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SUMMARY

By introducing a fictitious signal y° if necessary we define a transform

u
Pyl [z]
50 w

#[2-[

u Y
which generalizes the passage from the scattering to the chain formalism in circuit theory. Given a
factorization #= OR of & where R is a block matrix function with a certain key block equal to a minimal
phase (or outer) matrix function, we show that a given compensator u = Ky is internally stabilizing for
the system # if and only if a related compensator K’ is stabilizing for 6. Factorizations #= OR with
O having a certain block upper triangular form lead to an alternative derivation of the Youla
parametrization of stabilizing compensators. Factorizations with © equal to a J-inner matrix function
(ina precxse weak sense) lead to a parametrization of all solutions X of the H™ problem associated with
#. This gives a new solution of the H™ problem completely in the transfer function domain. Computation

of the needed factorization #= OR in terms of a state-space realization of & leads to the state-space
formulas for the solution of the H™ problem recently obtained in the literature.

of a given linear control system
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0. INTRODUCTION

A standard general feedback configuration in terms of which many problems of interest in

This paper was recommended for publication by editor M. J. Grimble

1049-8923/91/040229—-66%33.00 Received 7 July 1991
© 1991 by John Wiley & Sons, Ltd. Revised September 1991



230 J. A. BALL, J. W. HELTON AND M. VERMA

control theory can be posed is given in Figure 1 (see Reference 1 or 2). Here we assume that

-[1-1}

is the input—output map for a linear, time-invariant, finite-dimensional system; after
transforming to the frequency domain by using the Laplace transform, we may assume that
the operator £ is multiplication by a block matrix function

P1(s) ?12(5)]
P1(s) Pals)

The signals w, u, z, y take values in finite dimensional linear spaces W, U, Z, Y; the signal
w is variously known as the command, reference or disturbance signal depending on the
application, z is the error signal, y is the measurement signal, and u is the control signal. Given
&, a first design objective is to build the compensator K so that the closed loop system is
internally stable, i.e. so that the output z and all internal signals # and y are stable (i.e. have
all poles in the left half plane) whenever the input w and disturbances v; and v, are stable (see
Figure 2). This is a formulation of internal stability completely at the input—output transfer
function level; other formulations in terms of state-space realizations are also possible. 2
The main result of this paper is the definition of an equivalence relation ~ between two
systems L = X (4, K) and X' = X(4',K’) such that I is internally stable if and only if £’ is
internally stable whenever X and I’ are equivalent. The notion of equivalence is in terms of
factorization of a matrix function # obtained from # by rearranging the system of equations

&(s) = [ 1

Puw+ Pru=z

)
Poaw+ Pou=y

w z
P
u y
K
Figure 1
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associated with #. A standing assumption in the theory (often referred to as the regular case)
is that 922(s) and 9%, (s) are injective and surjective respectively on the extended imaginary
line. If 9%,(s) is in fact square and invertible, one can rearrange the system of equations (2)
to be of the form

@uu-i- «@12‘_}’=z

- - 3
Pou+ Py=w
where
[e?u e?xz] _ [912 - P19 P 9119’2_11] )
P In - PN Pn Z51

A new observation and tool here is that, if 9%, is not square and invertible but merely
surjective, one may add a row [#3; %] to & such that the augmented (2, 1)-block

g

o

is square and invertible. This induces an augmented system of equations
Puw+ Prou=2z2

Poyw+ Poau=y 5)
Pw+ Phu=y°

in which y° is to be thought of as a fictitious output signal inserted for mathematical
convenience. The system (5) can be rearranged in the form

@uu + 912)’ + 913}'0 =2

Pt Syt Ay ©
921114- P2y + Pozy = w

where
& [ P22 E N
- - - 912—9’11[ J [ 9’21[ ]
Pu P2 Pi3 # A 7,
P P Pl [92,‘] —1[922 [3721‘] -1 )
EINE A
The following is our basic equivalence principle for stability of feedback systems. A special

case was given in Reference 3. Recall that a rational matrix function Ry is said to be minimal
phase (or outer in the mathematical literature) if both Ro and Ro ! are stable.

Theorem A (see Theorems 2.1.1 and 2.2.1}

Let & and 4 be two given plants of the form as in Figures 1 and 2. Let % and &' be the
associated transforms as in (7) and suppose that

#=FR ®)
where
u u'
Ryy|—-|y
0 »°
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has the form

Ry Rz O
R=|Rn R»n O
Riy Riz Ry

with

Ry Rlz]
R =
¢ [RZI Ri;

a minimal phase (outer) rational matrix function and Ri;, R32, Ri3, R33' rational matrix
functions analytic on the extended imaginary line. Suppose K is a proper rational matrix
function such that (R»:K + R2;)™! is also proper. Then the compensator K is stabilizing for 2
if and only if the compensator K’ = (R11K + R12)(R21K + Ry;) ™! is stabilizing for 4.

We shall call matrix functions R of the type described in Theorem A restricted outer matrix
functions.

The practical utility of Theorem A is that a given control problem for a complicated plant
& can be reduced to the same problem for a much simpler plant %' if £ and ' are related
as in Theorem A. We offer two illustrations of this general principle.

The set of stabilizing compensators K for a given plant & in general is a complicated
nonlinear set; a basic issue therefore is the stabilization problem.

(STAB) For a given plant # describe the set of all stabilizing compensators X
A special case where (STAB) is easy is the case where # has the form

P nn -7,
T 0

associated with a model matching problem.! A plant # of this type we shall say is in model
matching form. In this case one can show that & is stabilizable if and only if Ti, 7> and T3
are all stable, and then K stabilizes if and only if K itself is stable. If % has the model matching
form

P nn -1
T3 0

then the transform # has the block upper triangular form
@= [éll <?12 '?13]
0 & &

Thus we have

Corollary. (Youla parametrization)

Reduction of (STAB) for a general plant £ to the case of a model matching plant

T, -1,
P =
[ ;0 ]
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is equivalent to the computation of an (upper triangular)—(restricted outer) factorization

[@11 &P @23] [,@1’1 P 9"'1'3] 211 11§12 8
7 7 2. = ~ 21 Rz
P P P 0 #h #5l|R, Ry Rss

of #.

In this way we recover the Youla parametrization of stabilizing compensators (see Reference
1 or 2) as a direct application of the general factorization principle Theorem A.

The second illustration of Theorem A to be discussed in this paper is the standard problem
of H* control. This problem has received a lot of attention and interest in the literature in the
past decade; for engineering motivation and background, we refer to References 4, 1 and 2
and the references therein. We formulate here the strictly suboptimal version of the problem:
given the plant # and a tolerance level v, one seeks to describe all stabilizing compensators
K for which the induced operator norm of the closed-loop transfer function
Tow= P11 + Pr2K(I — $,K)~ 1, (as an operator on vector-valued L? of the imaginary line)
is strictly less than .

(HINFy) Find all stabilizing K such that || #1 + P K(I — F22K ) ' || < v

Without loss of generality in the following discussion we may set y = 1.
As before in the (STAB) problem, there is a special class of plants & as in (1) for which the
solution of the strictly suboptimal H* problem is easy. We say that the rational matrix

function
P [911 9’12]
P P
as in (1) is sub-all-pass if

” #(s) l[Ker J’zl(s)] <1 )]
0

[I: “ 0 I(S)]}

is isometric for s on the extended imaginary line. If in addition #(s) is stable, then we say that
#is subinner. For example, if Ker #(s) = {0} for all s, then # is subinner if and only if &
is a matrix inner function in the usual sense. It turns out that for a sub-all-pass plant 4, the
strictly suboptimal H® problem has solutions if and only if & is subinner, and in this case a
compensator K solves the H® problem if and only if K is stable with || K ||« < 1.

The transform # given by (7) of a sub-all-pass function & (i.e., a # satisfying (8) and (9))
can be arranged to have the property

P(s) hP(s)=J1, Res=0 an

and conve_rsely, where b= ® —Iwand J1 = Iy @ — Iy @ — Iy. Let us call such a matrix
function #a (Ji, J2)-isometry. The additional stability property required for #to be subinner
then corresponds to

Iy 0 0

P(s)*IP(s)<|0 -Iy 0], Res>0 (12)
0 0 0
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Let us say that a & satisfying (11) and (12) is a (Ji, J2)-subinner matrix function. Note that
the concept of (J1, J2)-subinner requires a specification of the space Y° of fictitious signals;
when this space is absent then the concept of (Ji, J2)-subinner collapses to that of (Ji, J2)-
inner in the usual sense.® An application of Theorem A now leads to the following solution
of the H™ problem.

Corollary

The solution of the H*™ control problem for a given plant & reduces to constructing a
factorization #= #'R of the transform & of & (given by (7)) such that &' is (J;, J»)-subinner
and R is restricted outer.

This gives a direct analysis of the H* problem completely at the level of transfer functions
and input—output operators. When one goes on to compute the ((J1, J2)-subinner)—(restricted
outer) factorization #= #'R in terms of state- -space realizations, one arrives at the elegant
state-space formulas for the solution of the H* problem recently obtained in the literature; this
is done in Section 6.

Thus the general factorization principle Theorem A provides a unifying general framework
from which the Youla parametrization of the set of stabilizing compensators and the
parameterization of all solutions of the H™ problem both flow as particular illustrations. In
particular we obtain a new direct conceptual solution of the H® problem at the level of transfer
functions which bypasses completely the Youla parametrization.

The ideas behind Theorem A for the case where 9%, is square and invertible can be
illustrated quite simply by a picture (see Figure 3). Here the original plant £ is the transfer

function
from [W] to [z]
u Yy

and it has been factored as in equation (8) of Theorem A where

>l

w z
v} L vy
P <
"«, yl
R
w Y9
K’
m v2
K

Figure 3
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(with v, =0, v = 0) and where it is assumed that

<[]

is outer. Figure 3 depicts this factorization as applied to Figure 2. Internal stability for the
original closed loop system (Figure 2) associated with & and compensator K is defined with
respect to the disturbance signals vy and v, (with v{ and v} taken equal to zero). Internal
stability for the closed loop system associated with the plant ' and compensator
K' = 9r[K]:y' = u' is defined with respect to the disturbance signals v{ and vj (with
v = 0, v = 0). The content of Theorem A is that these two notions of internal stability are the
same, i.e. one can shift the location of the disturbance signals without changing the problem,
in case R is outer. This was one of the basic ideas behind the proof of the Youla
parametrization appearing in Reference 3. This idea can be made precise for the general case
where @, is not invertible but is made more complicated by the necessity of introducing an
auxiliary space Y?° of fictitious signals.

Historically the Youla parametrization was used as a tool for the study of the H™ problem.
Specifically, the Youla parametrization enables one to reduce the H* problem for the general
case to the model-matching case. Further reductions and manipulations were required in order
to apply the state-space solution of the Nehari problem from Reference 25. After having done
all this, one still had to back-solve for the compensator, so the whole process was rather
cumbersome. Later Reference 7 showed show to get a more direct parametrization for the set
of all performances T, for an H™ problem directly via a J-spectral factorization procedure
for a plant & assumed to be in the model-matching form. The landmark paper (Reference 4)
avoided the Youla parametrization completely and was the first to set down a clean state-space
solution of the general H™ problem in terms of solutions of two Riccati equations. Solutions
of parallel problems involving optimization in a 2-norm rather than infinity-norm and strong
analogies with LQG theory were also given with all the analysis done in the time domain in
terms of a state-space representation of the original plant #. Among the many follow-up
accounts we mention Reference 8, which used the bounded real lemma, and Reference 9 which
used the Pontrjagin maximum principle. The recent papers (References 6 and 10) returned to
the transfer function domain to derive the solution of Reference 4 via factorization of transfer
functions and a streamlined application of the Youla parametrization. For the 2-block case and
in the context of the H® problem, this paper has considerable overlap with Reference 26.

The formulas we arrive at here for the solution of the H” problem are the same as in these
other papers. The contribution of this paper to the H* control theory is conceptual rather than
computational. As in the original approach, our solution is set at the level of transfer functions
with state-space formulas arrived at as a method of implementing transfer function operations.
The novelty of our approach is that all the factorizations and manipulations of the original
approach are condensed into a single generalized J-inner—outer factorization for the general
regular case. This paper can also be viewed as a more definite improvement of Reference 7.
There the solution of the H” problem, under the assumption that the plant had already been
brought to model-matching form, was reduced to the same type of single J-inner—outer
factorization as we have here. The derivation in Reference 7 was via a more sophisticated Krein
space analysis based on ideas from Reference 11 rather than the elementary ideas behind
Theorem A as presented here. Also in Reference 7 the state-space analysis did not include the
existence criterion; there appeared a superfluous Riccati equation, and the parametrization of
the compensators K (as opposed to the closed loop transfer function T;w) was left obscure (see
the end of Section 4).



236 J. A. BALL, J. W. HELTON AND M. VERMA

Since this paper was written, we found that the same factorization idea for a solution of the
standard H™ problem at the frequency-domain level also appears in the recent work of Liu,
Mita and Kimura.'? Also a preliminary form of some of the ideas here appeared in work of
Verma and Zames.?’

This paper deals only with the so-called regular H” problem and does not touch the singular
case studied in Reference 13; an interesting direction for future research would be to
understand the singular case from the factorization point of view of this paper. Also, although
not emphasized here, the transfer function analysis in Sections 1—4 makes sense for distributed
parameter systems.

We expect that the computation of the generalized J-inner—outer factorization presented in
Section 5 will eventually have some technical improvement. Specifically, one should be able to
prove that existence of the desired generalized J-inner—outer factorization guarantees that
stabilizing solutions of the Riccati equations exist if (A4, B) is stabilizable and (C, A) is
detectable; these improvements are worked out in a separate report!* for the 2-block case
(corresponding to 91 (s) is square and invertible on the extended imaginary line in the control
probiem.) In any case the work of Section 5 extends the work of References 15 and 16 on state-
space formulas for inner—outer factorization to more complicated factorization problems. The
payoff is that one thereby solves completely in one stroke the entire H™ problem for a given
plant & rather than merely implementing one of many steps in a solution algorithm, a
motivation behind the work of References 15 and 16.

The paper is organized as follows: Section 1 systematically develops basic properties of the
general transform #— # and of the associated linear fractional maps. Section 2 presents a
proof of Theorem A, with first a separate proof for the simpler case where % is square and
invertible. In Section 3 we show how the Youla parametrization of stabilizing compensators
follows from an (upper triangular)—(restricted outer) factorization of the transformed plant #
as a consequence of Theorem A. Section 4 shows how the H™ problem can be solved by a
single generalized J-inner—outer factorization of the transformed plant #. Next Section 5
shows how necessary and sufficient conditions for the existence of such a J-inner—outer
factorization together with formulas for the factors can be given in terms of a state-space
realization of #. Finally in Section 6 we specialize this analysis to a function # of the form
arising from an H™ control problem to recover the state-space formulas for the solution of an
H™ control problem given by Petersen et al.®

1. LINEAR FRACTIONAL MAPS

In this section we develop some basic principles concerning matrix linear fractional
transformations which shall be needed in the sequel.

1.1. Linear fractional maps on matrices

P [3”11 9’12]
P P
where #; has size m; X n; for i, j = 1, 2. In this section we consider only matrices over the field
of complex numbers C; the results of this section will be applied pointwise to the case where

the entries of & are rational matrix functions. The linear fractional map induced by £ is the
map

Suppose # is a block 2 x 2 matrix

K = #u+ PuK(I— $P2K) '3 = F0[K)
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transforming n; X m, matrices K to mp X n; matrices F»[K]; F,[K] is defined for all
n, x my matrices K for which the inverse of K — @K exists, so in particular #,[0] = &, is
always defined. It is easy to see that the map K — #,[K] is one-to-one exactly when

12 has linearly independent columns (i.e. %2 is injective) (13)
and
%, has linear independent rows (i.e. %%, is surjective) (14)

When assumptions (13) and (14) hold, we shall say that the map %.»is regular; in this section
we shall deal exclusively with regular maps. The map %, can also be viewed as the formula
for the input—output map from w to z in the feedback signal flow diagram depicted in
Figure 4. Algebraically, if one substitutes ¥ = Ky in the system of equations

ml[2]=
Py Pz LU ¥y
and solves for z in terms of w, one obtains

z= F4[Klw

The next lemma describes the extent to which a regular map K — #,[K] determines the
matrix & which induces it. We omit the elementary proof.

Lemma 1.1.1

Suppose

#5 Ph

is a block 2 x 2 matrix with #%; injective and #%, surjective and with &% of size m; x n; for
k=1,2. Then 4, [K] = #,[K] for all ny X m, matrices K in a neighbourhood of 0 if an
only if

s [#"fl #’fz}

2 21 a1
[ef’u 3’12] [ #11 Oldﬁz:l
=1 -1l !
P P a Py P
for some non-zero scalar «.

To be consistent with terminology from H* control theory' we identify three types of linear

K

Figure 4
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fractional maps %, in order of increasing level of generality:

1-block case: both #, and 9%, are square and invertible.
2-block case: %, is injective and %, is square and invertible.
4-block case: the general regular case (#; is injective and 9, is surjective).

The goal of this section is to rearrange the form of the linear fractional map K — #»[K] to
an alternative form K — %;[K] having more convenient mathematical properties; in the
language of classical circuit theory, the transformation which we are about to define amounts
to the conversion from the scattering formalism to the chain formalism.!” The 1-block case
corresponds to the classical case, the 2-block case is a relatively straightforward generalization
while the 4-block case is more complicated and involves the introduction of a fictitious
channel. We discuss each in turn.

1-block case. We convert to the chain formalism as follows. Rearrange the system of

-

In the terminology of Reference 18 this amounts to ‘partial inversion’; in the context of
Figure 4, this amounts to ‘reversing the arrows’ for the w and y signals to arrive at a system
as in Figure 5. The result is

= [911 d-”xz] B [eflz — PP P Cy)llfill]
P P — &5 Py e T
When we make the identification ¥ = Ky and solve for z in terms of w, the result is
= (j)uK+ @12)@@2}](4- 922)_1W

to be in the form

15)

If we define a map % by
951Kl = (PuK + P0)(PuK + $2) 7
the above analysis shows that
%7Kl = #4[K]

for a generic set of ma x n, matrices K. From (15) it is clear that & being in the 1-block case

Figure §
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(i.e., #12 and #; being invertible) corresponds to

# and P — PP P, are square and invertible 16)

Note that invertibility of %%, is equivalent to K = 0 being in the domain of definition of 4.
and then, by a Schur complement argument (see, for example, Reference 19), invertibility of
P — PaPn P amounts to the invertibility of # itself. A useful property of the chain
formalism is the group property

G0 G = G 17

where the product on the right is ordinary matrix multiplication.
Conversely, suppose that the block 2 X 2 matrix

P ['f’u ef’xz]
P Pn

satisfies (16). We then may reverse the process done above, and rearrange the system of

~p u \ | Z \
..y

to arrive at a system of the form

The result is

(18)

o [-fn d"nz] B [ P P57 J’ud;’lze;’z_zld.’zl]

S P | 25 - 25 P
Then assumption (16) is exactly equivalent to #, and #%; being square and invertible, i.e. to
# being in the 1-block case. Moreover it is easily checked that

92[K] = #-[K]

for all K in the common domain of definition of %, and %, and that the two
transformations #— P and #— # defined above are inverses of each other. We conclude that
linear fractional maps of the form .7 with # satisfying (16) constitute the chain formalism
version of the 1-block case.

2-block case. Now suppose that we are given a block 2 X 2 matrix

Pe [.f“ aﬁz]
P P

with #; square and invertible but &2 known only to be injective. The derivation of (15) above
required only the invertibility of #%;; thus we may still define # by

Fe [j’u 9’12] _ [éf’xz - AP P 3’115’2—.1]
P P - #51' P2 e
as before. The condition (16) now assumes the weaker form

s, is square and invertible and Py, — P, P5' P, is injective (19)
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We again define the chain formalism version of the linear fractional map
K = G5[K] = (21K + Pu2)(PuK + $Pry)~!
and note that

F» K] = 97[K]

on the common domain of definition. The condition that 4, is invertible guarantees that K = 0
is in the domain of definition of 4.7 and then by a Schur complement argument the additional
condition that &, — #,,25,' @, is injective amounts to the condition that the matrix 2 itself
be injective. The group property (17) makes sense only if # and #® are allowed to have

appropriate (different) sizes.
,@: ['?ll !?12]
P Pn

Conversely, if

is a block 2 X 2 matrix satisfying (19), we may again define & by the inverse transform (18)
P [911 3”12} _ [@1297‘2'21 P — 91292—219.’21]
P P 255 - P P

Then hypothesis (19) on £ translates exactly to #%, is square and invertible together with #,
is injective, i.e., to # being in the 2-block case. We conclude that linear fractional maps of
the form %5 with # satisfying (19) constitute the chain formalism version of the 2-block case.

4-block case. We are now ready to consider the general regular case. Suppose that we are
given a block 2 X 2 matrix

P P

such that #; is injective and #%, is surjective. Transformation to the chain formalism appears
to require the invertibility of #%,. However, since #, is surjective it is possible to append a
second block row #43, so that

P [d”u ef’lz]

)
P
is square and invertible. Define #9, of a compatible size arbitrarily. Then
#11 P12
----------------- w z
P= : -
#a1 P2 [u] ;o
# 2

is as in the 2-block case. The associated linear fractional map #g acts on compensators of
block row type [K Ko] and has the form

P “1raep.
Fl 1K, Kol] = #u1 + Pl K, Kol {[é (;] _ [géj K. KO]} [.@Z’j

Note that if we restrict Ko to Ko =0 we get
_ , ) I- 25K 0]1-UHA
Qy.?[ [K’O]] =MII+PWIZ[K70]

' .
K I .@‘2’,] = Js[K]
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In words, a general 4-block linear fractional map is equivalent to a 2-block linear fractional
map of a larger size restricted to compensators which annihilate a certain subset of the
channels feeding into the compensator (see Figure 6). We use formula (15) to convert & to the
chain formalism; the result is

_ _ _ Py P Por| " [Pz P e
Pu i P P 1277 g 7 a8

P= | - ) ) . (20)
el R
P 1 7,
where the associated system of equations is
lu
7))
yO

From results derived above for the 2-block case, we know that
Fo1K] = Fo K, 0] = 95[[K, 0] = (Pu[K,0] + [Pz, Pu])([#21[K, 0] + [F22, $23])7"

This leads us to define a block 2 x 3 matrix
Fe [J:’u %12 e{”ls]

S P P
(the same matrix as # but considered as having a block 2 x 3 structure rather than block 2 X 2
structure) and define 93[K] by

©5K] = 931K, 011 = [PuK + P12, P3] [$1K + P2, Pa] ™ @n

In this way we arrive at the chain formalism version . of the linear fractional map #, for
the general 4-block case. Properties inherited by # from # being regular which are read off

from (20) are
[s2 73] is invertible and P11 — [Pz Pzl [Fr2 Po3] ™' P is injective (22)

Note that invertibility of [#: 53] guarantees that K=0 is in the domain of definition
of %, and then by a Schur complement argument the injectivity of
A1 — [PraPrs) [$2293] ~' ) is equivalent to the injectivity of the big matrix 2.
Conversely, suppose that we are given a block 2x 3 matrix
e [9311 e?lz 9:’13]
P P P

(X,0]

Figure 6
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which satisfies condition (22). We merge the last 2-block columns to a 1-block column to
generate a block 2 X 2 matrix

9_ [(@” 912 1?713]

@21 922 é23

which satisfies condition (19) and which has the property
97(K] = 93K, 0]]

We next use the general formula (18) to convert back to the scattering formalism; the result is

P [[67’12, Pl [P, P31 ™" Pu~ [Pz, i3] [Pz, $rs) _1921} 23)
[#22, #23] 7! — [Pa2, Pr3] ' P
We then define & so that
Fy[K] = #2[K, 0]
This amounts to ignoring the last block row of . The result is
P [.f” J’lz:I
P P
where
P11 = [Pra, Pi3) [ Po2, $3] ™!
P2 = Py — [Poa, P13 [ Po2, Pa3] ™' P 24)

P = [I 0) [P, 23] !

Pn=—[10][F2 $] '
Note that assumption (21) on # is equivalent to %, being injective and %, being surjective,
i.e. #is in the regular case. We conclude that maps of the form (21) with & a block 2 x 3
matrix satisfying (22) gives the chain formalism form of linear fractional maps for the general
regular case.

We close Ehis section with a discussion of to what extent the map K — 9.7[K] determines
the matrix #. For regular maps in the conventions of the scattering formalism X — #,[K],
this is settled by Lemma 1.1.1 given above. For the chain formalism we have the following
result.

Lemma 1.1.2
Suppose
7 = [":"“‘ 7t "f"“’]
#5 S A

is a block 2 x 3 matrix satisfying condition (22) with #% of block size 71; X Ajfor k=1,2.In
order that

97 [K] = 9»[K]

for a generic set of 7, X 7i; matrices K it is necessary and sufficient that there exists a non-zero
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scalar o and #i; X Ai; matrices v; for j=1,2,3 with 3 invertible such that

P P P [(Ph A )l 00

PPN NNl R R | B @
21 22 23 21 22 2y v s

In particular, if the third column of #is vacuous (i.e., iz = 0 and #is in the 2-block case (19)),

then equality of the two maps % and %;: is equivalent to

jz = ae}?l

for a non-zero scalar «.

Proof. This result can be established by tracing through the amount of freedom involved
in the transformation from # to  to # and using the characterization of non-uniqueness in
the correspondence #— %, given by Lemma 1.1.1.

1.2. Linear fractional maps of contractions

In this subsection we establish some general facts concerning linear fractional maps which
map contraction matrices into contraction matrices. For convenience, with the exception of
Proposition 1.2.3, we will state the results only for linear fractional maps presented in the
chain formalism.

Our main interest here is to define various classes of block 2 X 3 matrices

U= [Ull Uiz Ul3]
Uy, Uxn Uz

(with block sizes m; X nj, say, for i=1,2 and j =1, 2, 3) satisfying the regularity assumption
(22) with the property that %y[K] is a contraction if and only if K is a contraction. We first
consider the 2-block case where n; =0 and U>; is invertible (so m2 = n2). We work with the
linearization of the equation

GulKlw=z2
given by the system of equations
Un Unllu Z
= 26a
[Uzl UZZ] [y] [W] (262)
u=Ky (26b)

Let us suppose that U is (J, J)-isometric, i.e., that U*JU = j, where J= Iy, ® — Im, and

j=1I, @ —I,,. Then we have explicitly
[UflUn—Uz*luzl UﬁUlz—U;lez] _ [In. 0]
UbUy — UnUs UhUn — U U, 0 -1,

In particular UUs; = In, + Ut2Urz. Thus U, (which by assumption is square) is invertible
and, from

(Un2Us)* U Uz = 1- (Ui')* Uz
we conclude that U;,Us' is a strict contraction, that is

| U Unw|| < || wi| for all w0
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From this it follows that for any n; X n, matrix K with || K| < 1,
UK+ Uy = Uzz(Uz—le21K+ I

is invertible, i.e., any 7, X n K with || K|| < 1 is in the domain of definition of %x. Moreover,
the (/, J)-isometric property of U implies that

Tzl =Nwlz=lul®=l»I?

whenever u, y, z, w satisfy (26a). If we now plug in u = Ky from (26b) we get

I SulKIwli* =l wll*= | Ky |~ || »||?

for all w, where y = (U2:K + Uz2)~'w. Since for any fixed K in the domain of definition of %y
the matrix U1K + Uy, is invertible, we see that y sweeps through all of C"* as w sweeps
through C™-C™. Hence K is contractive, isometric or expansive (i.e. || Ky |2 > ||  ||? for all
y) if and only if 9y[K] has the same property. This gives us the following result.

Proposition 1.2.1
Suppose

Un U
U=
[U21 Uzz]

is (J, J)-isometric, where j=I,, @ — In,, J= Im, ® — I, and ny = m,. Then U satisfies (19),
and any contractive n; X n» matrix K is in the domain of definition of %y. Moreover, for a
given K in the domain of definition of %y, %u[K] is contractive (respectively, isometric)
(respectively, expansive) if and only if K is contractive (respectively, isometric) (respectively,
expansive).

Our next goal is to extend Proposition 1.2.1 to a more general class of block 2 X 3 matrices
U. Therefore consider a block 2 X 3 matrix

U= [Un Ui Ul3]
Uy U Ui

where Uj; has size m; X n; and U satisfies the regularity assumption (22). We now suppose that
Uis (j ® — ¥, J)-isometric where, as before, j=1I, ® ~ In, J=In ® — I, and ¥ = ¢y*Y is
a general positive semidefinite 73 X n3 matrix. As for the case n; = 0 done above, one can see
that the domain of definition of %y includes all n; X n; contraction matrices K. The
linearization of the linear fractional equation

YulKlw=1z
leads us to the system of equations
Un Un Usl|® z
¥ 12 13
= 27a
[UZI Uz Uzs] ;)0 [W] (272)
u=Ky (27b)

The (f® — V¥, J)-isometric property of U implies that
Nzl =l wi>=1lul>= I »1I> - ¢ (28)
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whenever u, y, ¥°, z, w satisfy (27a). If we now plug in ¥ = Ky from (27b) we get
[ gulKIw||> = | wl?=||Ky|I> = 121> - 1 ¥2° 11 29
for all w, where
[;o] = [U2iK + Uiz, Uss] " 'w.
In particular, if K is contractive we see from (29) that $y[K] is contractive. Conversely, if
9u{K] is contractive, we have
lgulKlw|*~ [wl*<0

for all w. If we specialize w to be of the form
[U2iK + Unz, Uss] [g]

and use (28), we get
Ky |2= 1l »iI* <0

for all y€ C"2, i.e., necessarily K is contractive. Also, if y%eKer ¥ and we choose
0
w= [Uy1K + Uz, Uas] [yo]

from (28) we read off that || u[K]w||>= || w||% hence when ¥ has a non-zero kernel there
is no choice of K for which || 9u[K] || < 1. On the other hand, if ¥ > 0 we read off from (28)
that || QulK]lw| <1 for all choices of w if and only if {|K|| < 1. We have arrived at the
following result.

Proposition 1.2.2
Suppose

U={U“ Uz UlS]
Un U Uz

is (j @ — V¥, J)-isometric, where j = I, @ — I, ¥ is an n3 X n3 positive semidefinite matrix,
J=1In ® — I, and where U satisfies the regularity condition (22) (with U in place of #).
Then any contractive n; X n, matrix K is in the domain of definition of %y. Moreover, (i)
9ulK] is contractive if and only if K is contractive. (ii) There exist contractive K for which
GulK] is strictly contractive if and only if ¥ is positive definite, and in this case, Gu(K] is
strictly contractive if and only if K is strictly contractive.

In this paper we will be mainly interested in linear fractional transformations having the
property (ii) described in Proposition 1.2.2. The following result characterizes the class of such
maps in the scattering formalism.

Proposition 1.2.3
Suppose

P [efu d"lz]
P Pn
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is a block matrix with & injective and #; surjective with & of size m; x n; for i, j= 1,2 such
that

M |lzl<1,
(ll) ” P11 IKCI‘ P ” <1, and
(iii) rank(] — #*#) = dim Ker ;.

Then

(@) || F#Kl||<1e | K| <1, and
®) | FHK1 ]| <1e K] <1.

Proof. We show that if # satisfies conditions (i) and (ii) in the statement of Proposition
1.2.3 then there is a choice of augmentation #°= [#3; #9,] for @ so that the resulting
transform U = # defined by (20) is as in part (ii) of Proposition 1.2.2 with ¥ = I. From (28)
and the connection (20) between #and #, the issue is the construction of #° = [#3; #53,] such
that

[;J is isometric (30)
and

P

) is invertible 31

[W(z) 1] —

By condition (iii) there is a surjective linear transformation #°= [(#3, #3,] from C" @ C":
to C" (where n3 = dim Ker #,) so that

I- #*p=(#)F° (32)
Thus (30) is satisfied with this choice of #°. To check (31), write C"' as a direct sum
C" = (Ker &1)* @ Ker &,
and partition #,, %, and 93, conformably:

Zu = £ Pl
P21 = [#11 O]
Po1 = [P Ph2)

and note that #%,; is invertible since %, is surjective by assumption. From
[e%l] _ [3”211 0 ]
J)(z)l e@(z)ll y(Z)IZ

#31,  is square and invertible

we note that (31) is equivalent to

On the other hand (32) in particular gives
11— PP = (F) P (33)
Assumption (ii) guarantees that
rank( — #112P112) = ms
Hence (33) implies that 99, is invertible as required. O
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Remark 1. One can also prove a converse to the general result proved in the proof of
Proposition 1.2.3 is the following matrix extension result. Given a block matrix

P [9’11 912]
P Pn

where #; has size m; X nj, then there is a choice of m3 X (n1 + n2) matrix F° = [#3, F:] such
that

(a) [;;,] is an isometry
and
P . . .
(b) P is square and invertible
211

if and only if

0 |2l <1,

(ll) ” 11 |KCI‘ P “ <1,
(ili) rank( — #*#) = dim Ker %,
(iv) %1 is surjective.

Remark 2. The proof of Proposition 1.2.3 showed that if
P [911 912]
P P
is a block matrix satisfying (i), (ii) and (iii) in lfroposition 1.2.3 in addition to (13) and (14),
then # has a chain formalism transform U = & as in (1.1.8) which is

J 0 . .
([ 0 - I] , J) -isometric

Conversely one can reverse the steps in the argument to show that an

J 0 r .
([ 0 - I}’ J) isometric U

is in turn the chain formalism transform U = £ of a block matrix # satisfying the conditions
of Proposition 1.2.3. We shall use this remark in Section 4.

2. A FACTORIZATION PRINCIPLE FOR STABILITY OF FEEDBACK SYSTEMS
Consider the feedback configuration (%, K) depicted in Figure 7. Here

#(a =)

and K:y— u — v represent input—output maps (called the plant and the compensator) for
linear time-invariant finite dimensional systems, w is the disturbance or generalized reference
signal, u is the control signal, z is the error signal, y is the measurement signal, v; and v, are
auxiliary disturbance signals introduced to define internal stability in an input—output setting.
Figure 7 represents a general paradigm into which a variety of control problems can be cast;
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w z

u P 51

m K vy U
Figure 7

for more details, see References 1 and 2. After applying the Laplace transformation, we may
assume that the signals w, u, z, y, are rational vector functions with values in finite dimensional
spaces W, U, Z, Yrespectively, and that #and X are given as multiplication by rational matrix
functions, also denoted as #= #(z) and K = K(z). The configuration in Figure 7 stands for

the system of algebraic equations
k [ ] [ : ] G
u y—u2

u=Ky+u

The system Z(#, K) in Figure 7 is said to be well-posed if one can solve the system (34)
uniquely for z,u, y in terms of w, vy, v; and the resulting map

w Z
vi| T {u
[ %3 B4

is given by multiplication by a proper rational matrix function (z) = [#(2)]1<i,j<3:

-
w

Z
ul| = v (35)
Y U2

If in addition 4 is stable (i.e., all poles are in the open left half plane) then the system (%, K)
is said to be internally stable. Explicitly, in terms of

ol i N
P Pa| |u y—v2
and K:y — u — v;, well-posedness works out to be equivalent to

The rational matrix functions A = K — #5,K is invertible (36)

together with associated rational matrix function ¢ as in (35) being proper. Explicitly o is
given by
Pu+ PuKAT P P+ PuKAT 'SPy PKAT!
H= KA~ '@, I+ KA ‘9, Ka! 37
Al A le, A™!

In this section we establish a notion of equivalence between two feedback systems L (£, K) and
L(#',K'); the useful property of a pair of equivalent systems (%, K) and (4, K’) is that
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one is internally stable if and only if the other is. In this way a complicated system (%, K)
can be analysed by exhibiting its equivalence to a simpler system I (4, K'); illustrations of this
general principle will be given in Sections 3 and 4 to follow.

The formulation of this notion of equivalence requires conversion of £ to its representation
#in the chain formalism; this was done in detail in Section 1.1 for constant matrices. We now
use the extension of this analysis to matrices of rational functions; equivalently, we may think
in terms of the analysis in Section 1.1 being applied pointwise. It is convenient to do the
simpler 2-block case separately first.

2.1. The 2-block case

We consider first the simpler 2-block case where &, is invertible (as a rational matrix
function). Then, as in Section 1.1, the system of equations

2l
2 201

e [-@11 9312] B [éi’lz - PuPn' P2 3’1192_11]
P P - P53\ P 73
We rewrite Figure 7 in the_ suggestive form of Figure 8 where it is to be understood that
u; = Ky. Now suppose that & has a factorization

#=0O0R

e lell 812|.lull IZ\
821 622 ’ yl’ W
[ Ny l}:[ ] [ ,]
RZI RZZ yl yl’

(Here u and u«’' both have values in U, y; and y{ both have have values in Y.) With this
substitution for #, Figure 8 takes the form of Figure 9. Recall that internal stability for this
configuration means that the output and internal signals z, u, y are stable whenever the external
disturbances w,v;, v, are stable. Now consider the modified configuration where the

can be rearranged in the form

where

(38)

where

w. z

K

Figure 8
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Figure 9

disturbances are shifted to the other side of R as in Figure 10. The compensator K’ is
considered to be the map from y{ to #{ and the plant %' the map from

[Jv] © [yzi’J

internal stability for this modified system I(4',K’) means: the output and internal signals
z,u", yi are stable whenever the external disturbances w, v{, v are stable. It is intuitively
plausible that internal stability of £ (%, K) is equivalent to internal stability of (2, K’) if it
is the case that R is outer. (Here we say that the rational matrix function R is outer if both
R and R™! are stable, or, in engineering terminology, R is stable and minimum phase.) One
can almost do the proof with pictures; however, a formal proof does require some algebra.

A special case of the following result, the main result of this section for the 2-block case,
appears as Lemma 1 in Reference 3.

Theorem 2.1.1

Suppose that the rational matrix function # has a factorization #= O © R with the rational
matrix function R outer. Here we assume that 4 arises from a rational matrix function

P [e?n g’lz]
P P
as in (38) where %, is invertible. Then the system X (4, K) depicted in Figure 9 is internally

stable if and only if the system I (#’,K’) depicted in Figure 10 is internally stable.

The proof of Theorem 2.1.1 requires a couple of lemmas.

Figure 10
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Lemma 2.1.2
Consider the system of equations
Pu P
o 2l -L) @
P Pulln w
u=K(y1+w)+un (39b)

Then one can solve for z, u, y; in terms of w, vy, v2 if and only if $.K + P, is invertible, in
which case

w ¥4
H nl=|u
— U M1

where
I —&jn —:@12 -1 0 0 0
H=|0 —& -Pn -1 0 0 (40)
0 I -K 0o I -K

Thus, if & is invertible, then the system (&, X) in Figure 7 is internally stable if and only
if o given by (40) exists and is stable, where £ is given by (38).

Proof. Once the formula (40) for S is verified, the remaining assertions follow from the
definitions. To verify (40), rearrange the system of equations (39a) and (39b) in matrix form

o o o] w -1 #u Pu|[z] [0
—T 0 0 v+ 0 #H1 P ul=10
0 I —-K||—uv: 0 -I K B 0
Well-posedness thus requires invertibility of
- I t?ll !?12
0 %1 P
0 -I K

or equivalently, of

P P

-1 K
By a Schur complement test, this is easily seen to be equivalent to invertibility of P K + Po3.
Solving for z,u, y1 in terms of w, v1, —v2 now leads to formula (40) for . O

To emphasize the de_pendence of #in (40) on & and K, we shall often write H(P, K) when
more than one pair (%, K) is under consideration.

Lemma 2.1.3

(See Theorem 3.5 of Reference 5 for a symmetric version.) Suppose

R Rlz]
R =
[R21 R
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is invertible (with R,; and R, square) and

R !'= ["11 "12]

rn1 a2
Then R21K + R»; is invertible if and only if r;; — Kr»; is invertible, and then
(RuK + Ri2)(RuK + Ry2) ™!

—(ri1 — Kr21) "' (ri2 — Kra2) 1)
Proof. Suppose K is such that R, K + R»; is invertible. Then define

R*=[éll Iélz]d;f[Rn RIZ][I K]
Ry Ry Ry,

Ryp|l0 1
Then R is invertible with R~! given by

Bl= 1 Frafaef| T — o ro
P21 F22 0 If{ra ra

Then we see that Ry = R; K + R»; is invertible. Then by a well-known Schur complement

argument (see, for example, Reference 19) 711 = r11 — Krz; is invertible. The converse follows
by replacing the roles of R and R™!. To prove (41) we compute

o~ -]

-1, K]R-lok[ﬂ

RuK+ Ry
= — Kr3,ri2 — K
[ri1 — Kr21, iz — Kras ] [R21K+R22]

- RuK + Ri2)(R21K + Rp) ™!
= (11 = Kran) U, (riy = Kran) ‘(ru—Km)]o[‘ s Riz) R K+ Raa)

I ] (R21K + R23)
Since r;1 — Kra1 and R;,K + R;; are non-singular, we conclude that

- RulK + Ri2)(R21K + R2) ™!
(1, (ri1 — Kr21) ™' (ri2 — Kr22)] [( t 12)(1 2 22) ] =0 U
Proof of Theorem 2.1.1. By Lemma 2.1.2 the content of Theorem 2.1.1 is that, given that
R is outer, then SO0 R, K) is stable if and only if 540, Y& [K]) is stable. From (40) we have

I -1
i i —O0oR 0 0 0]
HOOR,K)=]|0 -1 0 0
................... 0 I _K_
0 [1-K]
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Note that

(I, —K1R™ ' = [ri1 — Kr21, 12 — Kr22]
= (r11 — Kra)) U], (r11 — Kra1) Y (r12 — Kr22)]
=(r11 — Kra1) (I, —(R1uiK + Ri2)(Ra1 K + Rzz)—l] 42)

where we used Lemma 2.1.3 for the last step. We have thus verified

[, —KIR™ "= (ri1 — Kr21)[1, — 9r[K]]

Hence

I 0 of|}7 -1

............... 0 -0 I 0 0
HOORK)= 1 | N [} 0 I 0

o i B llo i m-gmum]| 100 Cu-Kr)™

Now use (42) in the form
(rin— Kra)™' (/- K] = [I, - 9r[K]]IR

When the dust settles, this combined with (43) leads to the fundamental identity

H(OOR,K) = : 1 H(O, GrIK)) (44)

From this we read off that #(© o R, K) is stable if and only if #(0, %r [K]) is stable whenever
R is outer. 0

2.2. The general 4-block case

The goal of this subsection is to obtain the analogue of Theorem 2.1.1 for the general
(regular) 4-block case. Thus assume that we are given a rational matrix function (the plant)

Py P
P= [ ’ 11 12]
P P
with @, surjective and £ injective (as matrices over the field of scalar rational functions).
Consider any convenient augmentation of & to
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such that the augmented (2, 1)-corner [;‘] is square and invertible. We then transform to

21
- [ju 912 913]
e@21 '@22 523

via formula (20) so that the system of equations

.-w 2 T
-,
L y j
is equivalent to the system
z -
Ply|= [z
]

The system configuration (&, K) depicted in Figure 7 can alternatively be expressed in the
form depicted in Figure 11 with associated system of algebraic equations.

~ u z
P ;0 - [w] (45a)
K 0] [y ;J"J +oi=u (45b)

Now let us suppose that the size o_f block J’,-j is mixn; for i=1,2 and j=1,2,3 (so
my =ny+ n3 and m, > n;) and that # factors as

#=0R (46)
where

ez[eu O12 913]

O21 O O3

also has blocks ©; of the same size as the corresponding block #; of # and where
R = [Rijl1<i,j<3 has 3x3 block matrix structure with the size of Ry equal to ;X nj.

]
| P

1

(X, 0]

Figure 11
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Substituting (46) for & in Figure 11 leads to the system depicted in Figure 12 with associated
set of algebraic equations

u
o] -13)
Jo,
ux u
Rinl|=|v»
21

K 0] [”*0”2] +or=u
yi

We wish to analyse internal stability, not for the system in Figure 12, but rather for the system
X(#, K) from which it came, namely, that the output and internal signals z, u;, y; should be
stable whenever the disturbance signals w, v;, v; are stable. The signal y? is to be considered
as physically fictitious, added merely for mathematical convenience. To avoid confusion, let
us refer to this criterion as restricted internal stability for the system in Figure 12. A seemingly
minor modification of Figure 12 is obtained by shifting the disturbances v; and v, to the other
side of the box R; the result is depicted in Figure 13. We consider the bottom two boxes R and
[K 0] as lumped to define a compensator

1
K’:[y Ovz]—»u—vl'
y

L[]

We define restricted internal stability for the system Figure 13 to mean that the output and
internal signals z, #, y are stable whenever the disturbance signals w, v{, v} are stable. The idea

and the plant &' to be

U1 '} v2

X o]

Figure 12
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(K, 0]

Figure 13

again is that y° is physically fictitious added merely for mathematical convenience. The
analogue of Theorem 2.1.1 is as follows.

Theorem 2.2.1

Suppose that the rational matrix function

~_[9~'11 P12 9~’13]
P P Pl

arising from the plant

P [9’11 3’12}
P Pn

as in formula (20) has a factorization
#=0OR

where R is an invertible block 3 x 3 rational matrix function of the form

Ry R O
R31 Ri» R

with
) [Rn RIZ]
R: Rz
outer. Then the system X (%, K) in Figure 7 is internally stable if and only if the system

T (#',K") described by Figure 13 has the property of restricted internal stability.

The proof is most easily presented by first isolating some preliminary lemmas.
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Lemma 2.2.2

Suppose that the configuration depicted in Figure 13 is well-posed and R has the block upper
triangular form

[Riy Rz O
R=|Rsyy Rn O 47)
[R31 Rz Rss
Then
K': y—ovz] - u— v
| Y
is given by
K'=1%.[K],0]
where
R RIZ]
R =
0 [sz R»;
and

Gr,[K] = (R1K + Ri2)(R21K + R22) ™!

Proof. In Figure 13 set
Uz =u— i, Y2=y-—uv;

so we have that K’ is defined by

Y2
-
yO
where
u -uz
Riyif= |2
%1 5%
and
(K 0] [y o =u
yil

Writing out in detail, we have
Ruyui+ Ry =uz
Raiu1 + Ry = )2
R3iuy + Rypyr = y°
Ky1=u

To solve for K’ we must solve for u; in terms of y; and y9. From the form of these equations
we see that the last row of R is irrelevant and we have

U1 = (RuK+ Rp))n
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where
Y2 =(R21K + R

This leads to
y
Uy = [%om,m[ f,]
Y1

as asserted. O

The significance of Lemma 2.2.2 we now see is that the compensator K’ in Figure 13 again
has the form [K§ 0] (making the role of ¥ again that of a fictitious signal) while the
compensator K at the bottom of the figure has the form [K 0} (making j a fictitious signal),
under the assumption that R has the block upper triangular structure (47).

Lemma 2.2.3
Consider the system of equations
~ - ~ u
P P P
[ A P ~13] y|= [z] (48a)
P P2 P w
Yo
y+ v
u—vi= K 01[ ] (48b)
Yo

Then one can solve uniquely for z, 4, y in terms of w, vy, v if and only if [#.K + P2, Pis3]
is invertible. In this case the mapping

w Z V4 . w
vi|—lu is given by ul=2 |un
U2 Yy Yy 1773

where #= AP, K ) is given by

: - -1
_[roool i -3 o 0o o
d=10 10 0 : -1 0 0 49)

0 0 1 of | o I -

Thus, if & arises from the regular plant & as in (20), then the system (%, K) in Figure 7 is
internally stable if and only if (&, K) is stable.

Proof. As in the proof of Lemma 2.1.2, all assertions follow from the definitions once the
formula (49) for & is verified.

To verify (49) let use view # as a block 2 X 2 matrix function % by merging the last two
block columns to a single block column and then apply Lemma 2.1.2 with [K, 0] in place of
K (see Figure 14).

Then by Lemma 2.1.2 the mapping

w <
- U1 u
x: i
U2 y
0
v3 y
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w z
K (%]
(1]
[K 0]
Figure 14
is given by

. 1 —g:’“ 9:‘22 —9:’13 oo 0 0 0
H=H(FP,[KON)=|0 -4 | —Pn - -1 0 0 0
0 I i -K 0 0 1 i —-K 0

However in the context of the 4-block problem the signal u° is factitious and the disturbance

v9 is irrelevant. The desired #= H(#,K) is had by simply discarding the last row and last

column of 2¢; this results in the formula (49) for . ]
We are now ready for the proof of Theorem 2.2.1.

Proof of Theorem 2.2.1. By Lemma 2.2.2, restricted internal stability of the configuration
in Figure 12, which by the discussion above is equivalent to internal stability of (4, K) in
Figure 7, amounts to stability of the rational matrix function

H -1
I 0 00 é —0OO0R 0 0 0
H(OOR,K)=|0 I 0 0 : -1 0 0
0

0 0 7 ol e o -

When R has the upper triangular form (47), by Lemma 2.2.2 combined with Lemma 2.2.3 we
have that restricted internal stability of the configuration in Figure 13 is equivalent to stability
of the rational matrix function

: -1
1000 é ) 0 0 0
O, Gr(K)=| 0 I 0 Off e, - 0 0
0 0 1 of| T 0 I —%glK]

The content of Theorem 2.2.1 therefore is: if R has the spec1al properties in the hypotheses
of Theorem 2.2.1, then #(O°R, K) is stable if and only if 4O, Gr,[K]) is stable.

The idea for verifying this latter fact is the same as in the proof of Theorem 2.1.1 but the
details are a shade more subtle. We begin with

I 0 0 O
é —0OoR g -0 ] e
........................... = e | O (50)
0 I -K 0 0 i I -KOR" g R
Decompose R™! as
rin rz2 0 R¢! ?)
R—1= r21 r22 O Sl I N
r3 rs ('33
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Thus
[I-KOIR™'=[ru—Krn i ra—Kraz i 0]
= (ru— Kra) [ - 9,[K] 0] 62
where we used Lemma 2.1.3 for the last step. Next observe that
I 0 0 O

I 0 0 0 ..................... I ......... 0 ...... 0 I 0 0 0

01000r11r120=0: 0 I 00 (52)

0 0 I 0]j{0 ry r2 O O§R“ 001710

H -1 [~ .
100 0lfg © -0cR PSS
0100 ..... TR :0
-1
00 0y ;7 _k o o ¢ Ro
100 of]: -0 10 0
0 I 0 O0ff e, 0 I 0 (53)
00 710 0 0 (ru—Kra)™!

0 I - (gRo[K] 0

Another consequence of Lemma 2.1.3 is

(rii—Kr2)™' I, = K] = [I, = %, [K]1Ro (54)
Finally combine (53) and (54) to get
1 0 0 1 0 0
FOORK)= | T ©, gelkD|
0 : R -1 0 R
o ; ° 0 0
From this fundamental identity we read off that, given that Ry is outer, #(O 0 R, K) is stable
if and only if 4O, 9r,[K]) is stable as needed. O

Note that~Theorem 2.1.1 is just the special case of Theorem 2.2.1 where the third block
column of & is trivial.

3. PARAMETRIZATION OF STABILIZING COMPENSATORS

We consider again the feedback system I (%, K) depicted in Figure 7. A common philosophy
in control engineering is to consider the plant # as given and to use the compensator K as a
design parameter to achieve some desired performance characteristics (quantitative and/or
qualitative) of the closed-loop system. Since internal stability (as defined in Section 2) is always
one such characteristic, it is particularly useful to have a parametrization of the set of all
stabilizing compensators for a given plant &, i.e. the set of all compensators K for which the
closed-loop system I (%, K) is internally stable. In addition it is usually also demanded that
K itself be proper. A solution to this problem, including many refinements and generalizations,
has been known now for some time in the engineering community (see References 1 and 2),
and is usually referred to as the Youla parametrization of stabilizing compensators. Here we
would like to derive such a parametrization in a different way as a simple application of the
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general factorization principle (Theorems 2.1.1 and 2.2.1) in Section 2. This section is
independent of the other sections of the paper.
In general we say that a given plant

P [911 9’12]
P P

is stabilizable if and only if there exists a compensator K for which the system (% K) in
Figure 7 is stable. We first describe a particular class of plants & (referred to as the model-
matching case in the literature) for which the identification of stabilizing compensators is
particularly simple.

Theorem 3.1
Suppose # has the form

P P11 P2
#F 0

(i.e. #,=0). Then # is stabilizable if and only if 9,1, %12, #, are all stable. In this case K
is stabilizing for & if and only if X itself is stable.

Proof. The compensator K is stabilizing for & if and only if the rational matrix function
¢ given by (37) is stable. For the case where %, =0, A = I and & collapses to

P+ FPuKS P PK
H= K, I K
P 0 I
We now read off that o is stable exactly when each of K, &, &2, 4, is stable, as asserted.

O
Combining Theorem 3.1 with Theorem 2.2.1 leads to the following.

Theorem 3.2

Let

P [?11 3”12]
P P
be a given plant with & injective and #, surjective and form
- [3:’11 P12 9~’13:|

Py Py Pn
with # given by (20). Suppose & has a factorization
#=0OR
where

(i) R has the block upper-triangular form
Ry R O

R=| Ry Ry O
R3;1 Riy; Ry
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with Ro:= [R“ Riz

outer
R3, Rzz]

and
(ii) © has the triangular form

e=[911 ©12 913]

0 O O
Set
[;is)] = [022 62]7' (55
T,=-0n (56)
Ti = [012 ©13][022 023]! (57)
The is stabilizable if and only if T, Tz, T are stable. In this case K stabilizes #if and only if
K= 9r;'[Q]

for a stable Q such that Q() is in the domain of definition Ygrs'().

Proof. By Theorem 2.2.1 internal stability of £(#,K) is equivalent to restricted internal
stability for the system depicted in Figure 13. But this is the same as internal stability for the
system (%', 9r,[K]), where &' is determined from O via formula (23) (with © in place of
# and # in place of #). These formulas work out to give

nn T
P =
[Ts 0 ]

where Ty, T3, T3 are given by (55)—(57) since by assumption 62, = 0. Thus &' has the model-
matching form so Theorem 3.1 applies. We conclude that the original system I (&, K) is
stabilizable if and only if the three rational matrix functions 773, T3, T3 are stable, and in this
case K stabilizes if and only if Q:= %g,[K] is stable. Back-solving for K gives that
K = %r;'[Q] for some stable rational matrix function Q. The condition that Q(e) be in the
domain of definition of the (constant matrix) linear fractional map %r;'(o) arises from the
restriction that K be proper. (]

Remark 1. If # is any injective rational matrix function with [#2 #3] square and
invertible, a factorization #=OR with R and O satisfying conditions (i) and (ii) in
Theorem 3.2 is always possible. Indeed, given that #and © are both injective, a factorization
of the form &= OR as described in the theorem is equivalent to # and © generating the same
subspace . (in fact modules over the ring & of stable scalar rational functions) of &™ *"
(column vector rational functions with m; + m> components) given by

P=PI"DIDR)=0(F" DI DR (58)

(where &" denotes the space of stable rational column vector functions with » components);
this fact can be seen from the easily verified characterization of the class of factors R described
by (i) in Theorem 3.2 as exactly those (n; + n, + n3) X (n; + n2 + n3) rational matrix functions
R such that

RI" DI DR)=9" ® I @ R™
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We now sketch how to construct (/m1 + mz) X (n1 + n2 + n3) rational matrix function © which
satisfies (58) for a given #.

Set - =[Py P2 Pl (I @ P> @D R™). Since [Py Ps] is invertible one can see
that &_ is the direct sum of a free #module with »; generators and an %&-vector subspace of
dimension n3;. By choosing bases, it follows that &~ can be represented as

F_=[022 O3] (9" @ R™)

where O3, and O»3 are rational matrix functions of sizes m; X n, and m; X n; respectively, and
where [Oi2 Oa3] is invertible; construction of such a basis can be carried out by an adaptation
of the algorithm in Forney’s well-known paper?® involving a sequence of column operations.
From the definition of %_ there then exist rational matrix functions ©> and 03 of sizes
mj X ny and m; X n3 so that

O12 O13
F" C RC M
[922] - [923]

Now # itself is the direct sum of a free #module with n; + n; generators and an %-subspace
of dimension n3;. By dimension count,

913]
R
[923
exhausts the latter subspace, and
75 913] n n
F" DR
[922 O3 ( ® )

has codimension over % equal to n; in 4. To pick up the rest of .4, we represent
MN (R @ 0) in the form

MNRT D=6 5" DO

where O, is a m; X n; rational matrix function. Then

e:[en O 913]
0 O, O

is the desired first factor for the factorization #= ©OR satisfying conditions (i) and (ii) in
Theorem 3.2. The factor R is then uniquely determined since © is injective.

In principle the construction sketched above could be turned into an explicit algorithm
involving column operations on the matrix & similar to the algorithm in the paper of Forney; >
keeping track of the column operations would also lead to computation of the factor R as well.
However, we do not enter into these details here.

Remark 2. The result of Theorem 3.2 is the same principle as in the Youla parametrization
of stabilizing compensators, namely, that there is a block 2 X 2 outer function Ry ! such that
%r;' acting on an essentially free stable parameter matrix function Q yields the set of all
stabilizing compensators K for a given plant #. The usual derivation of the outer function R¢ !
is through a double coprime factorization of & (see Reference 1 or 2); our derivation through
a (block, upper-triangular)—(restricted outer) factorization of & appears to be new. The
construction in Remark 1 represents a new input—output approach to the construction of the
Youla parametrization.
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Remark 3. The model matching scheme in Theorem 3.1 is closely associated with the
divisor—remainder formulation of interpolation conditions.?! In particular, in view of
Theorem 3.2, internal stability of the system L (£, K) can be characterized in terms of the
transfer function F»[K]:w — z being stable and satisfying certain interpolation conditions.
This phenomenon has been well-known in principle for some time and is usually derived by
using the Youla parametrization. Only recently have the interpolation conditions on F»[K]
been given explicitly in terms of & for some special instances of the matrix 1-block case (see
Chapters 23 and 25 of Reference 21). In Reference 22 a more general interpolation theory
(involving both the usual discrete (or lumped) as well as continuous (or generic) interpolation
conditions) is developed and used to obtain a characterization of internal stability of Z(#, K)
in terms of interpolation conditions on #,[K] for the general case.

4. STABILIZING COMPENSATORS WITH INFINITY NORM PERFORMANCE
MEASURE (THE H. PROBLEM)

We return again to the feedback system X (%, K) depicted in Figure 7, and in this section
consider the standard problem of H™ control theory.! In this problem, as in Section 3, one
considers the plant & as given and the compensator K as a design parameter to be determined.
Now one demands not only that K be proper and that the closed loop system (%, K) be
internally stable as in Section 3, but also that the transfer function T, = #,[K] from the
reference signal w to the error signal z have infinity norm (along the imaginary axis) less than
some prescribed tolerance ~:

| ZlK] |l <7y

When such Ks exist, one would then also like a parametrization of all such Ks. In this section
we present a solution to this problem based on the general factorization principle Theorems
2.1.1 and 2.1.1. In Section 5 we shall implement the recipe prescribed here in terms of a state-
space representation of the plant & to recover the elegant state-space solution of the problem
recently obtained in Reference 4.

We first remark that analysis of a general performance level v for the plant & is equivalent
to analysis of the performance level vy =1 for the plant

P = v iy vyl
K P P |

Indeed, it is easily seen from the form of #(#, K) in (37) that £(&, K) is internally stable if
and only if X (%, K) is internally stable. Equally apparent is that #»[K] =y %4 [K]. Thus
the H” problem associated with & and performance level y has the same set of compensators
K as solutions as the H™ problem associated with #, and performance level 1. Hence in this
section we deal explicitly only with performance level y = 1.

In parallel with the organization in Section 3, we begin with the special class of sub-all-pass
plants for which the solution of the H™ problem is easy. Recall from the introduction that we
say that a rational matrix function

P [911 5’12]

P Pn
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is sub-all-pass if

0 G <,
(@) || #1(s)|Ker #1(s)]| < 1,

and

(iii) rank(7 — #(s)*#(s)) = dim Ker ,(s).

Theorem 4.1

Suppose that for all s=iw on the imaginary line (including at infinity) the rational matrix
function

P [9’11 9’12]
P P

is analytic with $%,(s) injective and 9, (s) surjective and is sub-all-pass. If in addition #(s)
is stable, we say that #is subinner. Then the H™ problem associated with 2 and tolerance level
v =1 has a solution K = K(s) if and only if #is subinner. In this case the compensator X is
stabilizing and meets the H* performance criterion (i.e. || ##[K] ||« < 1) if and only if X is
stable with || K]« < 1.

Proof. By Proposition 1.2.3, it is clear that a necessary condition for a compensator X to
solve the H® problem with performance level vy =1 is that ||K(@iw)| <1 for all real w
(including w = o). Assuming that we have such a K, we observe that then, by a standard
homotopy argument, wno det A =0 (where A =7— $,K and ‘wno’ = winding number or
change of argument along the imaginary line). We now consider the matrix s#= (%, K) in
(37) and recall that K stabilizes & if and only if & is stable. From the (3, 3)-entry of ¢, we
see that internal stability requires that A ~! be stable. But since wno det A =0, this forces A
itself to be stable. But then % = Adh1, F2 = AAsz, K= Ho3A, Pra = Sy — H3Ad, and
P = H1 — HisAH must all be stable. Conversely, given that A ™! is stable, it is clear that
A is stable if all of K, &1, 12, F»1 and %, are stable. Finally, since & is contractive on the
imaginary line, stability of & is equivalent to 4 being contractive on the right half plane by
the maximum modulus theorem. |

Combining Theorems 4.1 and 2.2.1 leads to the following result.

Theorem 4.2
Let

P [9’11 5’12]
Py P

be a given plant. Assume that #>(iw) is injective and %;(iw) is surjective for all real w
(including w = ). Define a rational matrix function

= [e@u P12 9313]
t@ 21 é 22 t@ 23
as in (20) (applied over the field 4 of scalar rational functions rather than over C) and suppose
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that a factorization

is known such that

(i) R has the block upper triangular form

Riu Rp O
R=(Ry; Ryp O
R31 R3z Rz

with

Ri1 Rn
Ro:=
0 [RZI Rzz]

outer and R33(z) analytic and invertible on the extended imaginary line.
(ii) For all s=iw on the extended imaginary line (including w = ),

()" JO(s)=j ® — In,

where J= Iy, @ — Im;, j= In, ® — I,. Then the H™ problem associated with the plant & and
performance level v =1 has a solution if and only if

)
* < J
O(s) JO(s) £ [O 0
for all s in the right half plane. When this is the case, then K stabilizes & and meets the H”
performance criterion || #4[K] ||~ < 1 if and only if

K = 9g;[H]

where H is a stable rational matrix function with || H || « < 1 such that H() is in the domain
of definition of ¥gr;!(0). The set of all closed-loop transfer functions T, = F»[K]
associated with such performing compensators K is given by

Tzw= %o [H]
= [011H + O12,013] [0621H + 032, 673] 7!

where the free parameter H is as described above.

Remark. In Theorem 4.2 it is possible to strengthen the converse direction. Specifically, if
solutions of the strictly suboptimal H™ problem exist, then necessarily also a factorization
#=OR as in the statement of the theorem also exists. One can give a proof based on ideas
from Reference 7; as we do not have a short proof based on the ideas of this paper we do not
go into details on this point here. In any case, the existence of the factorization #= OR is
generic with respect to the tolerance level v in the control problem.

Proof. Suppose a factorization #= OR is known with R satisfying (i) and © satisfying (ii).
By Theorem 2.2.1, internal stability of £(%, K) is equivalent to restricted internal stability of
the system X(9”, [ 9r,[K],0]) depicted in Figure 13, where ' is obtained from O via (23)
(with &' in place of # and O in place of #). This in turn is equivalent to internal stability
of a system I(#', 9g,[K]) where &' is obtained from © via formula (24) (with ' in place
of # and © in place of ). Now the hypothesis (ii) on © combined with Remark 2 after
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Proposition 1.2.3 guarantees that %' meets the hypotheses of Theorem 4.1. Hence the H”

problem for &' has solutions if and only if || #'(s)|| < 1 for all s in the right half plane. We
now show that || #'(s)|| <1 for all s in the right half plane if and only if

* J 0
O(s) JO(s) < [0 0].

Recall the connection between #' and ©: 4’ has an augmentation

PL P2
P =|\# P
&L P57

so that the system of equations

#i Py [ 2]
P P [ ]= y 59
#0 a4 »°]
is equivalent to the system
[911 O12 913] ; ='z] (60)
©21 O O 0 | w

Now consider #' and O evaluated at some fixed point s. Then || #(s)|| < 1 means that

2+ By > < wil+ ull® (61)

W
# Pallu y
Then we see that (61) holds also whenever w, u, z, y, y° satisfy (59) (irrespective of the value

of »°). Rearrange (61) in the form
Nzl>=lwl®> < ul= | ¥iI? (62)

whenever w, u, z, y satisfy

Using that (59) and (60) are equivalent, we see from (62) that ©(s) is<[() 8] , J) -contractive

as asserted. The converse, that #(s) is contractive if ©(s) is([{)

established in a similar vein. We conclude that the H™ problem for &' has solutions if and

0} , j) -contractive, can be

only if 6 is([J g], J) -contractive in the right half plane. Assume now that this condition

0
holds. »
By Theorem 2.2.1 we know that X stabilizes & if and only if H = %g,[K] stabilizes #'. By
Theorem 3.1, H stabilizes ' and meets the performance criterion || Tow || = || F» [H] || < 1

if and only if H is stable with || H || » < 1. Back-solving H = %, [K] for K gives K = 9g;'[H];
the constraint that K be proper limits H to those stable contractions such that H(e) is in the
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domain of definition of %g;'(~). Finally note that

F+[K] = 65(K]
= Yor[K]
= Yo[Yr.[K1]]
= %o [H]

and hence %e acting on stable contractions provides a parametrization of the associated
performances. This completes the proof of Theorem 4.2. o
To make Theorem 4.2 useful we need a systematic way of computing a factorization #= OR
as in Theorem 4.2. Note that the parametrization of all the compensators solving the H™
problem requires computation only of Ro and not all of R. Also, by Lemma 1.1.2, to
parametrize the set of performances Ty, it is sufficient to compute any © of the form

i I 0 0
6=0[0 1 o
YioY2 Y3

where v1, 72, and v3 are any rational matrix functions (with v; invertible) rather than © itself
if it is more convenient, since then %e = %¢ as linear fractional maps. As we shall see it is
more convenient to compute a certain © rather than © itself. These observations lead to the
following result which will be the basis for the state space calculations in the next section.

Theorem 4.3

Let #and # be as in Theorem 4.2, and say ?ﬁy has size m; x n; for i=1,2 and j=1,2,3.
Define a block 3 x 3 matrix function W(z) on the extended imaginary line by

W@)=[Wi@)i1<ij<3
where
Wii(z) = $1i(2)* #1j(z) — #2i(2)* P2j(2)
has size n; X n;. In addition, define rational matrix functions

[Wl 1 Wll
W Wi

so that we may also consider the block 2 x 2 decomposition of W,

W= [Wo W;o}

Wo = ], Wio= [W31 W3]

Wi Wis
and set J= Ly, @ — L, j= In, ® — I,,. Then the H” problem associated with the plant &
and performance level y =1 has a solution if and only if
() Wi(2) = #3(2)* P13(z) — $23(2)* P3(z) is negative definite for z on the extended
imaginary line,
(ii) there is an (n; + n2) X (n1 + n2) outer rational matrix function

Ri1(z) Ri12(z)
R =
o) [Ru(z) Rzz(z)]
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such that
V(z) = Ro(2)* jRo(2)

for z on the extended imaginary line, where V= W, — WioW33' W30 is the Schur
complement of W with respect to Wis.
(iii) The rational matrix function
-1
6= Q[RO 0]

0 I
where Ry is as in (ii), satisfies

8(5)*16(s) < [{) g]

at all points of analyticity s in the right half plane.

Moreover, when conditions (i), (ii), and (iii) hold, the set of all compensators K satisfying the
H™ problem is given by

K= %g;'[H]
and the set of all associated performances T is given by
Tow= 96 [H) = [611H + 612,831 [621H + 62, 6,3] !
where
é — l:@ll @ll §l3:|
©21 Oz O
is as in (iii) and A is any stable rational matrix function with || H ||« < 1 such that H(e) is
in the domain of definition of %gr;'(w).

Proof. By Theorem 4.2 we need to find a factorization
#=0R
where R and O satisfy properties (i) and (ii) in Theorem 4.2. If © and R provide such a
factorization then
W=9*Ip

=(OR)*J(BR)

=R*(j® - In)R
by the (j @ — I,, J)-isometric property (ii) of ©. Conversely, if R satisfies (i) in Theorem 4.2
and provides a factorization of W of the form

W=R*(j® —I.,)R (63)

then #= OR with © = #R ! is the desired factorization satisfying (i) and (ii) in Theorem 4.2.
Therefore a first step is to analyse the factorization problem (63) where W is given and the
unknown R is to have the form (i) in Theorem 4.2.
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First suppose that

Ry R O
R=}JRyy Rn O
R3; Riz Rss

provides such a factorization. Thus

Ra1 R

is an (n; + n2) X (n; + nz) outer matrix function, Rs; is an n3 X n; rational matrix function with
invertible values on the imaginary line, and if we set R3p = [R31 R3:], we may write R in the

block 2 x 2 form
Ry O
R= .
[Rso Ras]

Then the factorization (63) in more detail is the same as
[ Wo Ws*o} _ [R 0jRo— R3HR30 - R;0R33]
Wi Wis - R33R3o —R#3R33

Then necessarily W3 = — R33R33 is negative definite on the extended imaginary line and the
Schur complement V of W33 is given by

Vi= Wo— WicW Wi
= [R¢jRo — R3R30) + (R3R33) (R33R33) ' (R33R30) = RojRo

Ro= [Ru RIZ]

Thus Ry arises via a conventional j-spectral factorization of V. Then R3¢ is determined from
Rz and W3o via Rio= —R337!Wso. Conversely, suppose Wi3 is negative definite on the
extended line and and that V has a j-spectral factorization. Then we can find an n; X n;
rational matrix function Rj33 invertible on the extended imaginary line and an
(n1 + n2) X (m1 + n2) outer matrix function Ry such that

W33 = —R5R3;3, V= RgjRo
Then

R_[ Ro 0]
RT'W30 Ry
provides the desired factorization W= R*(j ® — I,,)R of W.

Let us now assume that W33 = — R33R3; is negative definite and ¥ = RgjRo has a j-spectral
factorization. Set

_ R 0
Ryo= —R}'W3R=1]"0°
30 33 W3R [ Rso R”]

and © = #R~!. Then #= OR is a factorization with factors © and R having the properties (i)
and (ii) in Theorem 4.2. Hence by Theorem 4.2 the H™ problem (with performance level y = 1)
has a solution K if and only if

. Jj 0 .
O is <[O 0]’ J) contractive
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in the right half plane, in which case %r;' parametrizes the compensators X which solve the
problem and %e parametrizes_the associated closed loop transfer functions T, = %,[K].
We need to argue that © = #R ! can be replaced by

~ =[Rs' 0O
= P
© [o 1]

in the above analysis. To do this, note that

~ Rs' 0
6-on[%s" ]

I 0
=06
[RsoRo_1 Rss]

Hence by Lemma 1.1.2, % is the same linear fractional map as %e. Also the identity
I RG'™R%)[J I 0]_[; o
0 R:H 0 O0||R30R;' Ri: 00

shows that O is ([{) g], J)-contractive on the right half plane if and only if © is. This

completes the proof of Theorem 4.2, ]

Remark. The idea for much of the analysis of this section comes from Reference 7. There
the H™ problem was assumed to be in the model-matching form and proofs were couched in
the less elementary language of projective geometry of Krein spaces using the techniques of
Reference 11. Points missed there and contributing to the eventual obscurity of the paper were:
(1) the outer factor Rg! can be used to parametrize the compensators X which solve the H®
problem, and (2) the matrix function © appearing in Theorem 4.3, which is not (j ® -1, J)
isometric on the real line, can be used as a parametrizer of the performances T, equally
effectively as the (j @ — I, J)-isometry O appearing in Theorem 4.2. This latter point accounts
for the appearance of an additional unnecessary Riccati equation in the state-space formulas
derived in Reference 7.

5. GENERALIZED J-INNER-OUTER FACTORIZATION: STATE-SPACE
COMPUTATIONS

Theorem 4.3 reduced the solution of the H™ control problem to a certain type of factorization
problem. In this section we analyse this factorization problem in state-space terms;
specialization to the factorization problem arising from the H™ control context enables us to
recover the state-space formulas and results of Reference 4 (see also References 8, 10, and 6),
for the H™ problem; we do this in Section 6.

In the following we consider a rational 1 X 2 block matrix function G(z) = [Ga(z) Gs(z)]
where G, has size p X g, and Gg has size p X gs. We assume that we are also given signature
matrices J and j of respective sizes p X p and g+ X g». The problem we wish to study is that
of factoring G as

G =OR
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where O = [0, O3] has size p X (go + ¢gg) and

R 0
R= «
[RBa R B]

has size (g + gg) X (¢« + gg) such that

O(s)* J(O(s) = [{) ) (;] for Re s=0 (64)
0(s)* J(O(s) < [(f) g] for Re s> 0 (65)
and
R. 0
R=[ar o) ©

where R, is an outer rational matrix function and Rg., Rs and Rz' are rational matrix
functions with no poles on Re s=0 (including infinity). By the argument in the proof of
Theorem 4.3 we see that, once (64) and (66) are achieved, then (65) can be replaced by

[gg((g:]neu(s) Ga(s)] < [{) g] for Re s> 0 67)
We assume that we have a state-space realization for G
G(s)=D+C(s— A)"'B
= [Do Dg] +C(s— A)"'[Bs Bg] (68)
and wish to find an existence criterion for the factorization and then formulas for the factors
(in particular R, and 6,,) in terms of the matrices 4, B, Bg, C, Do, Dg. In the sequel we also
assume

DXJD, is invertible with a factorization of the form DiJD,
= djd, for an invertible g, X g, matrix d, (69)

D2JIDg is invertible with a factorization of the form DgJDg
= — djds for an invertible gg X gg matrix dg (70)

D§ID,=0, D3IC=0 (71
To condense notation we write
Eo=(DaJDo)™'=di'jda™',  Es=(DiIDg)™'=-dg'ds™" E= [‘f) ,2 ] (72)
8
Aq=J— JDED}] (73)
AX = A - B.E.DYIC (74)
A BgEgBg

K=

[C*JC -A* )

AX BEB*
KX =
I:C*ch _(A x)*] (76)
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For M any square matrix, po(M) denotes the spectral radius of M and o(M) denotes the
spectrum of M.

Theorem 5.1

Let G(s) = [Do Dg] + C(s— A)~'[B, Bs] be a rational matrix function as above satisfying
(69)—(71). Assume that (A, Bg) is controllable, that the matrices A, K and K* have no
eigenvalues on the imaginary line, and that the Riccati equations

XAX +(A*)Y*X - XBEB*X + C*A.C=0 an
and

YA*+ AY + YC*JCY — BsEsB; =0 (78)

have Hermitian solutions X = X™ and Y = Y™ meeting the stability side conditions
o(A* - BEB*X) C {Re s < 0} (79)
o(A+ YC*JC) C {Re s < 0} (80)
Then G has a factorization G = OR with O satisfying (64) and (65) and R satisfying (66) if
Xz0, Y20, p(XY) < 1 (81)

In this case, Z=(/— XY) ! exists and if © = [0, O] and R = [11:"‘
Bo

Ro(8) = do + doEs(DEJC + BEX)Z*(s— (A + YC*JC)) (B + YC*ID,) (82)
Ro(s) '=di' — Eo(D3JC+ BiX)s—(AX — BEB*X))"'Z*(B. + YC*JD,)d:' (83)
6.(5) = Ga(S)Ra($) ™" = Dody ' + [JALC — DEBiX C]
A* -BEB*x ON"'[ Zz* Z*Y|[ B. .
—_ ; 4
[ "hmm ) Lovex —vzllevmE 9

Conversely, if G has a factorization G = OR satisfying (64)—(66) and the pair (4, B) is
controllable, where

]gﬁ] , one may take

- [A* -BEB*X 0
4= [ BsEBi X A] ®
and
s | Z*B.+YC*IDY)] -,
B [— YZ(XBo + C*JDy) da (86)

then necessarily (81) holds.

Remark. The point of this theorem is to exhibit the connection between the

<[{) 0] , J) -contractive

property for O holding on Re s > 0 and the set of conditions (81) holding on the stabilizing
solutions X, Y of the Riccati equations (77) and (78). We expect that a much stronger result
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holds; namely, under the assumptions that (C, A) is detectable and (A, B) is stabilizable, then
the factorization G = OR exists satisfying (64)—(66) if and only if stabilizing solutions X, Y of
(77)—(80) exists which also satisfy (81). By using the recent results on the H” control problem
4, 8, 10, 6, and the connection between H™ control and factorization given by Theorem 4.2
(see Section 6), we expect that this result holds in complete generality, but of course a direct
proof would be desirable.

The proof of Theorem 5.1 requires the construction of a j-spectral factorization for a given
square (say N X N) rational matrix function V(s). Here j is an N X N signature matrix
(j=Jj*=j"") and V is analytic with invertible Hermitian values on the extended real line (so
V(s) V(s)= V™ (s) where V= (s) = V(- §)*). We say that V admits a j-spectral factorization
(with respect to the right half plane) if there is a square rational matrix function V_(s) with
no poles and no zeros in Re s = 0 (including at infinity) such that

V(s) = V=(s)jV-(s)

Note that we do not need to assume that the realization V(s) =D + C(s — A)™'B is minimal,
as is done in Reference 23; this was obtained in Reference 24 as a corollary of an elaborate
machinery set up to handle non-canonical factorization. When A is an n X n matrix, we define
the modal subspace X , (A) relative to the right half plane to be the span of all the eigenvectors
and generalized eigenvectors associated with eigenvalues in the left half plane. Similarly the
model subspace X (A) relative to the left half plane is the analogous object with the left half
plane in place of the right half plane. In general, if .# and .# are two subspaces of C" we write

C'=ll+ N

if the pair (.4 .#) form an (internal) direct sum decomposition of C”.

Theorem 5.2

Let ¥(s)=V"(s)=D+ C(s—A) !B be an Nx N rational matrix function with no poles
and no zeros on the imaginary line, where A is an n X n matrix with no eigenvalues on the
imaginary line and the Hermitian matrix D factors as

D = d%d

for an Nx N signature matrix j. Put A* =A~BD 'C. Then V(s) admits a j-spectral
factorization V= V- j¥V_ if and only if

C"=X-(AX)+ X+ (A)
Furthermore, in this case a j-spectral factorization of V is constructed as follows:
(1) Choose bases xi, ..., x, of X_(A*) and X,+1,..., X» of X+ (A) and put

T=[X1.c. X} Xrg1 .. Xl 87)
Then T is non-singular.

(2) Make the following partitionings

A 0 B
1A= |41 , -1p_ | Bt _
T™ AT [Au A T"'B B’ CT=[C 3] (88)
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and
% x
raer=[40 4]
according to the partitioning of T in (84).
(3) Put
V_(s)=d+dD 'Ci(s— A1) 'B (89

Then V(s)= V=(s)jV-(s) is a j-spectral factorization and V_(s)~! is given by

V_(s) '=d '-D'Ci(s— A)) " 'Bid™! (90)

In addition V- (s) is real-rational if V(s) is real-rational and d is real.

Before proving Theorem 5.1 we analyse in state space terms the existence of a

([{) (I)] R J> -isometric-(restricted outer) factorization G = OR;

i.e. we demand that © and R satisfy only (64) and (66). We have the following result.

Theorem 5.3

Let G(s) = [Do Dg) + C(s— A)~'[B. Bjg) be a rational matrix function such that 69)—(72)
are satisfied. Assume that the matrices 4, K and K> (where K and K* are defined in (75) and
(76)) have cigenvalues on the imaginary line and that X and Y are Hermitian matrices

satisfying (77)—(80). Then G admists a (([{) (;] - J)-isometric)-(restricted outer)

factorization

R, O
G =0OR = [0, 6g] [Rﬁa RB]

if and only if 7— XY is invertible. In this case, R, and R;' and 6, = G,R;' can be taken to
be given by (82)—(84).

Proof. We analyse the factorization G = OR ((64) and (66)) by following the strategy given
by Theorem 4.3. Thus, starting with the state-space realization (68) for G, we need to compute
state-space realizations for

_ [ Waa(s) Was(s)]| _ [Ga(s)
W(s)= [Waa(s) Wm(s)]— [Gg(s)]J[G"(s) Gs(s)] D

and for ¥V(s) and V™~ !(s), where
V($) = Waa($) ~ Wap(s) [Wes(s)] ' Waa(s) (92)

In general we shall indicate that a rational matrix function g(s) has the realization
g(s)=d+c(s—a)”'b by
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From _
A i B, Bg

G(S) | creecccaneriannancens

C D, Dg

we get

_A % C*‘

G(s) ~ B* ........ D *

-B; | Dg

A 0 B, Bg
c*Jc -A* C*JD,, 0
W(S)=G (S)JG(S)~ D:JC—B:D:JDQ ....... 0 (93)
0 -Bj 0 D§JDg
where we used (71). In particular
A 0 Bs
- c*Jc -A4* 0
Wes(s)=Gg (s)JGa(s) ~ | .0 . i, 94)
0 -B; DjJIDg
From the general rule
a—bd~'c i bd! a i b]
Wl o e RV IV ETTPoren (95)
-d'c d c i d]

c*IC -A* i 0

where

A BgEgBg| _ o
ctJjc -A*

has no spectrum on the imaginary line by hypothesis. Since [Wsg(s)] "' has Hermitian values
on the imaginary line and [Wgs(0)) ' =Es= —dz'dsi ! <0 (see (70)) we conclude that
Wgs(s) < 0 on the whole extended real line. To show that G has a

<< [{) ?] s J> -isometric) -(restricted outer) factorization,

by an argument as in the proof of Theorem 4.3 it suffices to show that

V.= Wao{ - WQB(WBﬂ)_IWBC‘



STABILIZATION OF CONTROL SYSTEMS 277

admits a j-spectral factorization. By a Schur complement argument (see, for example,

Reference 19), ¥V = (Wae) ™! where
Waa waﬁ]

v
Wga Wgg
Using again the general principle (95) in combination with (93) we get
AX BEB* i  B.E.
—(AX)* i C"D.E. O

C*A.C
Loy [Weal8) Was(S)L | L e
wW=(s)= ~
Wea(s) wga(s) _EDYC  E.BY E. 0
0 —EsBf i 0 Eg
where we use the notation (72)—(74). Hence the (1, 1)-block w.q(s) is given by
A* BEB* i  B.E,

* _ X\ *
C'AC Aa®) C JD.E, (96)

...............................................

V™ 1(8) = Wael(s) ~
-E.D}IC E.BY : E,

Thus we get a realization of V¥ by using (94) to compute a realization of (Wao)™' from (96);

the result is
A BgEsBf i Ba
v~ | €€ TAT 1 S o
DJJC B} D3JD,,
Thus
B
| 74P T,
C D
where

A=K (see 75)

B,
B= [C*JD}
C=[D}IC -BX

D =D}JD, = dajd,  (see (69))

and
(see (76)).

A*=A-BD 'C=K~*
By assumption K and K have no imaginary axis eigenvalues. Then by Theorem 5.2, we

conclude that V has a j-spectral factorization
V(s) = Ra (s)jRa(s)

if and only if
C"=X_-(K*)+ X, (K) (98)
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Now we assume that X and Y are solutions of (77)—(80). Note that (77) can be written as

AX BEB* I I N *
[C*Auc —(A*)*][—X]=[—X](A - BEE)

Hence Im[ ;,] is invariant for K> and K*|Im [ ;,] is similar to A* — BEB*X where

o(A* - BEB*X) is stable by (79). Moreover, since K is a Hamiltonian matrix

0 I
K = ~K*e wh =
(e € where e [—I 0])

the eigenvector—eigenvalue structure of K is symmetric about the imaginary line. This implies
that X = X" and

X_(Kx)=Im[_§,]

by dimension count. Similarly, if Y satisfies (78) and (80) then necessarily

)

il ]

is similar to —A* — C*JCY which has all eigenvalues in the right half plane by (80) and

is invariant for K,

X+(K)=Im[_ }1,]

by dimension count. Now condition (80) translates to the invertibility of the matrix
] —
-X I

I — XY is invertible (99)

or equivalently to

Let us now assume that (98) (and hence (99)) holds. Set
Z=(-XY)!

We may compute the j-spectral factor R.(s) of V(s) by setting

I —Y]
T=
__X I_
[ Z*  Z*Y]
T '=
ZX Z

[Ku 0]_[2* Z'Y][ A  BsEsBs I -
Ka Ku| |ZX 2z ||ctic -A* ||-Xx T
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[Bl]= zZ* Z7*Y][ B.
B> zZxX ZzZ ||c*D,

_ * __p* I -

Ki K3)_[z* zZ'v][ 4~ BEB*|[ I -
0 K% zx Z ||c*a.C - AN -X I

C,=D.JC + BIX
Ki1= Z*(A — BsEgBiX + YC*JC + YA*X)

and

In particular

Using (78) to replace YA* by —AY — YC*JCY + BgEgBiX then gives

Kiu=Z*A+ YC'JC—- AYX - YC'ICYX)
=Z*A+ YCC)(I - YX)
=ZYA+YC*IC)Z*! (100)
Next
"Bi=Z*B.+ Z*YC*JD,, (101
and
Kii=Z%(A* - BEB*X + YC*A,C + Y(AX)*X)
Using (77) to replace (4 *)*X with (— XA* + XBEB*X — C*A,C) leads to
K = Z*(A* — BEB*X — YXA* + YXBEB*X )
=Z*I-YXXA* - BEB*X)
= A* — BEB*X (102)

Substituting these expressions into the formulas (89) and (90) (with K,; in place of 4; and K1}
in place of A{j) leads to the formulas (82) and (83) for R. and R, 1

We next verify formula (84) for 6. = G.R;'. From Gu(s)=Dq+ C(s— A) 'B, and
formula (83) for R;!(s), we get

Ou(s) = Dudi' + C(s — A) 'Budz' — DLE,Ci(s — Ki1) 'B\D!
—C(s— A) 'M(s—K{i)"'Bid;' (103)
where
M= B.E,C, = B,E,(D2JC + B:X)
Recall from (74)
A— A% = B.E,DYJIC
and hence
M=A—- A* + B.E.B:X
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From (101)
BuEoBxX = —BgEsBiX + A* — KX
and hence
M= A - K{{ — BsEsB3X
=(A - s) - (K - s) — BsEsB3X (104)
Now (104) combined with (103) gives
0.(s) =D.d:' + C(s - A)"'B,dz' — D.E.Ci(s — K1) 'Bydy"
+C(s— A) '[(s— A) — (s — K1) + BsEsB3X] (s — K1) 'B1d5 !
=Dod;' + C(s— A) " '(Budz' — Bid:")
+ (= DoEoCy + C)(s — Ki$) 'Bidz"
+ C(s+ A) 'BgEgBiX(s — K1i )" 'Bidz} (105)
From (73) we have
C— DoE.D;JC=JA.C
and hence from (98)
C — D,E,Ci = C— DoEo(D2JC + B2 X)
= JA,C — D,E.BaX

Similarly
B.-B,=(1-2%B,-2*YC*JD,
= - Z*(YXB. + YC*JD,)
Now (105) collapses to the formula (84) for ©,(s). Theorem 5.3 follows. ]
Proof of sufficiency in Theorem 5.1, We suppose that

G(s)= [Dn Dg] + C(s— A)"'[B« Bg] is as in Theorem 5.1 and there exist matrices X, Y
satisfying (79)—(81). In particular, since po(XY) < 1, I - XY is invertible and we may set
Z=(I- XY) '. Now by Theorem 5.2, G admits a

0

with the formulas (82)—(84).

It remains to show that in the setting of Theorem 5.2, given that (A, Bg) is controllable, if
(81) holds, then O satisfies the additional constraint (65) on the right half plane.

We first observe that the controllability of (A, Bs) implies that Y is invertible. Indeed, if
ye€Ker Y, then from (78) and (70) we see that

= — y*BsEsBiy = y*Bsds ' di "' Biy

and hence Bgy = 0. But then again from (78) we have YA *y = 0. Thus Ker Y is an A *-invariant
subspace contained in the kernel of Bi. The controllability of the pair (A, Bg) now forces
Ker Y= (0), i.e. Y is invertible. This is the only role of the controllability assumption on
(A, Bg); one could assume instead that the solution Y of (78) and (80) is invertible.

(([j (;] , J) -isometric) -(restricted outer) factorization G = OR
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By Theorem 4.3 the validity of (65) is equivalent to © = [0, Ggs] satisfying

00 —Ga(s)* JBu(s) —Ga(s)*IGs(s)| ™
for Re s > 0, where 8,(s) = Ga(s)Ra(s) .
As a first step we wish to calculate j — Ba(s)* JO.(s). From (84) we have
8.(s)=D+C(s-A)'B
where A, B, C, D are given by
A= A* —BEB*X 0
BsEsBiX A

. .
B= [— f'zx —ZYZY] [C’quDa]d—l
C=[JAuC — DooBaX i C]
and
D=D,d;"

while Gg(s)=Dg+ C(s— A)™'Bs.
We observed at the beginning of the proof that Y is invertible. Let us set
A~ 11X X
A=
[x ]

Then H is Hermitian.

[j 0] _ B(s)* IO (s) = [j —B8a(5)*JBa(s) - é.,(s)*o,g(s)] S0

281

(106)

(107)

(108)

(109)

(110)

(111)

The following lemma gives a formula for the quantity in (106); we postpone the proof of

the lemma to the appendix at the end of the section.

Lemma 5.4
With notation as in (106),

J 0] & so(s1= (s+ 5| B G4 0
[0 0] O(s) JG(S)—(S+S)[ 0 BB(§—A*)“]
[ U i
(X Y7y 0 (s—A4)"'Bs

L
x {[o dsl - a3 BALIX YUY [‘S‘A’ B 0

( 3 i X
0] _[B*G-4%" 0 [ _l] »
' \{[dg] [ 0 B;(f‘A*)_l][ )}:‘1 ]Bﬁdﬁ }

0 (S—A)_IBB]} a2

The next lemma gives the connection between condition (81) in the statement of Theorem 5.1
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ot 7]

and the matrices A and

appearing in (112).

Lemma 35.5.
Let X and Y be Hermitian matrices with Y invertible and set
- X X
=[x )
Then the following conditions are equivalent.
(i) X220, Y>0and po(XY) <1

(i) H>0
. X
ol 8 (2]
iii) . Y =20
( [[X vy b
Moreover, if any one of these three conditions holds then p(XY) < 1 if and only if in
addition
I —_
=[x 7
is invertible.
Proof. Note
~ X X
a3 )

is positive semidefinite if and only if Y™! > 0 and X — XYX = X*(J- X*YXV?)XxV2 > 0.
Note that if (i) holds then po(X"2YX?) = po(XY) < 1 s0 I— XY2YX'2 > 0. This shows
that (i) = (ii). Conversely, if (i) holds that Y '>0 X> XYX>0 and
XTI - X'?YX"?)X"* > 0. Hence, if xeIm X, x*(I- XY2YXY*)x>0 while if
xeKer X, x*(I- X"?YX"?)x = x*x 2 0. We conclude that po(XY) = p( X2 YX?) < 1.
Thus (ii) = ().

Clearly (iii) = (ii). Conversely, if (ii) holds, then certainly Y !> 0. By the Schur

complement test,
" X
[
Y =20

. [ x n _[x-x¥vx o
< - =
0<H [Y_IJY[X Y [ o 0]

But we have already noted that (ii) implies that X — XYX > 0. Hence (ii) = (iii).

if and only if
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Finally, if po(XY) < 1 then I — XY is invertible so

x =5 0l 3

is invertible. Conversely, if
I —
T=

is invertible, then F— XY is invertible. If also po(XY) < 1, then (since the non-zero spectrum
of XY coincides with the non-zero spectrum of the Hermitian matrix X'/2YX!/?) necessarily
p=(XY) < 1. The lemma follows. O

Completion of the proof of sufficiency in Theorem 5.1. By assumption, condition (i) in
Lemma 5.5 holds. Then by Lemma 5.5,

_ X

a7

(X Y rlj=o
Y—l

Now by formula (112), it is clear that

00

i.e., (67) is satisfied, so G has the desired factorization.

[j 0] -6(5)*J0(s) =0

Proof of necessity in Theorem 5.1, We now suppose that there are Hermitian matrices X, Y
satisfying (77)—(80) and that G = [D, Dg] + C(s — A)™'[B, Bg] has a factorization G = OR
as in (64)—(66). Then in particular G=OR is a

(([{) g], J) -isometric)-(restricted outer) factorization for G

so by Theorem 5.2, I — XY is invertible and without loss of generality the formulas (82)—(84)
apply. Since O satisfies (65), O satisfies (67), i.e.

J 5k g
- >
[0 0] O(s) JO(s) =20
for s+ § > 0. In particular
Jj o = % A I
- 2

[1 0]{[0 0] O(s) Je(s)} [0] 0
Using the formula (112) from Lemma 5.4, this becomes
(s+5BGE-A%"'H(s-A) 'B+

+1§*(§—A*)“[Y)fl

]Bsdg‘dz;-‘Bg[X Y N(s-A4A)'B=0 (113)

By letting s tend to infinity through real values we see from (113) that
BG-A®"'His-A4A)'B>0



284 J. A. BALL, J. W. HELTON AND M. VERMA

for all real s sufficiently large. The assumption that (4, B) is controllable now implies that
H > 0. An application of (ii) = (i) in Lemma 5.5 now recovers condition (5.18) as desired.
Alternatively, one may work with the formula (112) for the full block 2 x 2 matrix function

A(s) = [(f) g] — 6(s)* JB(s)

by an asymptotic argument analogous to that just given, A(s) =0 on the right half plane
forces

B*G-4Y" o a [ Ale-oms o |0
0 BiG- A" | XYY y-! 0 (s—A) 'Bgj =
for all s with s+ § sufficiently large. Then the controllability of the pair
- - [ - X
A 0} |B O N H [ _,]
3 Y =0
([0 A] [0 BB]) mplies that Ny L

Now use (iii) = (i) in Lemma 5.5 to recover condition (81). O

Appendix: Proof of Lemma 5.4

Verification of the formula (107) amounts to checking the validity of the following three
identities:

J—6a(5)*JO.(s) = é*(g—,«i*)"{(ﬁ 5)H — [Y)_(I]BgEng[X Y"]} s-A)'B (A1)

— 6.(x)* JGp(s) = (s + 5)B*(5 - A*)_I[Y)_(l] (s—A) 'Bs-B*(5- z‘i*)'l[;fl]Bﬁ

—-B*5-A%"! [Y)_(l]BgEBBEY' '(s—A) 'Bs (A.2)
and
~Gs(5)*JGs(s)=(5+ s)B3(5— A™) 'Y {(s— A) 'Bs
+dpds— BiY Y(s— A) 'Bg - Bi(5- A*)"'Y " 'Bg
—B3(5—- A*) 'Y 'BgEsBiY '(s— A) 'Bg (A.3)

(where we use throughout that Es= — dz'dj ' (see (70)).
A first step toward checking (A.1) is to verify the identities

HB= -C*JD (A.4)
and
A*H+ HA + C*IC= [Y)_( l] BsEsBHX Y] A.5)

To verify (A.4), we calculate first

s [ X X z* Z*YY[ B. ],
HE = [X Y“] [— YZX - YZ} [C*JDu]da



STABILIZATION OF CONTROL SYSTEMS 285

_[x -xY][z* ZY|[ B« |,
“lx -1]lzx z ||CcYD.)"

_ -X 0 -1 Bot -1
“lo - ]TT [C*JDa]da

[ XB.d:!
| - C*JID.d3!

On the other hand,

*
—C*JD= - [C Aol - ’fB“E"D‘:] JDod3"

C

I

_[C*AaDoda — XBoEo(DoJDo)dy"
C*JD.dx'

_ [ XB.dy' ]
~ C*JD.d;*
where we used
AoDy = (J = JD.E.D3J)Dy
= JDo— JDLELE;' =0 (A.6)
As a first step to verification of (A.5) we analyse the term C*JC:

*
CIC= [C Aol C)fB"E"D ‘:]J[JA,,C— DoE.BiX i C]
From (A.6) we see that the cross terms in the (1, 1)-block vanish, and the (1, 1)-block is

[C*JC) 11 = C*A0JAGC + XBoE(Ey) 'ELBiX

Note
AaJAy = (J = JDLED3J)J(J — JDE.D3J)
= J— JDoEDEJ — JDGEDEJ + JDLEo(Eo) 'EaDxJ
= J— JDE.DXJ
and hence

[C*JIC 11 = C*AuC + XBE.BiX (A7)
Therefore verification of (A.S5) amounts to checking the validity of the three identities

(A" — XBEB*)X + XBgEsBiX + X(A* — BEB*X)
+ XBgEgBiX + C*AoC + XBoEBiX

= XBsEsBs X (A.8a)
((A*)* — XBEB*)X + XBgEgBiY ' + XA + C*AoC — XBoE.DYJC = XBgEsB;Y ™!
(A.8b)

A*Y '+ Y 'A+ C*IC= Y 'BgEsBiY ! (A.8¢)
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To verify (A.8a), use the Riccati equation (77) together with the identity
XBEB*X = XBuEBiX + XBsEsBs X
As for (A.8b), recall
B.E.DYJC=A- A%
and use the consequence of the Riccati equation (77)
— XBEB*X + C*AoC= — XA* + (A™)*X
Hence the left-hand side of (A.8b) is
(A™)* X — XBEB*X + XBgEsBiY ' + XA + C*AoC — XB.EDXIC
=(AX) ' X+ (- XA* —(A*)*X)+ XBgEgBAY '+ XA- X(A- A™)
= XBgEgBgY ™!
and (A.8b) follows. Finally (A. 8c) is an immediate consequence of the Riccati equation (78).
Given that ,(s) has the form 8, (s) =D + C(s— A) B (see (107)—(110) and (84)) and that
C*JD = AB (from (A. 4)), we compute
J=064(s)* IO (s)=j— [D*+B*5— A% 'CJ[D + E(s- A) 'B]
=j-D*D-B*5-A*"'C*'JID-D*JIC(s- A) 'B
-B*G-A""'CC(s-A)'B
=B*G-A%"'AB+ B*H(s- A)"'B
—-B*$§-A*)'C*C(s-A)'B
=B*G-A"'HG-A)+GE-A)H-C*IC)(s-A)'b
Finally, if we use (A.5), we arrive at (A.1) as required.
To verify (A.2) we begin with
—04(5)*JGs(s) = — (D*+ B*(5-A*)"'C*}J(Ds+ C(s— A) 'Bg} (A.9)

From assumption (71) and the definitions (107)—(110) of A, B, €, D, we see that

D*JDg=0 (A.10)
and

* * *

é*JD,S - [C AoDg— XOBO,EQD,,JDB:I
where
C*AouDg= C*(J - JDLE.D}J)Dg
= C*JDg — C*JD.E(D2JDg)=0
and where
XBiE.(DXJDg) =0

Hence

C*JDs=0 (A.11)



STABILIZATION OF CONTROL SYSTEMS 287

Next compute

A% C*AoC — XBE.D2JC
_ A.12
e*ic [ g (A.12)
Thus substitution of (A.10)—(A.12) in (A.9) gives
* *
—B.(5)*JGs(s) = - D*IC(s— A) 'Bs— B*G - A *)-‘[C AC Cﬂ"ng“D ] C] (s— A)~'Bs
Now use (A.4) to get (A-12)
-D*JC(s- A) 'Bg= —15*16[(;] (s— A) 'Bg
a0 -
=B H[I](s— A) " 'Bg
=B*E-A%"1'- (s—A*)ﬁm (s—A) 'Bg (A.13)
In more detail,
. a0l [§-(AX)*+ XBEB* — XBgEsBs|[ X
-AYA| | =
=47 [1] [ 0 s—a* ||y
_[8X-(4)* X+ XBEB*X — XBgEsBiY™! (A.14)
§Y 1-A*Y! ’
and hence, making use of the identity B,E.DIJC=A — A* (see (74)) we get
. ~en|0 C*AoC — XBE,DXIC
_A* _ o olvodl o
$-4NHH [1] [ c*ic ]
_ [6X—(A*)* X + XBEB*X — XBgEsBiY ™' — C*AoaC + XA — XA (A.15)
sY l-A*y-'-c*Jc ’

From the Riccati equation (77), the first row of the right-hand side of (A.15) becomes
5X — XBgEsBEY '+ XA = (s+ 5)X - X(s— A) — XBgEsBsY ™"
From the Riccati equation (78) the second row in (A.15) is
SY ' A*Y ' C*IC=5Y""— Y 'BsEsBiY '+ Y 'A
=(s+8§)Y ' =Y Y (s— A)— Y 'BsEsBiY !

Putting the pieces (A.13)—(A.15) together with (A.12) we get
- 6a(5)*"JGs(s)

= B*(s-fi*){(” 5)[;_(1] - [Y)f,] (s—-A)- [)ffl] B;;EBBEY“}(S— A) 'Bg
This yields the claimed identity (A.2).

As for (A.3) begin with
—Gs(s)* JGs(s) = — (D + Bi(s — A*)"'C*}J(Ds + C(s — A)™'Bg)
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From (71) we see that the cross terms vanish, while DgJDg = — didg by (70). Hence
~ Gp(s)* JGa(s) = dids — Bi(5— A*)"'C*JC(s— A) 'Bg
From the Riccati equation (78) we get

—Gp(s)* JGs(s) = dids — BEG— A*) HE-AY)Y '+ Y i (s— A)
+ Y IBsEBEY ' — (54 s)Y ' (s— A) !B
=dgds— B3Y '(s— A) 'Bs—Bi(5— A*) ~ 'Y 'Bg
—Bi(5— A®) 'Y 'BgEgBiY '(s— A)"'Bg
+G+5)BiGs- A" 'Y (s— A) 'Bg
This yields (A.3) as required. O

6. THE H” CONTROL PROBLEM: STATE-SPACE COMPUTATIONS

In this section we apply the results on state space formulas for generalized J-inner—outer
factorization in Section 5 and the connection of such factorization with H™ control as
explained in Section 4 to recover the recent elegant state space formulas in Reference 8 for the
solution of the H™ problem. We suppose that the plant

& N
u y
for the H™ control problem (as explained in Section 4) is given in terms of a state-space
presentation
x=Ax+ Biw+ Bu
z=Cix+ Dnu (114)
y= Cayx + Dyyw
Since we are interested in studying the problem with some tolerance level , we consider instead
the plant &, given by
x= Ax+ Biyw+ Bu
z=v"'Cix+ vy 'Dpau (115)
y=0Cx+ Daw

in order to normalize the tolerance level to 1. Here we discuss only the so-called regular case;
hence we assume:

D;D12 >0, DuD3 >0 (116)
as well as
[A s B'] is surjective on the imaginary line (117)
C: Dy
and

[A -sI B

] is injective on the imaginary line (118)
C Dy
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Note that (117) and (118) have the consequence that the transfer function
P1(s) = D21 + Ca(s — A)"'By is surjective and #i2(s) =Dz + Ci(s — A)~ 1B, is injective on
the imaginary line. A consequence of (116) is that, by choosing appropriate decompositions
Z=21 ®Z, and W= W; @ W, of the output space Z where z takes values and the input
space W where w takes values, we may assume that D;; and D, have the form

D
Dy = [ (;21], D3y = [D21 0] (119)
where D12 and D;;; are square and invertible. We then form the partitionings of B; and C,
B, = [B11 B::], Ci = [C”] (120)
Cnz

consistent with the above decompositions of W and Z. Now the state-space equations (114)
for #, have the form
x= Ax+ Buuw, + Buwz + Bau
=y 'Cux+ vy 'Diziu, D121 invertible a21)
22=7v"'Cpx
y=Cyx+ Dz211w1, Dan1 invertible

A choice of augmentation [#3;(s) 9%2(s)] to &, so that [?‘ ((ss))] is invertible at infinity is
21

to include the component w; of the input signal w as the additional fictitious output signal;
this amounts to adding the equation
¥=w (122)

to those already listed in (120). Reversing the arrows (as explained in Section 1) to get

21

~ u
2:01%1- 22
y° w2
wa

then leads to the state-space equations

x= (A - BuD{dCz)X + Bou + BuDﬁ}y + Blzyo
= ‘y_lCu.x + —y“leu

22=7""'Crx (123)
wi= —D5lCox + Diily
Wy = yo

for :?’ By Theorem 4.2, solving the H * control problem is intimately related to a generalized
J-inner—outer factorization of . We can get a state-space analysis and formulas for such a
factorization by applying Theorem 5.1 with the substitution

A — BiD53C> in place of A4

[B: BuDinl] in place of B,

B2 in place of Bg
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[ 7‘?011
—‘YDZ_I 11%22 in place of C
B 0
[y~ D21 0
0 0
e ssetsrsseennssrens in p]ace of Da
0 Dsy;
o 0
0
0
. in place of Dg
0
| 7
[z, 0O 0 0
8 Ig’ _ I(;)y g in place of J
| o 0 0 —Iw
and
[{)" Io] in place of j (124)
— 1Y
with
[A-BuDiiC; i B, BuDsl]
—1C .......... e - 1D
Ga(S) ~ Y 11 s Y 121
v~ !Cp 0 0
- DiiCy i 0 Dl
i 0 0 0 ]
and

...............................

_lC
Ga(s) ~ Y 1ch

0
i 0
-DxiC; i 0
0 : I

One easily checks that the hypotheses (69)—(71) are fulfilled; indeed

-1
DYJD. = d%d,  with du=[7 é"“ D‘z’“] (125)

and
DgJDg= —dids  with dg= Iy (126)
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Further notation from (73)—(76) becomes

0 0 0 0

o 1 o o ,
0 0 0 —-1Iw

A* = A - By(D121)"'Cu (128)

The Riccati equations (77) and (78) become

X(A — B2(D121)"'Cu1) + (A - B2(Diz1) " 'Cu)* X
— X(B,E\B3 - BBt — BB%) X + v *C1aCi2=0  (129)

and

Y(A - Bu(D211)'C2)* + (A - Bu(Dann) 'C)Y
+ Y(y :CHhCu — v 3CHhC — CE2C)Y + BiaBia =0 (130)

where we have set

Ei = {(D21)*Di1}™Y,  Ex= {Dan(D2n1)*} ™! 131
with the stability side conditions (79) and (80) assuming the form
0(A — B2(D121)"'C11 — (B:E\B] - BuiBii — B12B3) X) C (Re s < 0} (132)

and
0(A = B\ (D211)"'Ca — Y(y 2CHCi1 + v 2CHC1 — CIE2C2)) C (Re s <0} (133)

The reader will note that, after a change in notation, (129)—(133) are exactly the same as the
equations appearing in Reference 8 in connection with the H™ control problem. Combining
Theorems 4.2, 4.3 and 5.1 now gives us the following result for the H™ control problem.

Theorem 6.1
Let
A B, B;
PO~ 1, 1 0 Dy
C i Dy O

be a plant satisfying the conditions (116)—(118) and partition D12, D21, By and Ci as in
(119)—(120). Assume that the Riccati equations (129) and (130) have stabilizing solutions X, Y
(satisfying (132) and (133)) and assume that (A4 — B11D311C;, B12) is controllable. Then the H™
problem with tolerance level v (HINFy) has solutions X if

X=0, Y>0 and po(XY)<1 (134)
Conversely, if (134) holds and in addition if the pair
( A—By(D121) " 'Cn 0 [ zZ*  ZXY B> Bu(Da1;) 7!
—BpBHh X A-BuD1) G|’ |-YZXx -YZ]|y 2CliDia CIE,

is controllable, then the H® problem (HINFy) has solutions. In this case the set of



292 J. A. BALL, J. W. HELTON AND M. VERMA

compensators K(s) solving the problem (HINFy) is given by
K(s) = (ri($)H(s) + ri2(s)) (r21 ($)H(s) + raz(s)) ™! (135)

where H(s) is any stable rational matrix function with || H || » < 1 for which (raH + ra2) ! is

proper and where
_ I'11(S) r12(s)
ris) = [rZI (s) r2 (S)]

is given by
r)=d+c(s—a)'b

with
_[a 0] _[wit o ] 136a
d_[O dz]_[ 0 Du 13
=] - DpRICy - ‘yle_zll(szl)_lB;X] (136b)

() C + DB X

b= [bi b) = [yB:Didh + v~ YCH B + YCH(Diih)*] (136c)

and
a=A-By(Di21)"'Cii + (- y2B:DRYDBY)* B + BiBH X (136d)

One particular compensator is given by
Ko(s) = Cko(s — Ax,) ™ 'Bk,
where
Ake=A - By(D121)"'Cui + [-v*B.DRY (DY) B + BiBY X
= [Bu + YCHD:1)* 1 D5l [C + DB X]  (137a)
Bk, = BuDsit + YCH(D5i})* D (137b)
and

Ck, —D2iCii — v’ DRADRD)*BIX

Proof. We apply Theorem 5.3 to 9.’7 given by (123). The formula (136a—d) for r(s) comes
from the formula (83) for R.(s)"!. By Theorem 4.3, the formula (135) provides a
parametrization of the compensators solving the H* problem. The particular compensators X
given by (137) results from plugging H = 0 into (135). To see this note that a realization for

| res)| jul_ |z
ris) = [’21(3) rzz(S)]'[J’] [W]

X=ax+bu+ by
z=cx+ dwu

is

w=cax+ dry
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X x
Solving for |z | in terms of | w| results in
y u

x=(a-bad3'c:)x + badi'w+ bru
z=c1x+ du
= —dilex+di'w

The associated transfer function from w to z (with input # taken equal to zero and output y
ignored) therefore has the realization

x=(a-— bzdz_lCZ)x+ b,ds'w
=01 X

But this transfer function coincides with ri2r52' = %, [0] = Ko. In this way we get a realization
(137a—d) for ri2rz' of the same order as the realization (136a—d) for r. In particular, we see
that there is a compensator solving the H™ problem with McMillan degree no more than the
McMillan degree of the original plant %.
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