SECURITY CLASSIFICATIOL OF THIE PAGE (Mmen Data Entoren

A FAILSAFE DISTRIBUTED RDUYEXE ZROTOCOL

Philip M. Mer?in and Adrion Segall
Department of Electricai Engineering Technion-Israel Institute of Iesinology Haira, Israel.

Abstract

x An algorithm for constructing and siaptively maintaining routing tables in communication networks is zeesented. lihe algorithm can be employed in store-and-fnrwara $\equiv=$ well as line switching networks, uses distributed computation, froties routing tables that are loop-rree for each destination $2=19$ times, adapts to changes in network flows and is completely Eailsafe. The latter means that after arbitrary faflures and ajeitions, the network recovers in finite time in the sense of protiding routing paths between all physically connected nodes. Ccmplete rigorous proofs of all these properties are provided.

The work of A. Segall was supported by tis idranced Rescarch Project Agency of the US Department of Defense (fonitored by ONR) under contract Ko. NOOO14-75-C-1183.

1. INTRODUCTION

Reliailility and the ability to recover from topological changes are properties of utmost importance for smooth operation of data-communication networks. In today's data networks it happens occasionally, more or less of ten depending on the quality of the individual devices, that nodes and comunication links fail and reccver; also new nodes or links become operational and have to be added to an already operating network. The reliability of a computer-commication network, in the eyes of its users, depends on its ability to cope with these changes, meaning that no breakdown of the entire network or of large portions of it will be triggered by such changea and that in finite - and hopefully short - time after their occurrence, the remaining network will be able to operate normallyr. Unfortunately, recovery of the network under arbitrary number, timing, and location of topological changes is hard to insurp and little successfll analytical work has been done in this direction so fry.

The sbove reliability and recover problems are difficult whether one wes centralized or distributed rout , control. With centralized routing, one has the problem of central node failure plus the chicken and egg problem of needing routes to obtain the network information required to establish routes. Our primary concern here is with distributed rointing that recovers from topological changes; here one has the probiems of asyachronous computation of distributed status information and of designing algerithms which adapt to arbitrary changes in network topology in the absence of global. knowledge of topology.

The paper presents a distributed protocol that maintains a route from any source to any destination in network. The protocol is distributed in the sense that no central tables are required and there is no global knowledge of the routes, $1 . e$, eaca node knows only who is the next node (called the "proferred neigtibor") on the route to a given destilation. Each
node is responsible for updating its own tables (e.g. choosing a new preferred neighbor) and these updates are coordimated by the protocol via control messages sent retween adjacent nodes. For a given destination, the set of routes maintained by the protocol are looz-fee at all times, and Whenever no failures occur, they form a spanning tree rooted at the destination (i.e. a tree that covers all nodes).

To each link in the network, a strictly gosicive "distance" (or "weight") is assigned which represents the cost of using the link. According to utilization and possibly other factors, inis distance may vary with time following long-term trends. The length of $\equiv \underset{z}{ }$ gath is the sum of the distances on the links of this path. Destian:ions zay asynchronously trigger tine protocol and start update cycles to change re:ies according to new distances. Such a cycle first propagates uptree rinie rodifying the distance estimates from nodes to the destination and then srogagates downtree while uphating the preferred neighbors. Each cycle teais to find routes with short paths from each node to the destination, $\varepsilon=\dot{a}$ assuming time-invariance of link weighta, the strict minimum (i.e. shortes= peths) will be reached within e finite number of update iterations.

The proposed protocol also provides for recovery of routes after failures and for additions of links or nodes to tie network. When a link fails, appropriate information is propegated bacirrerds in the network and, in addition, a "request" message is generated and zorsarded towards the destination. New links are brought up via a similar protocol. The request message triggers an update cycle and it is guaracseed that within finite time, all nodes physically connected tc each desتi=s洛n will have a loopfree route to it. This holds also for multiple towogical charges, and even if such changes occur while the protocol is $\underline{n}= \pm$ ive and the update is in progress. The recoverability of the protocol is achieved without employing any time-out in its operation, a feature whics greatly enhances its.
amenability to analysis and facilitates structured furiementation.

Abstract

The protocol is mainly intended for quesi-static routing in communication networks and the routes provided by the protocol can be used in a variety of ways for actual routing of Enformation. Although specification of information routing algorithms is outside the scope of the present paper, we indicate here a few applications. In a (physical or virtual) lineswitched network, it is often impractical to reroute already established conversations, except in case of dismiotion caused by failure or priority preemption. In this case, the routes provided by the present protocol may be used for assigning paths to new or disrupted calls. For example', in a virtual line-switched network the link weights may represent link delays, and then the path provided by our protocol in steady state will give the minimum delay route for the new call. If the weights represent incremental delay, then the path will minimize network average delay (see [1, eq. (25)]). Other criteria like probability of blocking, can also be taken into consideration in the link weight. Observe that if the link weights change drastically, the above strategy may allow new conversations to follow paths so different from the old ones that together they form a loop, but this is still the best one can do under the constraint that established conversations cannot be rerouted.

Similar strategies can be used in networks using message switching, where the preferred neighbor indicates the first hop of the present best estimated route towards the SINK and the node may for example increase the fraction of messages routed over this path while reducing the fraction sant over other routes. More sophisticated failsafe routing and update procedures, where exact amount of increase and reduction of traffic fractions are indicated so that optimality and routiag loop-freedom are achieved, have been obtained using ideas similar to the protocol of this paper and are presented in a subsequent report [2].

Finally, we may mention that the present protocol can replace the simple-minded saturation routing that is presently used in several networks to locate mobile subscribers and to s lect routing paths [3]. The protocol of this paper has all the advantages indicated $i=[3$, Sec. II] for saturation routing, but requires no time-out and crorides a route selected not only on the basis of the instantaneous congestion but on averaged quantities.

This work was inspired by [4] end [5], zinere minimum delay routing algorithms using distributed computation were developed. These algorithas also maintain a per destination loop-free rouming at each step. One of the main contributions of the protocol given in ine geesent paper is to introduce features insurin recovery of the routes $2=0=$ arbitrary topological changes of the network. As a result, the protos0? of the present paper is, to our knowledge, the first one that is disinisued and for which all the following properties are ifgorously proved:
(a) Loop-freedom for routes to each destination at all times.
(b) Independentiy of the sequence, locatic= ard quantity of topolog al changes, the routes recover in finite $=$ ime.
(c) Under stationary conditions, the routes conferge to paths with minimal weighted length.

Several routing algorithm possessing scme oit the propert ted above have been previously indicated in the lizerg-ire. In [6], a routing algorithm similar to the one used in the ARPA =e=aori [7] but with unity link weights, is presented. It is shown there, tiEt at the time the algerithm terminates, the resulting routing procedure is ioop-free and provides the shortest paths to each destination. As with tie ARPA routing, however, the algorithm allows temporary loops to be formed darins the evolution of the algorithm. The algorithm proposed in [8] ensures loop-free routing for individual messages. This property is echieved oy requesting each node to send a probing message to the destination before each individual rerouting;
the node is allowed to indeed perform the rerouting only after having received an acknowledgement from the destination. The extra load on the network by sending probing messages from each node to each destination for each rerouting is clearly extremely large. Also loop freedom for individual messages is a weaker property than loop freedom for each destination. For example, in a three-noce network, sending traffic from node 3 to node 1 via node 2 and sending traffic from node 2 to node 1 via node 3 would be loopfree for individual messages, but not loopfree for each destination. See [9] for a more complete discussion of loop freedom.

In addition to the introduction of this particular protocol and the proofs of its main properties, the paper provides contributions in the direction of modeling, analysis and validation of distributed algorithms. The operations required by the algorithm at each node are summarized as a finite-state machine, with transitions between states triggered by the arrival of special control messages from the neighbors, and the execution of a transition may result in the transmission of such messages. Methods for modeling and validation of various communication protocols were proposed in [10]-[13]. These methods are designed however to handle protocols involving either only two commuicating entities or nodes connected by a fixed topology. The model we use to describe our algorithm is a combination of these known models, but is extended to allow us to study a fairly complez: distrinuted protocol. Th amalysis and validatina of the algorithm is performed by using a specisl type of induction that allows us to prove global properties while essentially looking at local events.
... Before proceeding, we may mention two other distributed protocols that were recently developed. In [14], an algorithm for network resynchronization is presented and its recovery properties are proved under arbitrary topological shanges. A similar goal is obtained by R.G. Gailager in an unpidblished work [15], while also determining the paths with minimum number
of links between each pair of nodes in the network. Although there is a great similarity between the ways in which the updating information propagates and the distributed computation is performed by the algorithms of [14], [15] and of the present paper, the exact relationship between these protocols is a subject for future research.

2. THE PROMOCOL

To facilitate understanding, we describe the protocol in several sters. We first present the "basic protocol", i.e. assuming that no topological changes occur. Then we describe the additions to the protosol in case of link autage and finally the additions for links becoming operational. A node outage can be represented as the outage of all of its links and similarly, a node becoming operational can be represented as links becoming operational. Therefore, we do not pay special attention to topological changes caused by nodes.

The following comments apply to the rest of the paper:

1. Since we are not concerned with data transfer, we use the term "message" to mean the special control messages employed by the protocol.
2. We assume that messages sent by a node to a neighbor are received in the same order thet they are sent, i.e. FIFO is preserved in the . links (and locsi protocols).
3. The protocol proceeds independently for each destination. Consequentiy, for the rest of the paper we fix the destination and present and analyse the protocol for that given destination, which is denoted by SINK.

2.1 The Basic Protocol

As alreedy mentioned, each node 1 in the network has at any time a preferred nelghbor. Thus, we assume thar each node has a variable p_{1} which points to that aeighbor. For the basic protocol, we assume that after initialization, the directed graph defined by the nodes ond arcs ($1, P_{i}$) form a tree directed towards (and therefore rooted at) the, SINK, as exemplified by the network if Fig. I where directed arcs denote the preferred neighbors $\left\{p_{i}\right\}$. Subsequent sections describing the protocol which handies
topological changes will show that this assumptio is ustified by the initialization procedurc. Each node i has also a positive variable d_{i} maintained by the protocol, denoting an estimer distance from i to the SINK ($d_{\text {SINK }}$ is by definitior equal to 0). During ar update, the protacol reevaluates the distances $\left\{d_{i}\right\}$ and accordingly the wads choose preferred neighbors $\left\{p_{i}\right\}$ in such a way thet the directed graph given by the arcs (i, p_{i}) remains at all times a tree rooted at the SIMK.

As already mentioned in Section 1 , to each link (i, $\ell)$ a strictly positive "distance", denoted by $d_{i \ell}$ " is assigned. We assume sill inks to be full duplex and allow a link to have a different distance in each direction. The distance $d_{i l}$ is allowed to vary with time and needs to be known (measured or estinated) only by node i. The protocol tends to minimize the distance d_{i} from each node 1 to the SINK, where this distance is given by the sum of the weights $d_{l m}$ on the directed path from a node to the SINK.

As described below, the SINK may asynchronously start update cycles to change routes according to new distances. Such a cycle first modifies distance estimates $\left\{d_{i}\right\}$ uptree and then modifies preferred neighbors $\left\{p_{t}\right\}$ downtree. An update cycle is started by the SINK by seading a message $\operatorname{MSG}\left(d_{S I N K}\right)$ to each of its neighbors (notice that MSG($d_{\text {SINK }}$) $=\operatorname{MSG}(0)$ by definition). When a node, say i, receives a message from its p_{i}, it reevaluates its estimated distance d_{i} and transmits $\operatorname{MSG}\left(d_{i}\right)$ to each of its neighbours except p_{1}. Notice that the spanning tree structure mentioned before (Fig. I) guarantees that after the SINK has started the updating cycle, each of the network nodes will eventually perform this step. Furthermore, this is done in the order given by the tree from the SINR towards the leaves.

Whenever a node i receives a message $\operatorname{MSG}(d)$ from a neighbor $\&$, it estimates and stores its distance through this neighbor to the SJNK. This distance is estimated as $d+d_{i l}$. As sald before, the reevaluation of the estimated distance d_{i} is performed when receiving MSG from the preferred neighbor p_{i}. Node i calcuiates then the minimum of the estimated distances to the SIIK through al. those neighbors from which it has already received MSG (during the present undate cycie). The node sets then d_{1} as this minimum. (Notice that d_{i} is only an "estimate" of the minimal distance to the SINK because it is scmetimes calculated based upon part of the neighbors of 1.)

When a node, say i, has received $\operatorname{MSG}(d)$ from all of its neighbars, it transmits $\operatorname{MGG}\left(d_{i}\right)$ to its p_{i} and then determines its new preferred neighbor p_{i}. This is done by choosing p_{i} as the neighbor which provides minimal estimated distance from i to the SINK. This choice is made among $a 11$ neighbors of i and as such it may pick a neighbor different from the one which provided d_{i} (the calculation of the estimated distance d_{i} is usually based upon part of the neighbors). Since, as previously shown, each node 1 will eventually send $\operatorname{MSG}\left(d_{i}\right)$ to all its neightors except p_{i}, the leaves of the directed tree will eventually receive MSG from all their neighbors. Thus they will send MSG to their preferred neighbor p_{i} and reevaluate a new p_{1}. It can be easily seen by induction, that each node will perform this step. This happens in the order given by the original directed tree, from the leaves towards the SINK.

Since the SINK denotes the destination, the SINK has no preferred neighbor, and therefore the SINK does not update $\mathrm{P}_{\text {SINK }}$ when it receives MSG(d) from all its neighbors. Instead, this event notifies the SINK that the update cycle has been properly completed. The SINK is not ailowed to start a new update cycle until the previous cycle has deen properly completed.

A node i always updates its preferred neighbor p_{i} to point towards a node d having estimated distance $d_{j}<d_{i}$. As proved in Section 3, this fact insures that the updated directed graph will remain a tree at any time.

The basic protocol can be formally defined by the basic algorithm perforned by each node 1 . The latter is shown in Table 1 with the aid of a Finite State Machine. Node i can be in eitiner of two states. It will be in state $S 2$ after having received MSG from its preferred neighbor p_{i} and until it receives messages from all its neighoors. Otherwise node i will be in Sl. The variables $D_{i}(2)$, one for each neighbor $\&$ of i, store the values of the estimated distance througi link $\&$ to the $S I N K$. The variables $N_{i}(\ell)$, one for each neighbor ℓ of i, denote flags which can take the value "RCVD" to mean that MSG(d) was received from link (i, ℓ) during the current cycle, or the value "nil" othemise. CT is a contril flag which can take over the values 0 or 1 . We assume that when MSG(1) arrives from link ℓ, it is given to the algoritim in the format $\operatorname{MSG}(d, \ell)$.

When $\operatorname{MSG}(d, \&)$ is processed, the $: \operatorname{lag}_{N_{i}}(d)$ is set to RCVD, $D_{i}(\ell)$ is calcuigted, CT is set to 0 , and then the Finite State Machine executes transition uńtil no more transitions are possible. Transition Tl2 can be executed if node i is in state $S 1$ and Condition 12 is satisfied, i.e. the algorithm is processing a $\operatorname{MS} \dot{G}(d, l)$ which $\ell=p_{i}$ and $C T=0$. If $\mathrm{Tl2}$ is executed, then node i goes to state S 2 and Action 12 is performed, i.e. the estimated distance d_{1} is reevaluated and $\operatorname{MSC}\left(d_{1}\right)$ is transmitted to each neighbor of 1 exeept the preferred neighbor p_{i}. In a sirilaguay, T2l is executed when node 1 is in state $S 2$ and Condition 21 is satisfiel, * in which case node 1 gues to state $S l$ and Action 21 is pertormed. The role of $C T$ is to insure that $T 12$ cannot be executed imediatly after $T 2 l$ (for example, suppose node 1 is in state $S l$ and $M S O\left(d, l=p_{1}\right)$ arrives after messages have arrived for all other links of 1 . In this case, without CT,
the sequence of transitions Tl2, Tel, T12 will be performed in contradiction with the protocol). Notice that the sequence $!12$, m 21 is permitted.

The use of the Finite State Machine for describing the relatively simple basic algorithm may appear superfluous. Its importance will become apparent when describing the more enmplex protocols and the proofs of their properties.

2.2 Handing Failures of Links

At our level of abstraction, the outase of a link is celled "Iink failure". Transient (or transmission) failures can be masked out by the link protocol, and we are not concerned witb the=. If a link of the directed tree fails, then all the nodes which are zedecessors of this link on the directed tree lose their route to tine SINK, but they are unaware of this fact at the time of the failure. For exsmple, if link $(7,8)$ of Fig. 1 fails, nodes 6, 7 and 9 lose their route. Furthermore, if an update cycle is started, node 7 will not be able to receive $\operatorname{MSG}(d, \ell=8)$ and therefore node 7 , as well as nodes 6 and 9 will not be aole to perform $T 12$. In such a case we would like to recover by finding on alternative route (e.g. through node 5), but since the basic protocol aliows changing estimated distance d_{i} and preferred neighbor p_{i} only efter performing $T 12$, there is need to provide an extension to handle this situation. Two actions must be taken by the extended protocol. First to \pm aform nodes 7,6 and 9 not to wait for triggering messages from the tree (and niso that the existing tree has no meaning for them anymore) and secoad, to allow those nodes to choose their p_{i} whenever control messages from new cycles arrive. These features are in the sequel.

Whenever a node i discovers a failure of its link to the preferred neighbour p_{j}, it sets $p_{i}=n i l$ and $d_{i}=\infty$ to mean that its estinated distance to the SINK has becume infinite. Then nocie i generates a special
message $M G G(\infty)$ which propagates backwards through the tree to the nodes that lost their route, causing them also to set their best link to nil and the estimated distance to infinite. The propagation backwards is done as follows. Node i sends $\operatorname{MSG}(\infty)$ to all its neighbors except p_{1}; if a node j receives $\operatorname{MSG}(\infty)$ from a link other than p_{j}, it stores it but no other action is taken; if a node j receives $\operatorname{MSG}(\infty)$ from p_{j}, then it transmits $\operatorname{MSG}(\infty)$ to all its neighbors except p_{j} and sets $p_{j}=n_{i} l_{\text {, }}$ $d_{j}=\infty$. When a node establishes $p_{i}=n i l, d_{i}=\infty$, it is said to enter state S 3 (see Table 3).

The senond part of the recovery, called "reattachment", consists of choosing ? new be t. link by those nodes i having $p_{i}=$ nil. The reattachment takes place if one of the following two situations cecurs. One pessibility is that a node with $p_{i}=$ nil receives on one of its links, $\&$ say, a message $\operatorname{MSG}(\alpha \neq \infty)$ and the node is assured that this message was generated by an update cycle that, started after the failure that caused $p_{i}=n i l . \Omega$ second possibility is that at the time p_{i} is set to nil, such a message has already been received at node 1 . The reattachment consists of setting $p_{i}=\ell$, going to state $S 2$ and effecting the same operations as in TI2. This, together with other mechanisms to be described, guarantees that if a failure (or multiple fatlures) occurs, and if indeed a new update cycle is started, all nodes physically connected to the SINK will eventually beiong to a non-disrupted directed tree rooted at the SINK.

As mentioned above, there is need to guarantee that reattachment is performed only as a result of receiving a message generated by an update cycle which started after the failure. This can be achieved by numbering the update cycles with nondecreasing numbeis as described below. Each node 1 will have a counter number a_{i} which derotes the cycie number currently handled by this node, and all messages transmitted by 1 will carry n_{1} in addition to d_{1}, i.e. they will be $\operatorname{MSG}\left(n_{1}, d_{1}\right)$. The SITK may increase its $n_{\text {Suxk }}$ before starting a new update cycle, as explained later.

A node i receiving $\operatorname{MSG}(m, d)$ on its p_{i} updates its n_{i} to equal m. Now, reattachment is done by a node i with $p_{i}=n i l$ if an MSG(m,d) with $m>n_{i}$ is received (or was previously received).

When an $\operatorname{MSG}(m, d)$ is received Prom lirk $\&$ by node i, in addition of storing d in $D_{i}(l)$, there is need to remember also the value of m. This can be saved in $N_{i}(2)$, which can now tare the values ail, $0,1,2,3, \ldots$; instead of nil and RCVD as in the basic algorithm.

If a failure occurs in a link not belonging to the directed tree, no route is disrupted. However, if this link is connected to a node in state $S 2$, it $1 s$ convenient to prevent $T 21$ from happening at this node for this update cycle. This will avoid nodes to update routes based upon information which is invalidated by the failure and, more important, will preclude proper completion from happening. Thus, proper completion will indicate to the SINK that the update cycle was completed without fallures interfering with the process. Prevention of $T 21$ is accomplished by introducing an additional!state, $S \tilde{2}$, into which a node enters 15 a nonpreferred link fails while the node is in $S 2$. A node i will leave $S \tilde{2}$ whenever new information is received on p_{1} (see mable 3).

The deacribed protocol allows the SINK to behave as follows. If an update cycle started with $n_{S I N K}=m$ completes properly, the SINK is allowed to start the next update cycle with the same $n_{\text {SINK. }}$ On the other hand, the SINK may at any time increase $n_{S I N K}$ and start a new update cycle with an $n_{\text {SINK }}$ larger than those used before, even if previous cycles have not been properly completed. (Notice that in any case the values of $n_{S I S K_{K}}$ are non-decreasing with time.) As proved later, if a new update cycle is started while increasing ${ }^{\text {D SINK" }}$, it will eventually "cover" ail previous creles. Also, if lailures do not occur for a long enough time, the new cycle will be properly completed, and all fallures will be recovered, i.e. for all
nodes i physically connectea to the SINK, the directed graph of ($1, p_{i}$) will form a tree rooted at the SINK.

Table 2 sumarizes the variables used by the algorithm performed by an arbitrary node i as its part of the protocol. $F_{i}(l)$ denotes the status of link ℓ as considered by node i, i.e. $F_{i}(\ell)=U P$ if ℓ is considered operational and $F_{i}(\ell)=$ DOWN if ℓ is considered unoperational. $F_{i}(\ell)$ can take also the value "READY"; whose use will be described when dealing with the problem of links becoming operational. At that time, the role of $z_{i}(\ell)$ will also become clear. The variable $m x_{i}$ stores the value of the largest update cycle number m of all the messages $\operatorname{MSG}(m, d, \ell)$ received by node i. The rest of the variables and their use were already described. The local link protocols controjling the operations of the links connected to node i may relay to the algorithm performed by node i four types of messages, and they are als sumarized in Table 2. MSG denotes an updating message, FÄIL(ℓ) denotes the detection of the failure of link ℓ, and the remaining two will be described later. The exact properties required fcum the local protocol to insure proper operation of the network protocol will be discussed in Section 2.7.

Table 3 describes the generalized algorithm of node i for the protocol which handles topological changes. The protocol as described up to now is implemented by the glgorithm of Table 3 if ignoring steps I.1, I. 2.4, I.3.1, I.4, II.1.5, IT.2.5 and II.7.7. These steps relate mainly to links becoming operational and will be discussed in subsequent sections. Table 3 used a notation similar to the one of Table 1 . States $S l$, $S 2$ and transitions Tl2 a and T2l are similar to those desaxibed in Table 1 for the basic algorithm. State 53 denotes the situation where the node has $p_{i}=$ ail, which results from receiving a FAIL or a MSG with $d=\infty$ from p_{i}. State $S \overline{2}$ denotes a state similar to $S 2$, but from which a transition $T 2 l$ is preciuded. As previuusly described, the algorithm goes to such a state $\overline{\mathfrak{p}}$ if while at S 2
a failure is detected from a link other than p_{i}. The "Facts" given in the algorithm are displayed for helping in its understanding and are proven in Theorem 2 of Section 3. A Fact holds if the transition under whish it appears is performed.

2.3 Starting_new Update Cyrle

There exist several procedures for starting a new update cycle and setting the sorresponding $n_{\text {SINK }}$ in a wey which satisfy the required behaviour from the SINK as described in Section 2.2. Two of these procedures are described next.

Version 1: At given intervals of time, or as a result of the detection of a change in the traffic pettern, the SINK increments $n_{\text {SINK }}$ and starts a new update cycle. The above version mey make use of a time-out to trigger a new update cycle if the previous one is not properly completed within certain time. if a failure occurs after proper completion, there is no direct triggering of a new update cycle, and thus recovery can be achieved only whenever the SINK decides to starc a new update cycle. In addition, this version unnecessarily increments $n_{\text {SINK }}$ for every update; hence an unnecessarily large number of bits to represent $n_{\text {SINK }}$ is required. These two disadvantages are overcome by the cext version.

Version 2: In order to cope with changes in traffic patterns, after proper completion of the previous update cycle, the SINK may start a new update cycle with the same $n_{\text {SINK }}$. In addition, whenever a node 1 detects a failure of a link attached to it, the node generates a special message $\operatorname{REQ}\left(n_{i}\right)$ which is forwarded through the directed path of preferred inks to the SINK. If such a $\operatorname{REQ}(m)$ arrives at a node 1 having $p_{1}=$ ail, the REQ is discarded. In Section 3 it is shown that if a REQ(mil) is generated and forwarded as mentioned above, then some $\operatorname{REQ}(\mathrm{m} 2)$, m2 $\geq \mathrm{ml}$ will actually arrive at the SIMK, within finite time. Whenever a REQ(m) arrivea at the SIMK,
and if $m=n_{S C N K}$, then $n_{\text {SINK }}$ is incremented and a new update cycie is started. This cycle will take care of recovery from the failure that generated the REQ(m). If $m<n_{S I N K}$ such a cycle was already started and the REQ (m) can simply be ignored. (Notice that m cannot be larger than $n_{\text {SINK. }}$) This version guarantees that if an update cycle with $n_{\text {SINK }}: m$ is started, the cycle will be properly completed in finite time or else, a failure hes occurred and a $R E Q(m)$ will arrive at the SINK. (This is proved.in Section 3.) Thus, there is no need for a time-out to make sure that the SINK will not wait indefinitely for the proper completion of an update cycle. The additions to the algorathm for implementing this version are given in I.l and I.2.4 of Table 3. In the rest of the paper, we assume that this version is implemented, although most of the results are also applicable to Version 1.

2.4 Handling Links Pecoming Operational

If link (i, ℓ) is down, i.e. $F_{i}(2)=F_{\ell}(i)=$ DOWN, and it becomes operational, nodes 1 and ℓ should coordinate the operations necessary to bring the link up. Otherwise, a deadlock could occur, for instance, if 1 sets $F_{i}(l)=U P$ while at 32 and i sets $F_{l}(1)=U P$ after performing T21 of the same update cycle. In this case, \pm will not perform T2l until receiving a message from t, and such a message will not be sent because \& already completed this update cycle, i.e. deadlock.

The coordination is achieved by having both nodes bring the link up Just before starting to perform their part of the same new cycle. This is done in two steps. First, i and $\&$ compare n_{i} and n_{i} via the local protocol and decide to bring up the link when starting to process the first cycle with number strictily higher than $\max \left(n_{i}, n_{\ell}\right)$. This fact is remeinbered at the nodes by setting $z_{i}(l)$ and $z_{\ell}(i)$ to $\max \left(n_{i}, n_{\ell}\right)$, as well as $F_{i}(\ell)$ and $F_{\ell}(i)$ to "READY". In addition, $N_{i}(l)$ and $N_{\ell}(i)$ are set to
nil and $\operatorname{REQ}\left(z_{i}(9)\right)$ is generated by nodes i and ℓ and forwarded to the SINK in the same way as deacribed in Section 2.3 (Version 2) for failures. This will guarantee that an update cycle with $n_{\text {SINK }}$ larger than $z_{i}(l)$ (and $z_{2}(i)$) will be started. This first step of the coordination at node i is done by message WAKE(f) given by the local protocel to the algorithm. The actions performed by the aigorithm when receiving such a message are described in I. 4 of Table 3. The synchronization assumes that the execution of $\mathrm{WAKE}(\%)$ and $\mathrm{WAKE}(i)$ are simultaneously started at nodes 1 and $\&$ respectively, in order to guarantee that $z_{i}(l)=z_{2}(i)$. However, it may happen that a failure occurs again in the link and one of the nodes succeeds to complete tine synchronization while the other node does not. The protocol allows for such a situation and only requires that the link protocol ends the synchronization (successfully or unsuccessfully) within finite time. If the syachronization is unsuccesaful, no action is taken by the node, and the link will remain DOWN from this node's point of view. Section 2.7 gives a more formal and complete list of the requirements that the link protocol should setisfy.

The second step of bringing the link ($1, \ell$) up is done by node 1 (i.e. $F_{i}(\ell)$ is set from Ready to UP) when node i receives MBG from link ℓ or when the node counter zumber n_{i} becones larger than $z_{i}(\ell)$. This is represented respectively by I.3.i and II.1.5, II.2.5, II.7.7, of Table 3 .

2.5 The Algorithm for the BINK

The algorithm for the sINK, assuming that Version 2 of Section 2.3 is chosen, appears in Table 4. Most of the algorithm was already informally discussed in previous sections. The main difference between the algorithm for the SINK and that for an arbitrary node 1 is that the first does not need to keep the rollowing variables:

- p_{i} (which is not defined for the SINK)
$-d_{i} \quad$ (which is always 0 for the SINK)
- $D_{i}(l)$ (which is only needed to update d_{i} and p_{i})
- $m x_{1} \quad$ ($n_{S I N K}$ is always the largest update number)
- $z_{i}(\ell)$ (during WAKE synchronization, $z_{S I M K}(\ell)$ is always set to

$$
n_{\text {SINK }}=\max \left(n_{\text {SINK }}, n_{\ell}\right)
$$

In addition, the algoritim may receive a "START" message from the "outside world" which will cause it to start a new cycle, provided that the last one was properly completed. WAKE and REQ call also for the execution of the Finite-State-Machine, and as a result WAKE as well as REQ(m $=n_{S I N K}$) will cause an increment of $n_{\text {SINK }}$ and a new update cycle will be started. States S1 and S2 are similar to the corresponding states of the algorithm for an arbitrary node 1 . However, Sl means for the SIIKK that the last update cycle was properly completed, and $S 2$ means that the current update cycle is not yet completed. Ti2 and T:22 represent the starting of a new update cycle and T21 the proper completion. For the SINK there is no need for states equivalent to 53 and $s 2 \tilde{\text { a }}$.

2.6 Initialization of the Protocol

Any arbitrary node 1 comes into operation in state 53 , with node counter number $n_{i}=0$, preferred neichbor $p_{i}=n i l$, and $F_{i}(k)=$ DOWN Sor all k. The value of the remaining variables is immaterial. From this initial condition, the local protocol may try to wake the links and it. proceeds operating as defined by the algorithm (Table 3). The SINX comes inta operation in state $S 1$, with $n_{\text {SINK }}=0$ and $F_{i}(k)=$ DOWN for all k, and proceeds in the same way but according to the algorithm of Table 4 ,

2.7 Properties Required from the Local Protocol

On each link of the network there is a local protocol that is in charge of exchanging messages between neighbors. Our main algorithm assumes that the following properties hold for the local protocol:
2.7.1 All links are bidirectional (duplex).
2.7.2 $d_{i \ell}>0$ for all links (i,l) at all times.
2.7.3 If a message is sent by node i to a neighbor ℓ, then in finite time, either the message will be received correctly at $\&$ or $F_{i}(\ell)=F_{\ell}(i)=$ DOWN. Dbserve that this assumption does not preclude transmission errors that are recovered by the local protocol (e.g. "resend and acknowledgement").
2.7.4 Failure of a node is considered as failure of all links connected to it.
2.7.5 A node i comes up in státe 53 , with $a_{i}=0, p_{i}=n i l$, and $P_{i}(\ell)=$ DOWN for all links (i, $\left.\ell\right)$.
2.7.6 The processor at node i receives messages from link (1,2) on a first-in-first-served (FIFO) basis.
2.7.7 A link ($1, \ell$) is said to have become operational as soon as the local protocol discovers that the link can be used. Links (1,2) and (ℓ, i) become operational at the same time and subject to the following restrictions, a WAKE "mesaage" is delivered in this case to each of the processors i and $\%$.

WAKI($\ell)$ can be received at node i only it
(a) node $\&$ receives $\operatorname{WAKE}(i)$ at the same (virtual) time;
(b) there are no other cutstanding messages on link (\pm, ℓ) and on ($\ell, 5)$;
(c) $F_{i}(\ell)=F_{\ell}(1)=$ DOWN.
2.7.8 If $F_{i}(l)=D O W N$, the only message that the processor at i can receive from ℓ is WAKE($\ell)$.
2.7 .9 (a) If $F_{i}(\ell) \neq D O W N$ and $F_{\ell}(i) \neq$ DOWN and $F_{i}(\ell)$ goes to DOWN, then $F_{\ell}(i)$ goes to DOWN in finite time.
(b) If $F_{i}(\ell)=F_{\ell}(i)=$ DOWN and $F_{i}(\ell)$ goes to READY, then in finite time, either $F_{\ell}(j)$ goes to READY or $F_{i}(\ell)=F_{\ell}(i)=$ DOWN.
2.7.10 When two nodes i and ℓ receive WAKE as described in 2.7.7, a "synchronization" between i and ℓ is attempted. At either end the synchronization may or may not he successful (the latter because of a new failure). If it is successful, the node proceeds as in Step I. 4 of Table 3. If not, then no action is taken.

3. PROPERTIES AND VALIDATION OF THE ALGORITEM

Some of the properties of the eigorithm have already been indicated in previous sections. Here we state them explicitly alung with some of the others. We start with properties that hold throughout the operation 0^{*} - the network, some of them referring to the entire network at a given Instant of time and some to a given node or link as time progreases. Then recovery of the network after topological changes is proved through a series of thesrems, and finally we state and prove the fact that the algorithm achieve shortest weighted routes. We may point out, that the nost important features of the algorithm are given in Theorems $1,4,5$ and 6.

Before stating the main properties of the algorithm, we need several definitions and notations:

S1, $S 2, S 2 \tilde{2}, S 3=$ states of the Finite-State Machine.
$P C(m)=$ time of proper completion with cycle counter number m.
$S I[n]=$ state $S I$ with node counter number $n_{i}=n$, and similarly for $S 2[n], S 3[n], S \tilde{2}[n]$.

Whenever we want to refer to a quantity at a given time t we add the tine in in parentheses (e.g. $p_{i}(t)$ means preferred neighbor p_{i} of node i at time $t, N_{i}(\ell)(t)$ means variable $N_{i}(\ell)$ at time t, etc.)
$s_{i}(t)=$ state and possibly node counter number n_{i} of node i at time t. Therefore we sometimes write $s_{i}(t)=S 3$ for instance, and sometimes $s_{i}(t)=S 3[n]$.

We use a compact notation to describe changes accompanying a transition, as follows:
$T x y[t, 1, M S G(m 1, d 1, \ell 1), \operatorname{SEND}(m 2, d 2, \ell 2),(n 1, n 2),(d 1, d 2),(p 1, p 2),(m x 1, m x 2)]$
will mean that transition from state $S x$ to state $S y$ takes place at time t at node 1 caused by receiving $\operatorname{MSG}(m), d l)$ from neighbor $k i ;$ in this transition 1 sends $\operatorname{MSG}(m 2,42)$ to 22 , changes its node counter number
n_{i} from nl to $n 2$, its estimated distance to destination d_{i} from dr to $d 2$, its preferred neighbor p_{1} from $p l$ to p 2 and the largest update counter number received up to now $m x_{i}$ from mxl to mxa. Similarly, $\operatorname{Trg}[t, i, \operatorname{FAIL}(2), \operatorname{SEND}(m 2, \mathrm{~d} 2,22),(\mathrm{nl}, \mathrm{n} 2)(\mathrm{dl}, \mathrm{d} 2),(\mathrm{pl}, \mathrm{p} 2),(m \times 1, \operatorname{mxi} 2)]$
denotes the same transition as above, except that it is caused by receiving FAIL(l) from neighbor ℓ. For simplicity, we delete all arguments that are of no interest in a given description, and if for example n is arbitrary we write $(\phi, n 2)$ instead of $(n 1, n 2)$. Similarly, if one of the states is arbitrary, ϕ will replace this state. In particular observe that

$$
\begin{equation*}
\operatorname{T\phi } 2[t, \operatorname{SINK},(\phi, \mathrm{n}, 2)] \tag{2}
\end{equation*}
$$

means that an updating cycle with number $n 2$ is started at time t and

$$
\begin{equation*}
\mathrm{T} 21[\mathrm{t}, \mathrm{SINK},(\mathrm{n} 2, \mathrm{n} 2)] \tag{3}
\end{equation*}
$$

means that proper completion of the cycie occurs at time t. If Txy[t], then we use the notations:

```
t- = time just before the transition,
t+ = time just after the transition.
```

We also use

$$
\begin{equation*}
[t, 1, \operatorname{MSG}(m, d, h)] \tag{4}
\end{equation*}
$$

to denote the fact that a message $\operatorname{MSG}(m, d)$ is received at time t at i from ℓ, whether or not the receipt of the message causes a transition.

Finally, at a given instant t, we define the Routing Graph $R G(t)$ as the directed graph whose nodes are the network nodes and whose arcs are given by the preferred neighbors p_{i}, namely there is an arc from node 1 to node ℓ if and only if $p_{i}(t)=\ell$. For example, the routing graph of the network in Fig. la is given in Fig. ib. In order to describe properties of the $R G(t)$, we also define an order for the states by $S 3>S 2=S \tilde{2}>S 1$.

Also, if $S x$ and $S y$ are states, then the notation $S x \geq S y$ means $S x>S y$ or $S x=S y$. For conceptual purposes, we regard all the actions associated with a transition of the Finite-State Machine to take place at the time of the transition.

Theorem 1

At any instant of time, $R G(t)$ consistis of a set of disjoint trees wi : the following ordering properties:
i) the roots of the trees are the SINK and all nodes in S3;
ii) if $p_{i}(t)=\ell$, then $n_{\ell}(t) \geq n_{i}(t)$;
iii) if $p_{i}(t)=\ell$ and $n_{\ell}(t)=n_{i}(t)$, then $s_{\ell}(t) \geq s_{i}(t)$;
iv) if $p_{i}(t)=\ell$ and $n_{\ell}(t)=n_{i}(t)$ and $s_{\ell}(t)=s_{i}(t)=s I_{s}$ then $a_{2}(t)<d_{i}(t)$.

The proof of Theorem 1 is given in Appendix A. According to it, the RG consists at any time of a set of disjoint trees, i.e. it contains no loops. Observe that a tree consisting of a single isolated node is possible. The algorithm maintains a certain ordering in a tree, namely that concatenation of (n_{i}, s_{i}) is nondecreasing when moving from the leaves to the root of a tree and in addition, for nodes in $S l$ and with the saze node counter number, the estimated distances d_{i} to the SINK are stristly decreasing.

In addition to properties of the entire network at each instant of time, we can look at local properties as time progresses. Some of the most important are given in the following theorem whose proof appears in Appendix A (see c) and d) in Theorem A.1).

Theorem 2

i) For a given node i, the node counter number n_{i} is nondecroasing and the messages MSG(m,d) recetyed from a given neighbor have nondecreasing numbers m.
ii) Between two successive proper completions $\operatorname{PC}(\bar{m})$ and $P C(\bar{m})$, for each given m with $\bar{m} \leq m \leq \overline{\bar{m}}$, each node sends to each of its neighbors at most one message $\operatorname{MSG}(m, d)$ with $d<\infty$.
iii) Between two successive proper completions $\operatorname{PC}(\bar{m})$ and $\operatorname{PC}(\overline{\mathrm{m}})$, for each given m with $\bar{m} \leq m \leq \overline{\bar{m}}$, a node enters each of the sets of states $\{\operatorname{SI}[\mathrm{m}]\},\{\mathrm{S} 2[\mathrm{~m}], \mathrm{S} \tilde{2}[\mathrm{~m}]\},\{\mathrm{S} 3[\mathrm{~m}]\}$ at most once.
iv) All "Facts" in the formal description of the algorithm in Section II are correct.

A third theorem describes the situation in the network at the time proper completion occurs:

Theorem 3

At $P C(\bar{m})$, the following hold for each node i :

1) If $n_{i}=\bar{m}$, then $s_{i}=S 1$ or $s_{i}=S 3$.

1i) If a message $\operatorname{MSG}(\bar{m}, d)$ with $d \phi \infty$ is on its way to 1 , then $s_{1}=S 3$ and $n_{1}=\bar{m}$.

1i1. If either $\left(n_{1}=\bar{m}\right.$ and $\left.s_{i}=S 1\right)$ or $n_{i} \leqslant \bar{m}$, then for all k such that $F_{i}(k)=U P$, it cannot happen that $\left\{N_{1}(k)=\bar{n}, D_{1}(k)<-\right\}$.

A combined proof is necessary to show that the properties appearing in Theorems 1, 2, 3 hold. The proof uses a two-level induction, first assuming properties at PC to hold, then showing that the other propertiea hold between this and the next $P C$ and Inally proving that the necessary proper-
ties hold at the next PC. The second induction level proves the properties between succesrive proper completions by assuming that the property holds until just before the current tine t and then showing that any possible change at time t preserves the property. The entire rigorous procedure appears in Appendix A.

In order to introduce properties of the algorithm regarding normal activity and recovery of the network, we need severai definftions.

Definition

We say that a innk (i, q) is potentially warking if $F_{i}(\ell) \neq$ DOWN and $F_{\ell}(i) \neq$ DOWN, and a link (i, ℓ) is working if $F_{i}(\ell)=F_{i}(i)=U P$. Two nodes in the network are said to be potentially connected at time t if there is a sequence of links that are potencially working at time t connecting the two nodes. A set of nodes is said to be strongly connected to the SINK if all nodes in the set are potentially cornected to the SINK and for all links $(i, \%)$ connecting those noies, we have either $F_{i}(\ell)=F_{\ell}(i)=U P$ or $F_{i}(\ell)=F_{2}(1)=$ DOWN.

Definition
Consider a given time t, and let $m l$ ke the highest counter number of crales startied before t. We say that a pertinent topological change happens at time t if the algorithm at a node i with $n_{i}(t-)=m l$ receives at time t a message WAKE(2) resulting in successful WAKP synchronizaition or a message FAIL(ℓ). Observe from steps I. 2 and I. 4 of Table 3 that $\operatorname{BEQ}(m y)$ is generated and sent if and only if a pertinent topological change happens at a node 1 with $p_{1} \neq$ nil. Also note, that a pertinent topological change happens if and only if node 1 has a link ($1, k$) such that at time $t, F_{i}(k)$ changes from DOWN to READY or from either UP or READY to DOWN (see Fig. 2).

Theorem 4 (Narmal activity)

Let
$L(t)=\{r o d e s ~ p o t e n t i a l l y$ connected to SIMK at time $t\}$, $h(t)=$ \{nodes strongly connected to SIMK at time t \}.

Suppose

$$
\begin{equation*}
T \phi 2[t l, S I N K,(m l, m l)], \tag{5}
\end{equation*}
$$

namely a cycle is started at ti with a number that was previously used. Suppose also that no pertinent topological changes have happened while $n_{\text {SINK }}=m$ before $t l$ and no such changes happen for long enough time afeer tl. Then there exist to, t2, $t 3$ with to $<t 1<t 2<t 3<\infty$ such that a), b), c), d) bold:
a) T2I[t0,SINK,(ml,mi)];
b) \forall_{t} in the interval $[t 0, t 3]$, we have $H(t)=L(t)=L(t, 0)$;
c) for all ieL(to), we have

$$
\begin{equation*}
T\left\{t 2\left[t 2_{i}, i,(m 1, m i)\right]\right. \tag{7}
\end{equation*}
$$

for some time $t 2_{i}$ in the interval $[t 1, t 2]$;
d) i) $T 21[t 3, \operatorname{SINK},(\mathrm{ml}, \mathrm{ml})]$;

1i) RG(t3) for all nodes in Lito) is a single tree rooted at SIKK.

In wordr: Theorem 4 says that under the given conditions, if a new cycle starts with a number that was previously used, then Proper Completion with the same namber has previossly oceurred and the new cycle will be properly completsd in linite time while connecting all nodes of interest (i.e. in $L(t 0)$) to the SINK, buth stronely and routingwise. The proof of Theorem 4 is given in Appendix B.
I.se recovecy properties of the algorithm are described in Proposi-tions 1,2 and in Theorem 5. The proofs of the propositions appear in Appendix B.

Proposition 1

Let $L(t), H(t)$ be as in Theorem 4. Suppose

$$
\begin{equation*}
T \phi 2[t 1, S I N K,(\mathrm{ml}, \mathrm{~m} 2)] ; \quad \mathrm{m} 2>\mathrm{ml}, \tag{9}
\end{equation*}
$$

namely a cycle starts at time th with a number that was not previously used. Suppose also that no pertinent topological changes happen for a long enough period after tl. Then
a) there exists a time $t 2$, with $t 1 \leq t 2<\infty$, such that

1) for 811 i $E L(t 2)$

$$
\begin{equation*}
T \phi 2\left[t 2_{i}, i,(\phi, m 2)\right] \tag{10}
\end{equation*}
$$

$$
\text { happen at some time } t 2_{i} \text { with } t 1 \leq t 2_{i} \leq t 2
$$

ii) $H(t 2)=L(t 2)$.
b) There exists a time $t 3<\infty$ such that
i) $\operatorname{T2I}[t 3, S I N X,(m 2, m 2)]$;
ii) Ht in the interval $[t 2, t 3]$, we have $H(t)=L(t)=H(t 2)$; 1ii) $R G(t 3)$ for all nofes in $L(t 3)$ is a single tree rooted at SINK.

Part a) of Proposition 1 says that under the stated conditions, all nodes in $L(t)$ will eventually enter state $52[m 2]$. Part b) says that the cycle will be properly completed and all nodes potentially conneeted to the SINK at time $\operatorname{PC}(\mathrm{m2})$ will actually be strongly connected to the SNKK and will also have a routing path to the SIMK.

Finally, we observe that reattachment of a node loosing its path to the SINK or bringing a link up requires a cycle with a counter number higher than the one the node currently has. Proposition 2 ensures that such a cycle has been or will be started in findte time by the SINK.

Proposition 2

Suppose a node i receives $\operatorname{FAIL}(\ell)$ while $n_{i}=m$ or a successful WAKE(ℓ) synchronization occurs at node i while $z_{i}(\ell)=m$. Then the SINK has received before t a message $R E Q(m)$ or will receive such a message in finite time after t.

Propositions 1 and 2 are combined in:
Theorem 5 (Recovery theorem)
Let $L(t), H(t)$ be as in Theorem 4. Suppose there is a time $t 1$ after which no pertinent topological changes happen in the network for long encugh time. Then there exists a time $t 3$ with $t 1 \geq t 3<\infty$ such that all nodes in $L(t 3)$ are strongly connected to the SINK and are on a single tree rooted at SINK.

Proot

Let to \leq tl be the time of the last pertinent topological change before th. Let i be the node detecting it and let $m=n_{i}\left(t 0_{-}\right)$. Then Proposition 2 assures that a message $R E Q(m)$ arrives at some finite time at SINK. Let $t 2<\infty$ be the time the first REQ(m) message arrives at SIMK. Condition 12 or 22 in Table 4 dictates that SINK will start at time t2 a new cycle, with number $m i=m+1$. Since by the definition of pertinent change, m ia the largest number at time to, we have that to < t 2 . By assumption, no pertinent topological changes happen after time to for a long enough period, so that no such changes happen after time t2. Consequently Proposition 1 holds after this time and the assertions of the Theorem follows.

Theorem 6 (Shortest paths)

With the notations of Theorem 5, suppose the conditions of Theorem 5 hold end in addition, suppose that the weights $d_{i f}$ of the links are time invariant for a long enough period after ti. Then, after completion of a
finite number of cycles after $t 3$, the routing erapk RG will provide the shortest route in terms of the weights $d_{i l}$ from each node in $L(t 3)$ to the SINK. Let $S R$ be the graph providing the shortest routes in terms of $d_{i l}$. Then the necessary number of cycles is bounded from above by the largest distance from SINK in terms of number of hops on SR.

Prooi

Observe from steps II.1.3 and II.3.7 in Table 3, that during the first cycle after t3 all nodes closest to SIKK on SR will have $p_{i}=S I N K$ and will never change p_{s} afterwards.

Next, consider any connected subgraph A of $S R$ that includes the SINK. Suppose that at the time of a cycle conpletion SR and RG coincide for nodes in A. Then these nodes will never change their preferred neighbors p_{i} afterwards. Also during the next cycle at least the nodes neighboring A on $S R$ will change their p_{1} such that $R G$ and $S R$ will coincide for them too, and this proves the assertion.

IV. DISCUSSION AND CONCLUSIONS

The paper presents an algorithm for constructing and maintaining loop-free routing tables in a data-network, when arbitrary failures and additions happen in the network. Clearly, the properties that are rigorously proved in Section 3 and the Appendices hold also for several other : rsions of the algorithm, some of them simpler and some of them more involved than the present one. We have decided on the present form of the algorithm as a compromise between simplicity and still keeping some properties that are intuitively appealing. For example, one possibility is to increase the update cycle nunber every time a new cycle is started. This will not simpliy, the algorithm, but will greatly simplify the proafs. On the other hand, it will require many more bits for the update cycle and node numbers m and n_{1} than the algorithm given in the paper. Another version of the algorithn previously considered by us was to require that every time a node receives a number higher than n_{1} from some neighbor, it will "forget" ail its previous information and will "reattach" to that node inmediately, by a similar operation to transition T32. This change in the algorithm would considerably simplify both the algorithm and the prools, but every topological change will affect the entire network, since after any topological change, all nodes will act as if they had no previous information. On the other hand, the version given in the paper "localizes" failures in the sense thet only those nodes whose best path to SINK was destroyed will have to forget all their previoue information. This ia performed in the algorftha by rem quiring that nodes not in 83 will wait for a signel from the preferred naighbor p_{i} before they proceed, even if they receive a number higher than n_{i} from other nelghbors. The signal may be eitiver ω, in which case the node enters 83 (and eventuelly reattaches) or less than $e_{\text {. }}$ in which case the node proceeds as usual.

A final remark regarding the amount of control information required by the protocol. Observe that since for each update and for each destination each node sends over each link the distance d_{i} and the node counter number n_{i}, the amount of information sent over each link is of the same order of magnitude as the ARPA routing protocol [7]. The difference is that the latter allows information for all destinations to be sent in one message, whereas our protocol requires in principle separate messages for different destinations (although sometimes several messages may be packed together). If the overhead for control messages is not ton large however, the extra load will not be significant.

Appendlx A

We organize the pruofs as follows: We start with the statements of a few properties that follow immediately from the formal description of the algorithm in Table 3. Lemmas A.1 - A. 4 and Theorem A.I contain the proofs of Theorems 1, 2 and 3, together with some other properties needed in the proofs themselves. Theorem 4 and Propositions 1 and 2 will be proved in Appendix B.

Properties of the Algorithm

RI Any change in $n_{i}, s_{i}=D_{i}$, or sending any message (m,d) can happen only while i performs a transition.

R2 Txy $[t, 1, \operatorname{SEND}(m, d) ;(\phi, n 2),(\phi, d 2),(\phi, m x 2)]$ implies $d=d 2$. If $d \neq \infty$, then

1) Txy $=\mathrm{Tl} 2$ or T21 or T22 or T32 or T2 2
i1) $n 2=m \times 2=m$

If $\mathrm{d}=\infty$, then
iii) $T x y=T 13$ or $T 23$ or $T 23$
iv) $\mathrm{n} 2=\mathrm{m}$.

R3 T32[t,1,(n7,n2)] $\Rightarrow n 2>n i$

RL; $s_{i}(t)=s 3 \Leftrightarrow p_{i}(t)=n i l \Leftrightarrow d_{i}(t)=\infty$
R5 $\operatorname{Txy}[t, 1,(\mathrm{p} 1, \mathrm{p} 2)]$, $\mathrm{pl} \neq \mathrm{nil}, \mathrm{p} 2 \neq \mathrm{pl} \Rightarrow \mathrm{Txy}=\mathrm{T} 13$ or T21 or T23 or T23.

R6 $m x_{1}(t)$ is nondecreasing in time for any 1.
R7 In the Finite-State-Machine, no two conditions cac hold at the same time. This implies that the order of checking the conditions of the transitions is irrelevant.

R8 For all t and all nodes i in the network, $n_{S I N K}(t) \geq n_{i}(t)$ and $n_{\text {SINK }}(t) \geq \operatorname{mx}_{1}(t)$.

The Finite-State Machine has two types of transitions. The first type is effected directly by the incoming message, while the x wond cype is caused by the situation in the memory of the node. Transitions T 23 and T21 are of the second type, all others are of the first type. Each message can trigger only one transition of the first type, and this transition comes always before transitions of the second type. This is controlled by the variable CT In Table 3.

R10 The possible changes of $F_{i}(l)$ are given in Fig. 2. The types of messages causing them are also shown. A pertinent topological change happens iff $F_{i}(l)+$ DOWN or $F_{i}(l)$ changes from DOWN to READY at a node i with $n_{i}(t-)=m l$, where $m l$ is the highent counter number of cycles started before t.

The following lemmn says that the node number n_{i} can be changed only when recelving a message from the preferred neighbor p_{i} and then, the new number is exactly the cycle number in received in that message. It also gives conditions for leaving state 53 .

Leman A. 1

If

$$
\begin{aligned}
& \operatorname{Txy}[t, 1, \operatorname{MSG}(m, d, f),(n 1, n 2),(p], \phi)] \\
& \operatorname{Txy}[t, 1, \operatorname{FAIL}(\ell),(n 1, n 2),(p 1, \phi)]
\end{aligned}
$$

or
then
s) $\mathrm{pl} \neq \mathrm{nil}, \mathrm{n} 2 \nmid \mathrm{nl} \rightarrow \ell=\mathrm{p} 1$ and $\mathrm{n} 2=\mathrm{m}$;

Proof

3) From the algorithm we see that $T 21, T 2 \tilde{2}, T \tilde{2} 2$ do not apply here aince they imply $n 2=n 1$. Also $T 32$ does not apply, since ther $p 1=n+1$. If T13, T23 or T2̄3 is caused by FAIL (ℓ) thea $n 2=\mathrm{n} 1$, so this case does not apply either. In all other cases, $\mathrm{n} 2=\mathrm{m}$ and $\mathrm{pl}=\ell$ (see II.1.4, II.2.1, II. 2.4 in Table 3),
b) $\mathrm{pl}=\mathrm{nil}$ implies Txy - T 32 and the assertion follows from steps II.7.1 and II. 7.5 in Taile 3.

The next lemma proves statement i) of Theorem 2 and shows the role of the node counter number n_{1}. Hert we see for the first time that several properties have to be proved in a common induction.

Lemma A. 2
a) $[1, t 1, \operatorname{MSG}(\mathrm{ml}, \mathrm{d} 1, \ell)],[1, \mathrm{t} 2, \operatorname{MSG}(\mathrm{~m} 2, \mathrm{~d} 2, \ell)], \quad \mathrm{t} 2>\mathrm{t} 1 \Rightarrow \mathrm{~m} 2 \geq \mathrm{ml}$.
b) $T \phi \phi[t, 1,(\mathrm{n} 1, \mathrm{n} 2)] \rightarrow \mathrm{n} 2 \geq \mathrm{n} 1$.
c) Let $M_{i}\left(t, p_{i}(t)\right)$ denote the counter number m of the last message MSG(m,d) recaived at 1 before or at time t from the preferred neighbor $p_{i}(t)$. Then

$$
\begin{equation*}
n_{i}(t) \leq M_{i}\left(t, p_{i}(t)\right) \tag{A.2}
\end{equation*}
$$

Proof

The proof proceeds by induction. We assume that a), b), c) hold up to, but not including, time t for all nodes in the network. We then prove below that any possible event at time t preserves the properties. This, combined with the fact that a), b), c) bold trivially at the time any node comed up for the first time, completes the proof.
a). Suppose $t=t 2$. Then by FIFO and property $R 2, \exists t 3, t 4$ with $t 3<t 4<t$ such that $n_{\ell}(t 3)=m l$ and $n_{l}(t 4)=m 2$. By induction hypothesis on b), n_{ℓ} was nondecreasing up to (but not including) time t, so $\mathrm{ml} \leq \mathrm{m} 2$.
b) Cbserve first from steps II. 2.4 and II.5.1 in Table 3,

$$
T \phi \phi[\tau, i, F A I L(\ell),(n l, n 2)]
$$

Implies $n 2=n 1$, so that the statement is true in this case. We therefore have to check only the case when the transition is caused by MSG. Suppose

$$
\begin{equation*}
T \phi \phi[t, 1, \operatorname{MSG}(m, d, i),(n 1, n 2),(p 1, p 2)] \tag{A.3}
\end{equation*}
$$

happens. If $n 2=n l$, q.e.d. If $n 2 \neq n 1$, then Lemm A. 1 implies that either $p I=n i l$ or $(p l=\ell, n 2=m)$. If $p I=n i l$, q.e.d. from Lemma A.1. If ($\mathrm{pl}=\ell, \mathrm{n} 2=\mathrm{m}$),
then

$$
\begin{equation*}
n l \leq M_{1}(t-, p 1)=M_{i}(t-, \ell) \leq M_{1}(t, l)=m=n 2 \tag{A.4}
\end{equation*}
$$

where the inequalities follow respectively from induction hypothesis on c) and from applying a) at time t.
c) We have to show that if

$$
\begin{equation*}
\left[1, t, \operatorname{MSG}(m, d, l),(n 1, n 2),\left(p^{2}, p 2\right)\right] \tag{A.5}
\end{equation*}
$$

then
i) $\ell=p 1$ mp 2 implies $n 2 \leq m$, and
ii) $\mathrm{p} 2 \neq \mathrm{p} 1, \mathrm{p} 2 \neq \mathrm{ail}$ implies $\mathrm{n} 2 \leq \mathrm{M}_{\mathrm{i}}(\mathrm{t}+\mathrm{p} 2)$.

To do this we check all possible transitions and also the case when the recelved message causes no transition. T13, T23 and T23 do not apply here because then $p 1 \neq n i l, p 2=$ ail. If $T 2 \tilde{2}$ or no transition, then $p 2=p 1$ and $n 2=01$, and we have

$$
n 2=n l \leq M_{1}(t-, p 1) \leq M_{1}(t+, p 1)=M_{i}(t+, p 2)=m,(A .6)
$$

where the inequalities follow from the induction hypotbesis and from a) respectively. For the other transitions we have T12, T22 and T22 imply $\ell=\mathrm{pl}=\mathrm{p} 2, \mathrm{n} 2=\mathrm{m}$ (see II.1.1 and II.1.4 in Table 3).

T21 implies $\mathrm{p} 2 \neq \mathrm{ail}$, and timen the counter number of the last message received from any neighbor before $t+$ is $n 1=n 2=m$.

T32 implies $\mathrm{p} 2 \neq \mathrm{pl}, \mathrm{p} 2 \neq \mathrm{F} 11$ and then from steps II.7.4, II.7.5 II.T.I in Table 3, $n 2=m x_{i}(t-), p 2=k^{*}, M_{i}\left(t+, k^{*}\right)=$ $N_{i}\left(k^{*}\right)(t-)=m x_{i}(t-)$.

The neat lema shows what are messages that cas travel on a line after a failure or after a message with $d=\infty$.

Lemma A. 3

a) If

$$
\begin{equation*}
[1, t 1, \operatorname{MSG}(m l, d 1, \ell)], \quad[i, t 2, \operatorname{MSG}(m 2, d 2, \ell)] \tag{A.7a}
\end{equation*}
$$

where $t 2>\mathrm{il}, \mathrm{d}=\infty$, then $\mathrm{m} 2>\mathrm{ml}$.
b) If

$$
\begin{equation*}
[1, t 1, \operatorname{FAIL}(\ell)],[1, t 2, \operatorname{MSG}(m 2, d 2,2)] \tag{A.Tb}
\end{equation*}
$$

where $t 2>t 1$, then $m 2>n_{i}(t I)$ and also $m 2>n_{i}(t l)$.

Proof

a) $\exists \mathrm{t} 3<\mathrm{tl}$ such that

$$
\begin{equation*}
T \phi 3\{l, t 3, \operatorname{SEND}(m 1, d 1,1),(\phi, n 2)] \tag{A.B}
\end{equation*}
$$

and from property R2 we have ml. $=$ n2. The next transition of $\&$ must be

$$
\operatorname{T} 32[\ell,(n 2, n 3)], \quad n 3>n 2
$$

so that by Lemsma $A .2$ b) and R2, node ℓ will never send after $t 3$ any message $\operatorname{MSG}(m, d)$ with $m \leq m l$. FIFO ai node 1 completes the proos.
b) After failure, a $11 \mathrm{nk}(1,2)$ can be brought up unly with numbers strictly higher than $z_{i}(\ell)$ as defined in step I. 4 of Table 3. Since n_{i} is non-decressing by Lemma A.2. b), the proof is complete.

Lemma A. 4
If $F_{i}(\ell)(t)=$ READY and

$$
\begin{equation*}
[t, 1, M S G(m, a, 2)] \tag{A,9}
\end{equation*}
$$

then $m>z_{i}(\ell)(t)$. Observe that this is Fact I.3.1 in Table 3. -

Prooi

From steps I.1-I. 4 in Table 3 and property 2.7.7 insee. 2.7, $F_{1}(\ell)$ can go to READY only from DOWN and only wher successful synchronization of WAKE(ℓ) occurs at i. Let $t l$ < t be the time this occurs. By property 2.7.7, at time $t l$ there are no outstanding messages on $(1, \ell)$ or ($\ell, 1$) and $z_{1}(\ell)$ is established as $\max \left\{n_{1}, n_{\ell}\right\}$ (soe I. 4 in Table 3). Therefore the message in (A. 9) must have been sent at time $t 2>t 1$ and aince ℓ sends messages only to nodes k for which $F_{\ell}(k)=U P$ it follows that $F_{\ell}(1)(t 2+)=$ UP. But $F_{\ell}(1)$ could heve gone to UP from READY only because Of II.1.5, II.2.5. II.4.2, II.6.2, II.7.7, II.8.2 or II.9.2 in Table 3, and not because of 1.3 and in all the above we have $n_{k}>z_{i}(1) \times z_{i}(l)$. Sinac n_{ℓ} is nondscrasing and l sonds $\operatorname{MSG}(m, d)$ only with $m=n_{i}$; the assarm tion follows.

Leman A. 5

If

$$
\begin{equation*}
T \phi 2[t 1,1,(\phi, m)], \tag{A.10}
\end{equation*}
$$

then $\forall_{t}>t 1+$, we have $\forall k$..t. $F_{1}(x)(t)=$ READX that $z_{1}(k)(t) \geq m_{0}$. Therefore, no link can be brought up by node 1 whth amber m after the node entered $82[m]$ (brought up means $\left.P_{1}(k)+U P\right)$.

Proof

If we have $F_{i}(k)(t l-)=\operatorname{READY}$ and $z_{i}(k)(t l-)<m$, then at time tl, we have $F_{i}(k) \leftarrow U P$. If it is not, then $\forall t>t i$, we have $n_{i}(t) \geq m$ by Lemma A.2, so that only for nodes k with $z_{i}(k) \geq m$ it can happen that $F_{i}(k) \leftarrow R E A D Y$ after tl.

The next theorem completes the proof of Theorems 1,2 and 3.

Theorem A. 1

Let $\operatorname{PC}(\bar{m}), \operatorname{PC}(\overline{\bar{m}})$ be the instants of occurrence of two successive proper completions. Then
a) Theorem 3 .
b) Consider any number $m \leq \underline{\bar{m}}$. Let \tilde{m} be the highest number $\tilde{m} \leq m i$ such that $\operatorname{PC}(\tilde{m})$ occurs. Let $\operatorname{LPC}(\tilde{m}, m I)$ be the time of occurrence of the last $\operatorname{PC}(\tilde{m})$ such that $P C(\tilde{m}) \leq \operatorname{PC}(\bar{m})$. If for any i, k, $t \leq P C(\overline{\overline{I I}})$, we have either
$N_{i}(k)(t)=m l=\tilde{m}, L_{i}(k)(t) \neq \infty, s_{i}(t) \neq S 3, n_{i}(t)=\dot{m}$
or

$$
\begin{equation*}
N_{i}(k)(t)=m \mathrm{ml}>\dot{\mathrm{m}}, \tag{A.11b}
\end{equation*}
$$

then $\exists \tau 1 \varepsilon[\operatorname{LPC}(\tilde{m}, m x), t)$ and $\tau 2 \varepsilon\left(\tau_{1}, t\right)$ such that

$$
\begin{equation*}
[\tau 1, k, \operatorname{SEND}(m l, d l, 1)] \tag{A,12a}
\end{equation*}
$$

$[\mathrm{T} 2,1, \operatorname{MSG}(\mathrm{ml}, \mathrm{d} 2, \mathrm{k})]$
with $d l=D_{1}(k)(t)-d_{1 k}(t 2), d 2=D_{1}(k)(t)$.
(Note: In words, tie above insures that the message (ml,di) was sent and received no earliar than $\operatorname{LPC}(\dot{m}, m i))$.
c) Consider any number $m \leq \leq \tilde{m}$. Let \tilde{m} be the highest number $\tilde{m} \leq m$ such that $\operatorname{PC}(\bar{m})$ occurs. Let $\operatorname{LPC}(\bar{m}, m \mathrm{~m})$ be the time of occurrence of the last $P C(\bar{m})$ such that $P C(\dot{m}) \leq P C(m)$. Then
i) $[t 1,1, \operatorname{MSG}(m 1, d 1, \ell)],[t 2,1, \operatorname{MSG}(m 2, d 2, \ell)]$ where $\operatorname{LPC}(\tilde{m}, \mathrm{ml}) \leq \mathrm{tI}<\mathrm{t} 2 \leq \mathrm{PC}(\dot{\mathrm{m}})$ and $\mathrm{d} 2 \neq \infty$ imply $\mathrm{m} 2>\mathrm{ml}$.
ii) If

$$
\begin{align*}
& T 21[t 1, i,(n l, n l)] \tag{A.13}\\
& {[t 2,1, \operatorname{MSG}(n, d, l)], a \neq \infty} \tag{A.14}
\end{align*}
$$

where $\operatorname{LPC}(\bar{m}, n l) \leq t I<t 2 \leq \operatorname{PC}(\overline{\overline{I I}})$, then $m>n l$.
iii) A node i enters, between $\operatorname{XPC}(\bar{m}, m)$ and $P C(\bar{m})$, each oi the following sets of states at most once
\{SI[mi\}, \{S2[m], S2[m]\}, \{S3[m]\}.
d) All "Facts" in Table 3 are correct.
e) i) The possible transitions at a node are the following, where $n 2 \geq n 1$ and $n 3>n 1: T 12[(n 1, n 2)], T 13[(n 1, n 2)], \operatorname{T21}[(n 1, n 2)]$, $\operatorname{T22}[(n 1, n 3)], \operatorname{T22}[(n 1, n 1)], \operatorname{T23}[(n], n 2)], T 2 ̃ 3[(n 1, n 2)]$, ($132[(n 1, n 3)]$, т2̃2 $[(n], n 3)]$.
ii) $\operatorname{T21}[t, i,(n], n i)], P_{k}(t)=f$ implies $\left.s_{k}(t)=S 1[n]\right]$.
p) Theorem 1 .
g) i) Suppose $T 21[t, i,(n i, n l)]$ with $n I=m$ and let $\tau 1$ be the last time before t such that $T \phi 2[\tau], i,(\phi, n l)]$. Then we have $F_{i}(k)(T 1)=U P$ if and only if $F_{i}(k)(\tau)=U P$, $t^{\prime} \tau \varepsilon[\tau 1, t]$.
ii) If for some $t \varepsilon[P C(\overline{\text { II }}), P C(\overline{\text { III }})]$ we have

$$
\begin{equation*}
T \phi 2[t, i,(\phi, n 2)], \quad n 2=\frac{=}{m}, \tag{A.15}
\end{equation*}
$$

then

$$
\exists \tau] \varepsilon(t, \operatorname{PC}(\underline{m})) \text { set. } \operatorname{T} 21[\tau 1,1,(\mathrm{n} 2, \mathrm{n} 2)]
$$

and

$$
\begin{equation*}
\not \mathcal{Z}^{\prime} \tau 2 \in\left(t, \operatorname{PC}\left(\frac{E}{m}\right)\right) \text { s.t. } \operatorname{T2} 3[\tau 2,1] \text { or } \operatorname{T2} 2[\tau 2,1] \text {. } \tag{A.16}
\end{equation*}
$$

h) If $\bar{y} i, k$, $t \in(P C(\bar{m}), P C(\bar{m}) j$ such that for some $\tau \varepsilon(P C(\bar{m}), t]$ we have

$$
[t, k, \operatorname{SEND}(\overline{\bar{m}}, \mathrm{~d}, i)], \quad d \neq \infty
$$

and if i either has not recoived this message by time t or has $N_{j}(k)(t)=\overline{\bar{m}}, D_{i}(k)(t) \neq \infty$, then $\because t \mathcal{E} \in[t, P C(\bar{m})]$ such that

$$
\begin{equation*}
s_{i}(t 1)=s 2[\overline{\bar{m}}] \quad \text { or } \quad s_{i}(t 1)=s 3[\overline{\bar{m}}] \tag{A,17}
\end{equation*}
$$

Proof
As suid before, the proof proceeds using a two-level induation. We first notice that a) holds at the time the network comes up for the first time. We call this PC(D). Then we assume that a)-h) hold at every tims up and including $P C(\bar{m})$. Next we prove that $b)-n)$ hold until $P C(\bar{m})$ and then show that a) holds at $P C(\overline{\bar{m}})$.
b) Observe that from Lemma $A .2$ b) and Property R8, by time LPC((\tilde{m}, ml) no node in the network has ever heard of a number $>\bar{m}$. Therefore if (A.llb) holds, an appropriate message must have been sent and received after $\operatorname{LPC}(m, m l)$ and hence (A.I2) holàs.

On the other hand, observe that (A.Ila) and Property R3 imply thet $s_{i}(\operatorname{LPC}(\tilde{m}, m i)) \neq \mathrm{S} 3[\overline{\mathrm{~m}}]$. Also note chat the induction hypothesis assumes that a, namely Theorem 3, holds at time LPC($\tilde{m}, m l)$ and therefore at this time, first, no message $\operatorname{MSG}(m, d)$ with $d \neq \infty$ is on its way to 1 and second, it caneot happen that $f N_{i}(k)=\dot{m}$, $\left.D_{1}(k) \neq \infty\right\}$. But (A.11a) says that the latter occurs at time t and therefore, by step 1.3 in Table 3 , i must have received a message $\operatorname{MSG}(\tilde{m}, d)$ with $d \neq \infty$ after $\operatorname{LPC}(\tilde{m})$ and hence (A.12b). Since no such message was on its way to i at $L P C(\tilde{m}), A(12 a)$ holds also.
c) Suppose c) i), ii) and iii) are true for all nodes in the network up to time $t-$. We prove c) i) and c) ii) for $t .2=t$ and then prove c) iii) for t.
i) If $d i=\infty$, then $m 2>m l$ from Lema A.3. It remains to prove the assertion for $d l<\infty$. From Leman A.2, we have $m 2 \geq m 1$. Suppose $d 1 \neq \infty$ and $m 2=m$. Then Lemmas A.3a) and A.2a) respectively, imply thet $\nexists t 3 \in(t I, t)$ such that $[i, t 3, \operatorname{MSG}(d 3=\infty, \ell)]$ or such that $[1, t 3, \operatorname{MSG}(m 3, d 3, \ell)]$, $m 3 \neq m 2=m 1$. Therefore the two messages received at $t l$ and $\mathrm{t} 2=\mathrm{t}$, can be taken as consecutive. So using b), $\exists t 4 \varepsilon[\operatorname{LPC}(\tilde{m}, m I), t I), t 5 \varepsilon(t 4, t)$ such that

$$
\begin{align*}
& \operatorname{Txy}[t 4, \ell, \operatorname{SEND}(\mathrm{~m}], d 1, i)], \quad \text { dl } \neq \infty, \tag{A.18}\\
& \operatorname{Ta\beta }[t 5, \ell, \operatorname{SEND}(\operatorname{sil}, \mathrm{~d} 2, i)], \quad \text { de } \neq \infty . \tag{A.19}
\end{align*}
$$

By R2, Txy $=T 21$ or $T 12$ or $T 32$ or $T 22$ or Tz̃2 and same for Taß. But by induction hypothesis on c) iii), node $\&$ cannot enter the set of states $\{S 2[m]], S \overline{2}[m]]\}$ twice between $\operatorname{LPC}(\tilde{m}, m l)$ and t, so that the only possibilities are $\{T 12[t 4, \ell]$ OR $T 32[t 4, \ell]$ OR T22[$44, \ell]$ OR T2̃2[$44, \ell]\}$ AND $\{T 21[t 5,2]\}$ and no other transition happens between $t 4$ and $t 5$. But in $T \phi 2[t 4, \ell]$, node i sends a message to every neighbor except $p_{\mathcal{L}}(t 4+)$ and in $T 21[t 5, l]$ it sends a message only to $p_{\ell}(t 5-)$ and since no other transition happens between $t 4$ and $t 5$ we have $p_{\ell}\left(t 4^{+}\right)=p_{\ell}(t, 5)$. This contradicts (A.18), (A.19).
ii) If $F_{i}(\ell)(t .-2)=$ DOWN or READY, then Lecme A. 4 together with the facts that n_{i} is nondecreasing (by Lema A. 2 b) and that $z_{i}(2)$ is established as in step I. 4 of Table 3 show that the Nrst message MSG(ml,di, $\ell)$ that can be received by 1 from l after tl must have ml $>\mathrm{ml}$. Then the assertion follows from Lemad A.2a).

If $F_{i}(\ell)(t 1 .-)=U P$, then step II. 3.7 in Table 3 requires

$$
\begin{equation*}
N_{1}(\ell)(t l-)=n l \tag{A.20}
\end{equation*}
$$

and by the definition of $\operatorname{LPC}(\dot{m}, n l)$ we bave $a l \geq \dot{m}$. If $D_{i}(l)(t l-)=\infty$, then $\because t 3<t 1$ (possibly $t 3<\operatorname{LPC}(m, n i)$) such that

$$
\begin{equation*}
[t 3,1, \operatorname{MSG}(n l, d 1, \ell)], \quad d 1=\infty, \tag{A.21}
\end{equation*}
$$

which together with (A.14) implies by Lemaa A.3a) that $m>n 7$.

If $D_{i}(\ell)(t,-) \neq \infty$, then from b) foliows $\left.\left.] t 3 \varepsilon\left[\operatorname{lPC}\left(m_{m}, n\right]\right), t\right]\right)$, such that

$$
\begin{equation*}
[t 3, i, \operatorname{MSG}(n], d 1, \&)], \quad d 1<\infty \tag{A.22}
\end{equation*}
$$

and the assertion follows from c) i).
iii) From Lema A.2, n_{1} is nondecreasing, so that once n_{1} is increased, it cannot return to the old value.

From the algorithm, a node can leave $\{S 2[m], S \hat{2}[m]\}$ and not change $n_{i}=m$ only via T21 or T23 or T2̃3. If T23 or TN23, then R3 shows that it will strictly increase n_{i} when leaving S3[m]. If T2I[(m,m)], then c) i1) shows that it cannot subsequently receive a message $\operatorname{MSG}(m, d)$ with $d \neq \infty$, and in order to enter $S 2[m]$, such a message must be received. Therefore; the statement holds for $\{s \tilde{2}[m], \mathrm{S} 2[\mathrm{~m}]\}$.

To $S I[m]$ one enters only from $S 2[m]$, so that a node cannot enter $S 1[m]$ twice unless it enters $\{S 2[m], S 2 ̀[m]\}$ twice, so that the 3 jatement holds for $S I[m]$.

If a node enters $\mathrm{S} 3[\mathrm{~m}]$, by R3 it leaves it only with a higher n_{i}, so that it cannot come back with tae same n_{i}.
d) The Fact in I. 3 was proved in Lema A.4. The Fact in 1.4 follows Prom properiy 2.7.7 in Sec. 2.7. Next, observe from II.2.3. IT.2.7, II.6.3 and II. 9.3 in Table 3 that

$$
\begin{equation*}
T \phi 3[1,(d 1, d 2),(p 1, p 2)] \tag{A.23}
\end{equation*}
$$

implies $12=\infty, \mathrm{p} 2=\mathrm{nil}$, so Fact 32 is correct. Facts $13,12,23$ and $\overline{2} 3$ follow from Lemma $A .2 a$) and $A .2 c$), since $1 f$ MSG is received at 1 at time t and T13 or T12 or T23 or T $T 23$ happen, then.
$m \triangleq$ number received by i at t on $p_{i}(t-) \geq M_{i}\left(t-, p_{i}(t-)\right)$.

Fact 21 is correct, since if $T \phi 2[1,(d 1, d 2)]$, then $d 2<\infty$ and since $p_{i}=n i l$ iff $s_{i}=s 3$.
e) i) The assurtion follcws immediately from Lema A. 2 b) and from checking changes on n_{1} in Table 3 .
ii) Recall that we are always considering times until PC(m)。 Observe from II.3.1 in Table 3 that

$$
\begin{equation*}
\operatorname{T2I}[t, i,(n l, n l)] \tag{A.25}
\end{equation*}
$$

implies that $N_{i}(\ell)(t-)=n l$ for all ℓ with $F_{i}(\ell)=$ UP, and since from II. 3.7 in Table $3 \quad p_{k}(t)=1$ ixplies $F_{i}(k)=U P$, we bave $\mathbb{N}_{i}(k)(t-)=n l$. Note further that $D_{i}(k)(t-) \neq \infty_{1}$ since otherwise k was some time before t in $s 3[n]$ and could set $p_{k}+i$ only if i sent to k a message MSG with number strictly higher than al. But $\mathbb{N}_{1}(k)(t-)=n$, $D_{i}(k)(t-) \neq \infty$ implies from b) that $\exists \tau \varepsilon[$ LPC $(\dot{m}, n I), t)$ such that

$$
\begin{equation*}
\operatorname{Try}[\tau, k, \operatorname{SEND}(n 1, d, i)], \quad d \neq e . \tag{A.26}
\end{equation*}
$$

Now if $p_{x}(\tau-) \neq 1$, then Thy $=T 12$, but in order for $p_{k}(t)=i \neq p_{k}(\tau-), k$ must have performed $T 21[\tau 1, k]$ at some
$T \in(\tau, t)$. On the other hand, if $p_{k}(\tau-)=1$, then $T x y=T 21$. Therefore k performed

$$
\begin{equation*}
T 21[n, k,(n l, n l),(p l, p 2)], p 2=1 \tag{A.27}
\end{equation*}
$$

at some time $\eta \in[\operatorname{LPC}(\tilde{m}, n 1), t)$. So $\left.s_{k}(n+)=S I[n]\right]$.
From e) 1)., the fact that until t node is receives no number higher than $n I$ and $p_{k}(t)=1$, one can easily see that k remains in $S l[n l]$ until time t.
i) We refer to the properties to be proven here as tree properties. If $p_{i}=k$, we say that i is a predecessor of k and k the suecessor of 1 . Also, we look at the concstenation (n_{i}, s_{i}) and write $\left(n_{i}, s_{i}\right) \geq\left(n_{k}, s_{k}\right)$ if $n_{i} \geq n_{k}$ and if $n_{i}=n_{k}$ implies $n_{i} \geq n_{k}$. Using this notation observe from e) i), that

$$
\operatorname{Txy}[1,(n 1, n 2)]
$$

implies $(n 2, y) \geq(n 1, x)$ except when $T x y=T 21$.

As before, we prove the tree properties by induction, assuming that they hold up to time t - and showing that any possible change at time t preserves the properties. The changes of interest here are In the quantities $n_{i}, s_{1}, p_{1}, d_{i}$.

Let us consider all possible transitions:
$T 2 \tilde{2}[t, 1] ;$ only s_{i} changes, $\ddot{s}_{i}(t+)=s_{i}(t-)$, so "trees" properties are preserved.
$\mathrm{T} 13[t, i], \mathrm{T} 23[t, 1], \mathrm{T} 23[t, 1]$; then $P_{i}(t+)=\mathrm{nil}$, so no succeesor at t+. Also by Leame A. 2 and induction hypothesis follows that if $p_{k}(t)=1$, then

$$
\begin{equation*}
\left(n_{i}, s_{1}\right)(t+) \geqslant\left(n_{1}, a_{i}\right)(t-) \geq\left(n_{k}, s_{k}\right)(t) . \tag{A.28}
\end{equation*}
$$

so proparties are preserved for all predecessora.
$\operatorname{T12}[t, 1], \mathrm{T} 22[t, 1], \mathrm{T} 2[t, 1]$ (change d_{1}, s_{1} and possibly a_{1}; no change in p_{1}). Regarding predecessors, the proof evolves fa for T13. Regarding p_{1}, we see that

$$
\begin{equation*}
\operatorname{Txy}[t, 1, \operatorname{MSG}(m, d, l),(n], n 2),(p 1, p 1)], \tag{A.29}
\end{equation*}
$$

where $T x y=T 12$ or $T 22$ or T 22 , imples from steps II.1.1, II.4.1, II.8.1 In Table 3 that $\mathcal{L}=\mathrm{pl}, \mathrm{d} \neq \infty$ and Erom steps Ir.1.4, II.4.2, II.8.2 that $m=n 2$. From b) and R2, this implies that $\exists \tau E[\operatorname{IPC}(\tilde{m}, n), t)$ such that $s_{p 1}(\tau)=S 2[n 2]$. Now, if on ($\left.\tau, t\right)$, pl stayed in $S 2[n 2]$ or performed any transition except $T 21[p 1,(n 2, n 2)]$, then $T 12[1]$ or $T 22[1]$ or $T 22[1]$ preserve the tree propertiea. We want to show by contradiction that P_{1} could not have performed T21 on (τ, τ). Suppose

$$
\begin{equation*}
\mathrm{T} 21[\tau 1, \mathrm{pl},(\mathrm{n} 2, \mathrm{n} 2)], \quad \tau<\tau 1<\mathrm{t}, \tag{A.30}
\end{equation*}
$$

then by step II.3.1 of Table 3 we have $\mathrm{N}_{\mathrm{pl}}(1)(\tau 1)=n 2$. Now we distinguish between two cases:

If $D_{p 1}(\tau 1) \neq \infty$, then by $\left.b\right\rangle, \exists \tau 2 \varepsilon(L P C(\bar{m}, \square 2), \tau 1)$ such that

$$
\begin{equation*}
[\pi 2,1, \operatorname{SEND}(n 2, d, p 1)], d \neq \infty \tag{A.31}
\end{equation*}
$$

which by R2 implias that $n_{i}(\tau 2-)=S 2[\mathrm{n} 2]$ or $s_{i}(\tau 2+)=S 2[n 2]$. But $T 12[t, 1,(n 1, n 2)]$ or $T 22[t, 1,(n 1, n 2)]$ or $T 22[t, 1,(n 1, n 2)]$ says that 1 enters $S 2[\mathrm{n}$] at time t which contradicte c) iii). If $D_{p 1}(1)(\tau 1)=\infty$, then for some $\tau 2<\tau 1$ (not nacesearily $\tau 2>\operatorname{LPC}(\tilde{m}, n 2))$

$$
[r 2,1, \operatorname{SEND}(n 2, d, p l)], \quad d=\omega
$$

which implies that $s_{i}(\tau 2+)=83[n 2]$. But $s_{i}(t+)=82[n 2]$ and $\tau 2<t$, which is impossible by R3 and Lemm A.2.

T32[t,i,(nl,n2),(nil,p1)]. Regarding predecessors the tree properties are preserved since $n 2>$ al. Regarding successor, the above implles that $\exists_{\tau \varepsilon(\operatorname{LPC}(\bar{m}, n 2), t)}$

$$
[\tau, p 1, \operatorname{SEND}(n 2, d, i)] .
$$

Now, from Lemma A.2, $n_{p l}(t) \geq n_{p l}(r)$. From R2, $n_{p l}(r)=n 2$. Now, if $n_{p 1}(t)>n 2$, then

$$
\left(n_{p I}, s_{p I}\right)(t)>\left(n_{i}, s_{i}\right)(t+) .
$$

If on the other hand $n_{p 1}(t)=n 2$, then the same argument as for $T 12, T 22$ shows that $P 1$ was in $S 2[n]$ sometime before t and could not return to $S 1[n 2]$ in the meantime, so that

$$
\left(n_{p I}, s_{p l}\right)(t) \geq\left(n_{i}, s_{i}\right)(t+)
$$

In addition to the above, since hare there is a change in p_{i} from ail to fil, we have to check that this change does not close a loop. This is seen from the fact that every node k upstream from I at time t has

$$
\left(n_{k}, s_{k}\right)(t) \leq\left(n_{i}, s_{i}\right)(t-)=(n 1,3)<(n 2,2)=\left(n_{i}, s_{i}\right)(t+)
$$

and every node $\&$ downstream from pl has

$$
\left(n_{\ell}, s_{2}\right)(t) \geq\left(n_{p 1}, s_{p 1}\right)(t) \geq(n 2,2) .
$$

$$
T 21[t, i(n 1, n 1),(p 1, p 2),(d l, d i)] \text {. If } p_{k}(t)=i \text {, then from e) i1) }
$$

Pollows that $s_{k}(t)=81[n 1]$, so

$$
\left(n_{i}, s_{i}\right)(t+)=\left(n_{\mathbf{K}}, s_{\mathbf{K}}\right)(t)
$$

Regarding successor, steps II.3.1 and II.3.7 of Table 3 show that $N_{i}(p 2)(t-)=n 1, D_{i}(p 2)(t-) \neq \infty$ so that from b), $\exists \tau \varepsilon\left[L P C\left(\bar{m}_{9}, m\right), t\right)$ such that

$$
[\tau, \operatorname{p} 2, \operatorname{SEND}(m, d, i)]
$$

with $m=n l=n_{p 2}(\tau+), d=d_{p 2}(\tau t)=D_{i}(p 2)(t-)-d_{1_{0} p 2}(\tau)$. Therefore from Lemma A. 2 ,

$$
\left(n_{p 2}, s_{p 2}\right)(t) \geq(n, 1)=\left(n_{1}, s_{i}\right)(t+)
$$

Now suppose that the change in p_{i} closes a loop at $t+$. Then the last expression and the induction hypothesis show that at time t+

$$
\left(n_{p_{\ell}}, s_{p_{q}}\right) \geq\left(n_{\ell}, s_{\ell}\right)
$$

for all nodes $\&$ around the loop, so that (n, s) must be constant around the loop, namely

$$
(n, s)=(n l, 1)
$$

around the loop. Therefore ${ }^{s}{ }_{p 2}(t)=\operatorname{Sl}[\mathrm{n}]$]. obut by $R 2, s_{p 2}(\tau-)=$ $\left.s_{p 2}(\tau+)=S 2[n]\right]$ where τ is defined above, so by c) iii), node $p 2$ could not enter again $S 2[n]$ between $\tau+$ and t, so

$$
d_{p 2}(t)=d_{p 2}(\tau+)=D_{i}(p 2)(t-)-d_{i, p 2}(\tau)
$$

But from steps II. 3.2 and II. 3.7 of Table 3

$$
d 1 \geq D_{i}(p 2)(t-)=d_{p 2}(t)+d_{i, p 2}(\tau)
$$

which from Assumption 2.7.2 fmplies that

$$
d 1=d_{i}(t+)>d_{p 2}(t)
$$

On the other hand, the induction hypothesis implies that since $\left(n_{p,}, s_{x}\right) \equiv(n, 1)$ around the lcop, we have

$$
d_{i}(t) \geq d_{P_{l}}(t)
$$

for all $\ell \neq 1$ around the loop and this provides contradiction, therefore no loop is closed by the change in p_{i}.
g) 1) During ($\tau 1, t$), no link is brought up by i because of Leman A.4. If there are failures, let $\tau 3$ be the first time on ($\tau 1, t$) such that

$$
[\tau 3,1, \operatorname{FAIL}(k)] .
$$

Then $T 23[\tau 3,1,(n 1, n)]$ or $\left.T 2 \tilde{2}\left[r^{3}, 1,(n, n]\right)\right]$ happen with $n 1=m_{0}$ In either case, e) i) shows that to exit $S 3[n]]$ or $s \tilde{2}[n 1]$, one has to increase i_{i}, so that it is not possible that

$$
T 21[t, i,(n 1, n 1)] .
$$

So no failure can occur.
ii) Consider the sequences of nodes and instants

$$
\begin{aligned}
& i=i_{0}, i_{1}, i_{2}, \ldots, i_{s}=\text { SINK } \\
& t=t_{0}>t_{1}>t_{2}>\ldots>t_{s}
\end{aligned}
$$

such that

$$
T \phi 2\left[t_{u}, i_{u},(\phi, n 2),\left(p l_{u}, p \varepsilon_{u}\right)\right]
$$

where $n 2=\frac{m}{m}$ and $p 2_{u}=i_{u+1}$. There must have existed such sequences if $T \phi 2\left[1_{0}\right]$. Suppose $\not \subset \tau \varepsilon\left[t_{0}, P C\left(\frac{x_{m}}{m}\right)\right]$ such that $\operatorname{T21}\left[\tau, 1_{0}(n 2, n 2)\right]$.
We wast to show that $\frac{f}{f} \tau \mathrm{E}\left[\mathrm{t}_{1}, \operatorname{PC}(\mathrm{~m})\right]$ such that $\operatorname{T21}\left[\tau 1, i_{1},(n 2, n 2)\right]$.

If there existed such 8 il, it follows from g) i) that $P_{1_{1}}\left(1_{0}\right)(\tau 1)=U P$.
We want to show now that for fl such that
$\left[\because 2, i_{0}, \operatorname{send}\left(n 2, d, i_{1}\right)\right], \quad d=\omega$,
and $\% \tau 3 E(\operatorname{PC}(\bar{m}), \tau 1)$ such that such a message with $d \neq=$ is
sent. For $\tau 2<t_{0}$, this follow respectively from R2, R3 and

R2, e) ili). For $\tau 2 * t_{0}$, it follows from the fact that

$$
p_{1_{0}}\left(t_{0}+\right)=i_{1}
$$

For $\tau 2 \varepsilon\left(t_{0}, \mathrm{PC}(\overline{\bar{m}})\right)$, the only pessibilities for i_{0} if T2l does
 $T 23[(n 2, n 2)]$, or $T \overline{2} 3[(n 2, n 2)]$. In all cases 1_{0} will not send any message to 1_{1}.
The above show that $\mathrm{N}_{i_{1}}\left(\dot{I}_{0}\right)(\tau \lambda-) \neq \overline{\bar{m}}=n 2$ so that $T 21\left[\tau 1,1_{1},(n 2, n 2)\right]$
is impossible. Repeating the proof, it follows that $\frac{\text { fis }}{f}$ such that

$$
\operatorname{T21}\left[\tau_{s}, \operatorname{SINK},(n 2, n 2)\right], \quad n 2=\overline{\bar{m}},
$$

whicb contradicts the assumption that there is a proper completion at inme PC(要). This proves the first part of g) ii). The second part follows because $T 21[r 1,1,(n 2, n 2)], n=m$ is not possible if $T 23[1,(n 2, n 2)]$ or $T 2 \tilde{2}^{[1,(n 2, n 2)] \text { happen. }}$
b) If $[\tau, k, \operatorname{SEND}(m, d \neq \infty, i)]$, then $F_{k}(i)(q)=U P$ and by $R 2$ elthar

$$
T x 2[r, k,(\phi, n 2)], \quad n 2=m_{s} \quad x=1,2,3
$$

or

$$
T 21[r 1, k,(n 2, u 2)], \quad n 2=\frac{m}{m}
$$

If Txí then G) 1i) implies JT2e ($\tau, \operatorname{PC}\left(\frac{\mathrm{m}}{\mathrm{m}}\right)$) such that

$$
T 21\left[\tau 2, k_{n}(n 2, n 2) j, \quad n 2=\frac{m}{n}\right.
$$

and $F_{k}(1)(r 1)=U P$. Therefore $T 21$ happens at node k at some time ($\tau 1$ or $\tau 2$). Call thia time n. We havo then $N_{f}(i)(n)=m$. By
b) either $J \tau 3 \in\left[P C\left(\frac{m}{m}\right), n\right)$ such that

$$
\left[\tau 3,1, \operatorname{send}\left({ }_{m}^{\infty}, d \neq \infty, i x\right)\right]
$$

or $\exists 44<n$ such that

$$
[\tau 4,1, \operatorname{SEND}(\bar{m}, d=\infty, x)]
$$

But by R2, this means that f. is at some time before n in $83[m]$ or is at some time betricen $\operatorname{PC}(\bar{m})$ and $\operatorname{PC}(\bar{m})$ in $S 2[m]$. If the first holds, node i will stay in $S 3[\bar{m}]$ at least until PC(표 $)$. If the latter holds, then by g) if) it must perform $T 21[1,(n 2, n 2)]$ before $\operatorname{PC}(\underline{m})$. But since $1 t$ still has $N_{i}(x)(t)=m_{p}, D_{i}(k)(t) \&-$ or has not received yet the message by time t, property c) i) implies that node 1 could not perform $T 2 I[1,(n 2, n 2)]$ before time t. Therefore it will perform later, so q.e.d.

Proof that a) holds at time $\operatorname{PC}(\overline{\mathrm{m}})$

i) Hode 1 cannot be in $52[\bar{m}]$ because of g) i1) and c) i11). It cannot be in $S \overline{2}[\bar{m}]$ because it must have been in $E 2[\bar{m}]$ before and because of g) ii).
ii) Take $t=P\left(\begin{array}{l}\text { in }\end{array}\right)$ in $\left.h\right)$. Then h) says that

$$
s_{i}\left(\operatorname{PC}\left(\frac{\infty}{m}\right)\right)=S 2\left[\begin{array}{l}
m \\
m
\end{array}\right] \quad \text { or } \sin \left[\begin{array}{l}
m \\
m
\end{array}\right] .
$$

i11) Follows by contradiction, because if we had

$$
N_{1}(k)(\operatorname{PC}(\bar{m}))=\frac{m}{m}, \quad D_{1}(k)\left(P C\left(\frac{m}{m}\right)\right) \nLeftarrow \infty
$$

it follows by taking $t=\operatorname{PC}\left(\frac{m}{m}\right)$ in $\left.h\right)$ that

$$
s_{1}\left(P C\left(\frac{m}{m}\right)\right)=\operatorname{sa}\left[\frac{\bar{m}}{m}\right] \text { or } \mathrm{s} 3\left[\begin{array}{l}
{[m]}
\end{array}\right.
$$

This completes the proof of Theorem A.1.

Appendix B

In Appendix A we have proved Theorams 1,2 and 3. This appendix is devoted to proofs of the remaining statements, namely Theorem 4 (norma) activity) and Propositions 1 and 2 that lead to the recovery theorem, Theorem 5. The proofs are organized as follows: Lema B.O is prelininary and shows that on any link (i, ℓ) the only two "stable" situations are $\left\{F_{i}(\ell)=F_{\ell}(i)=D O W N\right\}$ or $\left\{F_{i}(\ell) \neq D O W N, F_{\ell}(i) \neq D O W N\right\}$. Lemmas B. 1 and B. 2 prove Proposition 1, Lemma B. 3 proves Theorem 4, and the Proposition 2 is proved by the series of four lemas B. 4 to B.T.

Leman B. 0
If $F_{i}(\ell)(t I)=D O W N, F_{\ell}(i)(t 1) \neq D O W N$, then in finite time after ti we have either $F_{i}(\ell)=F_{i}(i)=$ DOWN or $\left\{F_{i}(\ell) \neq\right.$ DOWN and $F_{\ell}(i) \neq$ DOWN $\}$. Proos

If $F_{\ell}(i)(t I)=$ READY, then 1 and \mathcal{L} arrived to this situation from $\left\{F_{\ell}(i)=F_{i}(\ell)=\operatorname{DOWN}\right\}$ or $\left\{F_{\ell}(i)=F_{i}(\ell)=\right.$ READY $\}$ or $\left\{F_{\ell}(i)=R E A D Y, F_{i}(\ell)=U P\right\}$. Then assumptions 2.7 .9 imply the assertion.

If $F_{\ell}(i)(t I)=U P$, then i and l arrived to this situation from $\left\{F_{\ell}(i)=\operatorname{READY}, F_{i}(\ell)=\right.$ DOWN $\}$ or $\left\{F_{\ell}(1)=F_{i}(\ell)=U P\right\}$, or $\left\{F_{\ell}(i)=U P, F_{i}(\ell)=\right.$ READY $\}$. In the firyt case, the discussion reduces to the first part of the proof, whereas for the second and third case, assertion 2.7 .9 a) in Sec. 2.7 proves the assertion.

Lemma B. 1
Proposition $2(a)$.

Proof
Clearly, $n_{1}(t 1-)<m 2$ for all 1 . Therefore (10) may happen only at or after th.

Let

$$
A(t)=\left\{i: i \varepsilon L(t) \text { and } i \text { effected (10) with } t 2_{i}<t\right\}
$$ If $I \mathrm{t} 2$ such that $\mathrm{A}(\mathrm{t} 2)=\mathrm{L}(\mathrm{t} 2)$, then the proof is complete. Otherwise, for a given t3, we will show (by contradiction) that 引t, t3 $<t<\infty$ such that

$$
\begin{equation*}
A(t) \supset A(t 3) \text { and } A(t) \neq A(t 3) . \tag{B.1}
\end{equation*}
$$

Hence by induction, the set $A(t)$ keeps growing until it equals $L(t)$.
Since there are no pertinent topological changes and all ief(t)
have $n_{i}(t)=m 2$, property $R 10$ implies that the set $A(t)$ is nondecreasing as t increases. Therefore to prove part i) of Proposition $1(a)$ it is sufficient to show that the following cannot hold:

$$
\begin{equation*}
\forall t>t 3, \quad A(t)=A(t 3) \neq L(t) \tag{B.2}
\end{equation*}
$$

Let
$B(t)=\{i \mid i \varepsilon L(t)$ and $i \notin A(t)\}$,
$A^{\prime}(t)=\{1 \mid i \varepsilon A(t)$ and i has a potentially working link to a node of $B(t)\}$, $B^{\prime}(t)=\{1 \mid i \varepsilon B(t)$ and i has a potentially working link to a node of $A(t)\}$. The following three claims will contradict (B.2).

Claim 1
 such that $\left[t_{y}, j, M S G(m 2)\right]$, (i.e. all nodes of $B^{\prime}(t 4)$ receive m2 in sinite tine).

Proof of Claim 1

At time $t 2_{1}<t 3$, node ir. $A^{\prime}\left(t 2_{i}\right)$ performs transition (10). Now
observe that aince no pertinent topological changes occur, property 810
lmplies that for all $\ell, F_{1}(\Omega)$ canno': be changed from or to NOWN after $t 2_{1}$. Therefore $1: P_{1}(l)\left(t 2_{1}-\right)=$ DOWN then $F_{1}(l)(t)=D O W N$ for $t \geq t 2_{1}$ and

If $F_{i}(\ell)\left(t 2_{1}-\right)=$ READY or UP, then $F_{1}(\ell)(t)=1 P$ for $t>t 2_{1}$ (see II.1.5. II.4.2, IT.7.7, II.8.2 In Table 3). For IInks (1, ℓ), where $1 \in A^{\prime}\left(t 2_{i}\right)$, $\ell \dot{\varepsilon} B^{\prime}\left(t 2_{i}\right)$ and $F_{i}(\ell)\left(t 2_{i}+\right)=U P$, observe from II. 1.6 in Table 3 that if $p_{i}\left(t 2_{1}\right) \neq \ell$, then

$$
\left[t 2_{1}, 1, \operatorname{SEND}(m 2, \ell)\right] .
$$

Since by Lemana A.2c) we have

$$
p_{i}\left(t 2_{i}\right) \neq B\left(t 2_{i}\right)
$$

and since property 2.7.9 Sec. 2.7 insures that the above message will arrive, there is a time $t 4$ for which all nodes j that ware in $B^{\prime}\left(t 2_{i}\right)$ for some i, either are not in $B^{\prime}(t 4)$ anymore or have received $\operatorname{MSG}(\mathrm{m} 2)$. Also observe that $B^{\prime \prime}(t, 4)$ cannot ie empty, since then B. 2 is contradicted.

Let ${ }^{5 S}{ }_{f k}$. denote the time at which $j \in g^{\prime}(t 4)$ receiver MSG(m2,k), whare $k \varepsilon A^{\prime}(t 4)$. If $\exists j \in B^{\prime}(t 4)$ such that $p_{j}\left(t 5_{j k}\right)=k$ for some $k \in A^{\prime}(t 4)$ thea from II.1.1, II.4.1, II.8.1 in Table 3, the transition Tф2[f.(ϕ, , 2)] occurs, contradicting (B.2), q.e.d. Otherwise,

Claim 2

If $j \in B^{\prime}(t 4)$ such that $p_{j}\left(t 5_{j k}\right) \neq k$ then fit $>t 5_{j k}, p_{j}(t) \neq k$,

Proot of Claim 2

Suppose

$$
T x y[t, 1,(p 1, p 2=k)], \quad t>t 5 g x
$$

If $x \neq 3$, by R5 R2y $=$ T13 or T2 $\begin{aligned} & \text { or } T 23 \text { or T23, }\end{aligned}$

But $T 23, T 13, T 23 \rightarrow p 2=n i 1 \neq k$, therefore this cannot happen.

$$
T 21 \Rightarrow \forall q, N_{j}(q)(t)=n_{j}<m 2, \text { but } N_{j}(k)(t)=m 2 \text {, hence } T 21
$$

sannot bappen:
If $x=3$ then $T 32[t, f, M S G(m 2)]$ happens, contradicting (B.2), g.e.d. Claim 2.

Claim 3

In finite time, all nodes i $\varepsilon B(t 4)$ will effect $T \phi 3[1,(\phi, m)]$, . In $\leq m \perp$ without effecting $T 3 \phi$ thereafer.

Proof of Claim 3

n_{i} is updated in T12, T13, T22, T23 and T3C only. For all
 does not oncur because there are no pertinent topological changes. Hence,

$$
H_{i \in B(t 4)} \text { and } \forall_{t}>t 4, n_{i}(t) \leq m l \text {. }
$$

Since after $t 4$ no update cycles with $m \leq m$ are started by Thearem 2(i1), the number of messages with $a<\infty$ generated by the nodes of $B(t 4)$ is finite. Similarly, since the number of arcs is finite, the number of messages FAIL is also finite. Consider $B(t 4)$ after all these massages are generated and received. Then $f_{1} \in B(t 4), T 3 \phi[1]$ cannot occur and Txy[i, $(p 1, p 2 \neq p 1)]$ implies $p 2=$ nil. Then

1. if $\forall k \in B(t 4), p_{k}=n i l$, then q.e.d. Claim 3;
2. Otherwise, after a sufficiently long period of time $t_{m x}$, by Claim 2 and Theorem AI, there exist k and i such that:

$$
1, k \in B(t 3), \quad p_{k}\left(t_{m x}\right)=1 \text { and } p_{i}\left(t_{m x}\right)=n i 1 \text {. }
$$

When p_{1} was set to $n i l, \operatorname{Txy}[1, \operatorname{SEND}(m, d=\omega, k)]$ oceurs. At t_{mx} this message is not yet received by k^{\prime} because $p_{k}\left(t_{m x}\right)=i$. After this message is received, node k effects $T \$ 3$, enters 83 and does not leave it axymore. 3y induction, q.e.d. Claim 3.

The proof of Proposition $\mathrm{X}(\mathrm{a})(\mathrm{i}) \mathrm{f}$ complered at followe. Consider a node $f \varepsilon B^{\prime}(t 4)$. Define $t 3_{j}$ to be the time at which $T \phi 3\left[t 3_{j}, j\right]$ occurs by Claim 3. But
if $t 3_{j}<t 5_{j k}$ then $T 3 \overrightarrow{2}\left[t 5_{j k}, j\right]$ happens,
if $t 3_{j}>t 5_{j k}$ then $T 32\left[t 3_{j}, j\right]$ occurs, and $t 3_{j} \neq t 5_{j k}$, which contradicts (E.2), q.e.d.

To prove pari (ii) of Proposition $1(a)$, we inveatigate further the situation in $L(t 2)$ at time t2. Observe that since all nodes in $L(t 2)$ have $n_{i}=\mathrm{m} 2$, and no pertinent topological changes happen, it follows from R1O and Lemma B. O that for any link ($1, \ell$) such that $i \in L(t 2)$, if $L(t 2)$, it cannot happen that at time $t 2$ we have $F_{i}(\ell)=D O W N, F_{\ell}(1) \neq$ DOWN. Also $F_{i}(\ell)=$ READY is not possible, besause lack of pertinert topological changea imply that $F_{i}(\ell)\left(t 2_{1}-\right)=R E A D Y$ as well, and then II.I. 5 in Table 3 shows that, for example $F_{1}(2)\left(t 2_{1}+\right)=U P$ and therefore $F_{1}(\ell)(t 2)=U P$. Therafore, for links ($1, \ell$) connecting nodes in $L(t 2)$, the only possibilities at time t2 are $\left\{F_{1}(\ell)=F_{\ell}(i)=\operatorname{DOWN}\right\},\left\{F_{i}(\ell)=F_{\ell}(1)=\dot{U P}\right\}$, hence Proposit:ion $I(a)(1 i)$ is proved.

Next, ansuming Proposition 1 (a) which was proved by Lerma B.1, wa now prove Proposition $1(b)$.

Lemma B. 2

Let $L(t)$ be as in Lamen B.1, and suppose that a new syele $T \phi 2[t, 1, \operatorname{SINK}(\phi, m y)]$ is started. Suppose also that no pervinent topological changes hare happened berore th while $n_{\text {SIMK }}=\mathrm{ml}$ and hat no such chamges will take place after ti for sufficisntily loag period of tive. Defiat: $t 2_{i}$ to be the smalleat time t such that

$$
\operatorname{T\phi }\left[t, i,\left(\phi, m^{2}\right)\right], t>t 1
$$

 $1 \in L(t 2)$

$$
\left.T \phi 2_{i}^{r} t 2_{1}, 1,(\phi, m I)\right]
$$

occurs with $t 1 \leq t 2_{1} \leq t 2$, and $t 2=\frac{\max \left(t 2_{1}\right) .}{t 2_{1} \operatorname{sen}}$

1) There exists a time $t 3<\infty$ such that $t 2<t 3$ and that $\operatorname{T21}[t 3, \operatorname{SINK},(m], m)]$ occurs;
ii) $\forall t \varepsilon[t 2, t 3]$, we have $H(t)=L(t)=H(t 2)$;

1ii) RG(t3) for the nodes in $L(t 3)$ is a single tree rooted at SINK.

Proof

We prove first that there is $P C(m l)$ after ti, then we show that there is no $P C(m l)$ between $t 1$ and $t 2$.

Since there are no pertinent topological changes, after entering $\mathrm{S} 2[\mathrm{ml}]$ at $t 2_{i}$ each node $i \varepsilon L(t 2)$ can only perform transitions between states SI and Sa. Furthermore, by Theorem $1(i)$, after t2, these nodes form a single tree rooted at SINK. Consider a time $t^{\prime}, t^{\prime} 2$ t2. Since there are no pertinent topological caanges, $L\left(t^{\prime}\right)=L(t 2)$. Also, by Theorem 2(i11), if a node $1 \varepsilon L(t 2)$ enters $S 2[m 1]$ after $t 2, ~ P C(m l)$ has occurred after $t 1$.

1. If $\forall_{i \in L}\left(t^{\prime}\right), s_{i}\left(t^{\prime}\right)=s 1$ then there exists $t 3, t 1<t 3<t^{\prime}$ such that $T 21[t 3, S I N K,(m l, m I)]$ occurred;
2. Otherwise, consider a node k such that $s_{k}\left(t^{\prime}\right)=s 2$,

$$
\begin{equation*}
\nabla^{\prime} \text { if } p_{j}\left(t^{\prime}\right)=k \text {, then } s_{j}\left(t^{\prime}\right)=s l \tag{B.3}
\end{equation*}
$$

such a node $\&$ always exists. Classity the neighbors of k into:

$$
\begin{aligned}
& A=\left\{i: F_{i}(k)\left(t^{\prime}\right)=U P \text { and } s_{1}\left(t^{\prime}\right)=S 1\right\} \\
& B=\left\{1: F_{i}(k)\left(t^{\prime}\right)=U P \text { and } s_{i}\left(t^{\prime}\right)=S 2\right\} \ldots
\end{aligned}
$$

At some time in the interval [t, t^{\prime}], the nodes in A have sent messages MSG(inl,d $\dot{\infty} \infty$) to all their neighbors. At some tine fin the same intervai, those in B have sent auch messages to all theix neighbors except $p_{j}\left(t^{\prime}\right)$. Hence by (B.3), k will zecsive manages MSG(mi,d中o) from all tis neighbors, at afinte time, sey t4. Then
2.1 if $s_{k}(t 4+)=S 2$ means that $\exists 1$ with $F_{k}(1)(t 4)=$ UP such that $N_{k}(1)(t 4)$ m which implies that $\left.T 21\left[k_{5}(m), m\right)\right]$ occurred in the interval [$\left.\mathrm{ml}, \mathrm{t} 4\right]$, hence by Theorem 2(iii), $P C(m i)$ occurred between $t 2$ and $t 4$;

```
2.2 if sk
    after tl..
```

We show next that $P C(m l)$ cannot happen in $[t 1, t 2]$. Suppose thet at $t 5$, the first $\operatorname{PC}(m i)$ after $t l$ occurs. Let k be a node guch that $t 2_{k}<t 5$ and $k \in L(t 2)$, bence since there are no pertinent failures, there exists a $I \in L(t 2)$ such that $F_{j}(k)\left(t 2_{j}\right)=F_{j}(k)(t 5)=U P$. But j sent to k a message MSG(m1, $d \neq \infty$) in the interval [$t 2, t 5]$; on the other hand by Theorem 3 such a node k does not exist.

Siace there are no pertinent topological changes, we bave $L(t 2)=L(t 3)$, and according to Theorem $L(i)$ these nodes have preferred links forming a single tree rooted at SINK and hence iif).

Finaliy, lookine at the situation in the network at time $t 2$ as described In Leman B.1, and for all $t \in[t 2,53]$, we observe that for all ($1, i$) for which $F_{1}(l)(t 2)=U P$ we must have $F_{i}(l)(t)=U P$ and $1 \leq F_{i}(l)(t 2)=$ DOWN we must have $F_{1}(l)(t)=$ DOWN. This completes the proof of 11).

Lemua B. 3

Theorem. 4.

Procif

By the Algorithm, new cycle $T 12[t 1, S I 0 K,(m l, m))]$ can start only if all previous cycles with the same counter number mal were properiy comp pleted. Since cycle counter numbers are non-decreasing, the firat cyele with ml was started at a time; say t^{\prime}, by

$$
\text { TIL } 2\left[t^{\prime}, \operatorname{sINX},(m 0, m i)\right], \quad m>m 0 \text {. }
$$

This transition satisfies the condition of Proposition I. Hence in e finite time, say $t^{\prime \prime}$, the cycle is properly completed, $L\left(t^{\prime \prime}\right)$ forms a tree rooted at $S I N K$, all ic $L\left(t^{\prime \prime}\right)$ have $n_{1}=m$, and since there are no pertinent topological chenges, for all $t \geq t^{\prime \prime}$:

1. $H(t)=L(t)=L\left(t^{\prime \prime}\right)$ q.e.d. Theoram $4(b)$, and
2. by Theorem $I(i)$ all nodes i $\varepsilon L(t)$ form a single tree rooted at SINK, q.e.d. Theorem 4(d,ii).

Define A_{k} to be the set of nodes that are on the tree at time $t l$, at distance of k nodes from the SINK. $A_{0}=S I N K$ and it is assumed by
 effect $T 12\left[t 2_{i}, 1,(m 1, m 1)\right]$, sending messages $M S G(m i)$ to all $j \varepsilon A_{k+1}$ through their $p_{j}(t l)$. But since there are no pertinent topological changes after $t 1$, P_{j} can only change by $T 21$, and since $s_{j}(t 1)=S 1$, only after T12. Then, ail $j \in A_{k+1}$ will receive messages MSG(ml) at finite timu $t 2_{j}$ from $p_{j}\left(t 2_{j}\right)$, which trigger the occurrence of $: 12\left[t 2_{j}, j,(m), m i\right)$ and by induction on k, q.e.d. Theorem 4c).

Theorem 4! (n) follows directly from Leman B, 2 by assuming Theorem $4(c)$. Theorem 4(a) follows directly from the algorithm for SINK. This completes the proof.

Proposition 2 will be proved by Lemmes B. 4 and B.7. When an Req(mi) is generated, it is placed in the queue for processing. If, when the $R E Q(m l)$ is processed, the node is at $S 2, S 2$ or $S 1$, then an $\operatorname{HEG}(m i)$ is sent by this node to its current preferred link. The proof of Proposition 2 for these cases 18 given in Lemma B. 5 (for 82 or S 2) and Lemma B. 7 (for SI). Lemme B. 6 proves the proposition for the case wher there is a node in state S3[mi]. Lema B. 4 is used to simplify proots.

Lemma B. 4

If a $R E Q(m i)$ is generated, then either:

1. REQ(ml) is processed only by nodes having $a_{1}=m$, and all nodes
y have $n_{j} \leq m l$, or
2. a REQ(mi) arrived at SINK.

Proof

By Theorem $1(1 i)$ and by the Algorithm, $R E Q(m I)$ is not received (i.e. processed) by a node i with $n_{i}<m$. On the other hand, if there exists a node i with $n_{i}>m l$, the SINK started a cycle with $m>m$; this can happen only following the arrival of $R E Q(m i)$ to SINK, q.e.d.

Lemma B. 5

```
    If a node i sends REQ(ml) while si}=S2[ml] or s2[m].], then
``` a REQ(ml) arrived or will arrive at SINK in finite tipie..

\section*{Prooz}

\section*{Consider the strings of nodes and ingtants}
\[
\begin{aligned}
1= & i_{0}, 1_{1}, 1_{2}, \ldots, 1_{m}=\text { SINK } \\
& t_{0}>t_{l}>t_{2}>\ldots>t_{m}
\end{aligned}
\]
such that
\[
T \phi 2\left[t_{u}, \Psi_{u}(\phi, n 2),\left(p 1_{u}, p 2_{u}\right)\right],
\]
where \(n 2=1, P_{i}=1_{u+1}\). There must exist such a string if \(s_{i}=32[m]\) or \(S \grave{2}[\mathrm{Il}]\). The string has no loops, otherwise Lemma B.4, Theorems 1,2 or 4 wi 11 be contradicted.

Suppose that at time \(t \mathbf{L}_{u}\), a node \(i_{u}\) sends \(\operatorname{REQ}(m i)\) to \(1_{u+1}\). Suppose also that in the interval [\(t_{u}, t 2_{u}\)], node \(i_{u}\) effects no transition except possibly T2jे. After \(t_{u+1}\), the flrst transition executed by \(1_{u+1}\) could be
\(T 22\left[1_{u+1}\right]\); q.e.d. by Theorem 3 and Lemma B. 4 .
\(T 2 \tilde{2}\left[1_{u+1}\right]\), in which case a failure is detectea by \(i_{u+1}\) and \(R E Q(m l)\)
sent to \(i_{u+2}\).
M21[ifu+1]; this transition is executed only after receiving a message
from \(i_{u}\). Such a message is sent by \(i_{u}\) when \(T 21\left[i_{u}\right]\) heppens,
1.e. arter \(1_{u}\) has sent \(R E Q(m)\). Since FIFO is preserved, \(1_{u+1}\)
will receive and therefore send \(\operatorname{REQ}(m)\) to \(i_{u+2}\) before \(T 21\left[1_{u+1}\right]\)
happens, i.e. while \(s_{i_{u+1}}=\) s2.
T23[in+1]; in this case there exist \(1_{r}, \quad r>i+1\) such that \(T 22\left[1_{r}\right]\)
and \(i_{r}\) sends \(R E Q(m L)\) to \(i_{r+1}\).

Thus by induction, REQ(ml) arrived or will arrive at SINK in inite time.

Lerma B. 6
If there exists a node that effects \(T \phi 3[(\phi, m)]\), then a \(R E Q(m])\) arrived or will arrive at SINK in finite time.

\section*{Proof}

Let \(P C_{j},(j=0,1,2, \ldots)\) denote the \(j-\) th occurrence of \(P C[m]\). Given a node 1 and a time \(t\) such that \(T \phi 2[1,(\phi, m)]\) has occurred before \(t\), if \(\mathrm{PC}_{j}\) is the last \(\mathrm{PC}[\mathrm{ml}]\) before \(t\) after which \(T \phi 2[1,(\phi, m)]\) occurred, then derine \(E_{i}(t)=j+1\).

By Leman B.4, we have to prove only the case in which \(n_{1} \leq m 1\) for all 1 . Thus, if a node 1 is in state \(S 3[\mathrm{ml}]\), this node will not execute any further transitions.

\section*{Property}

Given a time \(t\), suppose \(p_{i}(t)=k\) and \(a_{i}(t)=n_{k}(t)=m l\), then
\[
E_{i}(t) \leq E_{k}(t)
\]

This can be proved as follows:
Suppose that prior to \(t\) and after \(P C_{a}, p_{i}\) was last set to be \(k\).
This can be done only by \(T 21[1]\) or T32[1]. Since at \(P C_{a}\),
\(s_{1} \neq \mathrm{S} 2[\mathrm{ml}]\) (by Theorem 3) this implies that \(T \phi 2[1]\) occurred
after \(P C_{a}\) and \(T \phi 2[i]\) cannot occur again before \(t\) because this
will set again \(p_{i}\). Hence \(E_{i}(t)=a+1\). The occurrence of \(T 21[1]\)
or \(T 32[i]\) implies that a message from \(k\) with \(d<\infty\) arrived at
1 after \(\mathrm{PC}_{a}\). By Theorem 3, this message was sent after \(\mathrm{PC}_{\mathrm{a}}\); this
being possible only if \(k\) effected T中2[k] after PC \({ }_{a}\). Since \(L_{k}\)
is non-decreasing then \(E_{k}(t) \geq a+1\).

Since after a node effected \(T \phi 3[(\phi, m l)]\) the same node cannot perform any further transitions, only a finite number of transitions \(T \phi 3[(\phi, m)]\) san be executed in the network. If \(T \phi 3[(\phi, m i)]\) happens, there exists a node which detects a failure in its best link and executes \(T \nmid 3[(m), m i)]\). Define \(B 1\) as the set of nodes for which \(T \phi[(m), m l)]\) happens, this is
\[
\left.B 1=\left\{1: I \notin 3\left[t_{1}, 1,(m), 01\right)\right] \text { happens }\right\}
\]

Define \(B 2\) as the subset of \(B 1\) for which \(T \phi 3[(m], m l)]\) happens with the highest \(E_{i}\), i.e.
\[
\mathrm{B} 2=\left\{g: J \in B 1 \text { and }\left(E_{j}\left(t_{j}\right)=\max _{1 \varepsilon A} E_{1}\left(t_{i}\right)\right\}\right.
\]

Case 1: Suppose there exists i \(\varepsilon\) B2 that effects \(T 23[1,(\mathrm{ml}, \mathrm{ml})]\).
Iet \(\max _{i \in A} E_{i}\left(t_{i}\right)=a+i\). Then at \(P C_{a}\), by Theorem 3,
\(\left.s_{i} \neq S 2[m]\right]\). Thus the first \(i \in B 2\) that effects T23[m], 801\(\left.)\right]\) has a path to SINK at \(t_{i}\) (by Theorem 1). From all i \(\varepsilon\) Bi2 that effect \(\operatorname{T23}\left[t_{i}, i,(m l, m l)\right]\) while having a path to SINK, let \(q_{0}\) denote the node having the shoriest path. Suppose the path is
\[
Q=q_{0} \rightarrow q_{1} \rightarrow \ldots q_{n} \rightarrow\left(\operatorname{SINK}=q_{k+1}\right)
\]

By Theorem 1 all \(q \in Q\) have \(s_{q}\left(\tau_{q_{0}}\right)=S \sum[m]\). But \(q_{1}\) can only effect \(T 21\) or \(T 22\), and \(q_{1}\) cannot effect \(T 21\) unless receivIng a message from \(q_{0}\) which cannot be sent because \(q_{0}\) does not effect T2l. Hence \(q_{1}\) will detect a failure of link (\(q_{0}, q_{1}\)) and by Lemme B. 5 the prooi is complete.

Case 2: Suppose there is no i \(\varepsilon B 2\) that effects \(T 23[1,(m], m)]\). Let \(q_{0} \varepsilon E 2\) denote a node such that \(d_{q_{0}}\left(t_{q_{0}}\right)=\min a_{1 \in B 2}\left(t_{1}-\right)\), and suppose \(p_{q_{0}}\left(t_{q_{0}}-\right)=q_{1}\). Nede \(q_{1}\) cannot effect \(T 23\) (definition of Case 2) and cannot effect T13 (violates the definition of \(q_{0}\)). Thus, \(q_{1}\) detects a failure of link \(\left(q_{0}, q_{1}\right)\) and a \(\operatorname{REQ}(\underline{L})\) is generated.

If at any time this \(R E Q(m 2)\) enters a node at 82 or \(\mathrm{S} \tilde{2}\), then q.s.d. by Lemma B.S. Otherwise the REQiml) reops moving through noden at \(S 1\) having decremsing \(d_{i}\). The \(R E Q(m)\) cannot be received by a node at \(S 3\) because this violates Case 2 or the definition of \(q_{0}\). Since for all \(1, d_{i} \geq 0, d_{1}\) is an integral number and the only node with \(d_{1}=0\) is the SIMK, the REQ(mi) will arrive at SINK after a finite number of steps. Q.e.d.

Lemмa B. 7
If a node \(i_{0}\) sends a \(R E Q(m l)\) while \(s_{i_{0}}=S I\), then a REQ(ml) arrived or will arrive at SINK in finite time.

Proof
By Lemma B.4, we have to prove only the case in which for all i, \(a_{i} \leq m l\), and by Theorem 1 , the \(\operatorname{REQ}(m 1)\) sent by \(i_{0}\) may encounter only nodes having \(n_{i}=m l\).

If there exists a node 1 such that \(s_{1}=S 3[m]\), then q.e.d. by Lemma B.6. Hence we ray assume that for all \(i, s_{i} \neq S 3[m]\) and therefore by Theorem \(I\) the \(R E Q(m I)\) is in a tree rooted at SINK. Thus as in the proof of Lemma B.6, the REQ(ml) either arrives at anode in 52 or \(\mathrm{s} 2 \mathrm{~m}^{2}\) (q.e.d. by Lemma B.5) or travels through nodes at \(S I\), with decressing \(d_{i}\) until it arrives at SINK, q.e.d.

\section*{Acknowledgement}

The first stages of this work were perfjrmed when A. Segall wad with the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, and with the Codex Corporation, Newton, Mass., where he benerited from close colleboration with R.G. Gallager, G.D. Forney and S.G. Finn. Thanks are also due to Kr. M. Sidi for useful suggestions.

\section*{References}
[1] A, Segall, The modeling of adaptive routing in data-commuication networks, IEEE Trans. on Corm., Vol. COM-25, pp. 85-95, Jan. 1977.
[2] A. Segall and M. Sidi, Optimal failsafe distributed routing in datacommunication networks, in preparation.
[3] G. Ludwig and R. Roy, Saturation routing network Ilmits, Proc. IEEE, Vo1. 65, No. 9, pp. 1353-1362, Sept. 1977.
[4] R.G. Gallager, A minimum delay routing algorithw using distributed computation, IEEE Trans. on COMn., Vol. COM-25, pp. 73-85, Jan. 1977.
[5] A. Segail, Optimal distributed routing for linemwitched data networks, submitted to IEEE Trans. on Comm.
[6] W.D. Tajibnapis, A correctness proof of a topology information maintenance protocol for a distributed computer network, Communications ACM, Vol. 20, NO. 7, pp. 477-485, July 1977.
[7] M. Schwartz, Computer-Communication Networks: Anaiysis and Design, Prentice-Hall, 1977.
[8] W.E. Naylor, A loop-free adaptive routing algorithm for packet awitched networks, Proc. 4th Data Commnication Symposium, Quebec City, pp. 7.9-7.14, Oct. 1975 .
[9] R.G. Gallager, Loops in multicomodity flows, Paper ESL-P-772, M.I.T., Sept. 1977.
[10] G.V. Bochmann and J. Gecsei, "A unified method for the speciflcation and verification of protocols", Publication "247, Departement d'Informatique, University of Montreal, Nov. 1976. To be presented at the IFIP-Congress 1977, Toronto.
[11] P.M. Merlin, A methodology for the design and implementation of comnunication protocols, IEEE Trans. on Comunications, Vol. COM-24, No. 6, pp. 614-621, June 1976.
[12] C.A. Sunshine, Survey of commancation protocol verification techniques, Trends and Applications 1976: Computer Networics, (Symposium sponsored by IFEE Computer Society; National Bureau of Standards), Gaithersburg, Maryland, Nov. 1976.
[13] M.G. Gouda and E.G. Manning, protocol machines: A concise formal model and its automatic implementation. Proceedings of the Third Internationa Conference on Computer Communication, pp. 346-345, Toronto, Aug. 1976.
[14] S.G. Pion, Resyach network protocols, Proc. of ICC, 1977.
[15] R.G. Gallager, personal comounication.

\section*{Footnote}
1. The FAC'IS given in the algorithm are displayed for helping in its understanding and are proved in Theorem 2.

\section*{Table 1 - The Basic Algorithm}

For \(\operatorname{MSG}(d, \ell)\)
\(N_{i}(\ell)+\) RCVD
\(D_{i}(\ell)+d+d_{i \ell} ;\)
\(C I+0\)
Execute FINITE-STATE-MACHINE

\section*{BASIC-FINITE-STATE-MACHINE}

\begin{tabular}{|c|c|c|c|c|}
\hline\(\ell\) & 1 & 2 & \(\ldots \ldots \ldots\) & \(k_{i}\) \\
\hline\(D_{i}(\ell)\) & & & \(\ldots \ldots\). & \\
\hline\(N_{i}(\ell)\) & & & \(\ldots \ldots .\). & \\
\hline
\end{tabular}

State S1

T12: Condition \(12 \operatorname{MSG}\left(\mathrm{~d}, \ell=\mathrm{p}_{\mathrm{i}}\right), \mathrm{CT}=0\).
Action \(12 d_{i}+\min _{k: N_{i}(k)=R C V D} D_{i}(k)\)
transmit \(\operatorname{MSG}\left(d_{i}\right)\) to all \(k\) s.t. \(k \neq p_{i}\).
State S2

T21: Condition \(21 \quad V_{2}\) then \(N_{1}(k)=\) RCVD.
Action 21 transmit \(\operatorname{MSG}\left(\mathrm{d}_{1}\right)\) to \(\mathrm{p}_{1}\);
\(p_{1}+k^{*}\) that achieves \(\min _{k} D_{i}(k)\);
\(\forall k, \operatorname{set} N_{1}(k)+n i l ;\)
\(C T+1\).

Table 2E - Variables of the Algorithm of Table 3.
Note: It is assumed that the network is composed by \(K\) nodes.
\begin{tabular}{|c|c|c|}
\hline Variable Nome & Meaning & Domain of Vaiues \\
\hline \(p_{i}\) & preferred neighbor & nil, 1, 2, ..., K \\
\hline \(d_{i}\) & estimated distance from SINK & \(\infty, 1,2,3, \ldots\) \\
\hline \(\mathrm{d}_{\text {il }}\) & estimated distance of link (i, 2) & 1,2,3, .. \\
\hline \(n_{i}\) & current counter number & 0,1,2,... \\
\hline ma: \({ }_{i}\) & largest number m received by node 1 & 0,1,2,... \\
\hline \(C T\) & control flag & 0,1 \\
\hline \(N_{i}(\ell)\) & last number \(m\) received from \& after i complated last update cycle & nil, 0, 1,2, \\
\hline \(D_{i}(\ell)\) & \(d+c_{i \ell}\) for last \(d\) received from \(l\) & \(\infty, 1,2, \ldots\) \\
\hline \(F_{i}(\ell)\) & status of link (i, l) & DOWN, READY, UP \\
\hline \(z_{i}(\ell)\) & synchronization number used by 1 to bring link (\(i, \ell\)) UP & 0,1,2,... \\
\hline
\end{tabular}

Table 2b - Messages received by the algorithm of Table 3.
\begin{tabular}{|c|c|c|}
\hline Message Format & Meaning & Domain of Values \\
\hline \(\operatorname{MSO}(\mathrm{m}, \mathrm{d}, \ell)\) & updating message from \(\ell\) & \[
\begin{aligned}
\mathrm{m} & =0,1,2, \ldots \\
\mathrm{~d} & =\infty, 0,1,2, \ldots \\
\mathrm{l} & =1,2, \ldots, \mathrm{~K}
\end{aligned}
\] \\
\hline FAIL(\(\ell\)) & failure detected on link (i, 1) & \(\ell=1,2, \ldots, K\) \\
\hline WAKE (\(\ell\)) & link (i, 2) becomes operational & \(\ell=1,2, \ldots, K\) \\
\hline REQ \((\mathrm{m})\) & request for new update cycle with \(n_{\text {SINK }}>\) m & \(\mathrm{m}=0,1,2, \ldots\) \\
\hline
\end{tabular}

\section*{Table 3 - Algorithm for an Arbitrary Node \(i\)}
I. 1 For REQ(m)
if \(p_{i} \neq n i l\), then send \(\operatorname{REQ}(m)\) to \(p_{i}\).
I. 2 For FAIL(\(\ell\))
I.2.1 \(F_{i}(\ell)+\) DOWN;
I.2.2 \(\mathrm{CT}+0\);
I.2.3 Execute FINITE-STATE MACHINE;
I.2.4 if \(p_{i} \neq\) nil, then send \(R \exists Q\left(n_{i}\right)\) to \(p_{i}\).
I. 3 For \(\operatorname{MSG}(m, d, \ell)\)
I.3.1 if \(F_{i}(\ell)=\) READY, then \(F_{i}(\ell)+U P\) (Fact \({ }^{1}\) : II \(>z_{1}(\ell)\));
I.3.2 \(\quad N_{i}(l)+m ;\)
I.3.3 \(D_{i}(\ell)+a+d_{i \ell}\);
I. \(3.4 \quad \operatorname{mx}_{1}+\max \left\{\mathrm{m}_{2}, \mathrm{mx}_{1}\right\}\);
I.3.5 CT +0 ;
I.3.6 Execute FINITE-STATE MACEINE.

\section*{I. 4 For WAKE (1)}
\[
\text { (Fact : } \left.F_{i}(\ell)=\text { DOWN }\right)
\]
wait for end of WAKE: synchronization (see Section 2.7);
if WAKE synchronization is successful, then
\[
\begin{aligned}
& z_{i}(\ell)+\max \left\{n_{i}, n_{\ell}\right\} ; \\
& F_{i}(i)+\operatorname{READY} ; \\
& N_{i}(\ell)+\operatorname{ail} ; \\
& \text { if } p_{i} \neq n i l, \text { then send } \operatorname{REQ}\left(z_{i}(l)\right) \text { to } p_{i} .
\end{aligned}
\]

Table 3 (cont'd)
II. EINITE_STATE MACHINE

State Sl.
II.I.1 T12 Cendition \(12 \operatorname{MSG}\left(m=m x_{i}, d \neq \infty, \ell=p_{i}\right\rangle, C T=0\);
II.1.2 Fact \(12 \quad \dot{m} \geq n_{i}\)
II.1.3

Action 12 \(\quad d_{i}+\min _{k: F_{i}(k)=U P} D_{i}(k) ;\) \(N_{i}(k)=m\)
II. 1.4
II.1.5
II. 1.6
II. 1.7
II.2.2
II. 2.3
II. 2.4
II. 2.5
II. 2.6
II. 2.7
II. 2. 8
II.2.1 T13 Condition 13 (MSG \(\left(\ell=p_{i}, d=\infty, m\right)\) or \(\left.\operatorname{FAIL}\left(\ell=p_{i}\right)\right), C T=0\).
\(n_{i}+m_{i}\)
the s.t. \(F_{i}(k)=\operatorname{READY}\) if \(n_{i}>z_{i}(k)\), then
\[
F_{i}(k)+U P, N_{i}(\ell)+n i l ;
\]
\(\operatorname{transmit}\left(n_{i}, d_{i}\right)\) to all k s.t. \(F_{i}(k)=U P\) and \(k \neq p_{1}\);
\((T+1\).

Fact 13 If MSG, then \(m \geq n_{i}\).
Action \(13 \quad d_{i}+\infty ;\)
if MSG, then \(n_{1} \leftarrow m\);
\(\forall_{k}\) s.t. \(F_{i}(k)=\) READI, if \(n_{1} \geqslant z_{i}(k)\), then
\[
F_{i}(k)+U P, N_{i}(k)+n i l ;
\]
transmit \(\left(n_{i}, i_{i}\right)\) to all \(k\) s.t. \(F_{i}(k)=U P\) and \(k \neq p_{1} ;\)
\(21+0.12 ;\)
\(C T+1\).

Table 3 (cont'd)

State S2
II. 3.3
II. 3.2
II. 3.3
II. 3.4
II. 3.5
II. 3.6
II. 3.7
II. 3.8
II. 3.9
II. 4.1
II. 4.2
II. 5.1
II. 5.2
II. 6.1

II 6.6
II. 6.3

Action 23
Same as Action 13.

\section*{State 83}
II.7.1 T32 Condition 32 Jks.t. \(F_{i}(k)=U P_{s} m x_{1}=N_{i}(k)>n_{i}, D_{i}(k) \neq \infty\).
II. 7.2
II. 7.3

Fact 32 \(p_{i}=\) nil, \(d_{1}=\omega\).

Action 32 Let \(k^{*}\) achieve \(\min _{i}(k)=U P D_{i}(k)\). \(H_{1}(x) \max x_{1}\)

Table 3 (cont'd)
II. 7.4
II. 7.5
II.7. 6
II. 7.7
II.7. 8
II. 7.9
\[
\begin{aligned}
& \text { Then } \begin{array}{l}
p_{i}+k^{*} ; \\
\quad n_{i}+m x_{i} ; \\
\quad d_{i}+D_{i}\left(k^{*}\right) ; \\
\forall k \text { s.t. } F_{i}(k)=\text { READY, if } n_{i}>z_{i}(k) \text {, then } \\
F_{i}(k)+U P, N_{i}(k)+n i l ; \\
\text { transmit }\left(n_{i}, d_{i}\right) \text { to all } k \text { s.t. } F_{i}(k)=\text { UP } \\
\text { and } k \neq p_{i} ;
\end{array} .
\end{aligned}
\]
\(C T \leqslant 1\).

\section*{State 52}
II.8.1 T2̄2 Condition \(\tilde{2} 2\) MSG \(\left(m=m x_{i}>n_{i}, d \neq \infty, \ell=p_{i}\right), C T=0\).
II.8.2 Action 2̈2 Same as Action 12
II.9.1 T2̄3 Condition \(\mathfrak{2} 3\) Same as Condition 13
II.9.2
II.9.3

Fact 23 Same as Fact 13
Action 23 Same as Acticn 13 .

\section*{Table 4}

The Algorithm for the SINK

For REQ(m)
\(O T+0 ;\)
execute FINITE-STATE-MACHINE.

For FAIL (\(\ell\))
\(F_{i}(l)+\) DOWN \(;\)
\(C T+0\);
execute FINITE-STATE-MACEINE .

For MSG(\(m, d, \ell)\)
\(N_{i}(l)+m ;\)
\(C T+0 ;\)
execute FINITE-STATE-MACAINE .

For WAKE(l)
(Fact: \(F_{i}(\mathcal{L})=\) DOWN \()\)
wait for end of WAKE synchronization;
if WAKE synchronization is successful, then
\(F_{i}(\ell)+\) READY;
\(C T+0 ;\)
execute FINITE-STATE-MACHINE.

\section*{FOT START}
\(\mathrm{CT}+0 ;\)
execute FINITE-STATE-MACHINE.

Table 4 (cont'd)

\section*{FINITE-STATE MACHINE FOR SINK}

State S1

> T12 Condition \(12(C T=0)\) and \(\left(R E Q\left(m=n_{S I N K}\right)\right.\) or FAIL or WAKE or START) Action \(12 \quad\) if (REQ or FAIL or WAKE), then \(n_{S I N K}+n_{S I N K}+1 ;\) f/k s.t. \(F_{i}(k)=R E A D Y\), then \(F_{i}(k)+U P, N_{i}(k)+n i l ;\) transmit \(\left(n_{S I N K}, 0\right)\) to all k s.t. \(F_{i}(k)=U P ;\)

\section*{State 52}
\[
\begin{aligned}
& \text { T21 Condition 21 } 7 \mathrm{k} \text { s.t. } \mathrm{F}_{\mathrm{j}}(\mathrm{k})=\mathrm{UP} \text {, then } N_{i}(k)=n_{\text {SINK }} \text {; } \\
& \text { MSG or START. } \\
& \text { Action 21 } T k \text { s.t. } F_{i}(k)=U P, \text { then } N_{i}(k)+N I L ; \\
& C T+1
\end{aligned}
\]

T22 Condition \(22(C T=0)\) and (REQ(\(m=n_{S I N K}\)) or FAIL or WAKE)
Action 22 Same as Action 12.

Fig. 1: (a) Network example
(b) Corresponding directed tree

Fig. 2: Possible changes of \(F_{i}(\ell)\)

\section*{Distribution List}
```

Defense Documentation Center
12 Copies
Cameron Station
Alexandria, Virginia 22314
ssistant Chief for Technology l Copy
C Fice of \laval Research, Code 200
Ariling n, Virginia 22217
ffice of Naval Resecrch 2 Copies
Information Sy sems Frogram
Codr 437
Arlington, Virginia 22217

```
\begin{tabular}{|c|c|c|}
\hline \(k\) & Slafkosky & \multirow[t]{2}{*}{1 Copy} \\
\hline crent & c Advisor & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{2}{|l|}{Commandant of the Mari ve Corps (Code RD-1)} & \\
\hline
\end{tabular}
```

```
Office o: Nc, al : se. h
```

Office o: Nc, al : se. h
Branch of \#ice, Bos in
Branch of \#ice, Bos in
495 Surmer s reet
495 Surmer s reet
Boston, Massa ?t s 02210
Boston, Massa ?t s 02210
Office of Navel Resec:
Office of Navel Resec:
Brar vh Office, C. icago
Brar vh Office, C. icago
535 South Clar set
535 South Clar set
Chicago, IIlid, is '0605
Chicago, IIlid, is '0605
Office of Nara Researc:, 1 Copy
Office of Nara Researc:, 1 Copy
B wrch ofitice, sadena
B wrch ofitice, sadena
LC30 Fe Gleat Street
LC30 Fe Gleat Street
pasadenc. Caii. Enia }9110

```
pasadenc. Caii. Enia }9110
```




```
laval : 3sea ch Laboratory
```

laval : 3sea ch Laboratory
Technic . In ormation Division, Code 2627
Technic . In ormation Division, Code 2627
washington, D.C. 20175

```
washington, D.C. 20175
```

Office of Naval Research
1 Copy
Code 455
Arlington, Virginia 22217
Office of Naval Research
Code 458
Arlington, Virginia 22217
Naval Electronics Laboratory Center
Advanced Software rechnology Division
Code 5200
San Diego, Caiifornia 92152
Mr. E. H. Gleissner
1 Copy
Naval Ship Research \& Development Center Computation and Mathematics Department Bethesda, Maryland 20084

Captain Grace M. Hopper
NAICOM/MIS Planning Branch (OP-916D)
Office of Chief of Naval Operations Washington, D.C. 20350

Mr. Kin B. Thompsor
Technical Director
Information Systems Division (OP-91T)
Office of Chief of Naval Operations
Washington, D.C. 20350
Advanced Research Projects Agency
Information Processing Techniques 1400 Vilson Boulevard Arlington, Virginia 22209

Dr. Stwart L. Brodsky
Office of Naval Research
Code 432
Arlington, Virginia 22217
Captain Richard L. Martin, USN
Comanding Officer
USS Francis Marion (LPA-249)
FPO Ne'v York 09501

