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Abstract—Device-free localization (DFL) is the estimation of the position of a person or object that does not carry any electronic

device or tag. Existing model-based methods for DFL from RSS measurements are unable to locate stationary people in heavily

obstructed environments. This paper introduces measurement-based statistical models that can be used to estimate the locations of

both moving and stationary people using received signal strength (RSS) measurements in wireless networks. A key observation is that

the statistics of RSS during human motion are strongly dependent on the RSS “fade level” during no motion. We define fade level and

demonstrate, using extensive experimental data, that changes in signal strength measurements due to human motion can be modeled

by the skew-Laplace distribution, with parameters dependent on the position of person and the fade level. Using the fade-level skew-

Laplace model, we apply a particle filter to experimentally estimate the location of moving and stationary people in very different

environments without changing the model parameters. We also show the ability to track more than one person with the model.

Index Terms—Device-free localization, wireless networks, RF sensors, tracking, through-wall surveillance.
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1 INTRODUCTION

KNOWING the location of people is extremely valuable and
useful. Global navigation satellite systems, radio fre-

quency identification (RFID), and real-time location systems
(RTLSs) have proven their value for locating people and
assets with an attached device. Device-free localization
(DFL) is the practice of locating people1 or objects when no
tag or device is attached to the entity being located. DFL
technologies are useful in applications where the people
being tracked cannot be expected to cooperate with the
system. This may be the case because they are intentionally
evading the system, because they are physically unable, or
because they do not want to be inconvenienced by wearing a
tag. In this paper, we investigate a statistical inversion
method for DFL in narrowband RF sensor networks, and
show its effectiveness in tracking both moving and sta-
tionary objects located behind walls.

Various sensor technologies can be used for the purposes
of DFL [1], as discussed in Section 4. In this paper, we are
particularly interested in DFL systems which use received
signal strength (RSS) measurements (RSS-DFL) because RSS
can be measured with a variety of widely deployed and
inexpensive wireless devices. RSS-DFL can locate motion
through building walls [2], in dark or smoke-filled
environments, and are not as invasive of privacy as video
camera surveillance.

RSS-DFL systems have, to this point, significant limita-
tions. Imaging-based RSS-DFL systems first estimate at-
tenuation or motion image and then estimate the person’s
coordinate from that image [2], and information can be lost
in the two-step process. In particular, variance-based radio
tomographic imaging (VRTI) cannot be used to locate a
stationary (or very slow-moving) person. Fingerprint-based
RSS-DFL systems require extensive calibration measure-
ments [3], [4]. To date, direct coordinate estimators in RSS-
DFL do not benefit from accurate statistical models for the
RSS measurements [5], [6].

To provide a means to address these significant limita-
tions, in this paper, we present a new statistical inversion
method for RSS-DFL in wireless networks. The new model
allows for direct estimation of a person’s position, without
the need to use radio tomographic images as an inter-
mediate information layer.

This statistical inversion method is enabled by a new RSS
model presented in this paper for temporal fading on static
links. Significant statistical models exist for small-scale
fading, but this model represents an advance on two levels.
First, the model presented is a function of the current
position of a person—whether or not the person is now
close to the link. Second, the model presented is a function
of the fade level, that is, a quantification of the narrowband
fading experienced on the static link prior to the person’s
appearance in the environment. Fade level is a measurable
quantity in RSS-DFL. The new model takes advantage of the
uniqueness of each link in the RF sensor network, as
quantified by the fade level, rather than assuming each link
behaves identically when people are located near a link. We
show that links experience drastically different behavior as
a function of the fade level.

Our model is based on extensive measurements con-
ducted in two very different environments in which DFL
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1. In this paper, we use the word “people” generally to refer to either
people or objects that are to be located and tracked.

1536-1233/12/$31.00 � 2012 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS



systems are expected to operate. We find that the temporal
variation of RSS is well modeled with the skew-Laplace
distribution. Our measurements quantify the relation
between the parameters of the skew-Laplace distribution
to a person’s location and a link’s fade level.

Finally, we demonstrate the application of the fade-level
skew-Laplace model in a statistical inversion method in a
real-world system. We demonstrate that the method is able
to locate motionless people through external building
walls, which had not been demonstrated in previous work.
We show that moving people can be tracked with less than
1 meter error in our experiments.

The statistical approach allows us to address some key
limitations of previous RSS-DFL systems. Since the new
method does not rely on manual site-specific measure-
ments, it can be deployed at multiple sites without the need
for offline training. All that is needed is a short calibration
period (a few seconds) where the network is assumed to be
free from moving objects to determine the means of each
link. The training, in essence, has already been performed in
the modeling of the statistics. Furthermore, the new method
does not require a specific network location geometry or
regularity in the environment.

The statistical inversion process is described in detail in
Section 2. An overview is provided in Fig. 1. Let M be the
total number of links in the network. A M � 1 raw RSS
measurement vector z½k� for each link in the network is
received at time k at a base station processing unit. Raw
calibration measurements are collected during a period
during which the network is assumed vacant, or over a long-
term history. These calibration measurements are combined
with knowledge about the node locations to determine the
means �z and fade-levels F. During operation, the link
means are subtracted from the incoming measurement to
determine the change in signal strength y½k� ¼ z½k� � �z.

The fade-level calibration information is used to deter-
mine the statistical likelihood model based on the skew-
Laplace distribution, as discussed in Section 2. The like-
lihood model provides the basis for particle filtering, a
nonlinear and non-Gaussian filter for recursive estimation,
which is used to infer location results x̂½k�.

2 STATISTICAL MODELING

2.1 Overview

In general, a statistical likelihood model represents the
noisy translation from a state space to a measurement space
(see Fig. 2). Given a particular state, a certain distribution of
measurements will result. This can be thought of as a
forward process, defined by likelihood distribution P ðY jXÞ,

where X is the state to be estimated, and Y is received or
measured data. The inverse problem, therefore, involves
taking measured data and estimating the distribution of the
state. The state likelihood is defined by the posterior
distribution P ðXjY Þ, found by applying Bayes’ theorem

P ðXjY Þ ¼
P ðY jXÞP ðXÞ

P ðY Þ
: ð1Þ

For DFL applications, the state-space X is the coordi-
nates of device-free entities within a wireless network, and
the measurements Y are RSS values of each link in the
network. We take the RSS measurements and infer the
position of the people by inverting the statistical model
through the posterior distribution.

The likelihood function P ðY jXÞ, and the a priori,
knowledge of the state described in P ðXÞ, describes the
statistical model that can be used to invert the problem. We
are, therefore, interested in knowing how the position of
people affects the resulting RSS measurements, and how
those statistics change for different positions of the people.
We expect a person standing on the line-of-sight (LOS) of a
link to cause significant changes to the RSS measurements,
while a person at a distant position away from the LOS will
not. The statistics for each link-person geometry are
modeled in the likelihood functions.

The a priori, information P ðXÞ can be used to incorporate
known information about the people. Since people must
move with finite velocity, this information allows an
inversion algorithm to more accurately estimate positions
over time. If movements are constrained by walls or other
obstacles, the probability of transitions through those
obstacles can be set to zero, thus improving accuracy and
efficiency. In our experiments in Section 3, we constrain the
domain by only searching over the interior area of the home.

2.2 Measurement Collection

To form a likelihood model, an experimental RF sensor
network is deployed to capture RSS measurements. The
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Fig. 1. A flowchart describing the statistical inversion process for device-free localization in wireless networks.

Fig. 2. An illustration showing the role of likelihood and posterior
distributions for statistical inversion.



network nodes consist of 34 TelosB nodes from Crossbow,
each utilizing the IEEE 802.15.4 protocol in the 2.4 GHz
frequency band.

A token passing protocol called Spin, available at [7], is
used to prevent wireless packet collisions while maintain-
ing low data collection latency. Each node is assigned an ID
number and programmed with a known order of transmis-
sion. When a node transmits, each node that receives the
transmission examines the sender identification number.
The receiving nodes check to see if it is their turn to
transmit, and if not, they wait for the next node to transmit.
If the next node does not transmit, or the packet is
corrupted, a timeout causes each receiver to move to the
next node in the schedule so that the cycle is not halted. A
base-station node that receives all broadcasts is used to
gather signal strength information and pass it to a laptop
computer for processing.

The experimental network is deployed in two areas, one
throughout the aisles of the University of Utah campus
bookstore, and one around the outer perimeter of part of a
house. Both environments are rich in multipath, and the
natural state of each of the environments was not modified
for our experiments. The data are collected from multiple
deployments so that the statistical analysis of changes in
signal strength remain untied to a particular environment.

In the bookstore deployment, nodes are placed on
shelves and stands at approximately human waist level.
Some links cross through multiple aisles, and some remain
in direct LOS. There are no walls that separate the nodes in
the network, but furniture such as book shelves, books,
tables, promotional displays, and other products provided
many obstructions. The layout of this deployment is shown
in Fig. 3.

In the house perimeter deployment, the network is
deployed in an area outside of a portion of a typical single-
family house. Three of the walls are external (constructed of
wood, insulation, and cement board siding), and one is
located on the interior of the house. The interior wall is
constructed of brick, wood, and plaster—before an addition
to the house, it was also an external wall. In this
deployment, the nodes are placed in a rectangular
perimeter, as depicted in Fig. 4. It is neither possible, nor
necessary, to place the nodes in a uniform spacing due to
building and property obstacles. Eight of the nodes are

placed on the inside of the building, but on the other side of
the brick interior wall.

RSS data are gathered as humans walk near and through
the networks. The location of each person is carefully
tracked by having each person step in a predetermined path
defined by markers placed on the ground. To keep each
person moving at a constant velocity, an audible metro-
nome is played over a speaker, allowing each person to step
to the next marking at the correct time. Using this
technique, millions of RSS measurements are gathered,
each measurement synchronized with knowledge of the
actual positions of each person.

Since our likelihood models are based on changes in
signal strength, a calibration process is used for each
deployment. During calibration, RSS measurements for
each link are taken while the network area is vacant of
people. The calibration mean for link l, which we denote �zl,
is set to the average of RSS measurements during this
calibration period.

2.3 Fading Information

People moving near a wireless link will cause changes in
RSS. This temporal variation is different from small-scale or
frequency selective fading that occurs due to relative
motion between the transmitter and receiver in multipath
environments. During motion of a transmitter or receiver,
the phase of all multipath components change as the path
length changes. In contrast, the presence of the person near
the wireless link affects only a subset of multipath
components in the link [2], [8].

When the channel is predominantly LOS, such as in an
open outdoor area, then a human crossing the LOS will
generally cause a drop in signal strength due to shadowing of
the LOS path. This phenomenon has been applied to image
the attenuation of humans within a wireless network [9].

When an environment is rich in multipath and heavily
obstructed, the presence of a human on the LOS of a link
causes less predictable changes in RSS. In different cases,
the link RSS may decrease, remain unchanged, or increase.
To take advantage of temporal changes in RSS on
obstructed links, regardless of the direction of the change,
variance-based radio tomographic imaging [2] may be
applied. The key weakness of VRTI, however, is that people
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Fig. 3. The layout of a 34-node bookstore deployment. Fig. 4. The layout of a 34-node through-wall wireless network
deployment.



must remain moving in order to result in measurable
temporal variation, and thus be able to be tracked.
Stationary people, or those that move very slowly, will
not be imaged.

Note that the steady state of narrowband fading on a
link, when there is no person near the link, plays an
important role in the statistics of the changes caused when
there is a person near the link. We define and describe
two extremes of the narrowband fading experienced by a
static link.

. Deep fade. A link that experiences deep multipath
fading (i.e., destructive multipath interference) with-
out the person present is more likely to experience a
high variance of RSS when a person enters the area.
Further, this link will, on average, measure an
increase in RSS due to the person’s presence.

. Antifade. On the other hand, a link that experiences
constructive multipath interference when the person
is not present, will vary significantly less due to the
person’s presence, and further, will measure, on
average, a decrease inRSS.Weuse the term“antifade”
to be the opposite of the common term “deep fade.”

These observations about temporal fading due to human
presence has been verified by simulation [10].

To illustrate this phenomenon from our measurement
observations, an example of how RSS varies over time for
two links of equivalent distance is shown in Fig. 5. Since the
path lengths are the same for the two links, one can observe
that the fade-level difference is 20 dB. We can consider
Link 1 to be in an antifade and Link 2 to be in a deep fade.
As a human walks through the LOS path of the two links,
the RSS changes. In the case where the link is in an antifade,
very little variance is experienced when the person is not
directly between the nodes. When the person crosses, the
RSS drops significantly since the link was previously
experiencing constructive multipath interference. Any
disruption to the phases or amplitudes of the multipath
would, therefore, bring the power down. In the deeply
faded link, the opposite is true; any disruption to the

multipath components of the link tends to bring the power
up. In Link 2 the RSS generally increases while the human
walks through the LOS, as seen in the figure.

We build a statistical model for changes in RSS due to
human presence as a function of the narrowband fading
level in Section 2.4.

2.4 Quantification of Fade Level

We now quantify the amount of fading occurring on a static
link by defining a “fade level.” In a wireless channel, the
ensemble mean P ðdÞ (dB) measured by the receiver is
dependent on the distance d from the transmitter

P ðdÞ ¼ PT ��0 � 10 np log10
d

�0

; ð2Þ

where PT is the transmitted power in dBm, np is the path
loss parameter, and �0 is the loss measured at a short
reference distance �0 from the transmitter. For more
information on the derivation of this equation and its
associated parameters, see [11].

In multipath environments, fading will cause a signifi-
cant deviation from the ensemble mean in (2). We quantify
the fade level as the difference between the path loss
prediction and the calibration mean �zl in dB for link l

Fl ¼ �zl � P ðdlÞ; ð3Þ

where Fl is the lth element of F and dl is the length of
link l. Assuming the locations of each node are known or
estimated in a wireless network, it is simple to calculate
the fade level for each link. Calibration provides the link
mean �zl, and the path loss model is applied to determine
P ðdlÞ, based on a known path loss parameter and reference
powers.

The path loss parameter can be estimated using calibra-
tion data. The average signal strength for each link �zl is
recorded during the calibration phase, and the distance of
each link is known since all node positions are known. A
least-squares linear fit is used to determine the parameters
of (2) that best fit the calibration mean data.

2.5 Measurement and Modeling Results

No current model exists for the statistics of temporal
variation on a wireless link as a function of the static fade
level. To obtain such a model, we bin each RSS measure-
ment according to its known fade level found during
calibration. Additionally, we separate RSS measurements
for when a person is located on the direct LOS path, versus
no person located on the direct LOS path. We then examine
histograms for each bin of fade level and LOS condition.
The distribution of RSS measurements when a person is on
the LOS for low fade levels is found to have a heavier tail in
the positive direction, while the distribution for high fade
levels has a negative skew. Histograms of the data are
shown in Fig. 6. For fading levels of �15 dBm and less, the
decay rate on the positive side of the skew-Laplacian is
much lower when a person is standing on the LOS path
than when a person is not on the LOS. On the other hand,
when the fade level is greater than 10 dBm, we see that tail
on the negative side of the distribution is longer. When the
person is not on the LOS path of the link, the variance of the
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Fig. 5. An example of how the RSS statistics for two links of equal
distance and in the same environment are drastically affected by the
fade level. Here, a human crosses through the LOS at t ¼ 52. Link 1 is in
an “antifade” while Link 2 is in a deep fade.



distribution is significantly lower. The evidence provided
by the data in these histograms supports our heuristic
argument that links already in a deep fade should rise in
power when disturbed, and links already in an antifade
should decrease in power when disturbed.

With the understanding that the skew of the RSS
distribution is dependent on the static fade level, a
nonsymmetric probability density function with both
positive and negative support is desired. The skew-Laplace
distribution meets these criteria, and fits the measurements
well as seen in the quantile-quantile plots of Fig. 6. The
distribution is defined as

fðs; a; b;  Þ ¼
ab

aþ b

e�að �sÞ; if s �  ;

e�bðs� Þ; if s >  ;

�

ð4Þ

where a and b represent one-sided decay rates of the
distribution for values less than or greater to the mode  .
For the purposes of DFL, the values of each parameter of
the skew-Laplace distribution are dependent on the fading
level of the static link and the position of the person with
respect to the link.

The RSS distributions shown in Fig. 6 represent the two
extreme fading cases. When a link is neither in a deep fade
nor an antifade, the parameters of the distribution will fall

between those of the extremes. In other words, the
parameters of the likelihood model are dependent on the
value of fade level. These parameters are approximately
linear with the fade level, and we use the least-squares
criteria to determine the line of best fit. The linear fit
equations are presented in Table 1.

The mode parameter  for varying fade levels is shown
in Fig. 7a. We see that when the person is off the LOS path,
the mode parameter is near zero for all values of the fade
level. When the person is located on the LOS path, a
piecewise-linear function can be used to approximate the
parameter for a given fade level.

The decay parameters for varying fade levels are shown
in Figs. 7b and 7c. All parameters can be approximated with
piecewise-linear functions of the fade level. We see that as
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Fig. 6. RSS measurement distributions for on/off LOS person positions. The histograms for links experiencing deep fades (fade level less than
�15 dBm) is shown in (a) and those experiencing antifades (fade level greater than 10 dBm) in (b). Quantile-Quantile plots for both cases are shown
in (c) and (d), where the x-axis represents the theoretical skew-Laplace quantile, and the y-axis represents the measured quantiles.

TABLE 1
Linear Parameter Fitting for the

Fade-Level Skew-Laplace Likelihood Model



the fade level increases, the decay parameters increase for

both the on and off LOS cases. In other words, links that

experience a deep fade have higher variance than those that

experience an antifade.
To summarize the model, the distribution of RSS

measurements is dependent on the existence of a person on

the LOS path, and on the static fade level of the link. The

values for each of the different cases are presented in Table 1.

The fade level, as discussed previously, can be computed by

deploying a network before any people have entered an area,

or by processing measurements over time.

3 APPLYING THE MODEL: TRACKING WITH

PARTICLE FILTERS

3.1 Particle Filtering Algorithm

There are many frameworks for estimating a posterior

distribution using likelihood models. Kalman filtering, in its

multiple forms, is by far the most common of these

algorithms. For our application, the particle filter is an

attractive form of posterior estimation, and a simple and

brief outline of the particle filter applied in this paper is

provided here. The derivation, theory, and variants of the

particle filter will not be covered, as this information is

widely available in the literature [12], [13], [14], [15].
There are a number of reasons why particle filtering is

attractive for DFL in RF sensor networks. First, particle

filters do not make any assumptions on linearity of the

measurement process or the dynamics of the state being

estimated. Since our likelihood models are dependent on

the existence of a person on the LOS path of each link, this is

an important flexibility. Furthermore, nonlinear models for

person movement can be incorporated directly into the

particle framework.
Second, unlike the Kalman filter, the particle filter does

not require the likelihood distributions to be Gaussian. This

is extremely important for applying our likelihood func-

tions, as they are well modeled as skew-Laplacian. Assum-

ing Gaussian distributions would be suboptimal, and may

introduce significant tracking error.
Finally, the particle filter is attractive for real-time

processing since incoming measurements can be used to

update the posterior estimation without storing a history of

previous measurements. As new measurements arrive, the

algorithm recursively predicts and updates its estimation in

a manner similar to that of the Kalman filter.
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Fig. 7. Parameter fitting for the fade-level skew-Laplace likelihood functions over a range of fade levels in dBm. Mode parameters are shown in (a).
Decay parameters when the person is located on the LOS path of the link are shown in (b). Decay parameters when the person is off the LOS path
are shown in (c).



The use of a particle filter for DFL is not without
disadvantages. The primary weakness of particle filters is
the computational complexity required to run the algo-
rithm. The particle filter naturally relies on a high number
of particles to achieve accurate results, at the expense of
computational resources. There are many forms of the
particle filter, including the auxiliary particle filter [13] and
the unscented particle filter [14], which aim to increase
efficiency and accuracy.

In this work, each particle represents a particular
hypothesized location coordinate of a person. Let x½k� be
the true location of the person at time k, and let the set
f~xi½k�gi be the set of particles that represent hypotheses of
person position. Let the set f ~wi½k�gi be the weights of each
particle at time k, let y½k� be the current difference in RSS
measurements for each link from the calibration data, and
let x̂½k� be the person location estimate. We use the
following sampling-importance-resampling (SIR) [12] par-
ticle filter to perform our experiments.

1. Measure. Receive new measurement vector z½k�
from each link in the network, then subtract the
calibration mean �z to obtain y½k�. Note that it is not
necessary to process every link measurement at each
period; a subset of measurements can be used.

2. Weight update. For each particle ~xi½k� and each link
RSS measurement, use the measurement vector y½k�
to determine the updated weights.

. Determine skew-Laplace parameters al; bl; and
�l for each link given the current particle ~xi½k�
using Table 1. These are stored in M � 1 vectors
a;b, and �.

. For each link, determine pðyl½k�j~x
i½k�Þ using the

fade-level skew-Laplace likelihood model. Thus,

pðyl½k�j~x
i½k�Þ ¼ fðyl; al; bl;  lÞ; ð5Þ

where yl½k� is the lth element of y½k�, and al; bl,
and  l are the lth elements of each parameter
vector determined in the previous step. Update
weights with

wi½k� ¼ wi½k� 1�pðyl½k�j~x
i½k�Þ; ð6Þ

and normalize with

wi½k� ¼ wi½k�

�

X

j

wj½k�: ð7Þ

3. Resample. Particles with heavy weights are repro-
duced, particles with very low weights are elimi-
nated. We use the algorithm described in [12] to
perform this task.

4. Move the particles. Apply a Markov transition
kernel to each particle. In our experiments, we use
the Metropolis-Hastings algorithm [16].

5. Estimate. Average the particles to obtain the mean of
the posterior distribution as the current state estimate.

In this algorithm, we assume that the particle filter
proposal distribution qðx½k�jx½k� 1�;y½k�Þ is equal to the
Markov transition pðx½k�jx½k� 1�Þ, which leads to the very

simple weight update step. While this assumption makes
for easy implementation, the efficiency of the particle filter
is drastically reduced, since the current measurement is not
used to propose new particle positions. The development
and application of more efficient DFL particle filter designs
is a topic for future research.

3.2 Overview of Tracking Experiments and Results

This section presents the results of tracking experiments
utilizing the fade-level skew-Laplace likelihood models
and particle filtering. We use the same experiment data as
described in Section 2.2, which includes two deployments
in drastically different environments: a bookstore and a
through-wall house. For each experiment, we use the same
parameters presented in Table 1. The fact that tracking is
effective in both environments with no changes in
parameters is a testament to the robustness of the skew-
Laplace model.

We tested all of our tracking experiments using a fade-
level Gaussian model to show the necessity of the fade-level
skew-Laplace model. In a process equivalent to that
discussed in Section 2, we determined the mean and
variance of the changes in RSS for each fade level and
LOS position. We then tested the tracking using a Gaussian
distribution. The Gaussian model was completely unusable,
as it was not able to converge or track in any of our
experiments. In fact, it seemed to have a diverging effect
where particles wanted to “push away” from the true
location of the person. The poor results for the Gaussian
model are evident in Fig. 8.

In all experiments presented in the following sections, a
calibration of RSS was taken while each surveillance area
was vacant. The calibration stage lasted for approximately
30 seconds. The calibration RSS measurements are aver-
aged to determine �z and the fade-level vector F, as shown
in Fig. 1. Additionally, particles are constrained to only
the tracking area inside the area of interest. There is no
use in proposing particles beyond the area of interest, as it
will lead to wasted computational resources and addi-
tional error.
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Fig. 8. Estimated positions of a human walking along a known path using
a Gaussian model. The filter diverges and is unable to track the location
of a person using a Guassian model.



3.3 Results for Stationary Person Tracking through
Walls

A key benefit of the proposed models and algorithms is the
ability to locate stationary people behind walls. VRTI
tracking systems [2] are unable to locate stationary people,
since the algorithms rely on the variance caused by motion.
Here, the particle filter is able to locate stationary people as
long as calibration means are available.

The convergence of the particle filter around a person’s
location is illustrated in Fig. 9. We define an iteration of the
particle filter as the processing of a single link measure-
ment. After 150 iterations of the filter, particles along a
particular narrow area survive, while other areas are
eliminated. This is because a particular link is reporting a
statistically significant change in RSS, and the particle filter
narrows its search to areas near that particular LOS. In this
case, after 300 iterations, the particle filter has completely
converged around the person’s position.

To determine the accuracy of the statistical method for
tracking stationary objects through walls, 20 trials were

performed. In each trial, a human stood completely
motionless at a different known location on the interior of
the surveillance area. The known and estimated positions
are shown in Fig. 10. The average error over the 20 trials
was 0.83 meters.

3.4 Results for Tracking Moving People

To test the accuracy of our model for tracking moving
people, a human moves at a typical walking pace
(approximately one meter per second) along a defined path
in each of the deployments. The person’s actual location is
determined as described in Section 2.2, then compared with
the particle filter estimation.

The fade-level skew-Laplace model and particle filter
accurately tracks the location of a moving person in the
bookstore environment. The average tracking error for
the bookstore deployment was 0.58 and 0.9 meters for the
through-wall experiment. Both of these results were pro-
duced using a filter with 100 particles. Example of typical
tracking paths are provided in Figs. 11 and 12.

The cumulative error distribution functions for both
experiments are shown in Fig. 13. The results show that
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Fig. 9. The convergence of the particle filter over time. After 150 iterations (a), the filter has determined that the person is located along a particular
LOS path. After 300 iterations (b), the filter has completely converged around the location of the person.

Fig. 10. Estimated positions of a stationary person at different positions.
The estimated position was taken after 3,000 iterations (approximately
3 seconds in time) of a particle filter with 200 particles. The average
error for this experiment was 0.83 meters.

Fig. 11. Estimated positions of a human walking along a known path in a
bookstore. Here, the particle filter uses 100 particles and tracks with an
average error of 0.58 meters.



with 100 particles, 90 percent of the tracking estimates are

accurate to less than 0.9 meters for the bookstore and less

than 1.6 meters for the through-wall experiment.

3.5 Results for Tracking Two People

Tracking multiple people is possible with the skew-Laplace

model. In our algorithms, we do not modify the parameters

provided in Table 1 even if multiple targets exist on the

same LOS path of a link simultaneously. While this is a

simplifying assumption, the model in its current form is

capable of tracking more than one person. We should note

that we did not test the limits of how many targets can

be tracked using our model. Future work will extend the

model to explicitly handle multiple targets in various

configurations to obtain higher accuracy and quantify the

limits of the associated model.
One challenge with tracking multiple targets is the

association of trajectories to each person. When two or

more people are moving close together, the particle filter

may confuse each trajectory and swap them. This challenge
is present in all tracking algorithms, and can be addressed
using more accurate methods and assumptions regarding
the motion dynamics of the state space. Since this paper is
more concerned with the model itself, we do not present
any new techniques for addressing this challenge. For our
error analysis, we use the global minimum distance
estimate for each person to avoid errors that may occur
due to trajectory swapping.

In the bookstore environment, the system was able to
track twomoving peoplewith an average error of 0.84meters
with 200 particles. For the through-wall experiment, the
average error was 1.1 meters using the same number of
particles. Since the state space increases dramatically with
more targets, more particles are required to maintain
approximately the same average error. The tracking error
CDFs for both environments is shown in Fig. 14. Plots of the
particle clouds with their accompanying target locations are
provided for each environment in Fig. 15.

4 RELATED WORK

Various sensor technologies can be used for the purposes of
DFL [1]. The most common form of a DFL sensor is the
optical camera. Infrared and thermal cameras are also
increasingly common in military and security applications.
While these technologies are certainly valuable, visible light
cameras depend on an external source of light. Further-
more, optical, thermal, and infrared sensors are hindered by
opaque or insulating obstructions.

There is an advantage to using radio frequency sensors
to infer people’s locations instead of optical, thermal, and
infrared sensors. RF waves have the ability to penetrate
obstructions like walls, trees, and smoke. Thus, DFL
systems that use RF sensors (RF-DFL) are capable of
locating people through walls, in poor-sight outdoor
environments, or in a smoke-filled buildings. These
capabilities have obvious value for military organizations,
police forces, and firefighter and rescue operations.
Furthermore, RF-DFL systems often do not have the ability
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Fig. 12. Estimated positions of a human walking along a known path
within the walls of a home. Here, the particle filter uses 100 particles and
tracks with an average error of 0.9 meters.

Fig. 13. The cumulative error distribution for tracking a moving person in
both the bookstore and through-wall experiments. Here, 100 particles
were used in the filter.

Fig. 14. The cumulative error distribution for tracking two people in both
the bookstore and through-wall experiments. Here, 200 particles were
used in the filter in both cases.



to identify people or get detailed information about the
people’s actions. In some applications this may be a
limitation, but in others the additional preservation of
privacy compared to camera surveillance may be desirable.
The most common and widely used form of RF-DFL is
ultrawideband (UWB) radar [17], [18]. UWB systems work
by producing a very fast pulse of RF energy and recording
the amplitudes, time delays, and phases of the reflections
caused by objects and people in the vicinity. Some UWB
systems are monostatic, meaning the transmitter and
receiver are incorporated into a single device. Others are
multistatic, where a single pulse transmission may be
received by multiple devices deployed throughout an area.

Recently, researchers have begun to study and develop
DFL systems that use the received signal strength (RSS-
DFL) of links in narrowband RF sensor networks. The
advantage to this approach lies in the fact that RF sensors
capable of measuring signal strengths are ubiquitous and
inexpensive. The cost of each node is orders of magnitude
lower than a UWB device, so deploying a network with tens
or hundreds of nodes is financially feasible in many
applications. Furthermore, RSS measurements can be
obtained from off-the-shelf devices like wireless routers,
access points, wireless sensor modules, and cell phones.

One approach to RSS-DFL in wireless networks is to use
RSS fingerprinting, or radio maps [3]. In this approach, the
system is trained by a person standing at many predefined
positions, and RSS measurements are recorded while the
person stands at each location. When the system is in use,
RSS measurements are compared with the training data,
and the closest matching position is selected. The accuracy
can be further refined by combining multiple best matching
positions and using an appropriate interpolation [4].

The strength of the RSS fingerprinting approach is that
the variations in RSS caused by the person in the multipath
environment are an advantage. Each human position will
lead to very different vector of RSS measurements, making
it easier to detect the location. The weakness of such a
system is the need for manual training and maintenance.
Measurements must be taken offline, and changes to the

environment such as doors opening or moved furniture will
corrupt the training. Furthermore, the training becomes
exponentially difficult for localization of multiple people.

Zhang et al. [5] present an algorithm which directly
estimates a human’s position from RSS measurements. In
this work, when a link measures RSS variation above a
threshold, it is assumed that the person is located within a
rectangle centered at the midpoint of the line between the
transmitter and receiver. A “best cover algorithm” then
estimates the person’s position, which is input into a
tracking filter. This work was extended in [6] to use a
clustering algorithm for multiobject tracking.

One approach to DFL is to estimate an image of the
change in environment. This image can then be used to
infer the motion and activity within the environment, either
by a human operator, or by an image processing algorithm.
Image estimation from measurements along different
spatial filters through a medium is generally referred to as
tomographic image reconstruction. For RF sensors, this is
termed radio tomographic imaging (RTI) [19], [9], [20], [2].
In [9], the attenuation in dB caused by each voxel in the
environment is imaged using measurements of RSS for each
link in a dense wireless network. This technique can be
referred to as shadowing-based RTI, since the measure-
ments effectively measure shadowing loss, and the image
estimates are shown to accurately display the location one
or two people in the deployment area [9]. The linear model
for shadowing loss is based on correlated shadowing
models [21], [19].

Another modality of RTI is termed variance-based RTI,
in which the windowed variance of RSS on each link is used
as the measurement, and the estimated image represents a
quantification of the motion within each voxel. Experi-
mental tests reported in [2] show that variance-based RTI
can image the motion occurring inside a house, when
sensors are placed only outside of its external walls. In the
case of imaging motion through building walls, we can
have the problem that the multipath which travel around
the building can be stronger than the power in paths which
traveled through the building. Analytical results in [2]
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Fig. 15. Plots showing particle clouds and a history of tracking paths for two people moving within the network. The true paths were: (a) one person
traveled from (1.0, 9.0) to (4.0, 9.0) to (4.0, 3.0), and the second person traveled from (3.0, 0.0) to (3.0, 2.5) to (0.5, 2.5) to (0.5, 0) to the original
starting point; (b) one person traveled from (5.8, 3.0) to (5.8, 7.1), and the second person traveled from (1.8, 3.0) to (1.8, 7.1).



suggest that the change in variance can be detected even
when the power in the affected multipath is 10 dB less than
the multipath which do not go through the building.

5 CONCLUSION

Previous work in the field of RSS-based DFL shows that it is
possible to locate humans using only RSS measurements,
even through walls. In particular, RTI provides a method
for RSS-DFL that does not require exhaustive training
information. Previous work in model-based RSS-DFL has
been unable to locate stationary or slowly moving people in
highly obstructed areas. This paper provides a statistical
model and inversion method that can be applied to locate
stationary as well as moving people. It can also be applied
to track multiple people behind walls and in complex
indoor environments, an extension that has not been
presented in previous work.

The amount of fading on a static link is an important
factor in determining the distribution of RSS when a person
enters the area near the link. If the link is already in a deep
fade, the disturbance a person causes to the multipath will
tend to increase the RSS. Links in deep fades also exhibit
more variance, since even slight changes to multipath
components can bring the link out of the fade. Links that
experience antifades, however, exhibit the opposite beha-
vior. Changes to the environment due to human presence
tend to bring signal power down, and variances are
significantly lower.

The skew-Laplace distribution is a reasonable representa-
tion for the temporal changes in RSS measurements. The
mode and decay parameters of the distribution are depen-
dent on the fade level of the link as well as the person’s
position. When a person is on the LOS path of the link, RSS
fluctuations are significantly larger than when the person is
away from the LOS. Each parameter, for both the LOS and
off-LOS cases, is seen to be linear with the fade level.

Experiments using a particle filter and the fade-level
skew-Laplace likelihood models demonstrate the method’s
effectiveness in locating stationary and moving people
behind walls. Previous work in through-wall VRTI in
wireless networks was unable to locate stationary objects.
The model is also robust to multiple people moving. Our
experiments show that multiple moving people can be
tracked without modification to the model or its parameters.

Multiple opportunities for improvement exist. First,
other methods, besides the fade-level skew-Laplace model,
certainly exist, some of which may provide a better
statistical divergence for varying human and object posi-
tions. A model that has higher contrast for the on-LOS
distributions versus the off-LOS distributions will lead to
more accurate DFL tracking. Next, improved particle
filtering methods will likely result in more accurate
tracking. Finally, a model that explicitly accounts for
the effects of multiple people needs to be investigated. As
many people enter the area near a wireless link, interactions
of the people with the multipath components become more
complex. The RSS measurement statistics of such a scenario
need to be modeled, quantified, and then applied in an
estimation framework like the particle filter.
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