
LIDS-P-1099
- June, 1981

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-29, NO. 5, MAY 1981 689

A Failsafe Distributed Protocol for
)f Minimum Delay Routing

e

h ADRIAN SEGALL, SENIOR MEMBER, IEEE, AND MOSHE SIDI, STUDENT MEMBER, IEEE

d

y
ir

Sn Abstract-Previous distributed routing protocols in data-commu- whose extension to incorporate topological changes is treated
n nication networks that achieve minimum average delay are extended in the present paper. The resulting protocol possesses the fol-

to take into consideration topological changes in the network. lowing features:

ah 1) distributed computation
n I. INTRODUCTION 2) loop-free routing for each destination is maintained in
.e the network at all timesf TN two recent papers [1]; [2], routing protocols have been the network at all times

1 .proposed for data networks using message and virtual line 3) adaptivity to slow load changes
switching, respectively. The main features of these protocols 4) for stationary input traffic and fixed topology, the
are: distributed computation, loop-free routing for each destin- protocol reduces network delay during each cycle and mini-
ation, adaptivity to load changes, and minimum average delay mum average delay is obtained in steady state

e in steady state. The propagation of the protocols presented in 5) after arbitrary number, location and sequence of topo-

n [1], [2] is based on control messages received by nodes from logical changes, the network recovers in finite time in the sense
'f certain neighbors and, as such, relies critically on the assump- of providing routing paths between all connected nodes (in ad-

tion that the topology of the network is fixed.. On the other dition, nodes that are not affected by the topological change

tr hand, practical networks contain components (nodes, links, continue the algorithm and adapt to the new load pattern in a
e f etc.) that are not perfectly reliable and also, in a distributed smooth way).

network, various nodes may join the network at different This last property is very important because it allows thenetwork, various nodes may join the network at different

:s times. It is therefore essential to provide protocol extensions network to continue to function normally except for the part
that will take into consideration topological changes (failures that is directly affected by the failure. Another important fea-
and recoveries of links and nodes) occuring at arbitrary loca- ture of the protocol is that if all routes currently maintained
tions and in an arbitrary sequence in the network. This is between a given pair of nodes are destroyed, new routes-not
exactly the purpose of this paper, but because of space limita-e best-will be found within a short time, allow-
tions, we shall present here explicitly only-the extension to the ing data transmission. The routes will then be improved as the
protocol of [2] and refer the reader to [41 for a similar ex- protocolevolves.
tension to the protocol of [11. II. THE PROTOCOL

The current work is a natural outgrowth of the protocol in-
troduced in [3], where topological changes were treated for The protocol of [2] (referred to as the "basic protocol" for
the situation when a single path is maintained at any given the rest of this paper) evolves independently from destination
time from each node to each destination. This dynamically to destination while updating the routes from all nodes to a
changing single path can be used in a variety of ways for data destination. The extended protocol has the same property and,
routing and several possibilities have been suggested in [3], the for the rest of this paper, we shall therefore consider only the
main idea being that alternate routing (i.e., traffic split) offers protocol that corresponds to a given destination. In this sec-
better performance than fixed routing. The exact fractions for tion we summarize briefly the basic protocol and then indicate
splitting the traffic to optimize some general criterion can be its extensions that take into account topological changes.
obtained, however, only if one maintains at all times all pos-

A. Suhmary of the Basic Protocol [2]
sible "good" routes from each node to each destination. This
is possible in a distributed way with the protocols of [1], [2], The basic protocol is implemented by a sequence of cycles,

each started by and terminated at the destination node and
each improving the network average delay (provided that the

Paper approved by the Editor for Computer Communication of step size of the algorithm, denoted by r7, is appropriately
the IEEE Communications Society for publication without oral pre-
sentation. Manuscript received March 27, 1980; revised October 27, chosen [2, Theorem3]). The terminology upstream, down-
1980. The work performed by A. Segall was performed on a consulting stream, sons, and loops regarding the flow of data from all
agreement with the Laboratory for Information and Decision Systems, nodes to the destination is the same as in 2: node k is said
Massachusetts Institute of Technology, Cambridge, MA, and was sup-nodes t the ithe e k
ported in part by the Advanced Research Project Agency, U.S. Depart- to be the son of node i if either node i sends traffic to k or
ment of Defense (monitored by ONR) under Contract N00015-74- node i has no traffic to the destination, but holds link (i, k) as
C-1183, and by the Office of Naval Research under Contract ONR/ the direction in which it would send possible future incoming
N00014-77-C-0532.

The authors are with the Department of Electrical Engineering, traffic. If there is a sequence of nodes i1 ,i 2, '", im such that
Technion-Israel Institute of Technology, Haifa, Israel. ir is the son of ir for r = 1, 2, ---,(m - 1), then we say that

0090-6778/81/0500-0689$00.75 © 1981 IEEE

690 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-29, NO. 5, MAY 1981

i1 is upstream from im, and im is downstream from i i . The afterwards. A cycle is completed when the destination node
basic protocol summarized here assures that the flow of data receives control messages from all itsneighbors (at this time,
from all nodes to. the destination is loop-free, meaning that the destination goes back to state Si).
there are no two nodes in the network that are each upstream
from each other. B. Extended Protocol to Handle Topological Changes

Basically, each cycle of the basic protocol consists of two
phases: 1) control messages propagate upstream from each The extended protocol. assumes the existence of a local
destination, while updating the incremental delay coefficients protocol that allows the nodes at both ends of a link to
{XiJ and the blocking status of each node in the network; 2) sense its failure or recovery in finite time after the occurence
control messages propagate downstream towards the destina- 'of the change, but not necessarily at the same time at both
tion while performing routing changes. Control messages ex- ends. The assumption is that a link that fails cannot come up
changed between neighbors (for each destination) contain the before both ends sense the failure.. Also, failure or recovery of a.
incremental delay coefficient X and the blocking status of the node can be considered as failure or recovery of all adjacent
sender. links, and therefore needs no special attention.

The concept of blocking was first introduced in [1] and The first extension to the basic protocol is to number con-
was designed to prevent formation of loops: although nodes secutive cycles (corresponding to a given destination) with
with high incremental delays X should normally send traffic nondecreasing numbers. The cycle number is determined by
to nodes with low incremental delays, it may happen that be- the destination aild is carried by all control messages berong-
cause of the step size r of the algorithm, in certain instances ing to the cycle (this ihi addition to the incremental delay co-
the opposite is true, namely, node k is a son of node i, but efficient Xi and the bloCking status).
Xk(j) < Xk(i) [2, Eq. (8a)] [here X/(j) is the incremental delay In the extended protocol, a node i participates only in the
at node i for destination /] and there is danger of generating a cycle with the highest number currently known to it. This
loop in the next cycle. Consequently, if, because of the con- number is den6ted by mixj. Except for messages indicating
straints on the step size 77, node i is not sure that it can re- path disconnection caused by failures, all' messages with
route all the flow on link (i, k) in one step, i.e., if fr[Xk() + cycle numbers strictly lower than mnxi are disregarded. A
Dik' - Xl (j)1 < fik() [2, Eq. (8b)], then i declares itself node i participates in phase 1) of a cycle after receiving con-
blocked and so do all nodes upstream from it [in the above trol messages with cycle number mxi from all its curtent sons
equation, fk(i) is the flow from i to k destined for i and (12).l Similarly, after receiving control messages with nmx
Di= (dD/kldfik), where Dik is the average delay per unit from all its current neighbors (40), the node perfdhims its part
time of traffic from i to k]. The protocol requires that if node of phase 2). Whenever a cycle is properly completed, as in the
k is blocked and was not a son of node i during the previous basic protocol, the destination can start a new cycle with the
cycle, then it is not allowed to become its son during the cur- same number as the previous cycle. However, a topological
rent cycle. The proof that blocking prevents loops appears in change mAy interfere with the normal evolution ind proper
[2]. completion, of a cycie and therefore a cycle with a higher

An arbitrary node i participates in phase 1) of the protocol number will have to be started with the purpose of propagating
when it receives control messages from all its sons. For the the new situation throughout the'network. As suich, when a
purpose of this paper we shall say that the node goes then failure or recovery happeri, the destination will have to be in-
from an idle state Si to a waiting state S2. At that time, it formed (in a distributed way) not to wait for the completion
updates its incremental delay coefficient X and its blocking of the currefit tycle and to immediately start a cycle with a
status [2, Eq. (8)], and sends the updated quantities to all higher number (if such a cycle has not been staftda already).
neighbors except for its sons. The node will then wait in state In addition, when a failure on a link carrying flbw occurs,
S2 until it receives control messages from all neighbors. At this several other actions will have to be taken in the network:
time it performs its part of phase 2) of the protocol by send- the node immediately upstream from the failure has to redis-
ing control messages to all sons, performing routing changes tribute traffic and to realize that it should not wait for con-
[2, Eqs. (11), (12)1 and going back to the idle state S1 in order trol messages on this link; if the node immediately upstream
to wait for the next cycle. The change in routing is performed has no bther sons~ this node, and possibly other nodes up-
at node i by choosing a specific neighbor as a "preferred son" stream, have to take into consideration that they lose all their

ko0 (i, i) for -this cycle (for destination i), increasing flow on current paths to the destination. Although the described situa-
the link to this neighbor and decreasing flow on links to all tions look similar to the ones appearing in [3, the fact that
other sons. The "preferred son" kon(i,I) is chosen as the node each node maintains several paths gives a new dimension to the
that minimizes the incrementail delay [X,h + Dim'] among all problem and, in the following paragraphs, we describe the ac- S

neighbors mn except those that are both blocked and nonsons tions taken by nodes in each of these situations, mainly em-
of i [2, Eqs. (9), (13)]. phasizing our approach to the solution of the new problems.

The destination node triggers each cycle by sending control As in [3], the protocol for notifying the destination about
messages (containing X = 0) to all neighbors while going from the occurence of a topological change is implemented by re-
state Si to S2. A new cycle might be triggered immediately
after the completion of the previous cycle or at any time I This refers to the corresponding line in the Appendix. h

SEGALL AND SIDI: MINIMUM DELAY ROUTING 691

quest messages REQ generated by nodes adjacent to the change,
carrying the number of the last cycle handled by this node (3,
6) and forwarded towards the destination.2 The new prob-
lem arising here is to which son should the REQ message be
sent by a node generating or receiving such a message. It
turns out that it cannot be sent arbitrarily because then it

may loop around and in fact, never arrive. The algorithm pro- Fig. 1. Example of situation 3).
posed by us, and that can be proven to have the desired prop-

,~ erties (see Property 3 in Section III), is the following. node i receives a message from son I with XI = o, thus indi-

1) A node i that has a "preferred son" kon(i, j)7as defined cating that node I has lost all its paths to the destination. In
in Section II-A, forwards REQ to ko0 (i, j) (11 a). this case, node i redistributes the traffic previously routed

2) A node i for which the link to kon(i, j) has previously through I in some arbitrary way as discussed later. A careful

t failed, but has links to other sons, sends REQ to any one of screening of the algorithm shows us, however, that in some
these sons (20, (1 la). situations further actions are required in order to prevent oc-

3) A node i without sons (because of previous failures) curence of loops and deadlocks. To illustrate the problem, let

l discards the REQ message (11 a). us consider Fig. 1 where arrows indicate flow of data (to some
Next we discuss the handling of link failures in the net- destination j) and the dashed line indicates a link that carries

work. Here we have to distinguish between three typical no flow to this destination. With the notations used in Sec-
cases: 1) failure of a link to a neighbor that is not a son, 2) tion II-A, suppose that X1(j) = 8, X2 (j)= 5, X3 (j) = 3, X40() =

node I is the only son of i and either the connecting link (i, 12, 7 = 0.01, D2 4 ' = 5, and f2 4(j) = 0.1. Observe that X2(i) <

e I) fails, or i is informed that I has lost all its known paths to X4(j), but r [X4 (j) + D2 4 ' - X2 0)] >f 2 4(j), and, as described
s the destination, 3) same as case 2) except that I is not the only in Section II-A, this implies that node 2 and consequently
g son of i. In all cases, when a failure is detected on an adjacent node 1 do not declare themselves blocked. The reason is that

link, the corresponding node is deleted from the list of neigh- node 2 knows that while performing phase 2) of the cycle, it
bors and, if appropriate, from the list of sons. In case 1) the will reroute all traffic from (2, 4) to (2, 3). Now, suppose link
needed actions are similar to the ones in [3] and of secondary (2, 3) fails before the rerouting occurs, i.e., while node 2 is still
importance anyway so that no detailed description will be in state S2. Then the previously mentioned rerouting cannot
given here. The main actions taken in case 2) are also similar take place, but when node 4 will perform the transition from

.t to the ones in [3]: entering a "waiting for recovery state" S3, S2 to S1 it may open a new line on link (4, 1) because X4(j) >
e setting the estimated incremental delay coefficient Xi to oo Xl(j) (see also [2, Eqs. (9)-(12)1), thereby forming a loop.
e and sending control messages containing Xi = oo to all neigh- This situation must be prevented and our solution is to define
d bors except 1, thereby propagating the appropriate informa- a new state S2, entered by a node in S2 whenever it senses the

tion to all nodes that have lost their only path to the destina- failure of a link to a son that is not its only son or whenever it
tion. However, there is a new problem arising here in con- receives a message with X = oo on such a link (63). In state S2,

g nection with the procedure for recovery for these nodes, the node freezes all its operations until it hears about a new

a namely, reestablishing new routes to the destination, provided cycle.
that such routes exist. In principle, this should be done, as in Clearly, in addition to the above operations, each node that

n [3], whenever a node i in state S3 receives, from some node has lost one of its sons should stop the flow to that son, re-
a 1, say, a control message with X - oo and counter number distribute it among its remaining sons, if it still has any, and

strictly higher than currently known to i. The recovery consists modify its routing variables correspondingly. Observe that the
of choosing this node as the new son and executing at the redistribution is arbitrary, for the purpose of this paper, since
same time phase 1) of the new cycle. However, the question later cycles will improve the routing until the new optimum is
arises now what to do if it happens that node I is blocked. As reached. The question of how to redistribute the traffic in
previously described in Section II-A, in order to prevent for- order to ensure fast convergence is still an open question.

n mation of loops, the basic algorithm does not allow to choose Another open question is the disposal of the flow if the node
) a new son from among blocked neighbors. On the other hand, is left with no route to the destination after the failure. In

ir one cannot simply disregard the message received from I and this case, we may assume that it stores the flow until it estab-
wait for another message because the latter may never come. lishes a new route or, alternatively, it rejects the flow, in which
The solution we have found is to choose node I as the new son case there must exist a procedure that allows the originating

· e I in this case, in spite of the fact that the node is blocked; we node to reroute the flow.
show in Section III (see Property 1), that this choice is indeed The procedures for adding links that become operational

. possible because we can still insure that a loop is not formed. and for initialization of the protocol are similar to [3]. In
We finally discuss situation 3), when node i has more than short, the nodes at the ends of a link that is ready to be added

it one son and either the link to one of the sons 1, say, fails or to the network have to coordinate their operations for bring-
ing the link up. The coordination is achieved by having both

2 Recall that the protocol is described for a given destination, and nodes bring the link up as soon as they start to perform their
has to be repeated independently for all destinations. part of the same new cycle. The initialization is performed by

692 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-29, NO. 5, MAY 1981

requiring that a new node i starts its operation in state S3 with Property 2 (Normal Operation)
node counter number equals to zero and empty lists of sons If a cycle with counter number m is started by the destina-
and neighbors. From this initial condition, a local protocol tion, then, within finite time, this cycle will be properly cornm-
tries to bring the links up and the node proceeds as indicated pleted or a topological change has occurred next to a node
in the extended protocol. The destination node comes into with counter number equal to m. Upon completion of this
operation in state Si with counter number zero and an empty cycle and until such a change occurs, the set of all nodes i
list of neighbors, and then it proceeds as previously described. potentially connected to the destination remains constant

and their directed graph RG(t) will be rooted at the destina-
III. PROPERTIES OF THE PROTOCOL tion. In addition, for small enough step size a, the cycle will

strictly decrease the average delay in the network.
In this section the important properties of the protocol are

stated explicitly. To save space, formal proofs are not given Property 3 (Recovery)
here, and the interested reader can find them in [4]. To pro- If a topological change of order m occurs, a new cycle
ceed, we need the following definition. At a given instant t,number m + 1 will be, or has been, started. As
the routing graph RG(t) is defined as the directed graph whose pointed out, this property is guaranteed by the REQ messages.
nodes are the network nodes and there is an arc from node i to Under the reasonable assumption that the average frequency
node I in RG(t) if and only if I is a son of i at time t. of topological changes is not too high in comparison with the

In the following, we use ni(t) and slt) to denote the node propagation time of the cycles, Property 2 and Property 3
counter number (the number of the cycle handled by i) and guarantee recovery. The properties insure that cycles with
the state of node i at time t, respectively. We also use the ever increasing numbers will be triggered until a cycle is
notation pi(t) for the "preferred son" kon(i, 1) of node i at properly completed and all previous topological changes will
time t. have-been taken care of. Finally, we state the optimality prop-

Property I (Loop Freedom) erty.

At any time, RG(t) is an acyclic graph (contains no loops) Property 4 (Optimality} [2, Theorem 5]
with the following properties: 1) only the destination and If there is a time t after which no topological changes oc-
nodes in S3 have no sons; 2) if I is a son of i at time t, then cur, and if the inputs into the network are stationary, then for
nl(t) > ne(t); 3) if I is a son of i at time t, and nl(t) = ni(t), small enough step size r7, the average delay in the network will
then sl(t) > si(t) (by definition S3 > S2= S2i > SI and it is be brought to its minimum value over all routing assignments.
agreed that Sx > Sy means that Sx > Sy or Sx = Sy); 4) if
pi(t) 0 NIL and np,(t) = ni(t) and Spi(t) = st(t) = S1, then IV. DISCUSSION

p(t) < hi(t) . The protocol indicated in this paper extends the ones of
To see why the loop-freedom property is guaranteed, no- [1], [2] to the case when arbitrary topological changes

tice that a loop might be generated only when a new son is happen in the network. The important features of this protocol
chosen, i.e., when transition from S2 to SI or from S3 to S2 are that it adapts to both slow load changes and topological
happens. By induction, assume that the properties 2)-4) in- changes, and the adaptivity to the'new load pattern is smooth
dicated above hold up to the time of the transition. The proof for nodes that are not affected by topological changes. We
that a transition from S2 to SI does not close a loop is similar have presented here, explicitly, only the case of virtual line-
to the proof of [2, Theorem 2] and will not be repeated here. switching networks. In a message switched network, the
Consider now the case of a transition from S3 to S2, namely, quantities to be controlled are the fractions of traffic routed
when a node i without sons chooses a neighbor 1 as its son. over each outgoing link rather than the flows themselves [l]
Observe that by 2) above, at the time just before the transition, and the extension of this protocol to handle topological
the counter number of all nodes k that are upstream from i are changes is quite similar the one presented here. The de-
not greater than ni. However, node i can perform this transi- tails appear in [4].
tion only if it received from I a message with cycle number
strictly higher than ni, which implies nl > ni. Therefore, I can- APPENDIX
not be upstream from i and hence choosing I as the new son
cannot close a loop. Observe that this argument holds whether
node 1 is blocked or not. In order to complete the proof, we Here we give, formally; the algorithm performed by each
only have to show that the indicated properties continue to node i in the network to implement the protocol.
hold after the transition. This will be omitted here and the
interested reader is referred to [4]. finitions of Variables

Next, we indicate the recovery properties of the protocol. N number of nodes in the network
As in [31, we say that a link is potentially working if both i node under consideration
ends see the link as capable of carrying traffic, and say that I the Ith neighbor of node i (values: 1, 2, ---, N)
two nodes are potentially connected if there is a series of po- r/ a parameter (see Property 4)
tentially working links connecting them. ni current counter number of node i (values: 0, 1, 2,)

-------- ~--~--`~~-` --- ~ ---ni-~-

SEGALL AND SIDI: MINIMUM DELAY ROUTING 693
(1981

Xi estimated marginal delay from node i to the destina- Ri(l) -status of-neighbor I (values: NIL, SON); SON means
tion (values: 1,2, , oo) node I is a son of i

;stina- bi blocking status of node i (values: 0, 1); 0 means not Zi(l) a synchronization number indicating the cycle num-
corn- blocked; 1 means blocked ber upon which the link (i, 1) can be brought up, i.e.,
node Pi preferred son of node i (values: NIL, 1,2, "', N). changed from READY status to UP status (values: 0,

ff this 1,2, ---)
The processor at node i may receive the following types of 1,2,

odes tn messages related to each link (i, 1) mxi the largest number m received by node i up to the
nstant current time from all neighbors (values: 0, 1, 2, -)
-stina- MSG (m, X, b, 0 updating message received by i from 1: fik flow from node i to node k addressed to the destina-
IC will (m = nt, X = Xi, b = bl) tion

FAIL (1) failure detected on link (i, I) CT a flag indicating the number of transitions the finite-
WAKE (1) link (i, 1) becomes operational, i.e., state machine has already performed, triggered by

messages can be sent through it the current message. (values: (0, 1); 0 means zero
cycle REQ (m) request for a new cycle: (m = 0, 1,---) transitions; 1 means one or more transitions)

Wd. As Txy transition from state Sx to state Sy; it is performed
We now continue the list of variables:sages. if the appropriate condition holds, and then the

MuenCY Fi(l) status of link (i, 1) as seen from node i (values: uP, steps under the corresponding action are executed.
th the . DOWN, READY); UP means the link is operational; Cx changing the node tables while being in state Sx;
erty 3 DOWN means the link is unoperational; READY condition and action have similar meanings as above.
iwith ? means the link is ready to be brought upil is* In the formal description that follows, we will need to refer
fuce is Ni() the number m received from neighbor I during the
eill ue from time to time to certain sets of neighbors. To save space,es will current cycle (values: NIL , 1, ')

we define those sets here:
prop- Dit' estimated (or calculated) marginal delay on link (i, 1)

(values: 0, 1, 2, '") Ci = {k IRi(k) = SON or [Fi(k) = uP
Xi(l) last X received at i from neighbor I (values: 0, 1, 2,

* ·...JO') and Ni(k) = rx i and Bi(k) = O])

tI oc- DIl) Xi() + Dil' (values: 1,2, , o) A i -{k IRi(k) = SON or [Fi(k)= up
en for Bill) blocking status of neighbor I as known at i (values:

ck will 0, 1); 0 means not blocked; 1 means blocked and Bi(k) = 0]).
ents.

Formal Algorithm (For Each Node i Except the Destination)

ses of Note: The extent of an if-then clause is marked by semicolon (;).
bnges Operations done by the message processor when a message is received (i.e., when the message processor at node i takes the

tlocol - message from the queue and starts processing it).
logical
goomth 1. For3 FAIL (1)

. IWe iE 2. Fi() < DOWN; CT- O; execute FSM;
i.ne. We 1 3. If Pi : NIL, then send REQ(ni) to Pi;

the ~ 4. For WAKE(/)
oulted - .5. If i and I agree to open link (i, 1),

then zi() - max {ni, nl}, Fi(l) v7 READY, N(l4) - NIL;

,ical ~i 6. If p i - NIL, then send REQ(z,(l)) to pi;
arde- I 7. For MSG (m, X,b,l)

8s. & N(l) -- m; Xi(l) - X; Di() -X + Di,; Bi(l) b; mxi -max {m, mxi};
|1 9. If Fi(l) = READY, then Fi(l) UP;

tj 10. Execute FSM;
11. For REQ (m)
i la. If p i - NIL and ni < m, then send REQ(m) to Pi;

' ,Finite-State Machine (FSM)

Note: The Finite-State-Machine is executed until no more transitions are possible.

STATE S1

12. T12 Cond: Vk s.t. Ri(k) = soN, holds Ni(k) = mxi , Di(k) and Fk) = uP;
i 13. CT= 0;

3 "For..." means the actions of the algorithm in response to re-
t) jeiving the message.

694 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-29, NO. 5, MAY 1981

14. Act: Xi min {Di(k)};
k:keCi

15. I· f for any node k s.t. Ri(k) = soN, holds {Bi(k) = 11 or
{X/(k) > Xi and [Di(k)- Xi] <fkI},

then bi -, 1,
else bi - 0;

16. ni mxi;
17. Vk s.t. Fi(k) = READY and ni > Zi(k), set Fi(k) '- up and Ni(k) NL;
18. Send MSG(ni, Xi, bi, i) to all k s.t. Fi(k) = uP and Ri(k) - SON;
19. CT- 1;
20. If Pi = NIL,

then choose any node k s.t. Ri(k) = SON and set Pi < k;
21. T13 Cond: Ri()= SON;
22. Vk = l s.t. Fi(k) = up, holds Ri(k) =. NIL;

23. MSG(m, X= , b, 0) or FAIL(l);

24. CT= 0;
25. Act: Xi - oo;
26. If MSG, then ni - m;
27. Vk s.t. Fi(k) = READY and ni >Z i(l), set F,(k) = uP and Ni(k) = NIL;

28. Send MSG(ni, Xi, bi, i) to all k s.t. Fi(k) = uP and k 4 I;
29. Ri(l) NIL;

30. Cancel the flow to node I and modify the routing variables by
setting fiJ = 0;

31. CT- 1;
32. If pi = 1, then Pi ' NIL;
33. C1 Cond Ri().= SON;
34. 3k = I s.t. Ri(k) = SON and Fi(k) = UP;
35. MSG(m, X = o, b, 1) or FAIL();

36. CT= 0;
37. Act: Ri(l) NIL;
38. Reroute the flow to node I while arbitrarily redistributing

it through the remaining sons and modify the routing
variables correspondingly;

39. If pi = 1, then Pi - NIL;

STATE S2
40. T21 Cond: Vk s.t. Fi{k) = uP, holds Ni(k) = ni = mxi;
41. 3keA i s.t. Dik) < Xi;
42. If CT = 0, then MSG;
43. V- k s.t. Ri(k) = SON, holds Di(k) 0 oo;
44. Act: Rerouting;
45. Calculate a = min {Di(k)};

k:keA i

46. Let k o be any neighbor that achieves the minimum;
47. If there is any node q s.t. Fi(q) = uP with fiq > 0,

then for all neighbors keA i do:
48. aik = Di(k) - a,
49. Cancel all outgoing flows corresponding to incoming flows

that have been cancelled by fathers. Let fik' be the
remaining outgoing flows,

50. Aik = min {fik', 7?aik},

51. Set the new flows (Vk s.t. Fi(k) = uP)

0 k ~Ai

= _fik' -ik kEA i , k 0 k o
ftik n ew

-

fik + Aik + any new flow k = ko ;
kEA i
kk 0o

SEGALL AND SIDI: MINIMUM DELAY ROUTING 695

52. Iffik = 0 Vk s.t. Ff(k) = up,
then any new flow is routed through ko;

53. Send MSG(ni, Xi, bi, i) Vk s.t. Ri(k) = SON;

54. Vk s.t. Fi(k) = uP, set Ri(k) - NIL;

55. Set Ri(ko) - SON;

56. Vk s.t. fiknew > 0 and k ko, set Ri(k) - SON;

57. Vk s.t. Fi(k) = uP, set Ni(k) - NIL;
58. CT- 1;
59. . Pi +- ko;
60. T22 Cond: Vk s.t. Ri(k) = SON, holds Ni(k) = mxi > n i , Di(k) : oo and Fi(k) = uP;
61. CT= 0;
62. Act: Same as Act in T12;
63. T22 Cond: Either same as Cond in C1 or FAIL(/) s.t. Ri(l) # SON;

64. CT= 0;
65. Act: Same as Act in C1 and in addition set CT- 1;
66. T23 : Same as T13;

STATE S3

67. T32 Cond: 3k s.t. Fi(k) = uP, mxiN,(k) > n i , Di(k) - oo;
68. Act: Let ko be a node that achieves

min {Di(k) };
k:Fi(k)= UP

Ni(k) = mxi
69. If Bi(ko) = 1, then bi - 1;
70. Ri(ko) -soN;
71. ni < tri;
72. Xi + Di(ko);
73. Vk s.t. Fi(k) = READY and ni > Zi(k), set Fi.(k) - uP and Ni(k) - NIL;
74. Send MSG(ni, Xi, bi, i) Vk s.t. Fi(k) = up and Ri(k) * SON;

75. Any new flow is routed through ko;
76. CT- 1;
77. Pi - k;

STATE S2

78. T22 Cond: Same as Step 60.;
79. Act: Same as Act in T12;
80. T23 : Same as T13;
81. C2 : Same asCi;

The operation of the destination node is the same as in [3, Table 4] .

REFERENCES Moshe Sidi was born in Israel on April 11, 1953.
[1] -He received the B.Sc. and M.Sc. degrees from

R. G. Gallager, "A minimum delay routing algorithm using the Technion-Israel Institute of Technology,
distributed computation," IEEE Trans. Commun., vol. COM-25, Haifa, Israel, in 1975 and 1978, respectively,

pp. 73-85, ian. 1977. . $ 1s'. both in electrical engineering. He is currently
[2] A. Segall, "Optimal distributed routing for line-switched data

networks," IEEE Trans. Commun., vol. COM-27, pp. 201-209, working towards the Ph.D. degree at the
lJ~~~~~~~~~~~~~~~~an. 1979. ~Technion in the area of radio packet networks.

From 1975 to 1976 he worked at the Israel[3] P. M. Merlin and A. Segall, "A failsafe distributed routing Water Company as a Communication Engineer.
Water Company as a Communication Engineer.

protocol," IEEE Trans. Commun., Sept. 1979; Dep. Elec. Eng., Since 1976 he has been a Teaching Assistant at
Technion, Haifa, May 1978, EE Pub. 313. the Technion in communication and data net-

[41 M. Sidi and A. Segall, "Failsafe distributed optimal routing in data works courses. His research interests lie mainly in the areas related to
communication networks," Dep. Elec. Eng., Technion, Haifa, computer communication
Dec. 1978, EE Pub. 342.

Adrian Segall (S'71-M'74-SM'79), for a photograph and biography, see
p. 497 of the April 1981 issue of this TRANSACTIONS.

