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ABSTRACT

A conceptual design of a model based failure

detection and diagnosis system is developed for the

space shuttle main engine. Tiffs design relies on the
accurate and reliable identification of the

parameters of the highly nonlinear and very

complex engine. The design approach was

presented in some detail and results for a failed

valve are presented. These preliminary results

verify that the developed parameter identification

technique together with a neural network

classifier can be used for this purpose.
INTRODUCTION

This paper describes a model based failure

diagnosis system based on a neural network

classifier for the space shuttle main engine (SSME).

The system may be used to monitor the life cycle

of engine components and for the early detection,

isolation and the diagnosis of engine failures. As

such, the proposed system will be one part of a

larger, engine health monitoring system [1]. The

health monitoring system will allow for
accommodation of failures, reduce maintenance

cost, increase engine availability, and be one part of
an integrated, intelligent control system [2] for the

SSME. A description of SSME dynamics and its

modeling is given in a study by Duyar, Guo and

Merrill [3]. A summary of the major failures of

the SSME that have occurred are outlined by

Cikanek [4]. Several authors survey [5,6,7,8]
the available methods and approaches for failure

detection and diagnosis. In particular the survey by

Isermann[6] gives several examples of the use of

identification techniques for process failure
detection.

A failure is the abnormal behavior of a

component due to physical change in the

component. A failure event often impairs or

deteriorates the system's ability to perform its

specified tasks or mission. The detection task is
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defined as the act of identifying the presence of an

unspecified failure. After a failure is detected, then

the failure must be isolated to the component that

has failed. During the process of isolation the

magnitude of the failure may be estimated. Failure

diagnosis is the isolation and estimation of a failure

mode. Once a failure is detected and diagnosed,

the failure can be accommodated through

reconfiguration of the system. Reconfiguration

includes both hardware actions (e.g., activating back

- up systems) and software tasks ( e.g., adjusting
the feedback control gains). The detection and

diagnostic tasks may be accomplished by an on -

board processor, on line and in real time for failure

accommodation, as well as by an off line processor

which analyzes recorded data for life cycle analysis

and preventive maintenance.
Initially a brief description of the conceptual

design of the model based failure detection and

diagnostic system (FDDS) is given. This is

followed by a description of the method used to

design the detection and diagnostic system. The

design is applied to the detection of simulated data
of a stuck valve to demonstrate the performance of
the FDDS.

CONCEPTUAL DESIGN

Model based failure detection methods rely on

the determination of changes appearing in the

system due to the existence of a failure, in

comparison to the normal status of the system. For

example, in aerospace applications the failure of

control actuators may manifest themselves as shifts

in the parameters of control gain matrix. Failures of

sensors may take the form of abrupt changes in the

parameters of the output matrix, or increases in

measurement noise. These changes are determined
by comparing the parameters of the observed

process with the parameters obtained from the

model of the normal process. The differences

between these parameters are called residuals. The



residualsandtheirpatternsare analyzed for failure
detection and diagnosis by comparing them with the

known failure signatures of the process.
Failure signatures, which show the effect of a

failure on the parameters, are generated by inducing

failures in the performance model of the process.

Failure diagnosis is accomplished by training a

neural network classifier to recognize the pattern of
the respective failure signatures.

The design of the FDDS is accomplished in

three stages: process modeling, residual generation
and failure detection and diagnostic classifier

design. In the following sections the methods used

in these stages are briefly explained.
PROCESS MODELLING

A complete nonlinear dynamic simulation of

SSME performance was developed by Rocketdyne

Division of Rockwell International Corporation[9].

In this study, this nonlinear model is considered as

the unknown process. It is used for the generation

of failure signatures by modifying the actuator

models to simulate failure. The input output data
generated from this simulation is also used to

identify the parameters of the engine. Due to its
size and complexity (40 min. CPU time for 20 sec.

of real time operation with a VAX 8800), this

nonlinear simulation cannot be used to generate
data in real time to describe the normal mode of

operation.

An off-line system identification algorithm
developed by Eldem and Duyar [10] and the data

generated from the nonlinear performance

simulation are used to obtain linear point models of

the SSME at twenty five different operating points.

The inputs of these models are the rotary motion of

the valve actuator outputs of the oxidizer preburner

oxidizer valve (OPOV), _oPov, and fuel preburner

oxidizer valve (FPOV), _,ov. The point models
have measurable state variables which make them

more suitable for failure detection and diagnostic
studies, since the need for state estimation is

eliminated. The outputs which are also the state

variables, are the chamber inlet pressure, Pc,

mixture ratio, MR, high pressure fuel turbine speed,

Sm,vr, and high pressure oxidizer turbine speed,
SHPOT.

Two models of the SSME are utilized in the

design of the FDDS: a linear state variable observer

or state variable filter, and a linear state space
model of the normal operation of the engine.

Consider the discrete state space representation

of the engine, linearized about one operating point.

x(n+l) = A x(n) + B u(n)

y(n) = C x(n)
(1)

(2)

where x, u and y are the deviations of the state, the

input and the output vectors about an operating

point. For mathematical simplicity, it is assumed

that the system is not subject to disturbances and to

sensor noise. Following the work of Eldem and

Duyar [10], it is assumed that the system is in or-
canonical form.

To estimate the states from the measured input
and output data, a state variable filter

xf(n+l) = Axf(n) + Bu(n) + K[y(n) - Cxt(n)] (3)

yt(n) = C xt(n) (4)

is used. Here the subscript f denotes the estimated

values obtained from the filter. The observer gain

matrix K is selected as a deadbeat observer gain
satisfying the following relations:

C=[0:H "l]

A =At +KHC
At.--0
(HC)tAo_ = 0

(HC),Ao, K j = 0, 0<l<(bt , - Itj)

(5)

Here the subscript i and j denote the r th row and

j'th column respectively. Here t% is a lower left
triangular structure matrix which consists of zeros

and ones only and is determined by the

observability indices, It,, where k associates Itk with

the k'th output. Using these relations, E.qs. 1 and 2
can be solved to give

xf(n) = Ao*x(0) + _"'[KH:B] [y(n-i)l
N(n-i) l

(6)

where, It = max{ l.t_ 1. Using the nillpotency of A o
the above equation yields the state variable filter

equation

xgn) = LAo"'[K:B] ly(n-i) l (7)

lu(n-i) I
for n>la

yf(n) = Cxt(n ) (8)

which can be used to estimate the states from the

measurements of the input and the output data.



Unlike the state variable filter the state space

model of the engine estimates the state variables
from the measurement of the input data only. The

equation describing the state space model of the

engine is given below:

x_(n) ffi Y-,Ao"'[K:B] [y.(n-i)[ (9)

lu(n-i) I

for n>_t
y.(n) = Cx_(n) (10)

Here the subscript m denotes the_ variables

estimated by the model.

Both the state variable filter and the state space

model are tested by comparing their prediction with

the actual output obtained from the nonlinear

simulation. The point models can predict the

output of the nonlinear simulation with very good

accuracy [11]. These point models are linked to

obtain a simplified quasi linear model of the SSME,

valid within its full range of operation [12]. The

parameters of the point models are regressed with

the parameters determining the nominal operating
conditions. The mixture ratio and the chamber

pressure are considered as the parameters which

determine a nominal operating condition. This

simplified model is also tested by designing an

input signal as shown in Figure 1. The comparison

of the responses of the linked model and the
nonlinear simulation again indicated good

agreement as shown in Figures 2 and 3. Table 1

presents the standard error of estimates.
RESIDUAL GENERATION

As mentioned earlier, it is assumed that failures

are indicated by changes in the parameters of the

system as well as by internal, observable, but not

necessarily measured, process state variables. The

state variables can be estimated by a filter or a state

space model based on the known process

parameters. The parameters of the process can be

determined by using a system identification

technique. Then, residuals can be generated by

taking the difference between the actual parameters

and the observed parameters.

Two kinds of residuals may be generated:

1)parameter, by comparing the identified parameters

of the engine with the normal parameters, and
2)output, by taking the difference between the

actual output and the output obtained from the

estimated state variables. The simplest test to

detect a failure is a comparison of residual

magnitudes to a threshold value. Using the
distribution of the variances of the residuals under

failure free conditions, the threshold values can be
determined to minimize false alarms and missed

detections using the Neyman-Pearson criterionl3.

In this study, the state variables of the system

are used for the generation of output residuals.
With the observed state variables, residuals are

generated between the measured output and the

output obtained using the observed state variables
as:

_iyt(n) = y(n) - Cxt(n) (11)

Measured output and the output obtained from the

state space model are also used to generate
additional residuals as:

8yz(n) = y(n) - C x.(n) (12)

Here subscript e denotes the estimated values.

These residuals are generated by inducing stuck

valve failures in the nonlinear dynamic simulation
of the SSME. Both the OPOV and the FPOV are

considered for this purpose. Data are obtained at

various angles for which these valves are stuck.

Figure 4 shows the residuals obtained for two of

the outputs, chamber inlet pressure and the mixture

ratio, by using Equation 12.
FAILURE DETECTION AND DIAGNOSIS

A neural network classifier is used for failure

detection and diagnosis purposes. Following the

work of Dietz, Kiech and Ali [14], a two layer
network architecture combined with a back

propagation algorithm is selected. Top level neural
networks detect the existence of a failure and

classify the type of failures. The lower level

networks classify the severity of the failures after

their type are determined at the top level.

In the example considered in this paper, output

residuals obtained in the previous section are used
to train the network to detect and diagnose OPOV

and FPOV stuck valve failures. Two top level

networks are used to classify the failure type as

shown in Figure 5. One uses the chamber pressure

residual as its input, the other, mixture ratio

residual. Each classifier network has two output
nodes, each of which is associated with either an

OPOV stuck or FPOV stuck condition. During

training, a residual pattern representing a failure

condition is applied to the input level and a 1
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indicating complete activation is compared to the

corresponding output node. Back propagation is

used to adjust the network weightings. Two second
level networks, one for each failure, are used to

determine the setting, in degrees, at which the valve

is stuck. Each lower level network has three output

nodes corresponding to different levels of severity,
that is valve opening, and were trained in a similar

manner. Each of the four networks has 200 input
nodes and 20 hidden layer nodes in their

architecture. The input to each network is a time

sequence of residuals of length 200. The time step
between residuals is 0.04 secs with the total

sequence time representing 8 secs.

Test data with severity levels not used in

training were used with the networks with

successful results. Figure 6 and 7 illustrate the

results obtained for inputs of residual patterns for

OPOV stuck at 47.5 degrees and FPOV stuck at 55

degrees. In both cases the networks correctly

identify both the failure types and their severity.
CONCLUSION

A conceptual design of a model based FDDS is

developed for the SSME. This design relies heavily

on the accurate and reliable identification of the

parameters of the highly nonlinear and very

complex SSME. The design approach was

presented in some detail and preliminary results for

a failed valve were presented. These preliminary

results verify that the developed parameter
identification technique can be used for this

purpose. Additional simulation studies are needed,

using the failure data generated with the nonlinear

simulation, to completely verify the validity of the

failure detection concept presented in the paper.

Also, additional research is required to incorporate
more failure modes.

Both the point models and the state variable

f'dters provide accurate representation of the

nonlinear simulation within acceptable error limits.

However, research continues to improve their

accuracy by identifying nominal models using

multi-level, pseudo-random sequences as the

driving signals. Further study is also needed to
determine the capability of the neural network to

recognize failure patterns for failure diagnosis
purposes.
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TEST SIGNAL

OUTPUT

Filter

Model

Pc

0.0068

0.0151

MR

0.0114

0.0147

S HPFT

0.0056

0.0116

S I-lPOT

0.0037

0.0O95

Table 1 Standard Error of Estimates (SEE) of Predictions of the F'tlter and the Model For the Test

Signal Covering All Operating Points.
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