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Abstract. The Bluetooth specification defines the notion of interconnected piconets, called scatternets, but does not define the actual
mechanisms and algorithms necessary to set up and maintain them. The operation of a scatternet requires some Bluetooth units to be inter-
piconet units (gateways), which need to time-division multiplex their presence among their piconets. This requires a scatternet-scheduling
algorithm that can schedule the presence of these units in an efficient manner. In this paper, we propose a distributed scatternet-scheduling
scheme that is implemented using the HOLD mode of Bluetooth and adapts to non-uniform and changing traffic. Another attribute of the
scheme is that it results in fair allocation of bandwidth to each Bluetooth unit. This scheme provides an integrated solution for both intra-
and inter-piconet scheduling, i.e., for polling of slaves and scheduling of gateways.
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1. Introduction

The Bluetooth [10] technology was developed as a replace-
ment of cables between electronic devices and this is perhaps
its most obvious use. But, it is the ability of Bluetooth de-
vices to form small networks called piconets that opens up a
whole new arena for applications where information may be
exchanged seamlessly among the devices in the piconet. Typ-
ically, such a network, referred to as a PAN (Personal Area
Network), consists of a mobile phone, laptop, palmtop, head-
set, and other electronic devices that a person carries around
in his every day life. The PAN may, from time to time, also
include devices that are not carried along with the user, e.g.,
an access point for Internet access or sensors located in a
room. Moreover, devices from other PANs can also be in-
terconnected to enable sharing of information.

The networking capabilities of Bluetooth can be further
enhanced by interconnecting piconets to form scatternets.
This requires that some units be present in more than one pi-
conet. These units, called gateways, need to time-division
their presence among the piconets. An important issue with
the gateways is that their presence in different piconets needs
to be scheduled in an efficient manner. Moreover, since the
gateway cannot receive information from more than one pi-
conet at a time, there is a need to co-ordinate the presence of
masters and gateways.

Some previous work has looked at scheduling in a piconet
[2,5] and also in a scatternet. In [4], the authors define a
Rendezvous-Point based architecture for scheduling in a scat-
ternet, which results in the gateway spending a fixed fraction
of its time in each piconet. Such a fixed time-division of the

gateway may clearly be inefficient since traffic is dynamic.
In [9], the authors propose the Pseudo-Random Coordinated
Scatternet Scheduling (PCSS) scheme in which Bluetooth
nodes assign meeting points with their peers. The sequence
of meeting points follows a pseudo-random process that leads
to unique meeting points for different peers of a node. The
intensity of these meeting points may be increased or de-
creased according to the traffic intensity. This work presents
performance results for various cases. In [11], a scatternet-
scheduling algorithm based on the concept of a switch table,
which can be dynamically adjusted based on traffic load, is
presented. In [1], the authors present a credit-based schedul-
ing scheme based on the SNIFF mode of Bluetooth, where
credits may be reallocated to cater to changing traffic.

Our scheduling scheme addresses the issues of fairness and
utilization of bandwidth. Since Bluetooth is a low-bandwidth
environment, it is important that bandwidth should be effi-
ciently utilized. Also, since a low bandwidth can easily lead
to starvation of flows, another metric we focus on is fairness.
We propose a distributed scatternet-scheduling algorithm that
is implemented using the HOLD mode [10] of Bluetooth
and adapts to non-uniform and changing traffic. This algo-
rithm provides an integrated solution for both intra- and inter-
piconet scheduling, i.e., for polling of slaves and scheduling
of gateways. The algorithm leads to a high bandwidth utiliza-
tion and results in a fair division of (a) the piconet bandwidth
between the slaves of a piconet and (b) the gateway presence
among different piconets.

In section 2, we discuss the Bluetooth technology. In
section 3, we present a definition of fairness in the context
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Figure 1. Gateway may be viewed as a virtual master and masters as virtual
slaves.

of Bluetooth scatternets, which takes into account intra- and
inter-piconet max-min fairness. Section 4 describes the al-
gorithm and proves its fairness property. Section 5 presents
simulation results and section 6 presents the conclusions.

2. Bluetooth technology

The Bluetooth system [3] operates in the worldwide un-
licensed 2.4 GHz Industrial–Scientific–Medical (ISM) fre-
quency band. To make the link robust to interference, it uses
a Frequency Hopping (FH) technique with 79 radio carriers.
It allows a raw data transmission rate of 1 Mbit/s.

Two or more Bluetooth units sharing the same channel
form a piconet. Each piconet consists of a master unit and
up to seven active slave units. The master unit polls the slave
units according to a polling algorithm and a slave is only al-
lowed to transmit after the master has polled it. The piconet
capacity is thus, shared among the slave units according to the
polling algorithm.

Furthermore, two or more piconets can be interconnected,
forming a scatternet. This requires a unit, called an inter-
piconet unit (gateway), to be a part of more than one piconet.
Such a unit can simultaneously be a slave member of multi-
ple piconets, but a master in only one, and can transmit and
receive data in only one piconet at a time; so participation in
multiple piconets has to be on a time-division multiplex ba-
sis. The time of the gateway is, thus, also shared among the
piconets it belongs to. In this work, we assume that the gate-
way can only be a slave in its piconets. If a gateway were
to be a master in a piconet, it would lead to the stoppage of
all transmission in the piconet when the gateway visits some
other piconet. Thus, we believe that the use of the gateway as
a slave is the most efficient method of scatternetting.

3. Fair allocation of bandwidth

As introduced in the previous section, units belonging to a
piconet share the piconet capacity according to the polling
algorithm used by the master. In an analogous manner, gate-
ways in a scatternet divide their time among their different
piconets, according to the “master-listening” algorithm they
use. It can be noted that there is a duality in this architec-
ture. On the one hand, a master divides its capacity among
the units of its piconet by using a polling algorithm. On the

other hand, a gateway shares its capacity among the piconets
it belongs to, on the basis of a scheduling algorithm it uses
for listening to the masters. The gateway, can, then be viewed
as a “virtual master” and its masters can be viewed as “virtual
slaves” forming a “virtual piconet”, in which the polling cycle
is, actually, the “listening cycle” of the gateway. A graphical
interpretation of this duality is given in figure 1, in which the
solid line shows the actual piconets, and the dotted line shows
the virtual piconet.

Due to this duality, we design our scheduling scheme such
that the same scheduling algorithm is used for fair sharing of
both (a) the piconet capacity among slaves and (b) the gate-
way time among piconets.

We now give a definition of max-min fairness [7]. We then
go on to define max-min fairness in the context of Bluetooth
scatternets, by considering (a) intra-piconet fairness, i.e., fair-
ness in division of piconet bandwidth among slaves (both
gateway and non-gateway) of a piconet and (b) inter-piconet
fairness, i.e., fairness in division of the gateway’s presence
among its piconets. We first define a ‘feasible’ rate distribu-
tion since this is used in the definition of max-min fairness.

Definition 1 (Feasible). A rate distribution is feasible if rates
are non-negative, the aggregate rate is not greater than one,
and no unit receives a higher rate than required.

Definition 2 (Max-min fairness). An allocation of rates η1,

η2, . . . , ηs among s units is max-min fair if it is feasible, and
for each unit i, ηi cannot be increased (while maintaining fea-
sibility) without decreasing ηj for some other unit j for which
ηj � ηi .

The distribution of max-min fair rates depends upon the
set of rate demands (traffic generated) of the units. In the
following subsections, we discuss factors that determine the
max-min “fair share” of a slave (gateway or non-gateway).
We call these factors the Piconet Presence Fraction and the
Scatternet Presence Fraction and show how they may be used
to calculate the “fair share” for a slave in a scatternet.

3.1. Piconet presence fraction

Consider a piconet consisting of gateway and non-gateway
slaves in which the master has complete knowledge of the rate
demands of all slaves (an ideal master). Using this knowl-
edge, the master polls the slaves in a max-min fair man-
ner such that each slave gets its “fair share” of the master’s
polling. We refer to the “fair share” received by a slave as the
“piconet presence fraction” (PPF) of the slave. The gateway
has a PPF for each piconet it belongs to.

Consider the piconets shown in figures 2(a) and 2(b), each
consisting of one gateway and two slaves, with the traffic rates
of each slave as shown. In figure 2(a) (Piconet I), the PPF of
each non-gateway slave is 0.2, while the PPF of the gateway
is 0.6. In figure 2(b) (Piconet II), the PPFs of the slaves are
0.2 and 0.4, while the PPF of the gateway is 0.4.
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Figure 2. Piconets with traffic rates between master and each slave shownn.

3.2. Scatternet presence fraction

A gateway will, in general, be a slave in multiple piconets and
may have different amounts of traffic to exchange with each
piconet. Consider an ideal gateway that has complete knowl-
edge of the rate demands of all its masters. The gateway can
then divide its presence among its piconets in a max-min fair
manner, giving each piconet a “fair share” of its presence. We
call this fair share the “scatternet presence fraction” (SPF) of
the gateway for the piconet. The importance of the SPF is that
a fair division of the gateway’s presence among its piconets
can be achieved based on the SPF.

Consider the piconets of figure 2 again, but the gateway of
each of the piconets now connects them to form a scatternet,
as shown in figure 3. The traffic requirements are the same as
shown in figure 2. The SPF of the gateway is 0.5 in Piconet I
and 0.5 in Piconet II.

3.3. Fair share

We see that for a gateway to be fair, there are two kinds of
fairness it has to achieve: that dictated by the PPFs, which
achieves fairness between the gateway and the other slaves of
a piconet, and that of the SPFs, which distributes the presence
of the gateway between its piconets in a fair manner. Both
these kinds of fairness may not always be completely achiev-
able and this can lead to a change in the values of PPF and
SPF, as we now discuss.

We observe that an ideal master (as in section 3.1) does
not give a gateway more than the PPF of its polling. Thus,
if the SPF of a gateway is greater than its PPF for a piconet,
the gateway spends a fraction of its time equal to the PPF
in the piconet. The gateway cannot stay for a fraction equal
to its SPF in the piconet since it is limited by its PPF. Thus,
the extra scatternet presence fraction (the difference of the
SPF and the PPF) is redistributed in a fair manner among
the gateway’s other piconets for which the SPF is less than
the PPF. This may increase the SPF of the gateway in the
other piconets. In other words, the gateway behaves as if
its SPF in a particular piconet is reduced to the PPF and
thus, its SPF in the other piconets increases. We refer to this
changed SPF as the “updated SPF” of the gateway in a pi-
conet.

Similarly, an ideal gateway does not stay a fraction of time
more than the SPF in a piconet. Thus, if the PPF of the gate-

Table 1
Calculation of fair share of the gateway in the two piconets of figure 3.

Piconet I Piconet II

Actual traffic rate 0.7 0.6
PPF 0.6 0.4
SPF 0.5 0.5
Updated PPF 0.6 0.4
Updated SPF 0.6 0.4
Fair share 0.6 0.4

Figure 3. Gateway shared between two piconets; traffic rates between slaves
and the master are shown.

way in the piconet is greater than the SPF, the gateway spends
a fraction of time equal to the SPF in the piconet. The remain-
ing PPF of the gateway (the difference of the PPF and the
SPF) is redistributed in a fair manner among the other slaves
of the piconet (if this other slave is a gateway, it is redistrib-
uted to it if its SPF is greater than its PPF in the piconet). This
may increase the PPF of these slaves. We refer to this changed
PPF as the “updated PPF” of the slave in the piconet. In case
there is no such redistribution, the updated PPF is equal to the
PPF and the updated SPF is equal to the SPF.

The fair share can now be calculated from the “updated
PPF” and the “updated SPF” as the minimum of these two
quantities. Note that all these quantities – PPF, SPF, updated
PPF, updated SPF and fair share–are dependent on the traffic.
Any change in traffic demand of a unit may lead to a change
in some of these quantities. We explain the calculation of the
fair share using some examples.

An example is given in table 1, which shows the actual traf-
fic rate, PPF, SPF, Updated PPF, Updated SPF and fair share
of the gateway in the two piconets of figure 3. In Piconet II,
the gateway has a PPF of 0.4, which is less than the SPF. In
Piconet I, the gateway has a PPF of 0.6 and an SPF of 0.5.
Thus, the extra scatternet presence fraction of the gateway in
Piconet II (the difference between the SPF and the PPF) is
given to Piconet I, which has a higher traffic rate than may
be allowed by the SPF. This is reflected in the “updated SPF”
values. Thus, the “fair share” of the gateway in Piconet I is
0.6 and in Piconet II is 0.4. The fair shares of the non-gateway
slaves are equal to their PPF.

As another example, consider the scatternet consisting of
5 piconets with the traffic rates shown as in figure 4. As shown
in table 2, gateway G2 has a PPF of 0.5 and an SPF of 0.4 in
Piconet B. Thus, the “updated PPF” of G2 in Piconet B is 0.4.
The extra PPF (= PPF− SPF) is added to the PPF of gateway
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Figure 4. Scatternet with two gateways.

Table 2
Calculation of fair share of the gateways G1 and G2 in the scatternet of

figure 4.

Gateway G1 Piconet A Piconet B Piconet C

Actual traffic rate 0.4 0.6 0.1
PPF 0.25 0.5 0.1
SPF 0.4 0.5 0.1
Updated PPF 0.25 0.6 0.1
Updated SPF 0.25 0.65 0.1
Fair share 0.25 0.6 0.1

Gateway G2 Piconet B Piconet D Piconet E

Actual traffic rate 0.7 0.2 0.4
PPF 0.5 0.2 0.4
SPF 0.4 0.2 0.4
Updated PPF 0.4 0.2 0.4
Updated SPF 0.4 0.2 0.4
Fair share 0.4 0.2 0.4

G1 in Piconet B. The “updated PPF” of G1 in Piconet B is,
thus, 0.6.

Also, gateway G1 has a PPF of 0.25 and an SPF of 0.4
in Piconet A. Thus, the “updated SPF” of G1 in Piconet A is
0.25. The extra SPF (= SPF−PPF) is added to the SPF of G1
in Piconet B. The “updated SPF” of G1 in Piconet B, is thus,
equal to 0.65. The fair shares can now be easily calculated.

A division of the master’s polling and the gateway’s pres-
ence based on PPF and SPF as described in this section takes
into account the traffic demands of the slaves and the gate-
ways and leads to fairness in the scatternet. In the next sec-
tion, we introduce and describe an algorithm that aims to
achieve such a fair distribution of bandwidth.

4. Description of algorithm

We first explain how the algorithm works in the case of a sin-
gle piconet with no gateway. We then extend the algorithm
to the case of a scatternet and explain how the coordination
between the master and the gateways is achieved. We then
prove the fairness of the algorithm.

4.1. Single piconet with no gateways

The polling algorithm is based on the master estimating the
traffic rate between each slave and itself. This traffic rate is
the sum of the traffic rates from the master to a slave and in

the reverse direction. We assume, in order to simplify the ex-
planation of the algorithm, that traffic flows only from slaves
to master; masters generate no traffic to slaves. The same al-
gorithm also applies with little change when traffic flows in
both directions (explained later).

The master uses a Round Robin polling scheme, with the
modification that a slave is skipped if it does not belong to the
“active list” of the master. The slaves are moved in and out
of the active list on the basis of two variables that the master
maintains for each slave. These two variables are:

r – estimate of the rate of traffic generated by the slave;

N – estimate of the queue length of the slave.

When a slave is polled, the master–slave pair gets a chance
to exchange a maximum amount of data in each direction,
denoted by M . After each such polling phase, the master up-
dates the values of N and r in the following manner:

For the slave just polled:

N = N + rτ − x, (1)

r =




αr + (1 − α)
x

T
, x < M ,

αr + (1 − α)
x

T
+ δ, x = M .

(2)

For other slaves:

N = N + rτ, (3)

where τ is the time elapsed since the last update, x is the
amount of data exchanged during the poll phase, T is the total
time elapsed since the last poll of the same slave, α is a para-
meter used to smooth the rate estimation and δ is a parameter
used to probe for more bandwidth. Note that x is the actual
amount of data exchanged, which may be less than or equal
to M , depending upon the number of packets in the slave’s
queue. Since N is an estimate of the slave’s queue length and
r is an estimate of the rate at which traffic is generated, N is
increased at the rate of r (as in equations (1) and (3)). Also,
when a slave is polled, N is decreased by the amount of data
exchanged ((equation 1)).

After updating these values, the master determines the
changes to be made to the active list. A slave is added or
deleted from the active list depending upon whether its value
of N is greater or smaller than a “threshold”. The value of
this threshold is the minimum amount of data that the master
would like the slave to have in order to poll it. We choose
a value equal to a multiple of a DH5 packet for the thresh-
old since this packet incurs least overhead (the selection of
the value of the threshold is discussed further in the next sub-
section). Thus, a slave is present in the active list if the mas-
ter’s estimate of the value of N for the slave is greater than the
threshold. This makes the simple Round Robin polling strat-
egy adaptive to traffic and enables it to utilize bandwidth ef-
ficiently, even when slaves have different rates of traffic. The
maximum amount of data that can be exchanged at each poll,
M , is also set equal to the threshold. Note that if the amount
of data, x, in the slave’s queue is less than the threshold, the
polling of the slave ends after this data has been exchanged.
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If the value of N is less than the threshold for all the slaves,
then the slave whose value of N is estimated to take the small-
est time to reach the threshold is polled, i.e., the slave for
which the value of (Threshold − N)/r is the smallest.

The master now goes to the next slave according to the
Round Robin ordering of slaves. If the slave is present in the
active list, it is polled. Else, the procedure is repeated for the
next slave in the Round Robin ordering.

Also, note that if the amount of data sent by the slave x

is equal to M , r is increased by a small amount, δ. This is
basically an attempt by the slave to probe for more bandwidth
if it is able to send data at the present rate. The usefulness
of this increase is evident in the proof of fairness in the next
section. The value of δ chosen is 0.15 and that of α is 0.65.
We also discuss the rationale behind choosing these values in
the proof of fairness.

If traffic flows in both directions, i.e., from the slaves to
the master and in the reverse direction, x is the average of
the amount of data exchanged in the two directions, r refers
to the average of the rate-estimations of the two directions
and N refers to the average of the queue length estimates of
the two directions. Also, if the number of packets in either
direction is less than the threshold, the polling of the slave
continues till in both directions, (a) there is no more data to
send or (b) amount of data equal to the threshold has been
exchanged.

The initial value of N is set to the threshold (to ensure that
slaves get polled at the beginning) and that of r is set to 0.25
(as a reasonable value). Note that the algorithm converges to
the fair share, but a careful selection of initial values makes
the initial convergence faster.

Another advantage of such a scheme is that it may allow
the master to go into a power-saving mode if it realizes that no
slave has sufficient packets to send, i.e., if N is smaller than
the threshold for all slaves. Though we do not explore this
option in this paper, it may be useful since Bluetooth devices
are expected to work in power-constrained environments.

To improve the algorithm, we add a heuristic to it. The
maximum number of polling cycles that a slave is not polled
is bounded. If a slave generates a large burst of data occa-
sionally and then does not generate any data for a long time,
the value of r for the slave may be very low. This may cause
the value of N for the slave to be lower than the threshold
for a long time. By limiting the maximum number of cycles
missed by the slave, we make sure that such a behavior of the
slave does not lead to its starvation. In the experiments, this
value is taken to be equal to 5 cycles. We now explain how
the above algorithm works in a scatternet.

4.2. Scatternet

Scheduling of gateways using Rendezvous Points. Before
describing how the algorithm works in a scatternet, we briefly
discuss the notion of Rendezvous Points (RPs) described
in [4]. A RP is a slot at which a master and a gateway have
agreed to meet, i.e., at this slot, the master will poll the gate-
way and the gateway will listen to the master. In [4], RPs are

implemented using the SNIFF mode of Bluetooth, but we im-
plement RPs using the HOLD mode [10]. In the HOLD mode,
the slave does not have to listen to the master for a certain time
period and may use this time to visit other piconets. Prior to
entering the HOLD mode, the master and the slave agree on
the time duration the slave remains in the HOLD mode. We
implement our algorithm using RPs as described below.

The working of the algorithm in a scatternet is very similar
to its operation in a piconet. The master continues to poll the
non-gateway slaves in the same manner as described in the
previous section with the modification that a gateway is polled
at a Rendezvous Point. Each RP is a slot at which a particular
gateway is polled and a master has different RPs for each of its
gateways. These RPs are always unique (i.e., a master cannot
have the same RP with more than one gateway). Since the
gateway must be polled at the RP, this has implications in the
polling of the other slaves (discussed later). Once a gateway
has been polled, the master continues with the polling of the
other slaves in the same manner as described in the previous
section, i.e., it checks its active list to see if the next slave in
the polling cycle is to be polled and so on.

In order to divide its time among different piconets in a
fair manner, the gateway performs similar calculations as de-
scribed in the earlier section for the master. The gateway
maintains values of N and r for each piconet it belongs to and
these values are updated each time a gateway is polled (i.e.,
at each RP). Thus, the calculations performed by a gateway at
each RP are:

For the piconet in which the gateway was just polled:

N = N + rτ − x, (4)

r =




αr + (1 − α)
x

T
, x < M ,

αr + (1 − α)
x

T
+ δ, x = M .

(5)

For other piconets:

N = N + rτ, (6)

where τ is the time elapsed since the last update, x is the
amount of data exchanged during the poll phase, T is the to-
tal time elapsed since the gateway was polled in the same pi-
conet, and α and δ are as defined earlier.

Moreover, at each RP, the gateway and the master negoti-
ate the next RP between them. The assignment of this next
RP takes into account the fairness between (a) the gateway
and other slaves in a piconet and (b) the presence of the gate-
way in different piconets. Also, we again employ a heuristic
that improves the algorithm. When the next RP is being nego-
tiated, we keep a bound on the maximum value this can take.
This prevents a piconet from not being visited by a gateway
for a long time. The maximum value of this next RP used in
our experiments is 400 slots.

We now see how the master and the gateway use the in-
formation that they have to achieve fairness in the scatternet.
When a gateway is polled at a RP, the gateway and the master
do the following.
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(i) Gateway. The gateway calculates the number of slots,
Nthresh after which N for the piconet will become greater
than the threshold; Nthresh = (threshold − N)/r , where
threshold is as explained in the previous section, N and
r are values maintained by the gateway for the piconet.
The gateway makes use of this value and does not visit
a piconet till its estimate of N for the piconet becomes
greater than the threshold. This is similar to the algo-
rithm used by the master in which a slave is not polled till
the master’s estimate of N for the slave becomes greater
than the threshold. Thus, the gateway tries to divide its
time between the piconets in a fair manner, i.e., accord-
ing to the SPFs. Note that Nthresh may be negative if N

is greater than the threshold. Also, Nthresh is allowed to
have a maximum value of 400.
Moreover, each time a gateway visits a piconet, it knows
the RPs for the other piconets it belongs to (except right
at the beginning or when the gateway is added to another
piconet).

(ii) Master. The master calculates the number of slots after
which the gateway can be polled such that the fairness
with other slaves is maintained. It adopts the following
procedure to achieve this:
It maintains a counter, num_slots (which is initialized
to 0) and checks the value of N for each slave, in a cyclic
order, starting from the slave after the current gateway in
the cyclic order to the slave before the current gateway.
The master checks if the value of N for the slave will be
greater than the threshold after num_slots slots. If this
condition is true, num_slots is incremented by twice the
value of the threshold. After incrementing num_slots, the
master also checks to see if it has a RP with any gate-
way whose value is equal to num_slots and increments
num_slots by twice the value of the threshold if this is
true. This ensures that the master has a unique RP for
each of its gateways. Note that num_slots is incremented
by twice the value of the threshold since the master ex-
pects to exchange threshold slots of data with a slave in
each direction.
The master uses the above procedure to estimate the num-
ber of slaves who will have their value of N greater than
the threshold when the master polls the slaves in their
cyclic order starting from the gateway just polled. The
value of num_slots determines the number of slots which
the master expects to use in polling the other slaves in
one cycle before polling the gateway again and is thus,
used by the master to maintain fairness between the gate-
way and the other slaves in the piconet. Again, note that
num_slots is allowed to have a maximum value of 400.

The master and the gateway now exchange the informa-
tion they have to calculate their next RP. This exchange takes
place using the LMP_hold_req PDU of the LMP (Link Man-
ager Protocol) layer. This PDU carries a hold instant and a
hold time, which are used to specify the instant at which the
hold will become effective and the hold time, respectively.
When the master is sending a packet to a gateway, the value

of num_slots can be sent after hold instant and hold time in
the packet. The master also sends the values of its RPs with
its other gateways in the packet. Similarly, the gateway sends
the master the values of its RPs with other piconets and the
value of N thresh also in an LMP_hold_req PDU. The master
now knows all the RPs of the gateway; similarly, the gateway
knows all the RPs of the master.

Note that the above information exchange requires a min-
imal change in the Bluetooth specifications that the contents
of the LMP_hold_req PDU need to be enhanced. This PDU is
1-slot in length; thus, some bandwidth of the master is wasted
in sending these PDUs. This wasted bandwidth can be re-
duced by increasing the value of threshold, i.e., the maximum
data that a slave and a master may exchange in each direc-
tion during one poll of the slave. On the other hand, a large
value of the threshold will lead to larger delays for packets.
Thus, we have a tradeoff here. We choose a threshold value
equal to three times a DH5 packet. The effect of this wasted
bandwidth can be seen in the experiments section where the
piconet capacity used is slightly less than 1. Note that we
pay a small price here to get perfect coordination between the
master and the gateway and also to get a high degree of fair-
ness in the system, as the experiments later demonstrate.

Now, the master and the gateway both have complete in-
formation. So, each of them calculates the next RP in the
following manner:

They take the maximum value out of num_slots and Nthresh
and as long as this value is the same as one of the RPs (note
that all relevant RPs are known to both the master and the
gateway), the value is incremented by 2 · threshold. The value
at the end of this small procedure is the next RP between the
gateway and the master. Since this value takes into account
both Nthresh and num_slots, it incorporates both the fairness
of the master’s polling and the gateway’s presence.

Note that the value of num_slots calculated by the master is
just an estimate (the master assumes that each slave included
in the calculation of num_slots will exchange threshold slots
of data with the master in each direction, but this may not be
true). Thus, the master may have polled all the slaves that had
to be polled before the RP of the gateway (according to the
estimate in the calculation of num_slots) and still be left with
some slots before the RP. In this case, the master just contin-
ues polling the slaves in their cyclic order and polls the gate-
way when the time for the RP arrives. Note that this means
that the master may have to force a slave to send a packet
smaller than a certain length. For example, if two slots are
left for the RP, then the master will send a 1-slot packet and
ask the slave being polled to do the same. Note that the Blue-
tooth header has 4 bits to represent the packet type and these
can represent 16 packet types. For ACL links, 10 (7 data,
3 control packets) of the packet types are defined. We use 2
of the remaining bit sequences to send packets that force the
slave to send packets smaller than or equal to a certain length.
This is shown in table 3.

From table 3, we see that this procedure is adopted if the
number of slots left for the RP is less than 10 (if the number
of slots left for the RP is greater than or equal to 10, then the
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Table 3
Procedure adopted by the master if slots left for the RP is less than 10.

Slots left for RP Maximum Maximum
length of packet length of packet
sent by master sent by slave

2 1 1
4 1 1
6 3 3
8 3 3

slave’s packet length does not have to be restricted). Thus,
if the slots left for the RP is 2, the master can send a packet
of maximum length = 1 and the gateway can send a packet
of maximum length = 1 and so on. Note that for reasons of
fairness, the maximum packet length for the master and the
gateway is the same. Since the master needs to restrict the
maximum length of the gateway’s packet to either 1 or 3 (as
shown in table 3), we need 2 packet types to achieve this. This
procedure effectively suspends the polling of a slave to honor
a RP with a gateway. The polling of the slave continues after
the gateway has been polled.

In addition, a gateway may lose a slot in switching from
one piconet to another. This loss is unavoidable since piconets
are in general, not synchronized in time. In the experiments in
the paper, we set the value of the threshold to three times the
payload of a DH5 packet, which can give a switching loss of
about 3% at heavy loads (every 2 ·threshold slots, the gateway
loses about one slot in switching). At light loads, this switch-
ing loss does not lead to inefficiency since the sum of the fair
shares of the gateway in all its piconets is less than 1 and even
after the switching loss, the gateway is able to obtain its fair
share. The simulations in the next section do not take this
switching loss into account and thus, the bandwidth received
by the gateway under heavy loads will be a little smaller than
the one shown in the results.

4.3. Proof of fairness

We now prove that the above algorithm leads to a max-min
fair distribution of the bandwidth of a scatternet among units.
We start by proving this in the case of a piconet. In the next
step, we will extend the proof to the general case of a scatter-
net.

4.3.1. Fairness in a piconet
Let us introduce the following notation:

S: number of slave units in the piconet;

gi : rate-demand of the ith unit;

ηi : rate achieved by the ith unit;

ri : rate-estimation of the ith unit (as defined in equa-
tion (2)),

where ηi and ri are average values.
Slave unit i is referred to as “satisfied”, if it achieves it rate

demand, i.e., ηi = gi ; else, the slave unit is referred to as
“unsatisfied”. Also, in the proof that follows, “slot” refers to

“Bluetooth slot”; “unit” and “slave unit” may be used inter-
changeably.

If there is one slave unit in a piconet, then it will always get
polled and hence, the algorithm is fair. We prove the fairness
when there are two or more slave units.

We first make the following observations:

(a) If a unit has a rate-estimation, r � 0.25, it will never
achieve a lesser rate than any other unit.

r is an estimation of the average number of slots of traf-
fic that a master–slave pair will generate per slot in each di-
rection. Thus, a rate of 0.25 means that a master–slave pair
generates, on the average, “threshold” slots of traffic in each
direction in every 4 · threshold slots. Suppose a piconet has
two slaves, and the first has a rate-estimation, r � 0.25, then
the first slave will be polled at least once in every 4 · threshold
slots, i.e., will get on the average at least threshold polling
slots out of every 2 · threshold, regardless of the r of the other
slave (since N increases at the rate of r , N will increase by
at least 0.25 · 4 · threshold = threshold; thus, the slave will
enter into the “active list” in 4 · threshold slots). Thus, it will
never achieve a lesser rate than another unit. It is easy to see
that this property would be true if there were more than two
slaves (two slaves is the worst case).

(b) For δ � 0.1 and α � 0.6, an unsatisfied slave will tend to
a rate-estimation of at least 0.25.

For an unsatisfied slave, the second part of equation (2)
(when x = M) is always used for updating the rate. Thus, if
ri is the ith rate-estimation:

rn+1 = αrn + (1 − α)
M

Tn

+ δ.

This leads to (as n becomes very large):

r = (1 − α)M

∞∑
k=0

αn−k

Tk

+ δ

1 − α
� δ

1 − α
.

Thus, for δ � 0.1 and α � 0.6, for any value of T , the
value of r tends to at least 0.25.

(c) As long as there is an unsatisfied unit, the utilization of
the system capacity is 1 (for δ � 0.15 and α � 0.65).

Consider a piconet consisting of seven slave units, in
which the first unit, unit1 is unsatisfied. From (a) and (b),
unit1 will never achieve a lesser rate than any other unit; this
means that it will be polled at least once for each time the
other slaves are polled. The value of T (as in equation (2)) for
unit1 is thus, at most, 14 · threshold. For this value of T and
for δ = 0.15 and α = 0.65, r for unit1 tends to at least 0.5.
A value of r = 0.5 for a slave unit means that it can be polled
all the time (since N increases at the rate of r , N will increase
by at least 0.5 · 2 · threshold = threshold; thus, the slave will
enter into the “active list” in 2 · threshold slots, which is also
the time of its polling). Thus, the system capacity is totally
utilized. If there were less than 7 slave units, the value of T

would be smaller (than 14 · threshold), and r would tend to a
higher value (than 0.5).
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We choose values of δ and α to satisfy the above proper-
ties, i.e., δ = 0.15 and α = 0.65.

The following statements hold.

(i) Units with the same rate-demand achieve the same aver-
age rate:

gi = gj ⇒ ηi = ηj .

We prove this by contradiction. Suppose there are two units,
unit1 and unit2 with rate demands g1 and g2, respectively,
such that g1 = g2. Also, suppose one unit achieves a higher
average rate than the other, η1 > η2.

Now, unit2 does not achieve its rate-demand (since η1 >

η2). Unit1 may or may not achieve its rate demand. From
property (b), unit2 will always tend to a value at least equal to
0.25, since it is an unsatisfied slave. Using property (a), this
implies that η2 cannot be less than η1. This is a contradiction.

(ii) Units with a higher rate-demand achieve an average rate
at least equal to that achieved by units with a lower rate-
demand:

gi > gj ⇒ ηi � ηj .

This can be proved by contradiction in the same manner as in
part (i).

Now, without loss of generality, let us partition the slave
units into two sets, S1 and S2, in such a way that units in S1
are satisfied, while units in S2 are not.

• If the set S2 is empty, than all the units achieve their rate-
demand and the system is fair.

• If the set S2 is not empty, then using statements (i) and (ii),
all units share the bandwidth in a fair manner. Moreover,
since S2 contains at least one unit, the total system capac-
ity is utilized. Hence, it is not possible to increase the rate
of a unit in S2 without decreasing the rate of some other
unit.

4.3.2. Fairness in a scatternet
The proof of fairness for a scatternet follows trivially from
that for a piconet. We make the following two observations:

(1) The gateway visits a piconet only after the estimation
of N for the piconet becomes greater than the threshold (it
calculates Nthresh while determining the next RP). In other
words, the “virtual master” (gateway) does not poll (visit) its
“virtual slave” (master) till the estimate of N becomes greater
than the threshold. This is similar to the algorithm used by
the master to poll the slaves in which a slave is not polled till
its estimate of N becomes greater than the threshold. Thus,
the gateway divides its presence among its piconets in a fair
manner, i.e., according to the SPF. Note that if the PPF for
a gateway in a piconet is less than its SPF, the master does
not poll the gateway for more than the PPF. Thus, the appar-
ent rate demand and SPF for the gateway in the piconet are
reduced. This may increase the SPF of the gateway in other
piconets. In this case, the gateway divides its presence ac-
cording to the updated SPFs.

(2) While calculating the next RP for a gateway, the mas-
ter calculates the num_slots value which estimates the num-

ber of slaves in one polling cycle (starting from the slave after
the gateway in the polling cycle) who will have their values
of N greater than the threshold at the estimated time of their
poll. This achieves fairness between the gateway and the non-
gateway slaves. Also, the master continues to use the same
algorithm for polling non-gateway slaves in a scatternet as
described for a piconet in section 4.1. This maintains fairness
between non-gateway slaves, i.e., the division is done accord-
ing to the PPFs (or the updated PPFs).

4.4. Overhead/limitations of the algorithm

The rate calculations will lead to a higher load on the system.
Also, the algorithm does not take into account SCO links. We
believe (and as has been shown in [6]) that ACL links are
capable of carrying voice with small delays. The controlled
channel access in Bluetooth can ensure good support of voice
using ACL links. Also, scheduling in a scatternet where SCO
links are allowed may not be feasible. Since SCO links re-
quire a periodic reservation of two slots every two, four or
six slots, meeting the demands of such a link with a gateway
may be impossible when the gateway is visiting some other
piconet.

5. Experiments and results

In this section, we present simulation results, which show that
the algorithm satisfies the fairness criteria described earlier.
We start with simple topologies that illustrate the behavior of
the algorithm and then show that it also works well in more
complex topologies. There are three topologies that the exper-
iments focus on and these demonstrate the behavior of the al-
gorithm – a topology with (a) a gateway belonging to two pi-
conets, (b) a gateway belonging to three piconets and (c) a pi-
conet having two gateways. The experiments also show the
adaptivity of the algorithm, i.e., how quickly the algorithm
adapts to changing traffic demands of slaves.

In the experiments, we specify the “rate of a slave”, which
refers to the sum of the rates at which a slave generates data
for a master (i.e., the rate demand of a slave) and the mas-
ter generates data for the slave. Moreover, unless mentioned
otherwise, we assume that the traffic rate from a slave to a
master is equal to that from the master to the slave. Thus, a
slave having a rate of 0.4 means that the slave generates data
at the rate of 0.2 Bluetooth slots per slot and the master also
has a rate demand of 0.2 towards the slave. As we show in the
section on asymmetric traffic, the algorithm works well even
if these two rates are not the same.

The simulation environment used in our experiments is
NS-2 [8]. We have augmented NS-2 with the Bluetooth
model. The simulator models the Bluetooth baseband, LMP
and L2CAP layers and enables the creation of piconets and
scatternets. The model contains most of the standard features
of Bluetooth like Frequency Hopping, Multi-Slot Packets,
Fast ARQ (Automatic Retransmission Query). Note that as
mentioned earlier, in our simulator, the switching loss asso-
ciated with the gateway moving from one piconet to another
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Figure 5. Example scatternet.

is not taken into account. This effect can lead to the gate-
way losing up to 3% of slots at heavy loads. The experiment
results are thus, a slight overestimate.

In the experiments, all traffic generated is CBR. Each ex-
periment is run for a system time of 32 sec. In the experi-
ments, the term “slave” refers to a non-gateway slave; a gate-
way slave is referred to as “gateway”. Also, in experiments
where the PPF and the SPF values (and not the updated PPF
and the updated SPF) are shown, the PPF and the updated PPF
are equal and the SPF and the updated SPF are also equal. In
the graphs, “BW” in the index stands for bandwidth, “GW”
stands for gateway.

5.1. Single gateway in two piconets

We first consider the simple topology shown in figure 5,
which consists of two piconets, numbered I and II, connected
by a single gateway. We consider various cases by changing
the traffic and the number of slaves in the piconets.

Experiment 1. Adaptation between gateway and
non-gateway slave traffic
Each piconet has one non-gateway slave that generates very
high traffic, with rate equal to 1, to the master. The gateway
has equal traffic to both masters. We vary the gateway traffic
to show the fair sharing of the piconet bandwidth between the
gateway and the slave. We show the results for one piconet
since the two piconets are exactly symmetric.

Figure 6(a) shows the sharing of bandwidth between the
gateway and slave for different values of gateway traffic. It
also shows the fair share of the slave and the total fraction
of the bandwidth obtained by the gateway and the slave in
the piconet. It can be seen that the slave obtains a bandwidth
equal to its fair share for different values of gateway traffic.
Moreover, the sum of the bandwidths obtained by the slave
and the gateway is nearly equal to 1. The reason for this to
be slightly less than 1 is that some of the piconet capacity is
used in sending LMP_hold_req PDUs of the LMP layer.

In figure 6(b), the comparison of the fraction of the band-
width obtained by the gateway to its SPF (PPF and SPF are
equal) is shown. Figure 6(b) shows that the gateway gets al-
most equal to its fair share of the bandwidth for all values
of traffic. Again, the reason that the gateway obtains slightly
less than its fair share is because some of the slots are used
for LMP PDUs. This also explains why the gateway obtains
slightly less than the slave in figure 6(a).

Figure 6. (a) Sharing of bandwidth between gateway and slave. (b) Compar-
ison of fraction of bandwidth obtained to SPF for the gateway.

Experiment 2. Different traffic to piconets
The same topology as in the previous case, but each slave has
a traffic rate of 0.3 to the master. The gateway has a fixed traf-
fic rate of 0.2 to the master of Piconet I and variable traffic to
the other master. The PPF and SPF of the gateway in the first
piconet are, thus, both equal to 0.2. The traffic in Piconet I
does not change and the gateway and the slave get a constant
fraction of 0.2 and 0.3 of the piconet bandwidth, respectively.

Figure 7(a) shows the sharing of bandwidth between the
gateway and slave for different values of gateway traffic,
while figure 7(b) shows the comparison of the fraction of the
bandwidth obtained by the gateway in Piconet II to its SPF
and PPF. From the graphs, we can see that when the gate-
way has different traffic to piconets, it divides its presence
among the piconets according to the traffic offered and in a
fair manner (again, the gateway obtains slightly less than its
fair share due to the LMP PDUs). Also, the gateway makes
use of the lower traffic offered by the slave in Piconet II to
obtain a higher share of the bandwidth in Piconet II.

Experiment 3. Different number of slaves
Piconet I has 3 slaves, while the number of slaves in Piconet II
is variable. Each slave generates traffic to the master at the
rate of 0.2. The gateway has a traffic rate of 0.3 to Piconet I
and 0.8 to Piconet II. The PPF and SPF of the gateway in
Piconet I are, thus, 0.2 and 0.3, respectively. In Piconet II, the
value of PPF changes depending upon the number of slaves.

In Piconet I, the slaves get a bandwidth fraction of 0.2
and the gateway gets 0.3. Figure 8(a) shows the sharing
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Figure 7. (a) Sharing of bandwidth between gateway and slave in Piconet II.
(b) Comparison of fraction of bandwidth obtained by the gateway to SPF and

PPF in Piconet II.

of bandwidth between the gateway and each slave in Pi-
conet II. Figure 8(b) shows the comparison of the fraction
of the bandwidth obtained by the gateway in Piconet II to the
SPF and PPF. The gateway receives a fraction of the band-
width almost equal to its fair share. Also, as the number of
slaves increases, the fraction of the bandwidth received by
the gateway (and each slave) reduces in a fair manner.

Experiment 4. Asymmetric traffic
We now consider a case where the traffic rates from Master
to Slave and Slave to Master are different (asymmetric traf-
fic). We consider the same topology as in experiment 2 of the
current section, with the non-gateway slaves having the same
rate as in experiment 2. The gateway has a fixed traffic rate of
0.2 to the master of Piconet I and variable traffic to the other
master. The variable traffic is such that traffic from Master
to Slave has a rate of 0.1 and traffic from Slave to Master
varies.

Figure 9 shows the comparison of bandwidth fraction ob-
tained by the gateway in this experiment versus that obtained
by the gateway in experiment 2 in Piconet II for different val-
ues of gateway traffic (which is the sum of master to gateway
and gateway to master traffic rates). We see that the fraction
is slightly lower than the fraction obtained in experiment 2.
Asymmetric traffic leads to wastage of slots, since an empty
slot is returned in one direction where there is no data to send.
It can be seen though, that the gateway still behaves in an ap-

Figure 8. (a) Sharing of bandwidth between gateway and slave in Piconet II.
(b) Comparison of fraction of bandwidth obtained by the gateway to SPF and

PPF in Piconet II.

Figure 9. Comparison of fraction of bandwidth obtained by gateway in this
experiment with that in experiment 2 in Piconet II.

proximately fair manner. All other bandwidth fractions for
slaves and the gateway are the same as in experiment 2.

5.2. Single gateway shared between three piconets

We now consider a topology, where a gateway is shared be-
tween 3 piconets, numbered I, II and III. Piconet I has 5, Pi-
conet II has 1 and Piconet III has 4 slaves. Each slave has
a traffic rate of 0.2. The gateway has a traffic rate of 0.2 to
Piconet I, 0.3 to Piconet III and a variable rate to Piconet II.
All traffic is symmetric (same from master to slave and from
slave to master).
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Figure 10. Bandwidth fraction received by gateway in the three piconets.

Figure 11. Example scatternet topology.

Figure 10 shows the fraction of bandwidth obtained by the
gateway in each piconet with increasing gateway traffic rate to
Piconet II. It also shows the PPF and the Updated SPF of the
gateway in Piconet II. We do not show the fair shares of the
gateway in Piconet I and III since they are constant (0.16 and
0.2, respectively). It can be seen that the gateway manages
to get close to its fair share in the 3 piconets. The slaves in
Piconet I get a bandwidth fraction of 0.16 and the slaves in
Piconet II and III get a bandwidth fraction of 0.2 (all these are
equal to their fair shares).

5.3. Piconet with two gateways

We now show the working of the algorithm in a piconet hav-
ing 2 gateways, as shown in figure 11. Piconets I, II and III
have 6, 2 and 4 non-gateway slaves, respectively. There are
two gateways, GW 1 between Piconets I and II; and GW 2 be-
tween Piconets II and III. All slaves have a traffic rate of 0.2.
GW 1 has a traffic rate of 0.2 in Piconet I and 0.5 in Piconet II.
GW 2 has a traffic rate of 0.2 in Piconet III. We vary the traf-
fic rate of GW 2 in Piconet II and show the fair sharing of
bandwidth.

Figure 12 shows the fraction of bandwidth obtained by
GW 1 and GW 2 in Piconet II compared to their fair shares.
The x-axis denotes GW 2 traffic in Piconet II. It can be seen
that the bandwidth fractions obtained are very close to the
fair value. The non-gateway slaves of Piconet II receive a
bandwidth fraction of 0.2, which is equal to their fair share
(not shown in the figure). The bandwidth fraction received by
slaves in Piconets I and III does not change for different val-
ues of GW2 traffic in Piconet II. The fair share of each slave
(including the gateway) in Piconet I is 0.14 and in Piconet III

Figure 12. Fraction of bandwidth and fair share of GW1 and GW2 in Pi-
conet II.

Figure 13. Actual rate estimation of the gateway and its ideal value.

is 0.2; the bandwidth fraction received by each slave is very
close to these fair shares.

5.4. Adaptivity to changing traffic demands

We now show how quickly the algorithm is able to adapt to
changing traffic. We again consider the scenario of experi-
ment 1 of section 5.1, consisting of two piconets, each hav-
ing a non-gateway slave, connected by a single gateway. The
non-gateway slaves have a traffic rate of 1; the gateway has
equal traffic to both the masters. We vary the traffic rate of
the gateway as time progresses: for the first 2.5 seconds, the
gateway’s rate is 0.1, for the next 2.5 seconds, it is 0.5 and for
the remaining time, it is 0.3.

Figure 13 shows the actual rate estimation of the gateway
(and its ideal value) versus time. It can be seen that the rate
estimation adapts very quickly to the new rate. For example,
when the rate changes from 0.1 to 0.5, the rate estimation
reaches a value of 0.45 in about half a second after 2.5 sec.
Thus, the algorithm adapts to quickly changing traffic.

6. Conclusions

This paper proposed a distributed scatternet-scheduling algo-
rithm that adapts to non-uniform and changing traffic. This
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algorithm provides an integrated solution for both intra- and
inter-piconet scheduling and can be implemented using the
HOLD mode of Bluetooth. Through analysis and simulations,
we showed that the algorithm is traffic-adaptive and results in
a fair allocation of bandwidth to units. We explained earlier
that the algorithm may allow a unit to go into a power-saving
mode.

In future, we would like to explore this option, which also
assumes importance since Bluetooth devices will most likely
operate in a power-constrained environment. As future work,
we would also like to evaluate the performance of TCP and
other kinds of traffic on our algorithm. We are also working
towards interfacing the algorithm with requirements of higher
layers. In this respect, we are working towards providing QoS
support using the algorithm.
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