Find an affine fit M̃ and S̃ to the measured data W given

the rank r.

2. Enforce the metric structure by computing a corrective

transform Qr×r such that W = M̃Q Q−1S̃ = M S.

The first step can be trivially solved using any rank re-

vealing technique such as SVD. However this solution is

merely one means of numerical computations, other ap-

proaches may be used as pointed out in [9]. Given the cho-

sen rigid/non-rigid model, the numerical rank it is fixed to r
and thus it is possible to approximate the decomposition as:

W
SV D
−−−→

n
∑

i=1

uiσiv
T
i =

r
∑

i=1

uiσiv
T
i = UrΣrV

T
r (16)

where Ur is a 2f × r orthogonal matrix, Σr a r × r diago-

nal matrix and VT
r a p × r orthogonal matrix. After simple

operations the product can be arranged in the affine form

W = M̃S̃. Notice that this initial solution is independent from

the problem considered, either the considered shape is rigid

or non-rigid.

The second step, the computation of Q, is where the met-

ric properties are imposed. For instance, in the rigid ortho-

graphic case, this leads to the computation of the transfor-

mation Q3×3 which renders each row of M̃i orthonormal (i.e.

M̃i → Ri). In the non-rigid case the computation is more

complex since the relationships in M are strongly non-linear.

For instance, in the deformable case, a closed form solution

can be found only if a correct set of independent bases is

chosen [19]. A wrong set of bases may lead to inaccurate

solutions as shown in [4]. On the other hand, non-linear

optimization or hybrid approaches have been proposed to

solve the problem [4, 15]. In the case of articulated shapes,

solutions are available [17] but based on the correct knowl-

edge of the type of joint connecting the bodies.

4. Factorization with shape priors

It is clear from the previous section that the metric up-

grade is dependent on the initial affine decomposition. An



inaccurate affine fit of M̃ and S̃ may irremediably compro-

mise the following metric upgrade. In this sense, the intro-

duction of a prior on the values of the shape subspace S can

bring the estimation close to the desired solution. More-

over, shape priors can support the computation in case of

deficient components in the motion subspace M – a likely

case when the image motion is weak. In such cases, it is

always possible to compute a factorization which well fit

W numerically but nonetheless the factors M̃ and S̃ may con-

tain meaningless components. This problem is hard to solve

unless prior information is included in the computation.

4.1. Measurements and priors

Shape priors are introduced as a matrix L ∈ ℜl×p which

holds a parametrization of each image trajectory stored in

W. A point trajectory wj can be written as a 2f -vector such

that W = [w1 · · ·wp]. Thus accordingly, we can write the

shape prior 1 as L = [l1 · · · lp]. The size of each l-vector lj

depends on the type of prior chosen. Often L may represent

a rigid 3D shape leading to l = 3. Such prior may be used

in deformable SfM to obtain a more reliable estimation of

an object with complex shape variations. Alternatively, it

may support the estimation of the object’s depth when the

shape is moving planarly. In general, L may as well store

more complex shape descriptions (i.e. l > 3) such as a

set of deformable basis shapes computed previously from a

similar shape.

The main idea is to join the information stored in L with

the available measurements in W in order to extract an affine

fit which is dependent on both components. This can be

formulated as two bilinear models for the data:

W = M̃2f×tS̃t×p = [MJ | MI ]

[

SJ

SI

]

(17)

and for the shape prior:

L = Nl×lSJ (18)

where the J subscript refers to the components obtained

by the joint space between prior and image measurements

while the I refers to the remaining ones. Notice that we

always consider L being full rank thus the following prop-

erties hold:

rank (W)=r, rank (L)= l and rank

([

W

L

])

= t (19)

where t = max{r, l} is the overall rank for both prior and

measurements.

1Notice that both the prior and measurements are registered to the re-

spective centroids i.e. W1p×1 = 02f×1 and L1p×1 = 0l×1.

4.2. Generalized singular value decomposition

Once the shape prior and the data are defined, we seek

a computational solution able to find the joint factorization

for W and L. This can be obtained using a Generalized Sin-

gular Value Decomposition (GSVD) which can decompose

the matrix pair {W, L} as:

W = U DU XT

L = V DV XT (20)

where XT is a p × p matrix which span the common row

space of {W, L }, U is a 2f × 2f matrix with orthonormal

columns (UTU = I) and V is a l × l matrix such that VTV =
I. Notice that the matrix X is rank deficient with t non-zero

singular values (for more details and proofs on GSVD see

[2], Sec. 4.2.2). The diagonal value matrices DU and DV of

size 2f × p and l × p are arranged as:

DU =

[

ΣU 0

0 I

]

and DV =

[

ΣV 0

0 0

]

. (21)

The diagonal matrices ΣU = diag(σ1, . . . , σl) and ΣV =
diag(µ1, . . . , µl) of size l×l are constrained such that Σ2

U +
Σ2

V = I and they have the diagonal elements ordered as:

0 ≤ σ1 ≤ . . . ≤ σl ≤ 1 and 1 ≥ µ1 ≥ . . . ≥ µl > 0

The ratio between the diagonal values are called General-

ized Singular Values (GSV) and they are defined as γi =
σi/µi. As a further note, the data and prior matrices are

usually pre-scaled such that ‖W‖2=‖L‖2. This condition [8]

guarantees a well-conditioning of the matrix X and it is the

only data scaling performed in the decomposition.

4.3. Generalized factorization for SfM

The GSVD decomposes the image measurements in W

with a common row space which is dependent on both the

measured data stored in W and the 3D prior information

stored in L. However, to obtain a solution in the form of

equation (17), we must reduce the decomposition of W given

by GSVD into the two standard affine components M̃2f×t

and S̃t×p. Thus, it is convenient to split X in the compo-

nents which are dependent on the prior (the first l) and the

one dependent on the data (the remaining p − l) such that:

X =
[

XJ XI

]

. (22)

In such way, we aim to preserve the common row space XT
J

component which was computed by GSVD.

Thus, equation (20) can be accordingly separated in two

components WJ and WI giving:

W = WJ + WI = UJΣUX
T
J + UIX

T
I . (23)

The matrix XT
J of size l × p alone contains the row space

components which mixes measurements and priors. The



row space in XI of size (p − l) × l still entails the rank

deficiency and it requires a further decomposition to extract

the remaining t − l components.

In order to obtain this further affine fit, the proposed

method performs two projections of WI : first over the sub-

space defined by XT
J and then along its orthogonal comple-

ment. This is obtained by defining the orthogonal projector

P such that:

P = XJ

(

X
T
J XJ

)−1
X

T
J (24)

giving:

WI = WIP + WIP⊥ = W
′ + W

′′ (25)

where P⊥ = I − P which has the result to further split the

remaining components in W′ which still belongs to the sub-

space given the prior and W′′ which is its orthogonal com-

plement. The components in W′′ can be reduced via SVD to

obtain the remaining t − l components giving:

W
′′ SV D
−→ UcDcV

T
c (26)

which can be re-arranged as:

MI = UcDc and SI = V
T
c (27)

where MI is a 2f × (t− l) matrix and SI a (t− l)×p matrix.

The remaining data W′ projected along XT
J is merged to the

joint space obtaining the measurements Wg such that:

Wg = WJ + W
′ = UJΣUX

T
J + UIX

T
I XJ

(

X
T
J XJ

)−1
X

T
J

=
(

UJΣU + UIX
T
I XJ

(

X
T
J XJ

)−1
)

X
T
J = MJSJ

where SJ = XT
J and MJ is given by the remaining factors.

Given the factors MJ , MI , SJ and SI , it is possible now to

form the bilinear decomposition as in equation (17).

4.4. Finding a metric solution

For the case of rigid shapes, the affine fit given by the

priors can be finally upgraded to metric by forcing metric

constraints in closed form for different type of cameras [9].

Differently for non-rigid shapes, we opt for a non-linear op-

timization stage based on bundle adjustment [18] where a

prior on the rigid basis shape is included as an additional

quadratic cost (i.e. L is a 3×p matrix). In principle, the prior

may correspond to a full parametrization of a deformable

shape, i.e. l > 3, however here we focus on priors which

are describing the rigid component of a deformable object.

Thus, the cost function minimized reflects the deformable

model presented in Section 2.3 giving:

min
RiBdjcid

∑

i,j

‖wij−(Ri

∑

d

cidBdj)‖
2 +
∑

j

‖B1j − Clj ‖
2

where Bdj is the 3× 1 basis component for the point j such

that Bd = [Bd1 · · ·Bdp]. The matrix C performs a metric

Neutral Anger Surprise

Figure 1. Three images sampled from a 160 frames sequence

showing different facial expressions.

alignment of L to the first basis shape B1 and it can be com-

puted using standard Procrustes analysis. The minimization

of the first sum of quadratic costs is equivalent to a Max-

imum Likelihood (ML) estimate of the model parameters

if i.i.d gaussian noise is affecting the measurements. How-

ever, by including the second sum, we obtain a Maximum

A Posteriori (MAP) estimate given the shape prior.

In order to initialize the non-linear optimization, the

affine fit given by equation (17) is used to compute an ini-

tial metric solution for the prior constrained components MJ

and SJ . This procedure has analogies with the approach

first proposed in [16] where the rigid component was used

to initialize a non-linear optimization procedure. The main

difference here is that the rigid shape is given by a mix-

ture of prior and measured data. To compute each rota-

tion matrix Ri and the first configuration weight ci1 each

frame-wise component of MJ can be decomposed using a

orthonormal decomposition [3]. The remaining values cid

with d = 2 . . . k are initialized close to zero. Finally no-

tice that the non-linear optimization with k = 1 can be used

to infer the 3D structure of a rigid object. For the articu-

lated case, the algorithm presented in [17] can be extended

to compute an affine fit using shape priors which can be

then corrected by forcing specific metric constraints for the

given joint. Non-linear optimization can be then applied by

adding additional priors for each articulated part.

5. Experiments

The experiments are mainly focused on deformable and

articulated shapes. First, synthetic tests are performed on a

deformable face in order to verify the validity of the recon-

struction using shape priors. The results from non-linear

optimization are compared against ground truth obtained

from a VICON motion capture system. Then, two further

real tests show the method performances with real imaging

condition for the deformable and articulated case.

5.1. Deformable face with ground truth

In this experiment 37 point tracks from a 160 frames long

sequence were obtained with a VICON system which cap-



(a) (b) (c)

Figure 2. Shape prior and its effect over the estimated basis shapes.

(a) The 1
st deformable basis computed without priors. (b) The 3D

prior used in the test. (c) The 1
st basis computed using priors.

No Priors With Priors

Figure 3. Comparison between the solution with and without pri-

ors. Even if the frontal view appears correct in both cases, only

the solution with priors can properly estimate the shape depth.

Neutral Anger Surprise

Figure 4. Front and side views of the 3D Reconstructions after

non-linear optimization with shape priors of the neutral, anger and

surprise facial expressions.

tured 2D and 3D locations of a set of markers overlaid on a

deforming face (see Figure 1). The subject was performing

tiny head pose changes which in turn affected the extrac-

tion of satisfactory 3D reconstructions from 2D trajectories.

Figure 2(a) shows the first basis shape B1 obtained using de-

formable non-linear optimization without shape priors. The

basis shape was generally quite flat and the mouth bend in-

ward into the head. The shape prior L3×37 is taken from

a 3D reconstruction of the VICON system itself when the

subject was performing a neutral pose as shown in Figure

2(b). After performing non-linear optimization with priors,

the basis shape B1 much resemble the prior with some vari-

ations located over the temple area (Figure 2(c)).

Figure 3 shows a comparison between 3D reconstruc-

tions for the surprise expression. Notice that both the frontal

views of the 3D reconstructions apparently estimated cor-

rectly the face shape. However, the inclusion of the prior is

critical as shown in the side views. Given a tiny rigid mo-

tion, the ML solution alone is very ambiguous since strong

variations in depth results in small displacements onto the

image plane. The inclusion of a prior over the rigid shape

component constrains the object depth and deformation es-

timates. Figure 4 presents front and side views of the final

3D reconstruction after 21 iterations of non-linear optimiza-

tion. Facial symmetry is well preserved and generally the

depth of the shape is correctly estimated.

In order to compute quantitatively the algorithm perfor-

mances, we performed 100 trials for each test with different

conditions. Gaussian noise of different levels was added to

the image points while the prior accurateness was as well

altered by adding gaussian noise to L. These tests were per-

formed in order to show how much the algorithm is resilient

to inaccurate priors and increasing image noise. Results are

presented in Figure 5 showing that the algorithm can de-

liver satisfactory performances even with some degrees of

inaccuracy on the shape prior.
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Figure 5. Synthetic experiments results for both 2D reprojection

error in pixel (left) and 3D error in units (right). The image shape

is approximately of size 114 × 84 pixels and zero-mean gaussian

noise of variance σ = {0, 0.5, 1, 1.5, 2} pixels is added to W. The

3D prior L is contained in a box of size 169 × 193 × 102 and

zero-mean gaussian noise of variance σ = {0, 10, 20, 30} units is

added to simulate inaccurate shape priors.

5.2. Image data with motion degeneracy

The aim of this experiment is to enforce a shape prior

belonging to a subject with measurements obtained from a

different subject. A rigid 3D shape of a face is first ex-

tracted from the image sequence shown in Figure 6 using a

rigid factorization approach. Then, the prior is used to infer

the 3D structure of a 45 frames sequence with deformations

mainly localized in the mouth region. In both sequences,

the 65 image points were extracted using an AAM tracker.



Figure 6. The first two images show snapshots from a brief se-

quence of 75 frames showing dominant rigid motion. The right

image shows the 3D rigid shape prior computed from the se-

quence.

Frame 1 Frame 25 Frame 35

(a) (b) (c)

Figure 7. The first row shows three frames of a sequence with

nearly planar motion and deformations mainly located in the

mouth. The second row presents the 3D shape comparisons be-

tween the prior (a), the 1
st basis extracted without prior (b) and

the same basis computed using shape priors (c).

Frame 1 Frame 25 Frame 35

Figure 8. Front and side views after non-linear optimization. De-

formations are mainly localized in the mouth region.

The second row of Figure 7 shows the priors and the dif-

ference between the computed rigid basis shape B1. From

Figure 7(b) it is evident that the solution without priors

presents depth estimates which were rather compromised.

Differently, after the shape prior inclusion, depth is com-

puted correctly and the face characteristics are adapted to

the new subject. It is possible to notice this in Figure 7(c)

where the nose is more elongated and eyebrows are less

bent. Finally, Figure 8 shows the 3D reconstruction for

three frames after non-linear minimization.

Figure 9. The left image shows a frame from a sequence with two

articulated bodies with a universal joint. The right image shows

the overall 3D reconstruction which has wrong depth estimates.

Box Prior

Head Prior 3D reconstruction

Figure 10. The two images on the left show the priors used to

infer the 3D articulated structure. On the right it is shown the

full reconstruction along with the estimation of the joint position

(green).

5.3. Articulated shape with priors

This test was aimed to show the relevance of the infer-

ence with priors also in the case of articulated SfM. The

experiment dealt with a universal joint between two shapes

as shown by Figure 9. The 61 frames image sequence how-

ever contained motion degeneracies only in the box shape

while the head was rotating enough to assure reliable 3D

reconstructions. The shape priors were obtained from sep-

arated rigid factorizations of both objects from different se-

quences. Generalized factorization is then applied to ob-

tain a better initial fit for the box shape. The overall affine

structure is finally upgraded to metric with the closed-form



solution proposed in [17]. Figure 10 shows the box sides

now preserving orthogonality and the depth was accurately

estimated along with the position of the universal joint.

6. Conclusion

This paper presented a method capable of including

shape priors in a factorization framework for SfM. These

priors were in the form of previously computed 3D shapes

which represented a close representation of the measured

data. In such way it was possible to obtain reliable 3D re-

constructions especially when the motion appearing in the

image sequence was degenerate. At this end, a closed-form

solution is used to compute an affine fit of motion and shape

components which are then upgraded to metric using non-

linear optimization with shape priors. Notice the strong re-

lation of this approach to other methods based on factor-

ization. For instance, in the case of photometric stereo [1],

priors on the normals of the object may be directly applied

using slight variations of our method. As ongoing work, in

order to widen the approach applicability, it is necessary to

develop an efficient algorithm for automatically matching

2D point trajectories and 3D shape priors.
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