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SUMMARY

By introducing a fictitious signal yo if necessary we define a transform

of a given linear control system

which generalizes the passage from the scattering to the chain formalism in circuit theory. Given a

factorization g= OR of /where R is a block matrix function with a certain key block equal to a minimal
phase (or outer) matrix function, we show that a given compensator u = Ky is internally stabilizing for

the system I if and only if a related compensator K' is stabilizing for O. Factorizations 9= OR with

O having a certain block upper triangular form lead to an alternative derivation of the Youla
parametrization of stabilizing compensators. Factorizations with O equal to a "I-inner matrix function
(in a precise weak sense) lead to a parametrization of all solutions r( of the FI' problem associated with
jz. This gives a new solution of the .F1- problem completely in the transfer function domain. Computation

of the needed factorization 9=OR in terms of a state-space realization of 9leads to the state-space

formulas for the solution of the F1* problem recently obtained in the literature.

KEy woRDs Feedback stabilization 11- control ,/-inner-outer factorization ./-spectral factorization

O. INTRODUCTION

A standard general feedback configuration in terms of which many problems of interest in
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230 J. A. BALL, J. W. HELTON AND M. VERMA

control theory can be posed is given in Figure I (see Reference I or 2). Here we assume that

is the input-output map for a linear, time-invariant, finite-dimensional system; after
transforming to the frequency domain by using the Laplace transform, we may assume that
the operator g is multiplication by a block matrix function

The signals w, u, z, y take values in finite dimensional linear spaces W, (J, Z, Y; the signal
w is variously known as the command, reference or disturbance signal depending on the
application, e is the error signal, y is the measuremenl signal, and z is the control signal. Given
9, a frrst design objective is to build the compensator K so that the closed loop system is
internally stable, i.e. so that the output z and all internal signals u and y are stable (i.e. have
all poles in the left half plane) whenever the input w and disturbances ur and u2 are stable (see
Figure 2). This is a formulation of internal stability completely at the input-output transfer
function level; other formulations in terms of state-space realizations are also possible. r'2

The main result of this paper is the definition of an equivalence relation - between two
systems D=D(9,K) and D':D(9',K') such that E is internally stable if and only if E' is
internally stable whenever D and D' are equivalent. The notion of equivalence is in terms of
factorization of a matrix function 9obtained from gby rearranging the system of equations

9rrw *  9pu:  l ,

921w*  922u=  y

",1:l'l;l

( l )e(s):w,,,1:), ";:i:il

(2\

Figure I

Figure 2
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associated with g. A standing assumption in the theory (often referred to as the regular case)

is that fiz(s) and ?n(s) are injective and surjective respectively on the extended imaginary

line. If ?uG\ is in fact square and invertible, one can rearrange the system of equations (2)

to be of the form

where

(3)

(4)

I e,z_e,,1.;l'1ft) ":ffi|,'j (7)lt:t 3::5::l=l lA,i.A" l:A,, l

& t f l + h r z y = z

& z p + & r r y = ,

l&n &,r1 lgrr- 9rr9ll9zz gngilt1
l -  -  t : t  I

L9zt &zl L - 9*'9zz gri I

A new observation and tool here is that, if gzr is not square and invertible but merely

surjective, one may add a row I4r 4zl to I such that the augmented (2, l)-block

l*41
14,)

is square and invertible. This induces an augmented system of equations

9rrw i  9pu= 1

?z rw*  922u :  Y

4fl + f i2u: yo

in which y0 is to be thought of as a fictitious output signal inserted
convenience. The system (5) can be rearranged in the form

& r f l * & o l + & n Y o = z

& z g * & z z Y + & n Y o = w

where

(5)

for mathematical

(6)

The following is our basic equivalence principle for stability of feedback systems. A special

case was given in Reference 3. Recall that a rational matrix function Ro is said to be minimal

phase (or outer in the mathematical literature) if both Ro and Ro I are stable.

Theorem A (see Theorems 2.1.1 and 2.2.1)

Let g and 9' be two given plants of the form as in Figures I and 2. Let & and &' be the

associated transforms as in (7) and suppose that

9= I 'R (8)

.,1;.] -il
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with

a minimal phase (outer) rational matrix function and R31, Rrz, Rrl, Rr:l rational matrix
functions analytic on the extended imaginary line. Suppose 1( is a proper rational matrix
function such that (RzrK + Rzz)-t is also proper. Then the compensator r( is stabilizing for g
if and only if the compensator K': (RnK+ Ro)(Rz& * Rzr)-r is stabilizing for 9,.

We shall call matrix functions R of the type described in Theorem A restricted outer matrix
functions.

The practical utility of Theorem A is that a given control problem for a complicated plant
9 can be reduced to the same problem for a much simpler plant g' if g and g' are related
as in Theorem A. We offer two illustrations of this general principle.

The set of stabilizing compensators K for a given plant I in general is a complicated
nonlinear set; a basic issue therefore is the stabilization problem.

(STAB) For a given plant I describe the set of all stabilizing compensators 1<

A special case where (STAB) is easy is the case where g has the form

associated with a model matching problem. I A plant / of this type we shall say is in model
mstchingform.ln this case one can show that gis stabilizable if and only if Tr, TzandTt
are all stable, and then 1( stabilizes if and only if 1( itself is stable. If ghas the model matching
form

then the transform .+ has the block upper triangular form

Thus we have

Corollary. (Youla parametription)

Reduction of (STAB) for a general plant g to the case of a model matching plant

fRt,  Rrz o I
P= lRzr  Rzz  0 l

LRrt Rn Rrl

*,: [X]; ;rl

*=li: ?]

s=lT, 
-rrf

Lnoj

,:lJ\ &_,, .i '_,r]
L 0 9zr ,9zzl

",:li: 
-T)
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is equivalent to the computation of an (upper triangular)-(restricted outer) factorization

R n 0
Rzz 0
Rn Rr

and

(e)

(10)

lu-"
L9zr

&r, ,"ztl |&h &i,
l = l

9zz gzt l  L0 9iz

of 9.

In this way we recover the Youla parametrization of stabilizing compensators (see Reference

I or 2) as a direct application of the general factorization principle Theorem A.

The second illustration of Theorem A to be discussed in this paper is the standard problem

of H'control. This problem has received a lot of attention and interest in the literature in the
past decade; for engineering motivation and background, we refer to References 4, I and 2

and the references therein. We formulate here the strictly suboptimal version of the problem:

given the plant I and a tolerance level T, one seeks to describe all stabilizing compensators

K for which the induced operator norm of the closedJoop transfer function

T"n= 9rr+ &zK(I- gzzK)-r9zr (as an operator on vector-valued Lz of the imaginary line)

is strictly less than 7.

(HINFy) Find all stabilizing K such that ll fit + 9nK(I - gzzK)-t9zr ll- < r

Without loss of generality in the following discussion we may set 7 : l.

As before in the (STAB) problem, there is a special class of plants I as in (l) for which the

solution of the strictly suboptimal .F/- problem is easy. We say that the rational matrix

function

g = l g t '  9 r z ]

L9u 9zz)

as in (l) is sub-all-pass if

l ls(s) l ;**.a,t"1 l l  < I

.r(s) l1;r* .f;,,,1]'

is isometric for s on the extended imaginary line. If in addition 9(s) is stable, then we say that

7is subinner. For example, if Ker ?uG) = [0] for all s, then 9is subinner if and only if :P

is a matrix inner function in the usual sense. It turns out that for a sub-all-pass plant 9, the

strictly suboptimal F1* problem has solutions if and only if I is subinner, and in this case a

compensator K solves the.F1* problem if and only if K is stable with llKll- < l.

The transform ggiven by (7) of a sub-all-pass function 9(i.e., a 9satisfying (8) and (9))

can be arranged to have the property

g(s\* lz&G) = Jr, Re s = 0 ( l  l )

and conversely,  where Jz= Iz@ - IwandJr=Iu@ -. Ir@ - I t .Let us cal l  such a matr ix

function &a(Jv,Iz)-isometry. The additional stability property required for 9to be subinner

then corresponds to

R e s > 0 (r2)
It" o

r1sy . r .71s1g lo  
- Iv

L0  0 i]
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Let us say that a Fsatisfying (ll) and (12) is a ("Ir,.tz)-subinner matrix function. Note that
the concept of (,L,,/z)-subinner requires a specification of the space Yo of fictitious signals;
when this space is absent, then the concept of ("Ir,,Iz)-subinner collapses to that of (h, Jz)-
inner in the usual sense. s An application of Theorem A now leads to the following solution
of the f/'problem.

Corollary

The solution of the fI- control problem for a given plant g reduces to constructing a
factorization &: &'R of the transform &of g(givenuv titl such thar &' is (h,,Iz)-subinner
and R is restricted outer.

This gives a direct analysis of the I/- problem completely at the level of transfer functions
and input-output ope-rators. When one goes on to compute the ((,/r,,Iz)-subinner)-(restricted
outer) factorization &= &'R in terms of state-space realizations, one arrives at the elegant
state-space formulas for the solution of the ,F1' problem recently obtained in the literature; this
is done in Section 6.

Thus the general factorization principle Theorem A provides a unifying general framework
from which the Youla parametrization of the set of stabilizing compensators and the
parameterization of all solutions of the .EI- problem both flow as particular illustrations. In
particular we obtain a new direct conceptual solution of the 11' problem at the level of transfer
functions which bypasses completely the Youla parametrization.

The ideas behind Theorem A for the case where gzr is square and invertible can be
illustrated quite simply by a picture (see Figure3). Here the original plant I is the transfer
function

from

and it has been factored as in equation (8) of Theorem A where

[;] 
," 

[;]

",,1:,f -l;,1

l"

P'

lr' V'
n

Ul

v

l "L
U2

Figure 3
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(with ur =0,u1= 0) and where it is assumed that

is outer. Figure 3 depicts this factorization as applied to Figure 2. Internal stability for the

original closed loop system (Figure 2) associated with I and compensator K is defined with

respect to the disturbance signals ur and u2 (with ui and ui taken equal to zero). Internal

stability for the closed loop system associated with the plant 9' and compensator

K': gnlQ:y' -a' is defined with respect to the disturbance signals ui and ul (with

ur = 0, uz:0). The content of Theorem A is that these two notions of internal stability are the

same, i.e. one can shift the location of the disturbance signals without changing the problem,

in case R is outer. This was one of the basic ideas behind the proof of the Youla

parametrization appearing in Reference 3. This idea can be made precise for the general case

where 9zr is not invertible but is made more complicated by the necessity of introducing an

auxiliary space I{ of fictitious signals.
Historically the Youla parametrization was used as a tool for the study of the 11- problem.

Specifically, the Youla parametrization enables one to reduce the.F/'problem for the general

case to the model-matching case. Further reductions and manipulations were required in order

to apply the state-space solution of the Nehari problem from Reference 25. After having done

all this, one still had to back-solve for the compensator, so the whole process was rather

cumbersome. Later Reference 7 showed show to get a more direct parametrization for the set

of all performances T* for an H* problem directly via a "/-spectral factorization procedure

for a plant I assumed to be in the model-matching form. The landmark paper (Reference 4)

avoided the Youla parametrization completely and was the first to set down a clean state-space

solution of the general rll- problem in terms of solutions of two Riccati equations. Solutions

of parallel problems involving optimization in a 2-norm rather than infinity-norm and strong

analogies with LQG theory were also given with all the analysis done in the time domain in

terms of a state-space representation of the original plant 9. Among the many follow-up

accounts we mention Reference 8, which used the bounded real lemma, and Reference 9 which

used the Pontrjagin maximum principle. The recent papers (References 6 and l0) returned to

the transfer function domain to derive the solution of Reference 4 via factorization of transfer

functions and a streamlined application of the Youla parametrization. For the 2-block case and

in the context of the ,EI' problem, this paper has considerable overlap with Reference 26.

The formulas we arrive at here for the solution of the .F/- problem are the same as in these

other papers. The contribution of this paper to the.Ef- control theory is conceptual rather than

computational. As in the original approach, our solution is set at the level of transfer functions

with state-space formulas arrived at as a method of implementing transfer function operations.

The novelty of our approach is that all the factorizations and manipulations of the original

approach are condensed into a single generalized "I-inner-outer factorization for the general

regular case. This paper can also be viewed as a more definite improvement of Reference 7.

There the solution of the I/- problem, under the assumption that the plant had already been

brought to model-matching form, was reduced to the same type of single "I-inner-outer
factorization as we have here. The derivation in Reference 7 was via a more sophisticated Krein

space analysis based on ideas from Reference ll rather than the elementary ideas behind

Theorem A as presented here. Also in Reference 7 the state-space analysis did not include the

existence criterion; there appeared a superfluous Riccati equation, and the parametrization of

the compensators K (as opposed to the closed loop transfer function 7"') was left obscure (see

the end of Section 4).

235

^,[;] 'l',ll



236 J. A. BALL. J. W. HELTON AND M. VERMA

Since this paper was written, we found that the same factorization idea for a solution of the
standard I/- problem at the frequency-domain level also appears in the recent work of Liu,
Mita and Kimura. 12 Also a preliminary form of some of the ideas here appeared in work of
Verma and, Zames.z1

This paper deals only with the so-called regular,F/'problem and does not touch the singular
case studied in Reference 13; an interesting direction for future research would be to
understand the singular case from the factorization point of view of this paper. Also, although
not emphasized here, the transfer function analysis in Sections 1-4 makes sense for distributed
parameter systems.

We expect that the computation of the generalized "/-inner-outer factorization presented in
Section 5 will eventually have some technical improvement. Specifically, one should be able to
prove that existence of the desired generalized ,I-inner-outer factorization guarantees that
stabilizing solutions of the Riccati equations exist if (A,B) is stabilizable and (C,,4) is
detectable; these improvements are worked out in a separate report 14 for the 2-block case
(correspondingto 921(s) is square and invertible on the extended imaginary line in the control
problem.) In any case the work of Section 5 extends the work of References l5 and 16 on state-
space formulas for inner-outer factorization to more complicated factorization problems. The
payoff is that one thereby solves completely in one stroke the entire ,F/- problem for a given
plant I rather than merely implementing one of many steps in a solution algorithm, a
motivation behind the work of References 15 and 16.

The paper is organized as follows: Section I systematically develops basic properties of the
general transform g- I and of the associated linear fractional maps. Section2 presents a
proof of Theorem A, with first a separate proof for the simpler case where .721 is square and
invertible. In Section 3 we show how the Youla parametrization of stabilizing compensators
follows from an (upper triangular)-(restricted outer) factorization of the transformed plant .7
as a consequence of Theorem A. Section 4 shows how the f/- problem can be solved by a
single generalized "/-inner-outer factorization of the transformed plant &. Next Section 5
shows how necessary and sufficient conditions for the existence of such a ,I-inner-outer
factorization together with formulas for the factors can be given in terms of a state-space
realization of .4. Finally in Section6 we specialize this analysis to a function &of the form
arising fiom an F/- control problem to recover the state-space formulas for the solution of an
.F/* control problem given by Petersen et al.8

I. LINEAR FRACTIONAL MAPS

In this section we develop some basic principles concerning matrix linear fractional
transformations which shall be needed in the sequel.

I.l. Linear fractional maps on matrices

Suppose g is a block 2 x 2 matrix

*= lA t '  
g " ]

L9zr 9zz)

where .4; has size r/t; X ni for i, j = 1,2. In this section we consider only matrices over the field
of complex numbers C; the results of this section will be applied pointwise to the case where
the entries of I are rational matrix functions. The linear fractional map induced by I is the
map

K - 9rt  + 9oK(I -  gzzK)-t?rr : ,  TAIf l
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transforming nzx mz matrices K to mr x nr matrices %tIE; $4lK is defined for all

ttz \ rnz matrices K for which the inverse of K - 9zzK exists, so in particular 9tl0l : 9n is

always defined. It is easy to see that the map K - 9.tll{ is one-to-one exactly when

and

(  l3 )

(14)

9tz has linearly independent columns (i.e. 9rz is injective)

9zr has linear independent rows (i.e. 921 is surjective)

When assumptions (13) and (14) hold, we shall say that the map $4is regular; in this section

we shall deal exclusively with regular maps. The map 9.* can also be viewed as the formula

for the input-output map from w to e in the feedback signal flow diagram depicted in

Figure 4. Algebraically, if one substitutes ,l : Ky in the system of equations

l.?,',";:)ll: tt
and solves for e in terms of ur, one obtains

z: ,%-.*[Iflw

The next lemma describes the extent to which a regular map K - 9.,oII(j determines the

matrix I which induces it. We omit the elementary proof.

Lemma I. I . l

Suppose

nr:14, 4.,1
" L,4, ,4,1

is a block 2x2 matrix with 4z injective and 4r surjective and with 4i of size mix nj for

k = 1,2. Then .{.y'II{l = ,r-.*, [Kl for all nzx m2 matrices K in a neighbourhood of 0 if an

only if

ls1,
14,

for some non-zero scalar a.

fr):l'(J*,, ";,',1
To be consistent with terminology from F/- control theory I we identify three types of linear

Figure 4
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fractional maps 9.e in order of increasing level of generality:

l-block case: both 9n and 9zr are square and invertible.
2-block clse. 9n is injective and 9zr is square and invertible.
4-block case: the general regular case (9o is injective and 9zr is surjective).

The goal of this section is to rearrange the form of the linear fractional map K - 9.*lKf to
an alternative form K - 9.rll{ having more convenient mathematical properties; in the
language of classical circuit theory, the transformation which we are about to define amounts
to the conversion from the scattering formalism to the chain formalism.rT The l-block case
corresponds to the classical case, the 2-block case is a relatively straightforward generalization
while the 4-block case is more complicated and involves the introduction of a fictitious
channel. We discuss each in turn.

l-block case. We convert to the chain formalism as follows. Rearrange the system of
equations

"l:l=l:)
to be in the form

al ' l  _lzl
Lyl 

= 
Lrl

In the terminology of Reference 18 this amounts to 'partial inversion'; in the context of
Figure 4, this amounts to 'reversing the arrows' for the w and y signals to arrive at a system
as in Figure 5. The result is

(  l5 )

When we make the identification u: Ky and solve for z in terms of w, the result is

z = (&ttK + &r)(&uK + &z)- 1 w

If we define a map g.rby

s.rv<l = (,,?11K +,?dQlzrK +,?z)- t

the above analysis shows that

s.rln: ,'.tllrJ

for a generic set of mz x n2 matrices K. From (15) it is clear that gbeing in the l-block case

r t a

Figure 5

-- f ,?r, ,Azf l,4z- gtrgzrtgzz .4€ll1't= 
L,4r, ,7rr)= L -rp;is, sti l
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(i.e., 9n and 9zr being invertible) corresponds to

,hrt and &n - &rz&lzr &zr are square and invertible

239

(16)

Note that invertibility of 9zz is equivalent to ,r(:0 being in the domain of definition of f.i

and then, by a Schur complement argument (see, for example, Reference l9), invertibility of

&r, - &rr&tzt &zt amounts to the invertibility of .7 itself. A useful property of the chain

formalism is the group property

P.7no $.72> = $.7n.7tt

where the product on the right is ordinary matrix multiplication.
Conversely, suppose that the block 2 x 2 matrix

( t7)

t'7"*: l*,,
satisftes (16). We then may reverse the process

equations

e-']
9zz)

done above, and rearrange the system of

to arrive at a system of the form

The result is

.Z : lhr ,  
* r r f  

= lnr r -  
919rr t922 *r r* , , t f

-: 
l,,qt, errJ: L - etlezz st,; l

as before. The condition (16) now assumes the weaker form

#zz is square and invertible and &n - &rz9rz'&r, is injective

,ll=l:,1

"l:l=[:]
- l.tPrt ,frz1 l,7rr,?;r' ,7rrhrz,7rzt,Pzrf

't= 
l.n , .vrrl: | .7;r' -.?rrt.?r, J

(  l8 )

Then assumption (16) is exactly equivalent to .lrzand 9zr being square and invertible, i.e. to
gbeing in the l-block case. Moreover it is easily checked that

tC.r'll<l: .tt-.tllq

for all K in the common domain of definition of 9.1 and ,1.t, and that the two

transformations 9 * & and & - I defrned above are inverses of each other. We conclude that

linear fractional maps of the form 97with & satisfying (16) constitute the chain formalism

version of the l-block case.
2-block case. Now suppose that we are given a block 2 x 2 matrix

f'9rr ,ruf

"= L*" '/zz)

with 9u square and invertiblebut 9rz known only to be injective. The derivation of (15) above
required only the invertibility of *zi thus we may still define .7 by

(te)
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We again define the chain formalism version of the linear fractional map

K - 9.zII(l : (&r& + &p)(&uK + &zz\-l

and note that

9.*14 = 9p1K

on the common domain of definition. The condition that &zz is invertible guarantees that K - 0
is in the domain of definition of g.zand then by a Schur complement argument the additional
condition that &n- &rr&tt&^ is injective amounts to the condition that the matrix &itself
be injective. The group property (17) makes sense only if &(t) and &@ are allowed to have
appropriate (different) sizes.

Conversely, if

is a block 2x2matrix satisfying (19), we may again define g by the inverse transform (18)

Then hypothesis (19) on 9translates exactly to ,9zr is square and invertible together with {n
is injective, i.e., to gbeing in the 2-block case. We conclude that linear fractional maps of
the form g}with .7satisfying (19) constitute the chain formalism version of the 2-block case.

4-block case. We are now ready to consider the general regular case. Suppose that we are
given a block 2x2 matrix

such that .942 is injective and .tP21 is surjective. Transformation to the chain formalism appears
to require the invertibility of 9zr. However, since v/zr is surjective it is possible to append a
second block row 98r so that

is square and invertible. Define 4.2 of a compatible size arbitrarily. Then

in the 2-block case. The associated linear fractional map gs, acts on compensators of
row type lK Ko) and has the form

z l9rr  9rz
9 : l  -

L9u 9zz

g=lgl srr l  
=lgrr*;rt 

&r,- &rr&;rthrt]
" 

L,*r, .fzzl l, .7;r' - ,?rr'?r, J

"=l:;" ";:)

.:l:;;,t,At;l -l;]

,eetrK,Kot I : err * enrK,r.r [l; N l;IK,K.r]' lfrl

l;:,1

is as
block

Note that if we restrict Ko to K0: 0 we get

.FolIK,0] l  :  9rr  *  . {rz lK,o'  I  
I  -  9zzK 0f-  |  lg, ftl -.s;; t le;1= 

'nAI{
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In words, a general 4-block linear fractional map is equivalent to a 2-block linear fractional

map of a larger size restricted to compensators which annihilate a certain subset of the

channels feeding into the compensator (see Figure 6). We use formula (15) to convert 9to Ihe

chain formalism; the result is

g :

where the associated system of equations is

-1 ,1 r ,1al ' l = li"l
L/ol 

Llrt

From results derived above for the 2-block case' we know that

,4 .* l I { :  ho[ [K,0] l  :  g?| . [K,0] l  : (&nlK,0 l  +  l&rr ,&r l ) (hr lK,0 l  +  l&rr ,&r t i ) - t

This leads us to define a block 2 x 3 matrix

,v=l(" {" ("f
Lh 9zz ?ztl

(the same matrix as #but considered as having a block 2 x 3 structure rather than block 2 x 2

structure) and define g,?ln bY

g.i ln = grI lK,} l l  = l&y$+ &n,&r: l [hrK+ &rr. ,&rt ]- t  (21)

In this way we arrive at the chain formalism version 9}of the linear fractional map $*for

the general 4-block case. Properties inherited by &from gbeing regular which are read off

from (20) are

t&r, grrl is invertible and &n- l&n &tllhz ;7rtl-'ht is injective (22)

Note that invertibility of l&zz &ztl guarantees that K: 0 is in the domain of definition

of g.* and then by a Schur complement argument the injectivity of

,7r, - lgrr&rtllhzhzl-th, is equivalent to the injectivity of the big matrix I'

Conversely, suppose that we are given a block 2 x 3 matrix

- l?tr 9n gnl
g : l  z  :  _ _  |- 

L,tPrt 9zz 9ztJ

,7tt]

;:,)

",,1;f 
'1

l*;:,,)' l
:1""- *,,1;f 'l;)

L l.;l'l;)

Figure 6
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which satisfies condition (22). We merge the last 2-block columns to a l-block column to
generate a block 2x2 matrix

o:l:,, i .?_u 1,,1
LPz, i 9zz .9n)

which satisfies condition (19) and which has the property

s} ln = s| I lK,0l l

We next use the general formula (18) to convert back to the scattering formalism; the result is

f  l&rr , ,? t l l lzz ,ht l - '  ,7 , ,  -  l&rr ,  &r l lhz,  &r t l - '9r r ]s= 
l- tir,'; 'rr1-J'- - I&rr,hrll ' '.1,r",' 

" 
J 

Q3)

We then define / so that

s-.rl$ = lieIK,Ol

This amounts to ignoring the last block row of g. The result is

":l'"' ";:)
where

911 = l&12, &ri [ &zz,,hrtl 
-'

9rz = ,7rr  -  l&zz, &rt l  I&rr,  &rt l - '&r,
gzt :  l I  0) l9zz, grr)- '  

(24)

9 z z :  -  L I  0 l l h z  & r t l - t & r ,

Note that assumption (21) on .iis equivalent to 9rz being injective and #.2lbeing surjective,
i.e. 9 is in the regular case. We conclude that maps of the form (21) with & a block 2x 3
matrix satisfying (22) gives the chain formalism form of linear fractional maps for the general
regular case.

We close this section with a discussion of to what extent the map K - gpllfl determines
the matrix &. For regular maps in the conventions of the scattering formalism K - lV.tUfl,
this is settled by Lemma l.l.l given above. For the chain formalism we have the following
result.

Lemma 1.1.2

Suppose

zr -14' '4' 'Atl
" - 

l./t, ,4, A,l
is a block 2 x 3 matrix satisfying condition (22) with .y'fi of block size rhix fii for k = 1,2. ln
order that

9.7'In = g.?,lK

for a generic set of frr x i2 matrices K it is necessary and sufficient that there exists a non-zero
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scalar d and fu x ij matrices % for j = 1,2,3 with 7r invertible such that

14, 
,4, 44 -;,1i, .71, A,ll"l : 

ol

Li', A, A',J:le;', e;: A")l:, X: l.J
(2s)

In particular, if the third column of &is vacuous (i.e., fr3:0 and gisin the 2-block case (19)),

then equality of the two maps f .i' and 9.t, is equivalent to

3 : a & l

for a non-zero scalar a.

Proof. This result can be established by tracing through the amount of freedom involved

in the transformation from I to g to & and using the characterization of non-uniqueness in

the correspondence g --+ 9* given by Lemma l.l.l.

1.2. Linear fractional maps of contractions

In this subsection we establish some general facts concerning linear fractional maps which

map contraction matrices into contraction matrices. For convenience, with the exception of

Proposition 1.2.3, we will state the results only for linear fractional maps presented in the

chain formalism.
Our main interest here is to define various classes of block 2 x 3 matrices

, ,  -  lU t r  (J rz  Ut l l
" 

- 
l(tz, (Jzz urt)

(with block sizes mi Xe, S?y, for i: l,2and j:1,2,3) satisfying the regularity assumption
(22) with the property that 9ull(l is a contraction if and only if K is a contraction. We first

consider the 2-block case where nr = 0 and Uzz is invertible (so rflz= nz). We work with the
linearization of the equation

9ull<f w = z

given by the system of equations

Let us suppose that U is (7, .I)-isometric, i.e., that U*JIJ = i,
j = In, @ - In,. Then we have exPlicitlY

(26a)

(26b)

where ,/: I^, @ - I,n, and

lIJfiurt 
- ulJtu LllrIJ,z - u*uzz] _ 11,, 0 I

LUfzUtt - Ilrlzllz, lllzUn- Uizun)- lo - h,l

In particular LI.lzUzz= 1,,* UfzUn. Thus Uzz (which by assumption is square) is invertible

and, from

((I nUizr \* (l n(Jlzt = I - (U;2r )* Urzl

we ccmclude that UnUlzr is a strict contraction, that is

ll,:', Y':lt:l:l:,]
u = K y

ll UIzt Uuw ll < ll , ll for all w * 0
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From this it follows that for an! f i lxn2matrix Kwith l lrKll < l,

UzrK * Uzz: Uzz(Jlzt UuK + I\

is invertible, i.e., any ftr X ftz K with ll .tK ll < I is in the domain of definition of gx. Moreover,
the (7, 

"/)-isometric property of U implies that

l l z l l ' -  l l  , l l ' :  l lu l l ' -  l l  y l l '

whenever u,!,2, w satisfy (26a). lf we now plug in u:Ky from (26b) we get

l l  eu t&wl l ' -  l lw l l ' :  l lKy l l '  -  l l y l l '
for all w, where y = (UuK + (J22)-rw. Since for any fixed K in the domain of definition of gu
the matrix UzrK + Uzz is invertible, we see that / sweeps through all of C" as lr sweeps
through C^,=Cn,. Hence K is contractive, isometric or expansive (i.e. ll Ky ll, >- ll y ll, for all
y) if and only if gulKl has the same property. This gives us the following result.

Proposition 1.2.1

Suppose

u:ly, '  u,z]
lUu Uzz)

is (7,,I)-isometric, where j: In, @ - Ir,, J: I^, @ - I-, and nz= mz. Then U satisfies (19),
andanycontract ive f l rxnz matr ixKisinthedomainof def ini t ion of gu. Moreover,  fora
given K in the domain of definition of 9u, gull{ is contractive (respectively, isometric)
(respectively, expansive) if and only if K is contractive (respectively, isometric) (respectively,
expansive).

Our next goal is to extend Proposition 1.2.1 to a more general class of block 2 x 3 matrices
U. Therefore consider a block 2 x 3 matrix

I IJr, (Jn lJrtf
u:  

l " '  (Jzz uu)

where Ui; has size nxi x ni and U satisfies the regularity assumption (22). We now suppose that
Uis ( i  G) -V,"/)- isometr ic where, as before, j :  In,@ -In, J:  I ,n,@ - Inrand V ={/* l ) is
a general positive semidefinite ftt,X nt matrix. As for the case nt:0 done above, one can see
that the domain of definition of 9u includes all nr x nz contraction matrices K. The
linearization of the linear fractional equation

9(r[K]w = a

leads us to the system of equations

ly,, Y,, u'rl f i l=
LUz, Uzz u*JL;r)

The (f @ -V, /)-isometric proper ty of (J;;,::,rut

l l  z l l '  -  l l '  l l '  :  l l  u l l '  -  l l  y l l '

t;l (27a)

(27b)

(28)- ll rl,vo ll'
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whenever u, !, !0, z, w satisfy (27a).If we now plug in u:Ky from (27b) we get

I eutKl w ll' - ll, ll' = ll Ky ll' - ll y ll' - ll Vyo ll'

for all w, where

fir] 
: I(JzrK + (Jzz, (Jzt)-t w.

In particular, if K is contractive we see from (29) that gulKl is contractive. Conversely, if
gu[Kl is contractive, we have

l l su lKtwl l ' -  l l r l l '<  o

for all w. If we specialize w to be of the form

and use (28), we get

l lKv l l ' - l lY l l '<o
for all !(Cn', i.e., necessarily K is contractive. Also, if yo<KeriP and we choose

1at = l(J21K * IJzz,"rrl f .-Orl
L l J

f r o m ( 2 8 ) w e r e a d o f f t h a t  l l g u I K ) * l l ' = l l r l l ' ; h e n c e w h e n V h a s a n o n - z e r o k e r n e l t h e r e
is no choice of rK for which ll 9u[Kl ll < l. On the other hand, if V > 0 we read off from (28)

that ll guIKlwll < I for all choices of w if and only if l l.Kll < l. We have arrived at the

following result.

Proposition 1.2.2

Suppose

, ,  - l U r r  ( J n  U r l
" 

- 
lUu IJzz (lrtl

is (.1 @ -V,,/)-isometric, where j= In,@ -1n,, '{, is an fltxnt, positive semidefinite matrix,

J= I^, @ - I,n, and where U satisfies the regularity condition (22) (with U in place of &).

Then any contractive r11xn2 matrix K is in the domain of definition of 9u. Moreover, (i)

gulKl is contractive if and only if K is contractive. (ii) There exist contractive K for which
gulKl is strictly contractive if and only if 9 is positive definite, and in this case, 9u[K1 is

strictly contractive if and only if K is strictly contractive.

In this paper we will be mainly interested in linear fractional transformations having the

property (ii) described in Proposition 1.2.2. The following result characterizes the class of such

maps in the scattering formalism.

Proposition 1.2.3

Suppose

245

(2e)

lUuK + ,rr, U.lltrf

g=14" 9n

L{u 9zz
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is a block matrix with 9n injective and 9zr surjective with 9ii of size m;x nifor i, j: 1,2 such
that

(D l l .9 l l  <  I ,
( i i )  l l9rt lKer e21l l  < l ,  and

(iii) rank(/- 9*la1=dimKer 921.

Then

(a ) l l e . * lK l l l  ( l o  l l , ( l l  < l ,and
(b) l lsr lKt  l l  < I  o l l ,< l l  < l .

Proof. We show that if g satisfies conditions (i) and (ii) in the statement of Proposition
1.2.3 then there is a choice of augmentation d: Iflt 4zl for g so that the resulting
transform U = & defined by (20) is as in part (ii) of Propositi on | .2.2 with r/ : 1. From (28)
and the connection (20) between gand &, the issue is the construction of d : l4r 4zl such
that

I 
o^1 

is isometric (30)
Lf)

and

lo'^'f is invertible (31)
1,4'l

By condition (ii i) there is a surjective linear transformation d:14, 4zl from Cnr @ Cu,
to C'' (where n: = dim Ker 9x) so that

r _ e*:4: (d)* d G2)

Thus (30) is satisfied with this choice of d. To check (31), write C'' as a direct sum

Cn' -  (Ker  ?u) t  @Ker  9zr

and partition gn, 9zr and.4r conformably:

9rt  = l9rrr  grpl

921:  [9211 0 ]

Tzt  = IAtr  AnJ

and note that 4xr is invertible since gzr is surjective by assumption. From

ls,,f -1,v,,, o I
1.4,) L.4,, ,4,,)

we note that (31) is equivalent to

4.t, is square and invertible

On the other hand (32) in particular gives

I - gfrzgrp = (4t)* 4t, (33)

Assumption (ii) guarantees that

rank(I-  gfnaAn): ms

Hence (33) implies that 4p is invertible as required. n
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Remark 1. One can also prove a converse to the general result proved in the proof of

Proposition 1.2.3 is the following matrix extension result. Given a block matrix

fgrr 9rz]g= 
l*" 9zz)

where flii has size fi4;x rtil then there is a choice of mtx (nr + nz) matrix d : 14, 4zl such

that

(a) | 
*"1 

is an isometry
LdJ

and

(b) | *'l is square and invertible
LfrrrJ

if and only if

( i )  l le l l  <  l ,
( i i )  l l&r lKer eul l  < r,

( i i i )  rank( I -  9*e1:d imKer 9zr ,

(iv) 9n is surjective.

Remark 2. The proof of Proposition 1.2.3 showed that if

-  f 9 ' , 9 r " fu= 
l;:' ;;)

is a block matrix satisfying (D, (ii) and (iii) in Proposition 1.2.3 in addition to (13) and (14),

then thas a chain formalism transform U::7 as in (1.1.8) which is

(lt o-1, ,)-,,o-.,.'.
\Lo - I r  /

Conversely one can reverse the steps in the argument to show that an

lli 0l \
(16 -il' "t7-i'o*etric u

is in turn the chain formalism transform U : :j' of a block matrix .l satisfying the conditions

of Proposition 1.2.3. We shall use this remark in Section 4.

2. A FACTORIZATION PRINCIPLE FOR STABILITY OF FEEDBACK SYSTEMS

Consider the feedback configuration D(9,K) depicted in Figure 7. Here

*,ll- l'l
Lu) Ltr l

and K: y + tt - t) represent input-output maps (called the plont and the compensator) for

linear time-invariant finite dimensional systems, w is the disturbance or generalized reference

signal, u is the control signal, z is the error signal, y is the measurement signal, ur and u2 ate

auxiliary disturbance signals introduced to define internal stability in an input-output setting.

Figure 7 represents a general paradigm into which a variety of control problems can be cast;
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for more details, see References I and 2. After applying the Laplace transformation, we may
assume that the signals w, u, z, y, are rational vector functions with values in finite dimensional
spaces W, U, Z,lrespectively, and that gand r( are given as multiplication by rational matrix
functions, also denoted ?s 9= 9(z) and K = K(z). The configuration in Figure 7 stands for
the system of algebraic equations

^l*1 | z Is l  l = l  |  ( 3 4 )
LUJ Lt _ uz)

u : K y + u t

The system D(g,K) in FigureT is said to be well-posed if one can solve the system (34)
uniquely for z,u,y in terms of w,u1,uz and the resulting map

f rl lzl
t t t l
l u r l  +  l u l
L,,J LyJ

is given by multiplication by a proper rational matrix function 4z)= IXiiQ\ r<i,j<3:

V) 4,'l
If in addition,/( is stable (i.e., all poles are in the open left half plane) then the system D(9, K)
is said to be internally stable. Explicitly, in terms of

g:Ie,,  .*,r l . fr l  *f  z l
L?zt 9zzl lul Ly - uzl

and K: y'-+ u - ut, well-posedness works out to be equivalent to

The rational matrix functions A = K - gzzK is invertible (36)

together with associated rational matrix function ,/(as in (35) being proper. Explicitly a{/is
given by

|  
&r+ ,hrzKA- t9zr  9n*  g rzKA- t9zz  ArKA- t l

JGI  Ka-192r  I+KA- t *zz  Ka- t  I  t l z l

l -  r ' * ,  L- t rzr .  a-r  l
In this section we establish a notion of equivalence between two feedback systems E(g, K) and
D (9' , K'); the useful property of a pair of equivalent systems D (9, K) and E (9, ,K,) is that

(35)

Figure 7
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one is internally stable if and only if the other is. In this way a complicated system D(g,K)
can be analysed by exhibiting its equivalence to a simpler system E(9' , K'); illustrations of this
general principle will be given in Sections 3 and 4 to follow.

The formulation of this notion of equivalence requires conversion of I to its representation
.Fin the chain formalism; this was done in detail in Section l.l for constant matrices. We now

use the extension of this analysis to matrices of rational functions; equivalently, we may think
in terms of the analysis in Section l.l being applied pointwise. It is convenient to do the
simpler 2-block case separately first.

2.1. The 2-block case

We consider first the simpler 2-block case where gzr is invertible (as a rational matrix
function). Then, as in Section l.l, the system of equations

ler '  grzl lwl I  zl

lu^ e-)lr)= Lr,.l
can be rearranged in the form

lg; ";ll;,):l:"1
where

= lJPt, grzf l9rr.- 9rr9irt,9zz Avgllfn= 
l.i^ srrl= t - erlezz srl )

(38)

to be understood thatWe rewrite Figure 7 in the suggestive form of Figure 8 where it is
ur:K!. Now supposethat & has a factorization

&:  Oon

where

" = [3]l ,tt1,l',,1- hl
R: f{,, {,,-], I ul _1,,1

LRI R22J LytJ LyiJ

(Here u and u' both have values in U, yr and yi both have have values in Y.) With this
substitution for 9, Figure 8 takes the form of Figure 9. Recall that internal stability for this
configuration means that the output and internal signals z,u, ! are stable whenever the external
disturbances w,r)1,t)2 are stable. Now consider the modified configuration where the

Figure 8
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disturbances are shifted to the other side of R as in Figure 10. The compensator K' is
considered to be the map from yi to ui and the plant g' the map from

f ' l ," f ' l
Lu" ) 

'" 
Lvr l

internal stability for this modified system E(g',K') means: the output and internal signals
2,u", yl are stable whenever the external disturbances w,ul,ui are stable. It is intuitively
plausible that internal stability of D(9,K) is equivalent to internal stability of E(9',K') if it
is the case that R is outer. (Here we say that the rational matrix function R is outer if both
R and R-r are stable, or, in engineering terminology, R is stable and minimum phase.) One
can almost do the proof with pictures; however, a formal proof does require some algebra.

A special case of the following result, the main result of this section for the 2-block case,
appears as Lemma I in Reference 3.

Theorem 2.1.1

Suppose that the rational matrix function &has a factorization :7: g oR with the rational
matrix function R outer. Here we assume that & arises from a rational matrix function

l=19" oof
LPu 9zzl

as in (38) where 92y is invertible. Then the system D(g,K) depicted in Figureg is internally
stable if and only if the system D(g',K') depicted in Figure l0 is internally stable.

The proof of Theorem 2.1.1 requires a couple of lemmas.

Figure 9

Figure l0
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Lemma 2.1.2

Consider the system of equations

l2', 
.;:ll;,1=lll

u: K(yr + uz) + ul

251

(39a)

(3eb)

Then one can solve for z,tt,/r in terms of w,t)1,u2 if and only if ArtK + hz is invertible, in

which case

"l ,,1:tt]
where

Ir  -&,, -e*1-' l  o o ol
i r : lo -&, '  -e, ,1 

l -1 
o ol  t+ol

fo  I  -K)  [  o  I  -K)

Thus, if 9zr is invertible, then the system D (9, K) in Figure 7 is internally stable if and only

if fugiven by (a0) exists and is stable, where & is given by (38).

Proof. Once the formula (40) for i( is verifted, the remaining assertions follow from the

definitions. To verify (40), rearrange the system of equations (39a) and (39b) in matrix form

I  o o olf ' ' l  l- l  ,7_,, t"] lr l  fol
l-r o ol l  , ,1+l o &,, h, l l , l=lol
I  o r  -KJL-r ,J I  o - I  r lLv ' l  Lol

Well-posedness thus requires invertibility of

l - t  & , ,  & , r1
I o &" gt'l
L o - I  x)

or equivalently, of

ls,,- e::]
L _ I  K  )

By a Schur complement test, this is easily seen to be equivalent to invertibility of :7ztK + hz.

Solving for z,u,/r in terms of w,r)1, -u2 rlow leads to formula (40) for 3(. !

To emphasize the dependence of fuin @O) on & and 1(, we shall often write iftg, X) when

more than one pair (g,K) is under consideration.

Lemma 2.1.3

(See Theorem 3.5 of Reference 5 for a symmetric version') Suppose

*: lI" {',.l
LRzr RzzJ
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is invertible (with Rrr and Rzz square) and

p- t  -  f r t t  " ' ]Lrzr rzzJ

Then RzrK*Rzz is invertible if and only if rrr - Krztis invertible, and then

(RrrrK+ Rrz)(RzrK* Rzz)- '= -(rrr  -  Kru)-t(rrz- Krzz) (41)

Proof. Suppose K is such that Rzrr(+Rzz is invertible. Then define

n = f4" F' ' lasfR" R,rlf/ Kl
LFI Rrr) lRzr Rzr-lLo Il

Then r{ is invertible with iQ-t given by

p- ' - fi" l',l rJ f{ 
- rl frrr rn]

lfu izz) Lo l)lu ,rr)

Then we see that Rzz:RuK+Rzz is invertible. Then by a well-known Schur complement
argument (see, for example, Reference l9) ill:ru - Krzris invertible. The converse follows
by replacing the roles of R and R-r. To prove (41) we compute

0: t/, -t f]
= l I ,  KIR- ' .REl

L1l

= [ / r r  -  Ktzr , rn-  Krzz]  f { t t f  
+  Rtz l

-' 
lRuK + Rzz)

:  ( r r r  -  Kr2) [1, ( r11-  Kr21)- ' ( r , r  -  Krz) lo  f (Rr t r+ 
Rrz)(RzrK + Rzz\  

- t l (^ r , *  
+ Rzz)

L r  l ' - '
Since rrr - Krzr and RzrrK+ Rzz are non-singular, we conclude that

I I , ( r r r -Krzr) - ' ( rn-Krz) l  f {n" r*Rrz)(RzrK+R")- t l  :0  n
L I J

Proof of Theorem 2.1.1. By Lemma 2.1.2 the content of Theorem 2.1.1 is that, given that
R is outer, then ,iflO oR,,lf ) is stable if and only if i€(9, gnllQ) is stable. From (40) we have

f';-""*l Io o or
&eoR,",=lli 

lL_; I il
L0 i  v-nJ

[f,i .: ]f; i,;'ll l_i i illL;;;"-;,;l L,:.lJ ro I.
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Note that

t I ,  -Kl  R-t  = l rrr  -  Krzr,rrz- Krzz]

= (rrr - Krz)ll,(rn - Kru)-t(nz- Krzz)l

: (rrr - Krz)[l, - (RrrK + Rn)(Rl,K + Rzz)-') (42)

where we used Lemma 2.1.3 for the last step. We have thus verified

[/, -rK]R-t = (rrr - Krz)II, - gnlll l

f  o o ol
I - /  0  0 l  (43)
L  o  r  -K)

Now use (42'l in the form

(nr - Kru)-t V - n = l I ,  - gnl l{ lR

When the dust settles, this combined with (43) leads to the fundamental identity

Hence

i4e'n x7 
t[; i :':] [; ' 

"'-]'] 

' 
[i ; ""-l''' 

'1]

I r  :  o ol  l r  i  o o
e((eoR,",=LB 

i;_;l 
.ir1o,vn^,LS 

i ;
] . "

From this we read off that i{eo n,K) is stable if and only if i<0, gnl,I]) is stable whenever

R is outer. X

2.2. The general 4-block case

The goal of this subsection is to obtain the analogue of Theorem 2.1.1 for the general

(regular) 4-block case. Thus assume that we are given a rational matrix function (the plant)

f srr uufu: 
lo" ezzJ

with gzr surjective and 9n injective (as matrices over the field of scalar rational functions).

Consider any convenient augrnentation of I to

| !::.. ."-'.:1'= 
l*;, -;)
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such that the augmented (2, l)-cor *, 
lfrlis 

square and invertible. We rhen rransform to

&=17,, ,7_o g_*1
L9u 9zz Sztl

via formula (20) so that the system of equations

4:t:lil
is equivalent to the system

_l , 'or ' l : l ' l
Ly.l L,ryl

The system configuration D(9,K) depicted in Figure 7 can alternatively be expressed in the
form depicted in Figure I I with associated system of algebraic equations.

l u f  r - ,'l;,1=11,)
w otf, |i'f * u, = u

Now let us suppose that the size of block ;7; i  is mixni for i=1,2 and 7:1,2,3 (so
trtz: rlz * nt and mt >/ nr) and that .i factors as

i7= OR

e = fo ' t  orz  er r l
-- 

lOzr Ozz Ozr.l

of the same size as the corresponding
3 x 3 block matrix structure with the

(46)

also has blocks O;;
R = [Rv] r <i, j<: has

block *ii

size of R,;

(45a)

(4sb)

of .:P and where

equal  to  n;Xni .
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Substituting (46) for &in Figure ll leads to the system depicted in Figure 12 with associated
set of algebraic equations

We wish to analyse internal stability, not for the system in Figure 12, but rather for the system
E(g,K) from which it came, namely, that the output and internal signals z,ttr,)r should be
stable whenever the disturbance signals w,ur,t)z are stable. The signal yt is to be considered
as physically fictitious, added merely for mathematical convenience. To avoid confusion, let
us refer to this criterion as restricted internal stability for the system in Figure 12. A seemingly
minor modification of Figure 12 is obtained by shifting the disturbarc€s rrr and uz to the other
side of the box R; the result is depicted in Figure 13. We consider the bottom two boxes R and
[K 0] as lumped to define a compensator

and the plant 9' to be

We define restricted internal stability for the system Figure 13 to mean that the output and
internal signals z, u, ! are stable whenever the disturbance signals w, ul, u! are stable. The idea

255

"lll m
^[iil l;]

w ollv, *0"]* rr = r,

*',1';i']-, -,,

"''li,l- [;]

Figure 12
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again is that yo is physically fictitious added merely for mathematical convenience. The

analogue of Theorem 2.1.1 is as follows.

Theorem 2.2.1

Suppose that the rational matrix function

e: l { , , ,7_o { , ' ] .
L9n ,9zz ,Pzt)

arising from the plant

*=13" oof
l9z, 9zz)

as in formula (20) has a factorization

&: en

where R is an invertible block 3 x 3 rational matrix

fn t t  Rn
R = 

lRrt  Rzz

LR" Rn

function of the form

ol

*orrl
with

Figure 13

fR" R'zl

fRzr Rzz)

outer. Then the system D(g,K) in Figure7 is internally stable if and only if the system
D(g',K') described by Figure l3 has the property of restricted internal stability.

The proof is most easily presented by first isolating some preliminary lemmas.
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Lemma 2.2.2

Suppose that the configuration depicted in Figure l3 is well-posed and R has the block upper

triangular form

fR,r Rn o I
R= lRz r  Rzz  0 l

LRrt Rn RrJ

x ' , lY-^ui l -u-r l
L / " . 1

K' :  Ig^ I I (J ,Ol

^  [R ' ,  Rtz l
Ko: 

[R' Rzz]

9n"[A:  (R1K+ Rrz)(RzrK+ Rrt ) - t

(47)

Then

is given by

where

and

Proof. In Figure 13 set

so we have that K' is defined by

where

^[iil lT]
and

Writing out in detail, we have

f  v ' l
t ,( 01 l '  nl :  u,

LYiJ

R r r u r  *  R n y = U z

Rzflr * Rz/!r: lz

R t f l r *RnYr=Yo

K Y r :  u r

To solve for K' we must solve for az in terms of -yr and y?. From the form of these equations

we see that the last row of R is irrelevant and we have

q = ( R n K * R n ) y r

t l z : U - U l ,  y r : y - U i

f vtf
K' l '  

" l  
: ' ,

Lv-l
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where

This leads to
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yz- (RuK + Rzz)yr

uz= [enotK],t 
[; 'r]

as asserted. n
The significance of Lemma 2.2.2 we now see is that the compensator K' in Figure 13 again

has the form Kd 0l (making the role of f again that of a fictitious signal) while the
compensator I7 at the bottom of the figure has the form [K 0] (making i a fictitirous signal),
under the assumption that R has the block upper triangular structure (47).

Lemma 2.2.3

Consider the system of equations

lh_,, &_o a,t [l.l
l,a, 9,, Alli,")

, _ t)1= tr ol 
l/ 

*,

Then one can solve uniquely for z,u,y in terms of w,
is invertible. In this case the mapping

f ,l 1,1
l r ' l - l r l  i sg ivenby
LuzJ LYJ

where ,*= Jf(&, K) is given by

= f.l (a8a)
Lw)

w] 
(48b)

I

h,uzif and only if I&rtK+ &zz,&rtl

H="lrtl

u V; l ill; : ,-i, ,]'[ ; ? i] @s,
Thus, if 9arises from the regular plant g as in (20), then the system E(g,K) in FigureT is
internally stable if and only it iq&,X) is stable.

Proof. As in the proof of Lemma 2.1.2, all assertions follow from the definitions once the
formula (49) for .*is verified.

To verify (49) let use view & as a block 2 x 2 matrix function f by merging the last two
block columns to a single block column and then apply Lemma2.l.2 with [.I(,0] in place of
K (see Figure l4).
Then by Lemma 2.1.2 the mapping

-fl
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u z

[r]

However, in the context of the 4-block problem the signal u0 is factitious and the disturbance
u9 is irrelevant. The desired iic=&\&,K) is had by simply discarding the last row and last
column of iC; this results in the formula (49) for ,if. tr

We are now ready for the proof of Theorem 2.2.1.

Proof of Theorem 2.2.1. By Lemma 2.2.2, restricted internal stability of the configuration
in Figure 12, which by the discussion above is equivalent to internal stability of D(g,K) in
Figure 7, amounts to stability of the rational matrix function

When R has the upper triangular form (47), by Lemma 2.2.2 combined with Lemma 2.2.3 we
have that restricted internal stability of the configuration in Figure l3 is equivalent to stability
of the rational matrix function

2s9

is given by

*:,ir(F,rK or) = li -*;,',
LOI

-  f roo
. r ( (eo R,K) = 

l0 /  0
LOor

til
&r, -Jrtl- ' l  o o

-&,,  -k, l  l -r  o
-K  0 l  L  0  r

The content of Theorem 2.2.1 therefore is: if R has the special properties in the hypotheses
of Theorem 2.2.1, then i\eoR,K) is stable if and only if ,iqe, gn"[I{) is stable.

The idea for verifying this latter fact is the same as in the proof of Theorem 2.1.1 but the
details are a shade more subtle. We begin with

'.".:;'] l; I ilil[r

i((o"ea"I''=[iilt] 
|; ,t ,r;;;r] l, 

'r-"^:"]

(50)f;: ;:;; J I
lii i:,l] 1,,: ,, f ;]

,,,,.*,']li l;'.l
Decompose R-t as

Figure 14

R - l  =
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Thus
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l I -K  0 lR- t=  [ r r r -  Krz r  i  rn -Krzz  i  0 )

: (rrr - Krzr)ll - 9^ll{r 0)

where we used Lemma 2.1.3 for the last step. Next observe that

(s l)

(s2)I illi l,Lll t; i ;lt' ; I
When (51) and (52) are combined with (50) we get

ti;

fi i I 'l [, i ' :;;;; J ti ; u,, -l",,.,] (53,

I r  o o
l0  r  0
L00 r

sl l{ i :":
oJLo 

i  r  -K o]'[,i;;'1
Another consequence of Lemma 2.1.3 is

(hr - Kru\-t V, - n = lI, - 9,,IKl1Ro

Finally combine (53) and (54) to get

f r  I  o ol  l r  I  o ol
1. . . . . . . . . . . . . . . . . r r . . . . . . . .1,*(eoR,",: 
l :, ^r, 

"' 
l^",en"I*)l : 1 ., I

L v  '  I  L o  :  J

From this fundamental identity we read off that, given that Ro is outer, iKe o R,K) is stable

if and only if *(e,9n"ll(l) is stable as needed. !

Note that Theorem 2.1.1 is just the special case of Theorem 2.2.1 where the third block

column of & is trivial.

3. PARAMETRIZATION OF STABILIZING COMPENSATORS

We consider again the feedback system D(g,K) depicted in Figure 7. A common philosophy

in control engineering is to consider the plant I as given and to use the compensator K as a

design parameter to achieve some desired performance characteristics (quantitative and/or

qualitative) of the closed-loop system. Since internal stability (as defined in Section 2) is always

one such characteristic, it is particularly useful to have a parametrization of the set of all

stabilizing compensators for a given plant g, i.e. the set of all compensators K for which the

closedJoop system D(g,K) is internally stable. In addition it is usually also demanded that

1( itself be proper. A solution to this problem, including many refinements and generalizations,

has been known now for some time in the engineering community (see References I and 2),

and is usually referred to as the Youla parametrization of stabilizing compensators. Here we

would like to derive such a parametrization in a different way as a simple application of the

(54)
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general factorization principle (Theorems 2.1.1 and 2.2.1) in Section 2. This section is
independent of the other sections of the paper.

In general we say that a given plant

*=19" e'f
L&, &zl

is stabilizable if and only if there exists a compensator K for which the sysrem D(g,K) in
Figure 7 is stable. We first describe a particular class of plants g (referred to as the model-
matching case in the literature) for which the identification of stabilizing compensators is
particularly simple.

Theorem 3.1

Suppose ghas the form

*=19" so"f
LJz, 0 I

(i.e. 9zz:0). Then 9is stabilizable if and only if 9rr,9rz,9zz are all stable. In this case K
is stabilizing for I if and only if .l( itself is stable.

Proof. The compensator K is stabilizing for I if and only if the rational matrix function
J(given by (37) is stable. For the case where 9zz=0, A =1and t/collapses to

l*t, * gtzK?zr 9n gtzKl
,1#l Kgzz I K I

L  eu  0  1 l

We now read off that g( is stable exactly when each of K, 911, 9n, 9zr is stable, as asserted.

Combining Theorem 3.1 with Theorem 2.2.1 leads to the following.

Theorem 3.2

Let

g = l g ' t  A z ]

LJz' Jzzl

be a given plant with 9rz injective and gzt surjective and form

',=ll" '1-o &-"f
LJu gzz gzt)

with .7given by (20). Suppose &has a factorization

&= OR

where

(i) R has the block upper-triangular form

I R r r  R r z  0 l
R=lR"  Rzz o l

L Rrt Rrz RrlJ
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with Ro'= 
[fi::

and
(ii) O has the triangular form
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outer

Orz enl
Ozz Ozrl

= IOzz Oz:l 
-t

:  _ O r r

T1=  [Op  Os ]  [Ozz  Or r ]  
- t

Rrzl
Rrr)

" 
= 

["0"

Set

Hl
Tz

(s5)

(56)

(57)

The 9is stabilizable if and only if Tr, Tz,Ig are stable. In this case r( stabilizes 9if and only if

K = gn;,lel

for a stable Q such that Q(oo) is in the domain of definition gn;'@).

Proof. By Theorem 2.2.1 internal stability of D(9,K) is equivalent to restricted internal

stability for the system depicted in Figure 13. But this is the same as internal stability for the

system E(9', 9p"[I(f), where ,9' is determined from O via formula (23) (with O in place of

& and 9' in place of 9). These formulas work out to give

s'=lT '  r ' ]
Ln ol

where Ir,7":2,73 lre given by (55)-(57) since by assumption Ozr:0. Thus.9' has the model-

matching form so Theorem 3.1 applies. We conclude that the original system D(9,K) is

stabilizable if and only if the three rational matrix functions Tr,Tz,Tt are stable, and in this

case K stabilizes if and only if q:: 9n"IE is stable. Back-solving for K gives that

K:9n;,IQl for some stable rational matrix function Q.The condition that Q(oo) be in the

domain of definition of the (constant matrix) linear fractional map gno,@) arises from the

restriction that K be proper. n

Remark I. If J'is any injective rational matrix function with [&zz.7z:] square and

invertible, a factorization &= eR with R and O satisfying conditions (i) and (ii) in

Theorem 3.2 is always possible. Indeed, given that & and O are both injective, a factorization

of the form I = O R as described in the theorem is equival ent to & and O generating the same

subspace .4/(in fact modules over the ring I of stable scalar rational functions) of W'*''
(column vector rational functions with rn r * ffiz components) given by

g:= ,4(9, ,  @ g^,  @ mn,)  = O(Sn,  @ gn,  @ gn' ) (58)

(where 9' denotes the space of stable rational column vector functions with n components);
this fact can be seen from the easily verified characterization of the class of factors R described
by (i) in Theorem 3.2 as exactly those (nr + nz + n3) x (nt + nz + nr) rational matrix functions
R such that

R ( 9 "  @  9 " ,  @  g n ' ) :  9 ' '  @  9 n 2  @  m n 1
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We now sketch how to construct (mr + mz) x (nr + nz * nt) rational matrix function O which
satisfies (58) for a given &.

Set g-:I&2, Pzz gzi(9, @g'@4,,). Since l&rz &rrl is invertible one can see
that 9- is the direct sum of a free 9-module with nz generators and an n-vector subspace of
dimension nt. By choosing bases, it follows that. g- can be represented as

g_: Iozz o:4l(g, @ &n')

where Ozz and Ozt are rational matrix functions of sizes tltz\ nz and mz X n3 respectively, and
where [Ozz Ozr] is invertible; construction of such a basis can be carried out by an adaptation
of the algorithm in Forney's well-known paper2o involving a sequence of column operations.
From the definition of 9- there then exist rational matrix functions Orz and Oz: of sizes
tfi1X rr2 and mt X n: so that

Now ,,,fr itself is the direct sum of a free /-module with flr I nz generators and an #-subspace

of dimension nr. By dimension count,

exhausts the latter subspace, and

l2- 2,']<*, @ s,,)
lozz ozrr

has codimension over ,? equal to nr in .4/. To pick up the rest of "/d, we represent
.,tt(l(&^' @ 0) in the form

. U n ( g ^ ' @ 0 ) : O t / ' @ 0

where Orr is a mr x n1 rational matrix function. Then

e = fo" 9'' e'rl
L 0 Ozz Ozrl

is the desired first factor for the factorization,&:OR satisfying conditions (i) and (ii) in

Theorem 3.2. The factor R is then uniquely determined since O is injective.

In principle the construction sketched above could be turned into an explicit algorithm

involving column operations on the matrix Fsimilar to the algorithm in the paper of Forney;20

keeping track of the column operations would also lead to computation of the factor R as well.

However, we do not enter into these details here.

Remark 2. The result of Theorem 3.2 is the same principle as in the Youla parametrization

of stabilizing compensators, namely, that there is a block 2x2 outer function Ro I such that

9n;' acting on an essentially free stable parameter matrix function Q yields the set of all

stabilizing compensators K for a given plant 9. The usual derivation of the outer function Ro t

is through a double coprime factorization of & $ee Reference I or 2); our derivation through

a (block, upper-triangular)-(restricted outer) factorization of & appears to be new. The

construction in Remark I represents a new input-output approach to the construction of the

Youla parametrization.

263
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Remark 3. The model matching scheme in Theorem 3.1 is closely associated with the

divisor-remainder formulation of interpolation conditions.2l In particular, in view of

Theorem3.2, internal stability of the system E(g,K) can be characterized in terms of the

transfer function $.t[Ktw+z being stable and satisfying certain interpolation conditions.

This phenomenon has been well-known in principle for some time and is usually derived by

using the Youla parametrization. Only recently have the interpolation conditions on $.tIKl

been given explicitly in terms of I for some special instances of the matrix l-block case (see

Chapters 23 and,25 of Reference 2l). In Reference22 a more general interpolation theory

(involving both the usual discrete (or lumped) as well as continuous (or generic) interpolation

conditions) is developed and used to obtain a characterization of internal stability of D(9,K)

in terms of interpolation conditions on $lll(l for the general case.

4. STABILIZINC COMPENSATORS WITH INFINITY NORM PERFORMANCE

MEASURE (THE F/- PROBLEM)

We return again to the feedback system D(g,K) depicted in Figure 7, and in this section

consider the standard problem of F1* control theory. I In this problem, as in Section 3, one

considers the plant I as given and the compensator K as a design parameter to be determined.

Now one demands not only that K be proper and that the closed loop system E(9,K) be

internally stable as in Section3, but also that the transfer function Tr,:,*.*II(l from the

reference signal w to the error signal e have infinity norm (along the imaginary axis) less than

some prescribed tolerance 7:

l l  et t$ l l -  < r

When such Ks exist, one would then also like a parametrization of all such Ks. In this section
we present a solution to this problem based on the general factorization principle Theorems
2.1.1 and 2.1.1. In Section 5 we shall implement the recipe prescribed here in terms of a state-
space representation of the plant I to recover the elegant state-space solution of the problem
recently obtained in Reference 4.

We first remark that analysis of a general performance level 7 for the plant I is equivalent
to analysis of the performance level 7 = I for the plant

Indeed, it is easily seen from the form of /((9,K) in (37) that D(g,K) is internally stable if
and only if D(,E',K) is internally stable. Equally apparent is that 4slltr ="yfi.t [K]. Thus
the fI- problem associated with g and performance level y has the same set of compensators
K as solutions as the .F/* problem associated with 9, and performance level 1. Hence in this
section we deal explicitly only with performance level 7 = 1.

In parallel with the organization in Section 3, we begin with the special class of sub-all-pass
plants for which the solution of the FI- problem is easy. Recall from the introduction that we
say that a rational matrix function

g=19" 9"f
L9u hz)

",=1,-)i:, uf;,1.
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is sub-all-pass if

(i) l le(s) l l  ( I,
( i i )  l lerr(s)  lKer ezr(s)  l l  < l ,

and

(ii i) rank(.I- g(s)*s(s)):dim Ker gnG).

265

Theorem 4.1

Suppose that for all s = iw on the imaginary line (including at infinity) the rational matrix
function

f,?rr *ulg= 
l*r, {zzJ

is analytic with 9r2(s) injective and 9t(s) surjective and is sub-all-pass. If in addition 9(s)
is stable, we say that 9is subinner. Then the .F/- problem associated with gand tolerance level

7= l  hasaso lu t ionK=K(s) i f  andon ly i f  g issub inner .  In th iscasethecompensatorK is
stabilizing and meets the .EI- performance criterion (i.e. ll $ltK) ll* < l) if and only if K is
s tab le  w i th  l lK l l -  <  l .

Proof. By Proposition 1.2.3, it is clear that a necessary condition for a compensator Kto
solve the fI- problem with performance level 7 = I is that ll/<(iw) ll < I for all real w
(including w= oo). Assuming that we have such a K, we observe that then, by a standard
homotopy argument,  wnodet A:0 (where A= I-9zzK and'wno'=winding number or
change of argument along the imaginary line). We now consider the matrix J(= J((9,K) in
(37) and recall that K stabilizes I if and only if g(is stable. From the (3, 3)-entry of g we
see that internal stability requires that A-r be stable. But since wnodet A:0, this forces A
itself to be stable. But then 9zr=A,*t, 9zz=Ah(tz, K=3(ztA, 9n=,*rz-JAtA.ff32 and
9rr= 3(rr- trzA,1ltz must all be stable. Conversely, given that A-r is stable, it is clear that
g(is stable if all of K, 9rr, 9rz, 9zr and 9zz are stable. Finally, since I is contractive on the
imaginary line, stability of I is equivalentto g being contractive on the right half plane by
the maximum modulus theorem.

Combining Theorems 4.1 and 2.2.1leads to the following result.

Theorem 4.2

Let

n

g=13" *u]
LPz, fzzl

be a given plant. Assume that 9rz(iw) is injective and 9u(iw) is surjective for all real w
(including w: oo). Define a rational matrix function

&=l&-,,
L9zr

&t, &"1
frr, ntl

as in (20) (applied over the freld frof scalar rational functions rather than over C) and suppose
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that a factorization
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9: QR

is known such that

(i) R has the block upper triangular form

fR"  Rn 0 I
R = l R z r  R z z  0  |

LRrr Rsz Rrl

with

^,,= lX:: ;::)
outer and R3(e) analytic and invertible on the extended imaginary line.
(ii) For all s:iw on the extended imaginary line (includirg l{= o),

e ( s ) * " r e ( s ) : j @ - I n ,

where./= I^,@ -I^,, j:1n, @ --Inr. ThentheFl'problem associated with the plant gand

performance level 7 = I has a solution if and only if

for all s in the right half plane. When this is the case, then K stabilizes g and meets the I/-
performance criterion ll 9.*tI(1 ll- < I if and only if

K = gn;, [ I I ]

where fl is a stable rational matrix function with ll Hll - < I such that ̂ F/(o) is in the domain
of definition of gn;'(q). The set of all closed-loop transfer functions 7",:$.yII(l
associated with such performing compensators l( is given by

T"n = 9ellll

:  [O1r.FI+ Orz, Or: ]  lOzrH + Ozz,O:xf 
-r

where the free parameter f/ is as described above.

Remark. In Theorem 4.2 it is possible to strengthen the converse direction. Specifically, if
solutions of the strictly suboptimal I/' problem exist, then necessarily also a factorization
:i':gn as in the statement of the theorem also exists. One can give a proof based on ideas
from Reference 7; as we do not have a short proof based on the ideas of this paper we do not
go into details on this point here. In any case, the existence of the factorization &:OR is
generic with respect to the tolerance level 7 in the control problem.

Proof. Suppose a factorization &: OR is known with R satisfying (i) and O satisfying (ii).
By Theorem 2.2.1, internal stability of E(9,K) is equivalent to restricted internal stability of
the system D(g',I9u"IIQ,0l) depicted in Figure 13, where .9' is obtained from O via (23)
(with 9' in place of g and O in place of &). This in turn is equivalent to internal stability
of a system D(g',9n"IKl) where 9' is obtained from O via formula (24) (with g' in place
of 9 and O in place of &1. Now the hypothesis (ii) on O combined with Remark 2 after

elsr.relsy < 
[d S]



STABILIZATION OF CONTROL SYSTEMS 267

Proposition 1.2.3 guarantees that g' meets the hypotheses of Theorem 4.1. Hence the r1I'
problem for 9' has solutions if and only if llg'(t) ll ( I for all s in the right half plane. We
now show that ll9'(s) ll ( I for all s in the right half plane if and only if

e(s)."re(s) < fo S]
Recall the connection between g' and O:9' has an augmentation

so that the system of equations

is equivalent to the system

(60)

Now consider l' I means that

whenever w,lr,z, / satisfy

l.*h Jtizllwl -lzl
l,ti, ,yirlL"l- Lyl

Then we see that (61) holds also whenever w,u,z,!,!0 satisfy (59) (irrespective of the value

of -/o). Rearrange (61) in the form

l l z l l '  -  l l  r l l '  <  l l ,  l l '  -  l l  v l l '

(5e)f;f : l;J
l*h eiz
lsir eiz
LstP st;

[3; 3:: s;:][i'] : hl
and O evaluated at some fixed point s. Then ll g(s) ll <

l l z l l '+  l l  y l l '  <  l l  w l l ' z  +  l l  z  l l ' z (61)

(62)

Using that (59) and (60) are equivalent, we see from (62) ,r,u, e (") h (['o !] 
, ,)-.onrru.,tu.

as asserted. The converse, that 9(s) is contractive ir efsl is([ 
3],)*"t,ractive, 

can be

established in a similar vein. We conclude that the 11- problem for 9' has solutions if and

only if 
" 

is([6 
f],r)-.on,ractive 

in the right half plane. Assume now that this condition

holds.
ByTheorem2.2. lweknowthatKstabi l izes 9i f  and.onlyi f  H:9nol lA stabi l izes 9' .By

Theorem 3.1, H stabilizes 9' and meets the performance criterion ll 7:"ll =ll 9,*'I14 ll < I

if and only if ,F1is stable with llHll- < l. Back-solving F1: 9^IIfl for Kgives K: 9a;'III]i

the constraintthat K be proper limits.Flto those stable contractions such that FI(o) is in the
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domain of definition of 9po'1a1. Finally note that

e*IKt 
=1""*t^,",.,,
: 9eIHl

and hence 9s acting on stable contractions provides a parametrization of the associated
performances. This completes the proof of Theorem 4.2. !

To make Theorem 4.2 useful we need a systematic way of computing a factorization &= QR

as in Theorem 4.2. Note that the parametrization of all the compensators solving the f/-

problem requires computation only of Ro and not all of R. Also, by Lemmal.l.2, to

parametrize the set of performances 7"r, it is sufficient to compute any O of the form

_ f r  o ol
o:el  o /  ol

L ?r "Y2 "rc)

where 7r, "yz, and, ?3 are any rational matrix functions (with rl invertible) rather than O itself

if it is more convenient, since then 9e = 96 as linear fractional maps. As we shall see it is

more convenient to compute a certain 6 rather than O itself. These observations lead to the

following result which will be the basis for the state space calculations in the next section.

Theorem 4.3

Let 9 and & be as in Theorem 4.2, and say &;i has size mix ni for i = 1,2 and j = 1,2,3.
Define a block 3 x 3 matrix function W(z) on the extended imaginary line by

W(z) :  lWu@)h <r , t<3

where

WiiQ) = &r,(z)* &riQ) - &zi?)* &uQ)

has size fl;xni. In addition, define rational matrix functions

wo=lYy Y."1, w3s= fw31 w32l- 
LWn WzzJ

so that we may also consider the block 2x2 decomposition of W,

rwo *i"]*: 
l*'o wnJ

and set 1- Imr@ -1,r, i= In, @ -/'r. Then the fiI- problem associated with the plant ;P
and performance level T: I has a solution if and only if

(i) W$Q) = &n(z)* &nQ) - &zt?)* hztQ) is negative definite for z on the extended
imaginary line,

(ii) there is an (n1 + nz)x(n+ nz) outer rational matrix function

Ro(e) = [n, '(e) Rrz(e)l

[Rzr(z) RzzQ))
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such that

v(z) = RoQ)* jRoQ)

for z on the extended imaginary line, where V=Wo-WloWttrWn is the Schur
complement of W with respect to Wn.

(iii) The rational matrix function

6=ef;' ?]
where Ro is as in (ii), satisfies

61"y.;61"y < 
fo S]

at all points of analyticity s in the right half plane.

Moreover, when conditions (i), (ii), and (iii) hold, the set of all compensators K satisfying the
FI'problem is given by

K =  gn ; ' [H ]

and the set of all associated performances I", is given by

Tzn= 96[H) = l6nH + 6rz,6r: ]  [62,/{+ 6zz,6nj- '

where

A f6" 6,, 6".l
" 

= 
16r, 6r, 6rrl

is as in (i i i) and 1/is any stable rational matrix function with l lHll-< I such that.Fl(o) is

in the domain of definit ion of 9ao,@,t.

Proof. By Theorem 4.2 we need to f,nd a factorization

.7: en

where R and O satisfy properties (i) and (ii) in Theorem 4.2. If O and R provide such a
factorization then

W: .g*Jii

= (eR)*"/(eR)
: R * ( i  @  - / , , ) R

by the U @ - 1,,, "/)-isometric property (ii) of O. Conversely, if R satisfies (i) in Theorem 4.2

and provides a factorization of I,I/ of the form

W: R*( i  @ - 1,,)R (63)

then &: eR with 6 : &n-t is the desired factorization satisfying (i) and (ii) in Theorem 4.2.
Therefore a first step is to analyse the factorization problem (63) where I/ is given and the
unknown R is to have the form (i) in Theorem 4.2.
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provides such a factorization. Thus

^' = ffi; ;rJ
isan(nr *nz)x(nr+n)outermatr ixfunct ion,Rgrisan f l3Xturat ionalmatr ixfunct ionwith

invertible values on the imaginary line, and if we set R3e = [R3r Rrz], we may write R in the

block 2x2 form

rRo o lR: 
fn'o n"' l '

Then the factorization (63) in more detail is the same as

I wo wi"] _ fnfixo-RioRm 
-nienrl

Lwto wnl- L -RirRro -nirRrj

Then necessarily Wy= -RirRrr is negative definite on the extended imaginary line and the
Schur complement V of Wn is given by

V:= Wo- Wlotl/-1ll4o

: tRJ/Ro - RioRrol + (RioRr)(Rirnrr)-t(RirRm): Rf.lRo

Thus Ro arises via a conventional 7-spectral factorization of Iz. Then Rro is determined from
R:: and W3o via Rro= -Rir-rWn. Conversely, suppose Wtt is negative definite on the
extended line and and that V has a 7-spectral factorization. Then we can find an fltxnt
rational matrix function R:r invertible on the extended imaginary line and an
(nr + nz) x (nr + n2) outer matrix function Ro such that

Wn = - R{zRtt, V: RtjRo

Then

R = f ̂ ."{o-- -o I
LRit'Wto Rr-l

provides the desired factorization W=R+(j @ -Io,)R of W.
Let us now assume that Wzt,= -RilR:r is negative definite and V=Rrt*Ro has a7'-5pgs1..1

factorization. Set

Rro= -R i i  tW,nR= f  
Ro 0  

I
"* ' -  L^ro Rl l l

and O : &R-'. Then &= OR is a factorization with factors O and R having the properties (i)
and (ii) in Theorem4.2. Hence by Theorem 4.2the F1- problem (with performance level y = t;
has a solution l( if and only if

/ f ;  n l  \
e i' (L,o iJ'"f 

-"ont'u"tiue

fnrr Rn 0 I
R = l R z r  R z z  0  |

LRI Rn Rrl
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in the right half plane, in which case 9po, parametrizes the compensators 1( which solve the
problem and 9e parametrizes the associated closed loop transfer functions 7",: 7e[I() .

We need to argue that e : &n-r can be replaced by

?l
^:,]

Hence by Lemma 1.1.2, 9s is the same linear fractional map as 96. Also the identity

3][^,lo' ^:,] = [6 3]
/ l i  0 l  )

shows that e is ll i i l,./f -contractive on the right half plane if and only if O is. This
\LU OI /

completes the proof of Theorem 4.2. tl

Remark. The idea for much of the analysis of this section comes from Reference 7. There
the ̂ F1- problem was assumed to be in the model-matching form and proofs were couched in
the less elementary language of projective geometry of Krein spaces using the techniques of
Reference I l. Points missed there and contributing to the eventual obscurity of the paper were:
(l) the outer factor Ro I can be used to parametrize the compensators K which solve the fI-
problem, and (2) the matrix function O appearing in Theorem 4.3, which is not (7 @ - I, J)
isometric on the real line, can be used as a parametrizer of the performances 7i, equally
effectively as the (./ O - 1, "/)-isometry O appearing in Theorem 4.2. This latter point accounts
for the appearance of an additional unnecessary Riccati equation in the state-space formulas
derived in Reference 7.

5. GENERALIZED ./-INNER-OUTER FACTORIZATION: STATE-SPACE
COMPUTATIONS

Theorem 4.3 reduced the solution of the .F/' control problem to a certain type of factorization
problem. In this section we analyse this factorization problem in state-space terms;
specialization to the factorization problem arising from the F/- control context enables us to
recover the state-space formulas and results of Reference 4 (see also References 8, 10, and 6),
for the 11- problem; we do this in Section 6.

In the following we consider a rational I x 2 block matrix function G(z) = lc-(z) GpQ)l
where Go has size p x e. and Gp has size p x ep. We assume that we are also given signature
matrices J and j of respective sizes pxp and eoxeo. The problem we wish to study is that
of factoring G as

271

6 = ef;' :]
in the above analysis. To do this, note that

6 = eRfRt'
L0

^ f  r=e l^- 
LRroRo 

t

tJ ̂***1[{

G = O R
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where O:  [O.  Ool  has s ize px(q.+qp) and

R= H-
has size (q"+ qp)x(q"+ qp) such that

.  [ ;
e(s)',/(e(s) = l '^

LU

r '
e(s)*,/(e(s, * 

L'o
and

^: [f; ,i,]

fJ

l (64)

(65)

0
_ I

0'l
UJ

(73)

(74)

(7 s)

fo r  Re s=0

f o r R e s > 0

(66)

where Ro is an outer rational matrix function and Rso, RB and Rp-l are rational matrix

functions with no poles on Re .s: 0 (including infinity). By the argument in the proof of

Theorem 4.3 we see that, once (64) and (66) are achieved, then (65) can be replaced by

[3;[iil]''"'(s) 
cB(s)r < 

fo S] ror Re s > 0

We assume that we have a state-space realization for G

G(s ) :D+C(s -A ) - ' n
:1D ,  Dd  +  C(s -  A ) - t lB .  Bp l

and wish to find an existence criterion for the factorization and then formulas for the factors

(in particular Ro and O.) in terms of the matrices A, Bo, BF, C, Do, DE.In the sequel we also

assume

D:JD. is invertible with a factorization of the form DIJD.

= d1id. for an invertible eoxeo matrix d" (69)

DtJDe is invertible with a factorization of the form DffJDB

= - dtde for an invertible ep x ep matrix dp (70)

D|JD,: O, DEJC : o (71)

To condense notation we write

E. : (nIJDo)- t  = d; t  jd : - t ,  Ep:  (Df iJoB1-t :

(67)

(68)

-  dp 'dt- '  
" :Y;  ; ]  

(72)

Lo=J-JD,E.D:J

A " : A - B ' E ' D : J C

* =lrfr" tf;".7

*" :1"!i," -"ff-.r.f
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For M any square matrix, p*(M) denotes the spectral radius of M and o(M) denotes the
spectrum of M.

Theorem 5.1

Let G(s) : [D. Dpl + C(s - A)-11/,. .Bp] be a rational matrix function as above satisfying
(69)-(71). Assume that (A,Bp) is controllable, that the matrices A, K and lK^ have no
eigenvalues on the imaginary line, and that the Riccati equations

XAx + (A"\* X -  XBEB*X + C*aoC = 0

and

YA*+ AY+YC*JCY-  B&!BE--O (78)

have Hermitian solutions X: X* and Y: )z* meeting the stability side conditions

(77)

Then G has a factorization G: eR with O satisfying (64) and (65) and R satisfying (66) if

X )- 0, Y )- 0, p-(XY\ < | (81)

o ( A * - B E B * X )  C  I R e s < o ]

o(A+ YC*JC) c IRe s< 0l

o:1""""::{: :]

(7e)

(80)

(85)

In this case, Z: (I - xY)-r exists and if 6 : [o. op] and iR = 
lf; fl, "r. 

may take

R, (s) : d, + d.E,(D:JC + n:x)z* (s - (A + YC*JC))-' (8, + YC*JD.) (82)

R.(s)- t  = d; l  -  E,(D:JC +BJxXs - (A" -  BEB*xD-tz*(8,+ yc*JD,)d;t  (g:)

6"1s; = 6.(s)R.(s)-t : D.d.t + IJA.C - D.E*B:X q

, . ( ^  l ,q "  -  BEB' 'Y  0 l ) - ' l  z *  z .v f l  Bo  l , - r
" ['- L" ,'"'itr" A]J l- rr* -7t )lc.io,ld; 

' (84)

Conversely, if G has a factorization G:OR satisfying (64)-(66) and the pair (,4,d) is

controllable, where

and

then necessarily (81) holds.

Remark. The point of this theorem is to exhibit the connection between the

(lt 9l, "il-.on,,u.,iu,\10 0.1'  " /  --"" ' --"" -

property for O holding on Re s > 0 and the set of conditions (81) holding on the stabilizing

solutions X,Y of the Riccati equations (77) and (78). We expect that a much stronger result

' : [ _ f;i'; ;1,,{fi .t,fo,, (86)
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holds; namely, under the assumptions that (C, A) is detectable and (A, B) is stabilizable, then
the factorization G = OR exisls satisfying (64)-(66) if and only if stabilizing solutions X, Y of
(77)-(80) exists which also satisfy (81). By using the recent results on the .EI- control problem
4, 8, 10, 6, and the connection between I/'control and factorization given by Theorem 4.2
(see Section 6), we expect that this result holds in complete generality, but of course a direct
proof would be desirable.

The proof of Theorem 5.1 requires the construction of a 7-spectral factorization for a given
square (say Nx AI) rational matrix function Z(s). Here 7 is an Nx N signature matrix
(j = j* = j-t) and V is analytic with invertible Hermitian values on the extended real line (so
V(s) V(s): V- (s) where Z-(s): V(- S;*;. we say that Z admits a 7-spectral factorization
(with respect to the right half plane) if there is a square rational matrix function Iz- (s) with
no poles and no zeros in Re s ) 0 (including at infinity) such that

V(s) : V: (s)iv - (s)

Note that we do not need to assume that the realization V(s) = D + C(s - A)- tB is minimal,
as is done in Reference23; this was obtained in Reference24 as a corollary of an elaborate
machinery set up to handle non-canonical factorization. When A is an z x rz matrix, we define
the modal subspace X* (A) relative to the right half plane to be the span of all the eigenvectors
and generalized eigenvectors associated with eigenvalues in the left half plane. Similarly the
model subspace x- (A) relative to the left half plane is the analogous object with the left half
plane in place of the right half plane. In general, if .,lt and Jrare two subspaces of C' we write

Cn =.,(4+ I

if the pair (-/4JO form an (internal) direct sum decomposition of C'.

Theorem 5.2

Let V(s)=V-(s):D+C(s-A)-tn be an Nx.Ay'rat ional matr ix funct ion with no poles
and no zeros on the imaginary line, where A is an n x n matrix with no eigenvalues on the
imaginary line and the Hermitian matrix D factors as

D: d*jd

for an NxN signature matrix l. Put Ax:A-BD-tc. Then /(s) admits a 7'-spectral
factorization V = V: jV - if and only if

cn=x_(A" )+x* (A)

Furthermore, in this case a 7-spectral factorization of Z is constructed as follows:

( l )  Choose bases xr,  . . . ,  x,  of  X -(Ax )  and xr+ts , . . t  xn of X +(A) and put

T =  l x r , . .  x r i  x r + r . , .  x n )

Then Z is non-singular.

(2) Make the following partitionings

(87)

7- tnr-1A,, 0 I
lAn  Azz) '

'-'"=filf,CT= lCr Czl (88)
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and

r-,A' ,=lo; 1X]
according to the partitioning of ?n in (84).

(3) Put

v - ( s ) =  d +  d D - t c t ( s -  A n ) - t B r  ( g 9 )

Then Z(s) = V-(s)iV-(s) is a 7'-spectral factorization and V-(s)-t is given by

v_(s ) - t  =  d - t  -  D- rc r (s  -  Ar t ) - tBrd- t  (90)

In addition Iz- (s) is real-rational if V(s) is real-rational and d is real.

Before proving Theorem5.l we analyse in state space terms the existence of a

(l: 
f'1, ,)-iro-.tric-(restricted outer) factorization G = oR;

\Lo  - ' r  /
i.e. we demand that e and R satisfy only (64) and (66). We have the following result.

Theorem 5.3

Let G(s) : lD. Dpl + C(s - A)-r IB, Bpl be a rational matrix function such that (69)-(72)
are satisfied. Assume that the matrices A,K and, Kx (where K and K" are defined in (75) and
(76)) have eigenvalues on the imaginary line and that X and I are Hermitian matrices

satisfyins (77)-(80). rhen G admists 
" (([/o ?] 

- r)-t'"-etric)-(restricted outer)

factorization

G = OR: te"  e6l  f  I "  9 l- '  - " 'LRuo 
RpJ

if and only if I - XY is invertible. In this case, Ro and R, I and 6o : G.R. I can be taken to
be given by (82)-(84).

Proof. We analyse the factorization G: eR ((64) and (66)) by following the strategy given
by Theorem 4.3. Thus, starting with the state-space realization (68) for G, we need to compute
state-space realizations for

w(s):lT;;l:i T;;l:l]: [3t[i],rG"(s) Gp(s), (e,)
and for Z(s) and Z-t(s), where

V(s) :  l4 / , , (s)  -  W.p(s) lWpp(s) l - tWa.(s)  (92)

In general we shall indicate that a rational matrix function g(s) has the realization
g ( s ) :  d + c ( s - a ) - t b b y

l: rlc(s) -
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From

we get
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le i B. Bpl
G ( s ) _  |  |

LC i D" DpJ

Multiplication of realizations (see, for example, Reference 23 or 19) then gives

I A o : Bo Bs I

w(s):G-(s).rG(s) l;:i; -:n, 
', 'uri: 

; I
L 

o -Bt i o DFrDp)

where we used (71). In particular

(e3)

WapG) = Gp-(s),IGe(s) - l'r: -i, 
', ,,r,) (e4)

From the general rule

la -bd- tc  i  bd- ' f  lo  i  b l
w- t_1. . . . . . . . . : . .  I  i fw_1.  I  tes l

l -a - ' ,  i  d  I  L"  i  dJ

whenever d is invertible23 we deduce that

f  e  B p E p B B i B p E p l
t n * I C  _ A *  i  o  l[wee?) t - '  -  
I  : . . : . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I
I  o  EBB|  i  za)

where

|  |  
BaE1B*a]=K

lc*tc -A* )

has no spectrum on the imaginary line by hypothesis. Since lWpp(s)l 
-t 

has Hermitian values

on the imaginary l ine and [WsB@)]-1:Ea= -dBtd[-  I  < 0 lsee (70))  we conclude that

WaB$) < 0 on the whole extended real line. To show that G has a

( ( l i  o l  - \ '  ' \
\ \ L0 

- il 
, "t7 

-itotetric,)-(restricted outer) factorization,

by an argument as in the proof of Theorem 4.3 it suftces to show that

Vi= Woo- W,p(Wai l - 'Wuo
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admits a Jt-spectral factorization. By a Schur complement argument (see, for example,

Reference l9), V= (woo)-r where

g'-':fn" tu*1
Lwpo wppJ

Using again the general principle (95) in combination with (93) we get

a | 
"!1." 

(:!; i "n".i7n.'flIw-,(s)= [1:"1"_l l*J:ll - | ....:.... ..'...."... - |
[wo.(s) wpe(s)J 

| _z"oitc E,B: i E, o I
L  o  -EBB|  :  o  EeJ

where we use the notation (72)-(74). Hence the (1, l)-block w..(s) is given by

f ,e* BEB* i BoEo I

r,-,(s)=woo(s)- | 9_1?.....:.\!.'..\.......,....?-!.?.:!:l o"
L - n"o:tc E,B: i E' J

Thus we get arealization of Zby using (94) to compute a realization of (woo)-r from (96);

the result is

Thus

" ['t]
where

A=K (see 75)

, -  [  B" I" - lc*tol
C: ID:Jc _nfr

D = DIJD,= dljd. (see (69))

and

A' : :  A-  BD- tC=rK"  (see (76) ) .

By assumption K and rKx have no imaginary axis eigenvalues. Then by Theorem 5.2, we

conclude that V has a 7-spectral factorization

V(s) = R;(s)iR.(s)

if and only if

c20: x-(r( ' )  + x*(K) (98)

f e BeEpBi i B, I

v(s) - | :ll: -! .. . .t ?)!.?:l
loltc -nI i olto")
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Now we assume that X and I are solutions of (77)-(80). Note that (77) can be written as

I  i "  BEB*-][  
"  

r  t l

tc*a.c -(A').JL-; l  :  
L -Au" -BEB*X\

f r l l r l
Hence Imf -f is invariant for Kx and K" lIm | ;l is similar to Ax - BEB*X where

L -  ^ J  L -  ^ l

o(A* - BEB*X) is stable by (79). Moreover, since K is a Hamiltonian matrix

(eK : - x*e *' 
l- o 1'l\

\  
nere e:  

L- l  , l )

the eigenvector-eigenvalue structure of r( is symmetric about the imaginary line. This implies
that X: X* and

X-(K') :  I t l  I
L -  ^ l

by dimension count. Similarly, if )/ satisfies (78) and (80) then necessarily

,r"f 
- 11'L r)

is invariant for K,

"r,,"[_;]
i ss imi la r  ro  -A* -C*JCY wh ichhasa l le igenva lues in ther igh tha l f  p laneby(80)and

x*(K): r*[- 1l
L 1 l

by dimension count. Now condition (80) translates to the invertibility of the matrix

| ! -{l
L_ X T)

or equivalently to

I - XY is invertible (99)

Let us now assume that (98) (and hence (99)) holds. Set

z=( I_  x r ,1_r

We may compute the 7-spectral factor R.(s) of Z(s) by setting

, - l  I  -Y f
' : l -x r l

r-, :l z_:. t:"1
l zx  z l

fKrr o I _l z* z"Yfl A BBE$Ell I -Yl

lx, xrr)- lzx z )lc.tc -e* ll- x r)
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ln,] =l z. t. l l  !" I
lnrl- lzx z llc*to"l

fcrczt=1ol tc - r : r [  !  
-1" l

" ' l -  x  t l

and

|-Kil x(z) _l z. z.Yfl 4" nnn._]l r - 
"lL o Klrl- lzx z llc*t,c -(A* )-l L- x rl

In particular

Cr= D.JC + nlx

Kn = z.* (A - npnsn|x + Yc*Jc + Y'a*x1

Using (78) to replace YA* by -AY - YC*JCY + B&eBEX then gives

Kn= Z*(A + YC*JC _ AYX _ YC*JCYX)

= Z*(A + YC*JC)(I _ YX)

= z*(A + YC*JC'tz*-r

Next

Br:  z*8.+ Z*YC*JD.

and

Ki l :  z*(A* -  BEB*X + YC*a,c + Y(A')?)

Using (77) ro replace (A")*x with (- XA" + xBEB*x-C*L,c) leads to

Ki = Z*(A" _ BEB}X _ YXAX + YXBEB*X )
= Z*(I _ YX,,(AX _ BEB*X)

: A, - BEB*X (102)

Substituting these expressions into the formulas (89) and (90) (with Krr in place of lu and Kil

in place of .4fi) leads to the formulas (82) and (83)for R" and R.t.

We next ver i fy formula (84) for 6.=GoRor. From Go(s)=Do+C(s- A)-tB'  and

formula (83) for R;r(s), we get

6.1s; : Dod;t + c(s - A)-r B.d;r - D.E.Cr(s - 1171-r trrD;'

-c (s -  A) - t  M(s- r i i ) - 'B rd ; '  ( lo3)

where

M: BoEoCr = B.E.(DIJC + B:X)

Recall from (74)

A_Ax=B.E_D:JC

and hence

M= A- A'  + B,E.BIX

279

(100)

( l0 r )
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From (l0l)

B,E,B:X -- - B&aBix + A' - Kn

and hence

M=A-r i i -BpEaBiX

= (A - s) - (rKii - s) - BBE|BEX (104)

Now (104) combined with (103) gives

6,(s) = Dodit + C(s- A)-rB,d;t - DoEoCr(s - Kfi)-rBrdil

+ C(s- r4)-r [(s -  A)- (s-rKi l )  + BeEpBiX](s-r i l ) - tBrd;t

= Dodit  + c(s -  A)-r(B,d;r  -  hdir)

+ (-DoE,Cr + C)(s - Kfi)-tBtd;r

+ c(s +,,4)-tnenpalx6 - Kn)-tBi;r (tos)

From (73) we have

C _ D'E,D:JC: JA.C

and hence from (98)

C - D,E,CI = C - DoEo@:JC + B:X)

: JA.C - D.E"B:X

Similarly

Bo - Br = U - z*)8, - z*yc*JD,

= - z*(yxB,+ yc*JD,)

Now (105) collapses to the formula (84) for 6.(s). Theorem 5.3 follows. !

Proof of suficiency in Theorem 5.1. We suppose that
G(s)= ID" Dpl +C(s- A)-IIB,8pl is as in Theorem5.l and there exist matrices X,Y
satisfying (79)-(81). In particular, since p-(XY) < l, /- XY is invertible and we may set
Z: (I - XY)-'. Now by Theorem 5.2, G admits a

(ffi -]], ,)-o"t"etric)-(restricted outer) factorization G = oR

with the formulas (82)-(84).

It remains to show that in the setting of Theorem 5.2, given that (A,^86) is controllable, if
(81) holds, then O satisfies the additional constraint (65) on the right half plane.

We first observe that the controllability of (A,Bp) implies that Iis invertible. Indeed, if

/ € Ker Y, then from (78) and (70) we see that

o: - y*BpEpBEy = y*nudpt dfi-rofiy

and hence BFy :0. But then again from (78) we have YA*-y : 0. Thus Ker I is an .r4 *-invariant

subspace contained in the kernel of BP. The controllability of the pair (A,Bp) now forces
Ker Y= (0), i.e. I is invertible. This is the only role of the controllability assumption on
(A,Bp); one could assume instead that the solution Yof (78) and (80) is invertible.
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By Theorem 4.3 the validity of (65) is equivalent to 6= [o.Gol satisfying

t6 3] - u,",.ru,"r: [:3;,li'..i0",3 --3;l]'..r?,tJ " 
(106)

for Re s ) 0, where 6.(s) = 6"(s)R,(s)-t.

As a first step we wish to calculate.r-6,(s)*16'(s). From (84) we have

6. (s)=  D+eG-A)- '8

where 24, B, e , D are given by

^ lAx - BEB*X olA = 
l B,E:;|Y^ ;l 

(ro7)

s=l-1-.r, Al"!;r,)o' 
(ro8)

e : IJA,C-D,,8:X, q ( lo9)

and

D= D,d i t  ( l l0 )

white G6(s) : Dts * C(s - A)- | Bp.
We observed at the beginning of the proof that f is invertible. Let us set

f r=lx t , l  (nr)"-  Lx v- 'J
Then .I? is Hermitian.

The following lemma gives a formula for the quantity in (106); we postpone the proof of

the lemma to the appendix at the end of the section.

Lemmo 5.4

With notation as in (106),

t6 3] 
- u.",.ru(s): (s * sr[6.ts -{.'-' 

,u,, -0,.,-,]

* 
[,"?-,, tf:]][s-ir-'6 ,,- i,-,,J

.[f[ot_t6.rs-A\-, " l[[1,]lr,ro,]- [ iLa;J-L o B1G-A*)- 'J1y- '1 )

* 
[ro 

aur - at-'ninx v-11v-r1[s-'4t-rE 
tr_ roy-,rl] tttrr

The next lemma gives the connection between condition (81) in the statement of Theorem 5.1
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and the matrices fr and

l,"u-,,tfl]]
appearing in (ll2).

Lemma 5.5.

Let X and Y be Hermitian matrices with Y invertible and set

fr=fx x.1
lx  v- ' l

Then the following conditions are equivalent.

( i) X>0, Y> 0 and p-(Xf) < I
GD fr>.0

r'ir 
[rx?-,r 

[f:J] ,'
Moreover, if any one of these three conditions holds then p*(XY) < I if and only if in
addition

,=l :. 
-Yl

L _ X  I ]

is invertible.

Proo/. Note

FI : IX X, ]
lx  v- ' )

isposit ivesemidef ini tei f  andonlyi f  f - t  >0and X- XyX= rr tz(I-  Xt/2yXt/2)Xt/2 >0.
Note that if (i) holds then p*(Xt/'yxr/\: p*(Xy) ( I so I - Xr/zyxrr, )- 0. This shows
that (i) + (ii). Conversely, if (ii) holds that f-t > 0 X >- XyX > O and
x"'(I - xr/2yxt/2)xt/2 > o. Hence, if x€ Im x, x*(I - xt/zyxr/z).r ) 0 while if
x€ Ker X, x*11 - Xr/zYXt/2)x= x*x ) 0. We conclude that p-(Xy1 = p*(Xr/2yXtrr) < l.
Thus (ii) =+ (i).

clearly (iii) + (ii). conversely, if (ii) holds, then certainly r-r > 0. By the Schur
complement test,

f  - -  l x l l
I H,, 1", 'J lro
Itx v-,t -y_,-J

if and only if

o < rr- |  j_,]"w y-,t : lx - 
1vx gl

L, J L o oJ

But we have already noted that (ii) implies that X - XYX>- 0. Hence (ii) + (iii).
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Finally, if p*(XY') ( I then I - XY is invertible so

I  r  -Y l  I  r  o l f l  - r l

l -x r l=l-x dLo r-xYJ
is invertible. Conversely, if

r=f !, - "lL _ X  I ]

is invertible, then 1- XYis invertible. If also p-(XY) ( I, then (since the non-zero spectrum

of XY coincides with the non-zero spectrum of the Hermitian matrix Xr/zYXr/z) necessarily
p*(XY) < l. The lemma follows. !

Completion of the proof of sufficiency in Theorem 5.1. By assumption, condition (i) in

Lemma 5.5 holds. Then by Lemma 5.5,

'  I  x ' l l
I H ,, Li,,.l I ,o
Itx 

v-', y-, J
Now by formula (ll2), it is clear that

fi gl - or"r-;6(s) ) o
LO OJ

i.e., (67) is satisfied, so G has the desired factorization.

Proof of necessity in Theorem 5. 1. We now suppose that there are Hermitian matrices X, Y
satisfying (77)-(80) and that G= fD. DBI +C(s - A)-'IB, Bpl has a factorization G:eR
as in (64)-(66). Then in particular G: OR is a

((li n'r \ \
\ \L i ,oJ ' "1 - i to* " t r i c / - ( res t r i c tedouter ) fac to r iza t ion forG

so by Theorem 5.2, I - XY is invertible and without loss of generality the formulas (82)-(8a)

apply. Since O satisfies (65), 6 satisfies (67), i.e.

It 9l - ot,r-r6(s) > o
L0 0l

for s+ i ) 0. In particular

r/ or [1,o !] - ot"r.;or"r]fi] > o
Using the formula (l12) from Lemma 5.4, this becomes

(s + s).6(i - A\- 'F(" - A)- 'B +

+ 6*1s - A\- ' l  I , ] tuou'ai- 'n\tx v- ' t  (s -  Al-tB > o ( l  13)
L r I

By letting s tend to infinity through real values we see from (ll3) that

BG-A\- ' f rG-A\ - 'B>o
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for all real s sufficiently large. The assumption that (A,B) is controllable now implies that
ft>-0. An application of (ii)+ (i) in Lemma 5.5 now recovers condition (5.18) as desired.

Alternatively, one may work with the formula (l 12) for the full block 2 x 2 matrix function

ti o'l
l1s):= 

[o iJ 
- et"l'"ret"l

by an asymptotic argument analogous to that just given, A(s) ) 0 on the right half plane
forces

[B.ts-'4.t-r nits!,q., ,11,# ,, li:,1]f"- x''u t"-.fr-,rJ to
for all s with s + i sufficiently large. Then the controllability of the pair

(f :]'[; ;J imp,iesthat 
l,rur,, 

[f:l] ,'

Now use (iii) * (i) in Lemma 5.5 to recover condition (81). n

Appendix: Proof of Lemma 5.4

Verification of the formula (107) amounts to checking the validity of the following three
identities:

,r- 6.(s)*.reo(s) = F*(s - A\-'[ts + su?- 
l{,]t*ttulx 

y-'tJG - A)-t B (A.l)

-  6.(x)*.rcp(s) = (s+ i)E*( i  -  A\- ' [ i , ]  (s-,4)- tBp - B*G - A*\- ' l { , l t t

-E*(s - A\- ' l {- , ] t**Fr- ' ( ,  -  A)- ' \Bp (A.2)

and

- G e@)* JG,s(s) = (i + s)Bi(i - A*)-' r- t(s - A\-' Bs

+ didp- Biy-t1s -  ,ay-tBp - Bi( i  -  A*)- 'y- tBp

-Bt ( i  -  A* ) - ty - tnpnpgty - t ( r -  A) - 'Bp  (A .3)

(where we use throughout that Ep: - dptdE- t (see (70)).
A first step toward checking (A.l) is to verify the identities

frB= -e*tD (A.4)

and

A*fi + frA + e*te :l{-,lt*rBtrx y-'\t (A.5)

To verify (A.4), we calculate first

Bn =lx x l [  ?: ,yl !" ]a;,"" - 
lx v-tll- vzx - yz llc*tD.)-"
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= lf, : :lIt;')")1"!;.10,'
=l* olrr- '[ !t" la:,-fo -t l" lc*tn.l""

I xn.d;t 1= 
l-c*tn.a;rl

On the other hand,

- e*tD = -lc* t.J - 
!!"t"oq JDod-,

L  c '  I

_ _lc*a.,D,d;t 
- xBoE.@Ilo)a;tf

L c*JD*d;t J

y xn.a;, 1: 
l-c*to,a;tl

where we used

AoDo=U- JD"E"DII)O.
- JDo- JD.E.E;\ =g (A.6)

As a first step to verification of (A.5) we analyse the term e*Je:

ete =lc*n'J - x-n"n"olJIJa,c - o.n.nlx i q"  -  
L c* l -  

' ' - " -

From (4.6) we see that the cross terms in the (l,l)-block vanish, and the (1,l)-block is

le*tq,, : c*ao./a,c + XB,E,(E,)- | E,B:x

Note

AoJAo : (J - tO.n.OIDlU - lO"B,OIl\

= J_ JD.EOIJ_ JD.E.DTJ+ JD.E.(E)-IE.D:J

: J - JD.E.DIJ

and hence

(A.7)le*rc1 rt : c* aoc + xB.E.BIx

Therefore verification of (A.5) amounts to checking the validity of the three identities

((/ ")* - xnnn\x + xnpnpnfrx + x(A" - BEB*x1
+ xnenBnfrx + C*a.C + xB.E.B:x

: xnsEBn|x (A.8a)

((A")* - xBEB\x + xBpEpB[Y-t + xA + c*a.c - XB,E,DIJC = XBpEpBffy-'

(A.8b)

A*y- t  +  y- rA+c*JC:y- tnpnBBiY- '  (A.sc)
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To verify (A.8a), use the Riccati equation (77) together with the identity

XBEB*X: XB,E,BTX + XB|E,B;X

As for (A.8b), recall

B"E"D|JC: A - Ax

and use the consequence of the Riccati equation (77)

- XBEB*X + c*aoc = - XAx + (Ax)* x

Hence the left-hand side of (A.8b) is

(A*)* x - '*":.{"if",f:",!): 
:a:F;\ xA _ x(A _ A^)

: XBpEpBEy-l

and (A.8b) follows. Finally (A.8c) is an immediate consequence of the Riccati equation (78).
G iventha t6 . (s )has the form6" ls ;=  D+eG_/o- rE(see( r07)_( l l0 )and(84) )andtha t

e*JD =Ff lfrom (A.4)), we compute

r-  6.(s)*16.(s) = j  -  tD*+ 6*1s - A*)-te\ JID + e6 - A)-tB]
= i - D*JD- E*(s - A\-'e*tD - D\e6 - A)-'B

- d*(s - A*)-t e*teg - A)-t E
: 6*(s - A\-'fi9 + 8*fr1s - A)-' B

-F*(s - A\- '  e*teg - A)- l  B
: 6*(s - A*)-'lr?(s- z{) + (s - Aln - e*tel G - A)-t o

Finally, if we use (A.5), we arrive at (A.l) as required.
To verify (A.2) we begin with

-6 . (s ) * , rcp(s )  =  -  [D*+F*(s -  A* ) - 'e* lJ lDp+ c (s  -  A) - tBp]  (A .9)

From assumption (71) and the definitions (107)-(ll0) of A,B,e,D, we see that

D*JDu=g (A' lo)

and

rn*^ ,DB- xB:E,DiJDtsfe*JDu= 
[" 

-. 
o I

where

c*t'Dp= c*(J - JD"E,D:DDB

= c*JDp - c*JD,E,(DIloul = g

and where

XB:E.(D:JDP)__O

Hence

e*JDu = g (A . l  l )
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e * r c : 
lc. 

^ "c - ::: ;E "D: l 
1

287

Next compute

(A.12)

Thus substitution of (A.10)-(A.12) in (A.9) gives

- 6"(s)*,rcp(s) = - D*Jc1s - A)-'Bp- 6*(s - A\-'l "" 
-J:;"ot"] 

," - A)-'Bp

Now use (A.4) to get 
(A'12)

-D*tc(s- A)- 'Bp: -D.rel}g- A)-tBp

=B.,?fofg- A)- 'Bp
L/l

= 6*( i  -  A\ - ' .  ( i - i  - )^ r?[ } ]  
6  -  A)- 'Bp (A.13)

In more detail,

(i -,4.)laf,] = 
fu 

- te ") 
o* 

KBEB* - ':ff.|l/ ,l

_ [r" 
_(A")*x+ xnnn*x_ xaprpnfiy-tl (A.14)

L sY- t  -  A*Y- t  I  
*

and hence, making use of the identity B.E"D:JC=.1Q-.4" (see (74)) we get

(s- 4.)u[ol - 
fc.a"c 

-Ji;to"1

_ lrt- 
(Ax)*X+xBEB*x-xgpnsBty-t -c*a.c+ xA- ro"f (A.15)

L jy- ,  _ A*y-t  _C*JC I  
*

From the Riccati equation (77), the first row of the right-hand side of (A.15) becomes

Sx - xnpnaA|Y-t + XA: (s + 5)X- X(s - .q - xAeApnfiv-'

From the Riccati equation (78) the second row in (A.15) is

jy-t  -  A'y-t  -  c*JC =, iy-r  -  y-tBEEBBEY-r + Y-rA

: (s + s)Y-t - f-t(s - A) - Y-tnpnsnfiY-l

Putting the pieces (A.13)-(A.15) together with (A.12) we get

- 6"(s)*.rcp(s)

= F*(i - i.,[,,. u)1"{,] - 
[1,](s 

- ,4) - 
[1,] 

npnpntv-']r, - e)-'au

This yields the claimed identity (A.2).

As for (A.3) begin with

- Go(s)*JGp(s) = -  lDt + Bi("  -  A*)- 'C*|J {Dp + C(s -  A)-tBBl
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From (71) we see that the cross terms vanish, while DfJDp= -atdp by (70). Hence

- Gp(s)*"IGp(s) : dEdB - AfrtS - A*)-'C*JC(s - A';-tBs

From the Riccati equation (78) we get

-Gp(s) * , IGp(s) :  d \dp-  ad ts -  A* ) - ' IG-  A* ; r - r  +  Y- t1s-  .e1

+ Y- | BpE6Biv-' - (.i + s)Y- 1l (s - A)-tBp

= d\dp- r frr- t1s -  A)-tBp - Bt(s -  A*) 
-  tY-tBp

- Bt(s - A\- ty- | BpEpBFy- | (s - A)- | Bp

+ ( i+ s)^afr(J-  1*;- t r - r (s-  A)- 'Bp

This yields (A.3) as required. n

6. THE .F/- CONTROL PROBLEM: STATE-SPACE COMPUTATIONS

In this section we apply the results on state space formulas for generalized "/-inner-outer
factorization in Section 5 and the connection of such factorization with f/- control as
explained in Section 4 to recover the recent elegant state space formulas in Reference 8 for the
solution of the F1' problem. We suppose that the plant

.*,1r1 - lrl
Lul Lvl

for the 1{- control problem (as explained in Section 4) is given in terms of a state-space
presentation

i c = A x * B r w * B z u

Z: Crx * Dnu ( l  14)

! = C z x * D z t w

Since we are interested in studying the problem with some tolerance level 7, we consider instead
the plant 9, given by

* = A x * B r w * B z u

z = 'y-tCrx * l - rDpu ( l  15)

! = C z x * D z t w

in order to normalize the tolerance level to l. Here we discuss only the so-called regular case;
hence we assume:

DlzDn > 0, DztDh ) 0 (l 16)

as well as

le -s  8 ,1  .
| 

"r- 
;;,J 

tt surjective on the imaginarv line (ll7)

and

l , q - g  B " f  .

[--a,-- ;:r]o 
injective on the imaginarv line ( l  l 8 )
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Note that (ll7) and (ll8) have the consequence that the transfer function

fzr(s) :Dzr*Cz( . ; . -  A)- tB,  is  sur ject ive and Ao(s) :Do*Cr(s-  A)- rBz is  in ject ive on

the imaginary line. A consequence of (116) is that, by choosing appropriate decompositions

Z= Zr@Zz and W=Wr@Wz of the output space Z where z takes values and the input

space W where w takes values, we may assume that Dn and Dzr have the form

( l  le)

where Drzr and D211 are square and invertible. We then form the partitionings of Br and Cr

,,': 
f;'] 

, Dzr: [Dz' o]

Br: lBrr Bnl, ., = 
[31]1

(120)

consistent with the above decompositions of W and Z. Now the state-space equations (ll4)

for 9, have the form

*= Ax+ Br rwr  *  Bnwz*  Bzu

zr - r-rcnx + 1-rDnfl, Dor invertible

zz-  7 - rCnx

! = Czx * Dznwr, Dzt invertible

(t2r)

A choice of augmentation [4r(s) /z26\l to e., so **lh.'r'i]r] is inue.tiule at infinitv is

to include the component wz of the input signal w as the additional fictitious output signal;

this amounts to adding the equation

yo = wz 022)

to those already listed in (120). Reversing the arrows (as explained in Section l) to get

then leads to the state-space equations

*: (A - BuDzllCz\x + Bzu + BtDlJy + Bolo

z r - ' y - r C r r x * 1 - r D m u

zz- 'y - rCnx (123)

wr: -Dzl lCzx+Dz1ly

wz:  lo

for &.r. By Theorem 4.2, solving,the .EI- control problem is intimately related to a generalized

,I-inner-outer factorization of &,We can get a state-space analysis and formulas for such a

factorization by applying Theorem 5.1 with the substitution

A - BnDzlLCz in place of 1

lBz &'Diil in place of B.

Bn in place of Bp

il'lil
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S , -2c, r1

| -trf;l '" prace or c
I ol

f  t -  
tDrr ,  o I

I  0  0 l
|  " " . . . ' . . . . . . . . . . .  I  in  p lace  o f  D.

t 3 "6"1

f il in prace or Dp

LI
f t t ,  o  o  o l

LI "i -+, 'l)

t'; ol
, I ln place ot ,/_  t y )

in place of "I

BuDzl'r

with

A - BnDzllCz !

G.(s) - 1-tcr t
'Y- t ct,

- Dtlcz

0

and

Ge(s) -

One easily checks that the hypotheses (69)-(71) are fulfilled

and

!

!o
i 0

!o

A - BtDzrlCz

'v-'Dr',

0

D.,,l

0

(124)

(t2s)

(t26)ofrlop = - dtdp with du: Jra
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Further notation from (73)-(76) becomes

l -o o o o
^ lo  Iz ,  o  o
^o=lo  o  o  o

lo  o  o - Iw,

A x = A - B z ( D n ) - t C n

The Riccati equations (77) and (78) become

X(A - Bz(Dn)-tCrr) + (r4 - Bz(DnJ-'Crt)* X

(r27)

(128)

- x(B2EBl- BnBi- BnBlz\X + {2Cl2C2=Q (r29)

and

Y(A - Br(Dzr)- 
| C)* + (A - Bt(Dztr)- 'C)Y

+ Y(1-zClCt- {zClzCp- CfuzC)Y + BpBl2:g (130)

where we have set

f i=  f (Dp)*Drzr l - t ,  [2 :1D211(D2t t ) * l - t  ( l3 l )

with the stability side conditions (79) and (80) assuming the form

o(A - Bz(Dn)-tct - (BzE$T.- BnBl - BnBlz)x) c IRe s < 0l (r32)

and

o(A - Bt(Dzr)-tcz- Y(y-zCl{u + {2cfzcp- clEzcz)) c {Re s < 0} (133)

The reader will note that, after a change in notation, (129)-(133) are exactly the same as the

equations appearing in Reference 8 in connection with the I/' control problem. Combining

Theorems 4.2,4.3 and 5.1 now gives us the following result for the F/'control problem.

Theorem 6.1

Let

f e z h Bz1
I I

s(s) -  | ; " " : " " ' : " " ' : "  I" \e' 
ft: i ;,, "t)

be a plant satisfying the conditions (116)-(118) and partition Do, Dzr, Br and Cr as in

(l 19)-(120). Assume that the Riccati equations (129) and (130) have stabilizing solutions X, Y

(satisfying (132) and (133)) and assume that (A - BnDllCz, Brz) is controllable. Then the ,F/-

problem with tolerance level r (HINFT) has solutions K if

X > 0 ,  Y ) - 0  a n d  p * ( X Y ) < l  ( 1 3 4 )

Conversely, if (134) holds and in addition if the pair

l lA- Bz(Drzr)- tCrr  0 I  I  z* zxYl l  n,  a"(azt , ) - ' l \

\L - BnBlzx A - Bn(Dzn ) 
- tcrl '  

l- Yzx - vzJb-'cfrDrz, ciEz Jl

is controllable, then the .F/' problem (HINFf) has solutions. In this case the set of

291
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compensators K(s) solving the problem (HINFT) is given by

K(s) = (r11 (s[I(s) + rrz(s))(rzr (s)H(s) + rzz(s))-r ( l  3s)

where r1(s) is any stable rational matrix function with llHll- < I for which (rzrH * r22)-r is
proper and where

is given by

with

r ( s ) = 7 1  c ( s - o ) - r b

r(s): H[:] ;;[i]

(136a)

(136b)

(136c)

(r36d)

o=lo; I,l:l*;,' ,1,,]
- _ f",l _ | - otzlct - 12Dil@iil-t B;xl
" - Lr'l 

- 
L cz+ DuBfiX J

6 = lh bil : WBzDnl + y-IYCI &t + yc!(oztD*l

and

a = A - Bz(Dn)- |Crr * ( - t'nroit (olr)* n! + BB\X

One particular compensator is given by

Ke(s) : Cro(s - A*o)- t B*o

where

A*o= A - Bz(Dnr)- rCrr + I-trsroi l(D;zl)*st+ B$llX

IBu + YCI(Dtri)*larlllCz+ DuBlrn 037a)

Bxo: BrrDzll + vcf(Dzrl1*oztl (137b)

and

C x, - DilC t, - t ' D ol(D fzl* n ! x

Proof. we applv r!9ore-m 53 to &, given by (123). The formula (136a-d) for r(s) comes
from the formula (83) for R.(s)-l.By Theorem4.3, the formula (135) provides a
parametrization of the compensators solving the .F1- problem. The particul", 

"o-f"nr"tors 
r(

given by (137) results from plugging H=0 into (135). To see this note that a realization for

'(')= [;il[:i ;;[]] ,1"]-l:)
is

* : a x + b f l + b 2 l

Z= crx *  d i l t

w: czx * dz!
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Solving for in terms of results in

* = (a - bzdl tcz\x + bzdllw + bfl

Z=  c rX I  d ru

y = - d l r c z x + d i r w

The associated transfer function from w to z (with input / taken equal to zero and output /

ignored) therefore has the realization

* = ( a - b z d z t c ) x + b z d r t w

Z = C t X

But this transfer function coincides with rnrlzt = 9,101 = K6' In this way we get a realization

(137a-d) for rnrlzt of the same order as the realization (136a-d) for r. In particular, we see

that there is a compensator solving the.F/- problem with McMillan degree no more than the

McMillan degree of the original plant 9.
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