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ABSTRACT

It is shown that a nonscalar invertible square matrix can be written

as a product of two square matrices with prescribed eigenvalues subject
only to the obvious determinant condition. As corollaries, we give
short proofs of some known results such as Ballantine's characterization
of products of four or five positive definite matrices, the commutator
theorem of Shoda-Thompson for fields with sufficiently many elements

and other results.
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INTRODUCTION

Let A be an invertible square matrix over a field F. When can A be
factored as a product of square matrices B and C with. prescribed eigenvalues,
counting multiplicity? Obvious necessary conditions are that A be nonscalar
and that the product of the prescribed eigenvalues of B and C be equal to
det A. Our main result is to prove that these necessary conditions are also
sufficient.

Using our factorization theorem, we give short proofs of Ballantine's
results ([1] and {[2]) which state that every nonscalar real or complex matrix
with positive determinant is the product of four positive-definite matrices
and that every matrix with positive determinant is the product of five positive-
definite matrices. We also give short proofs of special cases (when the
underlying field contains sufficiently many elements) of the Shoda-Thompson
commutator theorem (if det A = 1, then A 1is a commutator) and the Gustafson-
Halmos-Radjavi Theorem (if det A = *1, then A 1is the product of four
involutions).

We now fix some notation and terminology. All matrices in this paper are
square matrices. As usual Mn(F) denotes the set of all n x n matrices over
a field F. The determinant of a matrix is denoted by det A. The eigenvalues
of a matrix are always repeated according to algebraic multiplicity, i.e.

multiplicity as zeros of the characteristic polynomial.

1. THE MAIN THEOREM

THEOREM 1. Let A be a nonscalar invertible n x n matrix over a field F

n
and let Bj and Yj (1 £j <n) be elements of F such that 1T Bjyj = det A.

There exists n X n matrices B and C with eigenvalues Bl’ v Bn and



Yis cees Yy respectively such that A = BC. Furthermore B and C can be

chosen so that B 1is lower triangularizable and C is simultaneously upper

triangularizable.

Proof. We use induction. The result is vacuously true for n = 1. Now
let us assume that the conclusion of the theorem is true for all square matrices
of size less than n, n 2 2, and let A, Bj and Yj be as in the statement
of the theorem. First, we show that A is similar to a matrix whose (1,1)
entry 1is Blyl. To prove this, let e be a vector which is not an eigenvector
of A - Blyll and then choose an ordered basis B of F whose first two

members are 4 and e, = (Aa-Blyll)el. If A is the linear transformation

on F given by K(x) = Ax, then the matrix A1 of A relative to the basis

B has a first column: (Blyl,l,O,...O)t. We conclude that A is similar to

the matrix

where x 1s a nonzero column vector, Yy’ 1is a row vector and R ¢ Mn 1(F).

In the case n = 2, we have that x, y¥¥ and R = r are merely elements

of F. Using the fact that det A1 = 8187y1y2, we have

B 0 g7t 2

X T Yl X BZ 0 Y,

This proves the conclusion of the theorem for n = 2.

We now assume that n =2 3. We will show that the matrix A1 is similar

to a matrix of the form



BlYl zZ
A2 =
X S
-1 -1 PR -1 -1 PR
where S - Bl Y| Xz is not a scalar. If R - Bl Y XY is not a scalar,

there is nothing to prove, so we assume that R - BilYil xy’ = oI for some

a ¢ F. Since rank A > 2, the linear span of the columns of R is not
contained in the linear span of {x} and so there exists a row vector w’

4
of size n - 1 such that w'x =0 but wR#ZO0. Let P = {é 2 } S0

where z” =y’ + 81Y1W' - w'R and S =R + xw and so

-1 -1 ’ -1 -1

R 1 -1

’ - ’
1 Yl Xy’ + Bl Yy xw R
1

el
N
I

al + Bilyi xw’R.

Since x # 0 and w'R # 0, the matrix Blyl xw’R is of rank one and so

S - B;lyil xz’ is not a scalar.

We now apply the induction hypothesis to the (n-1) x (n-1) matrix

S - Bilyil xz’. Since
B,Y 2’ B11 0 (1 Bilyil a
11 ) ’
X 5 X S - Bilyil xz’ 110 1
we have

n
det|S - B_ly—I xz'] = Bilyil det A= I B.v..



By the induction hypothesis, there exist BO and CO in Mn_l(F) such that

the eigenvalues of BO (respectively CO) are BZ’ cens Bn (respectively

Lol - It follows that

Yos sees Yn) and S - Bl Yy xz" = B,C,.
-1 )
Bl 0 Y1 61 z
A2 = o
Yy oX BO 0 CO

Again, by the induction hypothesis, there exists an invertible matrix

-1 . . -1
1(F) such that B1 1= Q0 BOQ0 is lower triangular and C1 1= QO COQO

QO € Mn—
is upper triangular. If Q = [é g ], then
0

. . . -1 . .
where £ 1is a column vector and n’ 1s a row vector. Since Q AZQ is similar

to A, the conclusion of the theorem has been verified. a

A special case of Theorem 1 (with F = C and A cyclic) is contained in

It was also shown in [5; Theorem 2] that every square matrix

[5; Theorem 1].
(A

over C with determinant 1 is a product of three unipotent matrices.

square matrix is called unipotent if it is of the form I + N where N is

nilpotent.) The following generalization of [5; Theorem 2] is a special case

of Theorem 1 (with Bj = Yj =1 for 1 <3 <mn).

and assume that det A =1. Then A 1is a

COROLLARY. Let A e Mn(F)
If A is nonscalar, then it is a product

product of three unipotent matrices.

of two unipotent matrices.

REMARK. An additive version of Theorem 1 is contained in Fillmore [4].



2. PRODUCTS OF POSITIVE DEFINITE MATRICES

In [1] and [2], Ballantine proved that every real or complex n X I matrix
A with positive determinant is a product of five positive-definite matrices
and, unless A is a nonpositive scalar, it is a product of four positive-definite
matrices, (see also Taussky [9]). We give very short proofs of these facts
using our Theorem 1. (Ballantine also characterized products of three positive

definite matrices.)

THEOREM 2 (Ballantine). Let A be a real or complex n x n matrix. Then

(a) A 1is a product of four positive-definite matrices if and only if

det A >0 and A is not a scalar ol where a 1is not positive.

(b) A is a product of five positive-definite matrices if and only if

det A > 0.

Proof. (a) Assume that det A > 0 and A is not a scalar. (The case

A =al, o >0 is trivial.) There exist distinct positive numbers 61, cees Bn

n
and distinct positive numbers Y5 +ees Yy such that I Biyi = det A. By
i=1

Theorem 1, there exists an n x n matrix B with eivenvalues B

10 s Bn
and an n x n matrix C with eigenvalues Yo sees Y such that A = BC.
Each of B and C is similar to a positive diagonal matrix, so B = R™IDR
where R 1is invertible and D is diagonal and positive. Therefore

* 1

-1 *. -
B =R 1R lR DR, a product of the two positive definite matrices R 1

%
R

*
and R DR. Similarly C can be written as a product of two positive-definite
matrices and hence A is a product of four positive-definite matrices. (The fact

that a matrix is a product of two positive-definite matrices if and only if it

is similar to a positive-definite matrix has been observed by Taussky [9].)



Conversely, if A = P1P2P3P4 where each Pj’ 1 <3j<4, is positive-

definite, then obviously det A > 0. Furthermore, if A is a scalar oI, then

5 1 1 >P1 1 s 1P2 1s similar

to a positive-definite matrix and hence has positive spectrum. Similarly

PP =ap tpll, However, PP, = Pl/Z(Pl/ZP PI/Z}P_l/Z so P
P; Pg has positive spectrum. Therefore a > 0.

(b) We need only consider the case A = al. Let P be a nonscalar positive-

1

3

definite matrix, and write A = uP_lP. Applying the result of part (a) to oP

we get that A 1is a product of five positive-definite matrices. U

3. COMMUTATORS

Let GL(n,F) denote the group of invertible =n X n matrices over a
field F and let SL(n,F) be the subgroup of matrices with determinant 1.
Shoda [8] showed that if F is algebraically closed, then the set of commut-
ators of GL(n,F), 1i.e. {BCB‘lc"l B, C e GL(n,F)} coincides with SL(n,F).
Thompson [10] showed that Shoda's theorem holds for all fields F with the
exception of the case when n = 2 and |F| = 2. He also characterized the
comnutators of matrices with prescribed determinant [11]. (See [3] for related
results.) We show that when F contains sufficiently many elements, these results

follow easily from Theorem 1. (See also [6] for another short proof.)

THEOREM 3 (Shoda-Thompson). Let A ¢ SL(n,F).

(a) If F has at least n + 1 elements, then A 1is a commutator of

matrices in GL(n,F).

(b) If F has at least n + 2 elements and A 1is nonscalar, then A

is a commutator of matrices in SL(n,F).




(¢c) If F has at least n + 3 elements and A 1is nonscalar, then A

is a commutator of matrices with arbitrarily prescribed nonzero

determinants.

Proof. (a) If A is not a scalar, then, by Theorem 1, we can write A

as a product BD where B has distinct nonzero eigenvalues Bl’ ey B and

where D has eigenvalues Bil, e, 8;1. So D is similar to B ~, i.e.

D=cBlc™! and hence A = BB™'C™Y. In the case A = al, o =1, we take
B = diag{a,uz,...,an} and D = diag{l,u—l,...,al—n}.

(b) If F has at least n + 2 elements, we show that Bl’ .s Bn may
be chosen to satisfy Bl . Bn =1, 1in addition to being distinct. If n

is odd, take Bl = 1, then take 1

; 1 distinct pairs of the form {B,B_l}

with B # #1. If n 1is even, take %- pairs of the form {B,B—l} with B # *1

(this may seem to require n + 3 elements in F since 0, 1 and -1

are excluded, but if |F| =n + 2 then the characteristic of F is 2 and
1 =-1). Therefore det B = 1. The matrix C may be replaced by CE for
any matrix E commuting with B. Since B is diagonalizable, there exists
a diagonalizable E which commutes with B and which has arbitrary nonzero
determinant. So we can replace C by a matrix with any arbitrarily assigned

nonzero determinant, in particular with a matrix in SL(n,F).

(¢) The proof is similar to (b). [

4. PRODUCTS OF INVOLUTIONS

An involution is a square matrix whose square is the identity. In [7],

Gustafson, Halmos and Radjavi showed that every n x n matrix, over an



arbitrary field F, with determinant

involutions. We give a short proof of

n + 2 elements.

THEOREM 5 (Gustafson-Halmos-Radjavi).

*1 1is the product of at most four

the special case when F has at least

Let A be an n x n matrix over a field

F containing at least n + 2 elements. If det A = +£1, then A is the product
of at most four involutions.
Proof. First consider the case det A = 1. As in the proof of part (b)
of Theorem 4, we may write A as a product BC where each of B and C has
.. . -1 -1 -1 -1
distince eigenvalues of the form: {61,61 ""’Bm’Bm } or {1,81,61 seeesB B }
according as n is even or odd. Since each of B and C 1is diagonalizable,
B 0]
it suffices to show that the matrix 1 is a product of two involutions,
0 B8
B 0\ 0 l\ 0 B_l
This follows easily since 1l F (1 0
0 B al: 0
Now assume det A = -1 and that 1 # -1. If n is odd, the result
follows from the first part by considering -A, so we assume that n is even.
We may write A = BC with B and C as above except that Bl and Bil in
the list of eigenvalues of B, but not in C, are replaced by 1 and -1.

) . . 1
This contributes a direct summand {0

0

_1] which is itself an involution. 0
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