
A Fair Distributed Mutual Exclusion Algorithm
Sandeep Lodha and Ajay Kshemkalyani, Senior Member, IEEE

AbstractÐThis paper presents a fair decentralized mutual exclusion algorithm for distributed systems in which processes

communicate by asynchronous message passing. The algorithm requires between N ÿ 1 and 2�N ÿ 1� messages per critical section

access, where N is the number of processes in the system. The exact message complexity can be expressed as a deterministic

function of concurrency in the computation. The algorithm does not introduce any other overheads over Lamport's and Ricart-

Agrawala's algorithms, which require 3�N ÿ 1� and 2�N ÿ 1� messages, respectively, per critical section access and are the only other

decentralized algorithms that allow mutual exclusion access in the order of the timestamps of requests.

Index TermsÐAlgorithm, concurrency, distributed system, fairness, mutual exclusion, synchronization.

æ

1 INTRODUCTION

THE mutual exclusion problem states that only a single

process can be allowed access to a protected resource,

also termed as a critical section (CS), at any time. Mutual

exclusion is a form of synchronization and is one of the

most fundamental paradigms in computing systems.

Mutual exclusion has been widely studied in distributed

systems where processes communicate by asynchronous

message passing, and a comprehensive survey is given in

[2], [9]. For a system with N processes, competitive

algorithms have a message complexity between log�N�
and 3�N ÿ 1� messages per access to the CS, depending on

their features. Distributed mutual exclusion algorithms are

either token-based or nontoken-based. In token-based

mutual exclusion algorithms, a unique token exists in the

system and only the holder of the token can access the

protected resource. Examples of token-based mutual exclu-

sion algorithms are Suzuki-Kasami's algorithm [12]

(N messages), Singhal's heuristic algorithm [11] (�N=2; N �
messages), Raymond's tree-based algorithm [6] (log�N�
messages), Yan et al.'s algorithm [13] (O�N� messages),

and Naimi et al.'s algorithm [5] (O�log�N�� messages).

Nontoken-based mutual exclusion algorithms exchange

messages to determine which process can access the CS

next. Examples of nontoken-based mutual exclusion algo-

rithms are Lamport's algorithm [3] (3�N ÿ 1� messages),

Ricart-Agrawala's algorithm [7] (2�N ÿ 1� messages),

Carvalho-Roucairol's variant of the Ricart-Agrawala algo-

rithm [1] (�0; 2�N ÿ 1�� messages), Maekawa's algorithm [4]

(�3 �����
N
p

; 5
�����
N
p �messages), and Singhal's dynamic information

structure algorithm [10] (�N ÿ 1; 3�N ÿ 1�=2� messages).

Sanders gave a theory of information structures to design

mutual exclusion algorithms, where an information struc-

ture describes which processes maintain information about

what other processes, and from which processes a process

must request information before entering the CS [8].

Due to the absence of global time in a distributed system,

timestamps are assigned to messages according to Lam-

port's clocks [3]. In the context of mutual exclusion,

Lamport's clocks are operated as follows: Each process

maintains a scalar clock with an initial value of 0. Each time

a process wants to access the CS, it assigns that request a

timestamp which is one more than the value of the clock.

The process sends the timestamped request to other

processes to determine whether it can access the CS. Each

time a process receives a timestamped request from another

process seeking permission to access the CS, the process

updates its clock to the maximum of its current value and

the timestamp of the request.

Fairness is a very important criteria for solutions to most

real-life resource contention problems. The commonly

accepted definition of fairness in the context of mutual

exclusion is that requests for access to the CS are satisfied in

the order of their timestamps. Of all the distributed mutual

exclusion algorithms in the literature, only the nontoken-

based algorithms of Lamport [3] and Ricart-Agrawala [7]

(RA) are fair in the sense described above. Singhal's

heuristic algorithm [11] guarantees some degree of fairness

but is not fair in the sense described above. A lower priority

request can execute CS before a higher priority request if

the higher priority request is delayed. The algorithm has a

different criteria for fairness. It favors sites which have

executed their CSs least frequently and discourages sites

which have executed CSs heavily. This does not take into

account the causality relation that exists between two

requests, and hence, does not conform to the sense of

fairness described by Lamport's clock. Singhal's dynamic

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 6, JUNE 2000 537

. S. Lodha is with Synposys, Inc., 700 E. Middlefield Rd., Mountain View,
CA 94043. Email: lodha@synopsys.com

. A. Kshemkalyani is with the Department of Electrical Engineering and
Computer Science (MC 154), 1120 Science and Engineering Offices, 851 S.
Morgan St., University of Illinois at Chicago, Chicago, IL 60607-7053.
E-mail: ajayk@eecs.uic.edu.

Manuscript received 22 July 1998; revised 4 Nov. 1999; accepted 6 Jan. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 107178.

1045-9219/00/$10.00 ß 2000 IEEE



information structure algorithm [10] attempts to be fair, but

does not satisfy the fairness criterion. The algorithm uses

the concept of Lamport's clock and the causality relation-

ship, but it also allows a low priority request to execute CS

before a high priority request if the high priority request is

on the way or delayed (process that has made a higher

priority request is not in the request set of the process that

has made the low priority request). The proposed algorithm

in this paper uses the fairness criteria given by Lamport and

improves on RA, which is the best known algorithm that

guarantees fairness in the same sense.
Lamport's fair mutual exclusion algorithm requires

3�N ÿ 1� messages per CS access. Ricart-Agrawala's fair
mutual exclusion algorithm optimizes Lamport's algorithm
and requires 2�N ÿ 1� messages per CS access. In this
paper, we present a fair mutual exclusion algorithm that
requires between N ÿ 1 and 2�N ÿ 1� messages per CS
access. The exact number of messages for any CS access is
2�N ÿ 1� ÿ x, where x is the number of other requests that
are made concurrently with this request. The presented
algorithm uses the same system model as in the Lamport
and Ricart-Agrawala algorithms and does not introduce
any overheads. Mutual exclusion in shared memory
systems is a very different problem and we do not address
it here [14], [15].

Section 2 describes the system model and reviews the
Ricart-Agrawala algorithm. Section 3 presents the new
algorithm. Section 4 proves that the algorithm guarantees
mutual exclusion and progress and is fair. This section also
analyzes the message complexity. Section 5 gives conclud-
ing remarks.

2 PRELIMINARIES

In this section, we describe the general system model and
review the Ricart-Agrawala (RA) algorithm which is the
best known fair distributed mutual exclusion algorithm [7].
The algorithm proposed in Section 3 is an improvement
over the RA algorithm.

2.1 System Model

The RA algorithm and the algorithm by Lamport assume
the following model. There are N processes in the system.
The processes communicate only by asynchronous message
passing over an underlying communication network which
is error-free and over which message transit times may
vary. Processes are assumed to operate correctly. Unlike the
RA algorithm but similar to Lamport's algorithm, we
assume FIFO channels in the communication network.
Without loss of generality, we assume that a single process
executes at a site or a node in the network system graph.
Hence, the terms process, site, and node are interchange-
ably used.

A process requests a CS by sending REQUEST messages
and waits for appropriate replies before entering its CS.
While a process is waiting to enter its CS, it cannot make
another request to enter another CS. Each REQUEST for CS
access is assigned a priority and REQUESTs for CS access

should be granted in order of decreasing priority for fair

mutual exclusion. The priority or identifier, ReqID, of

a request is defined as ReqID = (SequenceNumber, PID),

where SequenceNumber is a unique locally assigned

sequence number to the request and PID is the process

identifier. SequenceNumber is determined as follows.

Each process maintains the highest sequence number seen

so far in a local variable Highest Sequence Number Seen.

When a process makes a request, it uses a sequence

number which is one more than the value of

Highest Sequence Number Seen: When a REQUEST is

received, Highest Sequence Number Seen is updated as

follows:

Highest Sequence Number Seen

� maximum�Highest Sequence Number Seen;
sequence number in the REQUEST�:

Priorities of two REQUESTs, ReqID1 and ReqID2, where

ReqID1 � �SN1; PID1� and ReqID2 � �SN2; PID2�, are

compared as follows. Priority of ReqID1 is greater than

priority of ReqID2 iff SN1 < SN2 or �SN1 = SN2 and PID1

< PID2�. All REQUESTs are thus totally ordered by

priority. This scheme implements a variant of Lamport's

clock mentioned in Section 1, and when requests are

satisfied in the order of decreasing priority, fairness is seen

to be achieved.

2.2 Review of Ricart-Agrawala Algorithm

The algorithm uses two types of messages: REQUEST and

REPLY.

2.2.1 Data Structure for Process Pi
Each process Pi uses the following local integer

v a r i a b l e s : My Sequence Numberi, ReplyCounti, a n d

Highest Sequence Number Seeni: Pi also uses the following

vector:

. RDi�1 : N� of Boolean. RDi�j� indicates if Pi has
deferred the REQUEST sent by Pj.

2.2.2 Algorithm

The RA algorithm is outlined in Fig. 1. Each procedure in

the algorithm is executed atomically.

The REPLY messages sent by a process are blocked only

by processes that are requesting the CS with higher priority.

Thus, when a process sends REPLY messages to all deferred

requests, the process with the next highest priority request

receives the last needed REPLY message and enters the CS.

The execution of CS requests in this algorithm is always in

the order of their decreasing priority. For each CS access,

there are exactly 2�N ÿ 1� messages: �N ÿ 1� REQUESTs

and �N ÿ 1� REPLYs.

538 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 6, JUNE 2000



3 PROPOSED ALGORITHM

3.1 Definitions

A REQUEST issued by process Pi with sequence number x

is denoted using its ReqID as Ri;x. The priority of Ri;x is the

tuple �x; i�, also denoted as Pr�Ri;x�. The sequence number

x is omitted whenever there is no ambiguity, and we say

that a REQUEST Ri has a priority Pr�Ri�. This notation is

used throughout this paper.
Two REQUESTs are said to be concurrent if for each

requesting process, the REQUEST issued by the other

process is received after the REQUEST has been issued by

this process.

Definition 1. Ri and Rj are concurrent iff Pi's REQUEST is

received by Pj after Pj has made its REQUEST and Pj's

REQUEST is received by Pi after Pi has made its REQUEST.

Each REQUEST Ri sent by Pi has a concurrency set,

denoted CSeti, which is the set of those REQUESTs Rj that

are concurrent with Ri. CSeti also includes Ri.

Definition 2. Given Ri, CSeti = f Rj j Ri is concurrent with

Rjg [ fRig.

Observe that the relation ªis concurrent withº is defined
to be symmetric.

Observation 1. Ri 2 CSetk iff Rk 2 CSeti.
3.2 Description and Basic Idea

The algorithm assumes the same model as the RA model. It
also assumes that the underlying network channels are
FIFO. The algorithm reduces the number of messages
required per CS as compared to the RA algorithm. A
process keeps a queue containing REQUESTs in the order of
priorities, received by the process after it made its latest
REQUEST. This queue, referred to as Local Request Queue
(LRQ) (explained in Section 3.3), contains only concurrent
REQUESTs. The algorithm uses three types of messages:
REQUEST, REPLY, and FLUSH, and obtains savings by
cleverly assigning multiple purposes to each. Specifically,
these savings are obtained by the following key
observations.

LODHA AND KSHEMKALYANI: A FAIR DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 539

Fig. 1. Ricart-Agrawala algorithm.



. All requests are totally ordered by priority, similar to
the RA algorithm. A process receiving a REQUEST
message can immediately determine whether the
requesting process or itself should be allowed to
enter the CS first.

. Multiple uses of REPLY messages.

1. A REPLY message acts as reply from a process
that is not requesting.

2. A REPLY message acts as a collective reply from
processes that have higher priority requests.

A REPLY(Rj) message from Pj indicates that Rj is

the REQUEST that Pj had last made and for which it

executed the CS. This indicates that all REQUESTs

which have priority � the priority of Rj have

finished CS and are no longer in contention. When a

process Pi receives REPLY(Rj), it can remove those

REQUESTs whose priority � priority of Rj from its

local queue. Thus, a REPLY message is a logical reply

and denotes a collective reply from all processes that had

made higher priority requests.
. Uses of FLUSH message. A FLUSH message is sent

by a process after executing CS, to the concurrently
requesting process with the next highest priority (if
it exists). At the time of entering CS, a process can
determine the state of all other processes in some
possible consistent state with itself. Any other
process is either requesting CS access and its
requesting priority is known, or it is not requesting.
At the time of finishing CS execution, a process Pi
knows the following:

1. Processes with concurrent lower (than Pi's)
priority requests in Pi's local queue are waiting
to execute CS.

2. Processes which had sent REPLY to Pi for Ri are
still not requesting, or are requesting with lower
(than Pi's) priority.

3. Processes which had requested concurrently
with Ri with higher priority are not requesting
or are requesting with a lower (than Pi's)
priority.

The REQUESTs received from processes identified

in 2 and 3 are not concurrent with Ri, the REQUEST

for which Pi just finished executing CS. Such

REQUESTS received by Pi before it finishes CS are

deferred until Pi finishes its CS. Pi then sends a

REPLY to each of these deferred REQUESTs as soon

as it finishes its CS.
Thus, after executing CS, Pi sends a FLUSH(Ri)

message to Pj which is the concurrently requesting

process with the next highest priority. For each

process Pk identified in 2 and 3 that is requesting, its

REQUEST would have been deferred until Pi left the

CS, at which time Pi sends Pk a REPLY. With this

behavior, Pi has given permission to both Pj and Pk
that it is safe to enter CS with respect to Pi. Pj and Pk
will have to get permission from one another, and

the one with higher priority will enter the CS first.

Similar to the Ri parameter on a REPLY message,
the Ri parameter on the FLUSH denotes the ReqID,
i.e., priority, of the REQUEST for which Pi just
executed CS. When a process Pj receives FLUSH(Ri),
it can remove those REQUESTs whose priority �
priority of Ri from its local queue. Thus, a FLUSH
message is a logical reply and denotes a collective reply
from all processes that had made higher priority requests.

. Multiple uses of REQUEST messages. A process Pi
attempting to invoke mutual exclusion sends a
REQUEST message to all other processes. Upon
receipt of a REQUEST message, a process Pj that is
not requesting sends a REPLY message immediately.
If process Pj is requesting concurrently, it does not
send a REPLY message. If Pj's REQUEST has a
higher priority, the received REQUEST from Pi
serves as a reply to Pj. Pj will eventually execute
CS (before Pi) and then through a chain of FLUSH/
REPLY messages, Pi will eventually receive a logical
reply to its REQUEST. If Pj's REQUEST has a lower
priority, then Pj's REQUEST, which reaches Pi after
Pi has made its own REQUEST serves as a reply to
Pi's REQUEST. After Pi executes the CS, Pj will
receive a logical reply to its REQUEST through a
chain of FLUSH/REPLY messages.

Thus, in the proposed algorithm, concurrent
REQUEST messages do not serve just the purpose
of requesting. They are also some form of REPLY
messages. The REQUEST message sent by Pi acts
like an explicit reply to Pj's REQUEST if Pi's
REQUEST has a lower priority than Pj's REQUEST.

In the proposed algorithm as outlined above, a
REQUEST message has three purposes, as summar-
ized below. Assume that both Pi and Pj are
requesting concurrently. Moreover, assume that the
REQUEST of Pi has a higher priority than the
REQUEST of Pj.

1. A REQUEST message serves as a request
message.

2. The REQUEST message from Pi to Pj: This
REQUEST message to Pj indicates to Pj that Pi is
also in contention and has a higher priority. In
this case, Pj should await FLUSH/REPLY from
some process.

3. The REQUEST message from Pj to Pi: This
REQUEST message to Pi serves as a reply to Pi.

Thus, no REPLY is sent when the REQUESTs are
concurrent.

In the proposed algorithm, a process Pi requesting CS
access by sending a REQUEST to other processes gets
permission from any other process Pj, in one of the
following ways:

. Pj is not requesting: Pj sends REPLY to Pi.

. Pj is concurrently requesting with a lower priority:
Pj's REQUEST serves as the reply from Pj.

. Pj is concurrently requesting with a higher priority:
Pj's REQUEST indicates that Pj is also in contention
with a higher priority and that Pi should await
FLUSH/REPLY, which transitively gives permission

540 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 6, JUNE 2000



to Pi. A FLUSH(Rk) or a REPLY(Rk) message, where
Pr�Ri� < Pr�Rk� � Pr�Rj�, serves as permission
from Pj to Pi.

3.3 The Algorithm

3.3.1 Data Structures for Process Pi

Each process Pi maintains the following data structures in

addition to the local integer variablesMy Sequence Numberi
and Highest Sequence Number Seeni.

. RVi�1 : N� of Boolean. RVi�j� � 1 indicates that

process Pj has replied (by a REPLY or by a

REQUEST or by a FLUSH). RVi�j� � 0 indicates that

process Pi has not yet replied.
. LRQi: queue of ReqIDs. This is aLocal Request Queue

for ordering its own REQUEST and the concurrent

requests (of lower and higher priority) from other

processes that are received after Pi has made its own

REQUEST.

A REPLY message from Pj also carries the ReqID of

the last REQUEST made by Pj that was satisfied. Sim±

ilarly, a FLUSH message from Pj carries the ReqID of

the REQUEST for which Pj executed the CS.

Highest Sequence Number Seen is updated in a way sim±

ilar to the RA algorithm.

3.3.2 Algorithm

The proposed algorithm is outlined in Fig. 2. Each

procedure in the algorithm is executed atomically.

3.4 Example and Illustration of the Algorithm

3.4.1 An Example to Compare with RA

Fig. 3 shows an execution of processes P1, P2, and P3 using a

timing diagram from the time they attempt to enter the CS

until all of them successfully execute CS. Assume that at

time t1 the highest sequence number at each process is zero.

The status of LRQ and RV vectors at various instants of time

shown in Fig. 3 are given below.

. Time instant t1: None of the processes have sent out
the REQUESTS:

1. RV1 � �0; 0; 0� and LRQ1 � hi
2. RV2 � �0; 0; 0� and LRQ2 � hi
3. RV3 � �0; 0; 0� and LRQ3 � hi:

. Time instant t2: All the processes have sent out the
REQUESTS, but have not received a REQUEST/
REPLY from any other process. The sequence
number of these REQUESTs are one.

1. RV1 � �1; 0; 0� and LRQ1 � h�1; 1�i
2. RV2 � �0; 1; 0� and LRQ2 � h�1; 2�i
3. RV3 � �0; 0; 1� and LRQ3 � h�1; 3�i:

. Time instant t3: All the processes have received
REQUESTs from other processes.

1. RV1 � �1; 1; 1� and LRQ1 � h�1; 1�; �1; 2�; �1; 3�i
2. RV2 � �1; 1; 1� and LRQ2 � h�1; 1�; �1; 2�; �1; 3�i
3. RV3 � �1; 1; 1� and LRQ3 � h�1; 1�; �1; 2�; �1; 3�i:

Note that P1 does not send any REPLY to P2 and P3.
Instead, CheckExecuteCS returns true and P1 exe-
cutes CS. Similarly P2 also does not send any REPLY
to P1 and P3. Moreover, CheckExecuteCS returns
false, and so P2 cannot execute CS. Note the
difference when compared to RA. As per RA, P2

will send a REPLY to P1. P3 also does not send any
REPLY to P1 and P2. CheckExecuteCS returns false,
and so P3 cannot execute CS. Once again, note the
difference when compared to RA. As per RA, P3 will
send a REPLY to P1 and P2.

. Time instant t4: P1 finishes CS. Other processes are
waiting to execute CS.

1. RV1 � �1; 1; 1� and LRQ1 � h�1; 1�; �1; 2�; �1; 3�i
2. RV2 � �1; 1; 1� and LRQ2 � h�1; 1�; �1; 2�; �1; 3�i
3. RV3 � �1; 1; 1� and LRQ3 � h�1; 1�; �1; 2�; �1; 3�i:
After P1 finishes executing CS, it examines LRQ1

and determines the next request in LRQ1. It is P2. P1

sends a FLUSH((1,1)) message to P2. Note that the

parameter indicates the ReqID of the request for

which P1 executed CS. This action is different from

RA. In RA, P1 will send REPLY messages to P2

and P3.
. Time instant t5: P2 gets the FLUSH((1,1)) message.

1. RV2 � �1; 1; 1� and LRQ2 � h�1; 1�; �1; 2�; �1; 3�i
2. RV3 � �1; 1; 1� and LRQ3 � h�1; 1�; �1; 2�; �1; 3�i
When P2 gets the FLUSH((1,1)) message, it finds the
entry (1,1) in LRQ2. P2 removes all entries ahead of
(1,1) and including (1,1). Now CheckExecuteCS
returns true and P2 executes CS.

. Time instant t6: P2 finishes CS.

1. RV2 � �1; 1; 1� and LRQ2 � h�1; 2�; �1; 3�i
2. RV3 � �1; 1; 1� and LRQ3 � h�1; 1�; �1; 2�; �1; 3�i
After P2 finishes executing CS, it examines its LRQ

and determines the next request in LRQ2. It is P3. P2

sends a FLUSH((1,2)) message to P3.

Actions of P3, when it receives the FLUSH message, are

similar to the actions of P2. After P3 finishes executing CS, it

does not send any FLUSH/REPLY to any other process.

For the three requests in Fig. 3, the RA algorithm needs

3 � �2 � �N ÿ 1�� � 12 messages to enforce mutual exclusion.

In the proposed algorithm, only eight messages are

required, thus saving 33 percent over the RA algorithm.

3.4.2 Some Example Scenarios

Fig. 4 gives an example scenario at process P4 in a system

consisting of six processes P1, P2, . . . , P6. Fig. 4a shows the

scenario when P4 has just sent its REQUESTs. P4's

REQUEST is the only REQUEST in LRQ4 and RV4 is

�0; 0; 0; 1; 0; 0�. Fig. 4b shows the scenario at some time after

P4 has requested and before P4 executes CS. P4 has received

higher priority REQUESTs from P1 and P3 and a lower

priority REQUEST from P5. It has also received a REPLY

from P2. It has not received any message from P6, either in

LODHA AND KSHEMKALYANI: A FAIR DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 541



the form of a REPLY or a REQUEST. Fig. 4c shows the

scenario when the process P4 is about to enter the CS.

CheckExecuteCS returns true in this scenario. The inter-

mediate steps between Figs. 4a, 4b, and 4c are not shown.
Figs. 5, 6, and 7 illustrate the algorithm via some example

scenarios using timing diagrams. Time lines of processes

are shown horizontally. A vertical line intersecting the

horizontal time line of a process indicates that the adjacent

comment applies to the event at the intersection point.
Fig. 5 shows some possible scenarios in a system of three

processes. Process identifiers are ordered as follows:

i < j < k.

542 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 6, JUNE 2000

Fig. 2. The proposed algorithm.



. Scenario 1. Pi is the only process that is requesting
CS access. Pi gets REPLY messages from Pj and Pk.
After getting these REPLY messages, Pi can
execute CS.

. Scenario 2a. Pi and Pj are requesting CS access
concurrently. Pj's REQUEST has a lower priority
than Pi's REQUEST. Pj's REQUEST acts as a reply to
Pi. Pi sends a FLUSH to Pj after executing CS. This
FLUSH acts as a logical reply to Pj for Pj's
REQUEST. Pj executes CS on getting the FLUSH
from Pi.

. Scenario 2b. Pi and Pj are requesting (not concur-
rently). Pi gets a REPLY from Pj. It then gets a
REQUEST from Pj while it is waiting for a REPLY/
REQUEST from Pk. As RVi�j� � 1, this REQUEST of
Pj is deferred and later processed after Pi finishes
executing CS. When Pi processes this REQUEST, it
sends a REPLY to Pj.

. Scenario 2c. Pi and Pj are requesting CS access
concurrently. Pi executes CS and sends a FLUSH
message to Pj. Pj is still awaiting a REPLY/
REQUEST from Pk. So Pj cannot execute CS on
getting this FLUSH. While it is waiting for a REPLY/
REQUEST from Pk, it gets another REQUEST from
Pi. Since RVj�i� is 1, it defers this REQUEST. On
getting a REPLY from Pk, Pj executes CS. After Pj
finishes executing CS, it processes the deferred
REQUEST by sending a REPLY to it.

Fig. 6 illustrates a scenario where a REPLY message acts

as a logical reply from all higher priority requesting

processes. Pi, Pj, and Pk are the processes in the system

that are requesting CS access. Priority of Pi's REQUEST is

the highest and priority of Pk's REQUEST is the lowest. Pi's

REQUEST is concurrent with the requests from Pk and Pj.

However, Pj's REQUEST is made causally before Pk's

REQUEST. Pi's REQUEST is just ahead of Pk's REQUEST in

LRQk. Observe that Pk will not get a FLUSH message from

Pi because after Pi executes CS, Pj's REQUEST is just

behind Pi's REQUEST in LRQi and therefore Pi sends a

FLUSH to Pj and not to Pk. As per the algorithm, Pk will

also not receive a REPLY message from Pi. Pj executes CS

on receiving a FLUSH from Pi. Pj sends a REPLY to the

deferred request from Pk after Pj finishes executing CS. Pk
gets this REPLY(Rj) from Pj, where Rj denotes the

REQUEST of Pj that was last satisfied. Pk deletes all entries

in LRQk that have a priority � the priority of Rj (algorithm

step RcvReply:2). This deletes Pi's REQUEST from LRQk

and makes Pk's REQUEST the head of LRQk. Pk can now

execute CS.

Fig. 7 illustrates a scenario where process Pk receives

more than one FLUSH message. The first REQUEST of Pi is

not concurrent with the REQUEST from Pk and the second

REQUEST from Pi has a higher priority than Pk's

REQUEST. The order of CS executions is as follows: Pi
executes CS first, then Pj, then Pi again, and then Pk. Pk
receives two FLUSH messages, the first from Pj and the

second from Pi before it can execute CS. Pj sends Pk a

FLUSH because when Pj finishes its CS, Pk's REQUEST is

just behind Pj's REQUEST in LRQj and Pj has not yet

received Pi's second REQUEST. Even after receiving the

FLUSH from Pj, Pk cannot execute CS unless it receives

permission from Pi also. As Pi's REQUEST has greater

LODHA AND KSHEMKALYANI: A FAIR DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 543

Fig. 3. An illustrative example of the algorithm used to compare with the RA algorithm.



priority than Pk's REQUEST, Pk has to await a direct or a

logical FLUSH/REPLY from Pi. In the given scenario, Pi

sends a FLUSH to Pk after executing CS because Pk's lower

priority REQUEST was received before Pi entered its CS.

Only after getting the FLUSH from Pi can Pk execute CS.

4 ANALYSIS AND CORRECTNESS PROOF

4.1 Message Complexity

The number of messages per CS access can be determinis-

tically expressed as a measure of concurrency of REQUESTs

as follows. A site Pi that is requesting sends �N ÿ 1�
REQUEST messages. It receives �Nÿ j CSeti j� REPLYs.

There are two cases to consider.

1. j CSeti j� 2. There are two subcases here.

a. There is at least one REQUEST in CSeti whose
priority is less than that of Ri. So Pi will send
one FLUSH message. In this case, the total
number of messages for CS access is
2Nÿ j CSeti j . When all REQUESTs are con-
current, this is N messages.

b. There is no REQUEST in CSeti, whose priority is
less than the priority of Ri. Pi will not send a
FLUSH message. In this case, the total number
of messages for CS access is 2N ÿ 1ÿ j CSeti j .

When all REQUESTs are concurrent, this is N ÿ
1 messages.

2. j CSeti j� 1. This is the worst case, implying that all
REQUESTs are serialized. Pi will not send a FLUSH
message. In this case, the total number of messages
for CS access is 2�N ÿ 1� messages.

4.2 Definitions Used in the Proof

We give some definitions and then an observation on a

property of the algorithm. These definitions and the

observation are used to prove the correctness of the

algorithm.
Definition 3 defines the concept of a predecessor of a

REQUEST Ri in a set S of REQUESTs.

Definition 3.

Pred�Ri; S� �Rj iff Rj 2 S ^ Pr�Ri� < Pr�Rj�
^ 69Rk 2 S j �Pr�Ri� < Pr�Rk� < Pr�Rj��:

Definition 4 defines the concept of a successor of a
REQUEST Ri in a set S of REQUESTs.

Definition 4.

Succ�Ri; S� �Rj iff Rj 2 S ^ Pr�Ri� > Pr�Rj�
^ 69Rk 2 S j �Pr�Rj� < Pr�Rk� < Pr�Ri��:

544 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 6, JUNE 2000

Fig. 4. An example scenario at process P4. (a) RV Vector and LRQ at process P4, just after P4 sends its REQUEST. (b) RV Vector and LRQ at

process P4, some time after P4 sends its REQUEST. (c) RV Vector and LRQ at process P4, just before entering CS.



Definition 5 defines a global view (GV ) of the system

execution. GVRi;Rj
is the set of REQUESTs Rk ever made in

the system execution, whose priority lies in the range

�Pr�Ri�; Pr�Rj��. Although the global view of REQUESTs

may not be available to any process, nonetheless it can be

assumed to be available for the purpose of proving the

correctness of the algorithm.

Definition 5. GVRi;Rj
� fRk j Pr�Rj� � Pr�Rk� � Pr�Ri�g:

Definition 6 defines a notion of distance (Dist) between

two REQUESTs Ri;Rj 2 GVR1;R2
. Dist�Ri;Rj� is defined as

1� the number of REQUESTs that have a priority value
greater than Pr�Rj� and less than Pr�Ri�.
Definition 6. Dist�Ri;Rj� � jGVRi;Rj

j ÿ 1:

Given two REQUESTs Ri and Rk such that each is in the
concurrency set of the other requesting process (Observa-
tion 1) and that they are at a distance of one in the global
view �Pr�Ri� > Pr�Rk��, then Ri is the predecessor of Rk in
Pk's concurrency set and Rk is the successor of Ri in Pi's
concurrency set. This is captured by Observation 2.

Observation 2. The two parts of this observation are as
follows.

1.

Dist�Ri;Rk� � 1 ^Rk 2 CSeti �)
�Pred�Rk;CSetk� � Ri

^ Succ�Ri; CSeti� � Rk�:

2.

Dist�Ri;Rk� � 1 ^ Ri 2 CSetk �)
�Pred�Rk;CSetk� � Ri

^ Succ�Ri; CSeti� � Rk�:

4.3 Safety and Fairness

A mutual exclusion algorithm satisfies the safety specifica-
tion of the mutual exclusion problem if it provides mutually
exclusive access to the critical section. A (safe) mutual
exclusion algorithm is said to provide fair mutual exclusion
if the following property holds.

Definition 7. An algorithm provides fair mutual exclusion iff
Pr�Ri� > Pr�Rj�()Pj executes CS after Pi finishes CS.

Theorem 1 (Safety and Fairness). The algorithm in Fig. 2
provides fair mutual exclusion as defined in Definition 7.

Proof. Let Ra be the REQUEST that has the highest priority
among all REQUESTs ever made and Rb be the
REQUEST that has the lowest priority among all
REQUESTs ever made until now. We will prove that
for any two REQUESTs Ri, Rj 2 GVRa;Rb

such that
Pr�Rj� > Pr�Ri�, Pi enters CS after Pj finishes CS.

The proof is by induction on Dist�Ra;Ri�, i.e., for any
Ri such that Dist�Ra;Ri� > 0, Pi executes CS next after Pj
finishes CS, where Rj � Pred�Ri;GVRa;Rb

�.
Induction hypothesis. For any REQUEST Ri 2

GVRa;Rb
such that Dist�Ra;Ri� > 0, Pi executes CS next

after Pj finishes CS, where Pred�Ri;GVRa;Rb
� � Rj.

Base case Dist�Ra;Ri� � 1. We need to prove that Pi
executes CS next after Pa finishes CS. There are two cases
here.

. Ri 2 CSeta. By Observations 1 and 2,

Succ�Ra;CSeta� � Ri

and Pred�Ri; CSeti� � Ra. Pa will send a FLUSH

to Pi on finishing CS (algorithm step FinCS:1).

There is no other REQUEST Rk in the system such

LODHA AND KSHEMKALYANI: A FAIR DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 545

Fig. 5. Some illustrative scenarios using timing diagrams.



that Pr�Ri� < Pr�Rk� < Pr�Ra�. A FLUSH comes

from a higher priority process only. Pi cannot

execute CS unless Pi gets a FLUSH from Pa. When

Pi receives FLUSH from Pa (algorithm step

RcvFlush), it deletes Ra from LRQi and can

execute CS if it has received logical replies from

other processes. Any other process is either

requesting with a lower priority, in which case

its REQUEST serves as a reply, or is not

requesting, in which case it sends a REPLY.

We now need to prove that no REPLY(Rk) is

received by Pi, such that Pr�Ri� < Pr�Rk� <
Pr�Ra�: (Recall that Rk is the ReqID of the last

REQUEST, corresponding to which the process Pk
executed CS). This follows from the fact that such

an Rk does not exist in the global view. Moreover,

we also need to prove that no REPLY(Rk) is

received by Pi in response to Ri such that

Pr�Rk� < Pr�Ri�. There are three subcases here.

1. If Rk was received by Pi, before Pi had sent
Ri, t h e n Pr�Ri� < Pr�Rk�. T h i s i s a
contradiction.

2. Ri and Rk are concurrent. There are two
subcases here.

a. Ri has lower priority, which is a
contradiction.

b. Ri has a higher priority. Then Rk acts as a
reply to Pi's REQUEST. This is a contra-
diction, as Pk sends an explicit REPLY
to Pi.

3. Rk is issued after Pk receives Ri. This is a
contradiction, because Pk cannot send a
REPLY(Rk), as Pk has not yet executed CS
corresponding to the REQUEST Rk.

Thus, no REPLY �Rk� is received by Pi in response

to Ri such that Pr�Rk� < Pr�Ri�. So Pi executes

CS next after Pa finishes CS.

546 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 6, JUNE 2000

Fig. 7. A timing diagram for a scenario where a process receives more than one FLUSH.

Fig. 6. A timing diagram for a scenario where REPLY acts as a logical reply from multiple processes.



. Ri 62 CSeta. Requests Ri and Ra are not con-
current. As Ri has a lower priority than Ra, Pi
requested only after receiving a REQUEST from
Pa and sending back a REPLY to Pa. There are
two subcases here.

- Pa receives Ri before entering CS. In this case,
Pa defers the REQUEST Ri and processes it
only after finishing CS because it has already
received a REPLY from Pi (algorithm step
RcvReq2b).

- Pa receives Ri after finishing CS. (A request
received while executing CS is deferred until
CS completion.)

In both subcases, Pi can execute CS only after Pa
finishes CS (detected by Pi when it receives

REPLY from Pa) and if Pi has received logical

replies from other processes. Any other process is

either requesting with a lower priority, in which

case its REQUEST serves as a reply, or is not

requesting, in which case it sends a REPLY.

Analogous to the proof for the case of Ri 2 CSeta,
Pi will not receive any REPLY(Rk) in response to

Ri such that either Pr�Ri� < Pr�Rk� < Pr�Ra� or

Pr�Rk� < Pr�Ri�. Thus, Pi executes CS next after

Pa finishes CS.

Induction step Dist�Ra;Ri� � x; x > 1. For a
REQUEST Ri 2 GVRa;Rb

such that Dist�Ra;Ri� � x, Pi
executes CS next after Pj finishes CS, where
Pred�Ri;GVRa;Rb

� � Rj.
Induction step Dist�Ra;Ri� � x� 1; x > 1. For a

REQUEST Ri 2 GVRa;Rb
such that Dist�Ra;Ri� � x� 1,

Pi executes CS next after Pj finishes CS, where
Pred�Ri;GVRa;Rb

� � Rj. By the induction hypothesis, we
claim that Pj executes CS next after Pk finishes CS, where
Pred�Rj;GVRa;Rb

� � Rk.
To complete this proof, we need to prove that Pi

executes CS next after Pj finishes CS.

. Ri 2 CSetj. This case is similar to the correspond-
ing base case where Dist�Ra;Ri� � 1.

. Ri 62 CSetj. Analogous to the corresponding base
case where Dist�Ra;Ri� � 1, Pj sends a REPLY to
Pi's REQUEST only after finishing CS. By the
induction hypothesis, all requests with priority
greater than Pr�Ri� have been served. Any
other process Pm is either requesting with a
lower priority than Pr�Pi�, in which case its
REQUEST serves as a reply, or is not requesting,
in which case it sends a REPLY(Rm), where
neither Pr�Ri� < Pr�Rm� < Pr�Rj� nor Pr�Rm� <
Pr�Ri�: So Pi executes CS after Pj finishes CS and
Pi has received a logical reply from all other
processes.

In both cases, Pi executes CS next after Pj finishes CS.

1) We showed the proof using induction on

Dist�Ra;Ri�. In the global view, all REQUESTs are

totally ordered. Hence, at any distance Dist�Ra;Ri�,
there is a unique Ri. As every REQUEST in the system

has a unique priority, it is at a unique distance

Dist�Ra;Ri�. REQUESTs are satisfied in the order of

increasing distance (decreasing priority). Hence, if

Pr�Ri� > Pr�Rj�, then Pj executes after Pi finishes CS.

2) From 1) and the fact that each REQUEST in the

system has a unique priority, we can say that if Pj
executes CS after Pi finishes CS, then Pr�Ri� > Pr�Rj� .

From 1) and 2), fair mutual exclusion is guaranteed by
the algorithm. tu

4.4 Liveness

Liveness is achieved if any process that requested CS access

executes CS eventually.

Theorem 2 (Liveness). The algorithm in Fig. 2 achieves

liveness.

Proof. Let Ra be the REQUEST that has the highest priority

among all REQUESTs ever made. Let Rb be the

REQUEST that has the lowest priority among all

REQUESTs ever made until now. We first prove that

Pa executes CS. We then prove by induction that for any

REQUEST Rk, such that Dist�Ra;Rk� � 1, process Pk

executes CS.

As Ra is the highest priority REQUEST in the system,

Pa must have received either a low priority concurrent

REQUEST or a REPLY from each other process. It will

not receive any higher priority REQUESTs. Moreover, it

will not get any FLUSH, which can arrive only from a

higher priority process. So Pa executes CS. We prove by

induction that for any Dist�Ra;Rk� > 0; Pk executes CS.
Induction hypothesis. For any Dist�Ra;Rk� > 0; Pk

executes CS.
Base case Dist�Ra;Rk� � 1. If Dist�Ra;Rk� � 1, then

Pk executes CS. There are two cases here.

. Rk 2 CSeta. B y O b s e r v a t i o n s 1 a n d 2 ,
Succ�Ra;CSeta� � Rk and Pred�Rk;CSetk� � Ra.
We have shown that Pa executes CS. After
executing CS, it sends a FLUSH to Pk (algorithm
step FinCS). As Pred�Rk;CSetk� � Ra, on getting
a FLUSH from Pa (algorithm step RcvFlush), Pk is
at the head of LRQk and can execute CS if it
receives replies from other processes in the form
of REQUESTs, REPLYs, or FLUSHs. Any other
process is either requesting with a lower priority,
in which case its REQUEST serves as a reply, or is
not requesting, in which case it sends a REPLY.
Thus, Pk executes CS.

. Rk 62 CSeta. The REQUESTs Rk and Ra are not
concurrent. So Pk requested only after receiving a
REQUEST from Pa and returning a REPLY,
implying that Rk has lower priority that Ra. There
are two subcases here:

- Pa receives Rk before entering CS. In this
case, Pa defers the REQUEST Rk and pro-
cesses it only after finishing CS. After finish-
ing CS, it sends a REPLY to Pk. This REPLY
enables Pk to execute CS if it has received

LODHA AND KSHEMKALYANI: A FAIR DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 547



logical replies from all other processes (algo-
rithm step RcvReply).

- Pa receives Rk after finishing CS. (A request
received during CS execution is deferred
until CS completion.) Pa sends a REPLY to
Pk. This REPLY enables Pk to execute CS if it
has received logical replies from all other
processes (algorithm step RcvReply).

In both subcases, any other process is either
requesting with a lower priority, in which case its
REQUEST serves as a reply or is not requesting,
in which case it sends a REPLY. Thus, Pk will
execute CS.

Induction step Dist�Ra;Rk� � x; x > 1. We assume

that Pk executes CS.

Induction step Dist�Ra;Rk� � x� 1; x > 1. Let Rm be

such that Dist�Ra;Rm� � x. Then Dist�Rm;Rk� � 1.

From the induction hypothesis, we claim that Pm
executes CS. We need to prove that Pk executes CS if

Rm executes CS. Similar to the base case, there are two

cases here:

. Rk 2 CSetm. This case is similar to the corre-
sponding base case where Dist�Ra;Rk� � 1. Thus,
Pk executes CS.

. Rk 62 CSetm. Analogous to the corresponding
base case, where Dist�Ra;Rk� � 1, Pk will get a
REPLY from Pm. Moreover, there is no REQUEST
that has a priority in between the priority of Rm

and Rk. When Rk gets this REPLY(Rm), it will
remove all REQUESTs from its LRQk that have
priority higher than or equal to Pr(Rm) (algorithm
step RcvReply). This will make Rk the head of
LRQk. Any other process is either requesting with
a lower priority, in which case its REQUEST
serves as a reply, or is not requesting, in which
case it sends a REPLY. Thus, Pk can execute CS.

Thus, Pk executes CS and the algorithm guarantees
liveness. tu

5 DISCUSSION AND CONCLUDING REMARKS

We presented a fair mutual exclusion algorithm for a

distributed system with asynchronous message passing.

Fairness is defined in terms of satisfying requests for CS

access in decreasing order of priority, which is defined by

Lamport's timestamp. This algorithm requires between

�N ÿ 1; 2�N ÿ 1�� messages per access to the critical section,

and improves upon the Ricart-Agrawala algorithm, which

is the best known fair algorithm, without introducing any

additional overhead. Specifically, the number of messages

for a CS access is 2�N ÿ 1� ÿ x, where x is the number of

other requests that are made concurrently with this request.

The savings in message complexity was obtained by

exploiting the concurrency of requests and assigning

multiple meanings to the requests and replies whenever

there are concurrent requests. The algorithm as presented

here is not resilient to node or link failures. However, this is

also a drawback of Lamport's algorithm and the RA

algorithm.

The following improvements can be made to the

algorithm. The first improvement saves on the number of

REPLY messages sent. Observe that a process Pi on

finishing CS (procedure FinCS) sends a FLUSH to the

concurrently requesting process with the next highest

priority (if it exists) and REPLYs (say m) to the processes

whose REQUESTs were deferred. By examining these

REQUESTs, Pi can determine the relative order in which

these processes will execute CS. Using this fact, the

following optimization can be made. Assume Pk has the

highest priority among these REQUESTs. Pi can send

REPLY just to Pk, apprising Pk of all the information Pi

has gathered. Thus Pi can avoid sending upto m (worst case

is mÿ 1) messages. Now it is upto Pk to take care of the rest.

However, this optimization requires a significant increase

in message sizes and local data structures.

A second way to save on the number of REPLY messages

is by treating deferred REQUESTs as concurrent to the next

REQUEST of this process (although they are not truly

concurrent by definition). If the process exiting the CS

knows that it will be requesting CS access soon, it can keep

the deferred REQUESTs as deferred until it makes its next

REQUEST. At that time, its REQUEST acts as a REPLY to

the deferred REQUESTs, and the deferred REQUESTs act a

REPLY to its REQUEST. This optimization could slow

down the computation at processes.

A t h i r d i m p r o v e m e n t i s a s f o l l o w s : T h e

Highest Sequence Number Seen behaves as a global

function of the sequence number of requests and is used

as a determinant of the priority of each request for CS

access. The fair algorithm satisfies requests in order of

decreasing priority. In the presented algorithm,

Highest Sequence Number Seen

is a parameter only on REQUEST messages, akin to the

Lamport and the Ricart-Agrawala algorithm. In order that

the priority be determined most fairly, taking into account

the transitive causality relation among events induced by all

messages exchanged, the Highest Sequence Number Seen

can be introduced as a parameter on all algorithm

messages.

ACKNOWLEDGMENTS

Ajay Kshemkalyani's work was supported by U.S. National
Science Foundation grant CCR-9875617.

REFERENCES

[1] O. Carvalho and G. Roucairol, ªOn Mutual Exclusion in
Computer Networks, Technical Correspondence,º Comm. ACM,
vol. 26, no. 2, pp. 146-147, Feb. 1983.

548 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 6, JUNE 2000



[2] Y.-I. Chang, ªA Simulation Study on Distributed Mutual Exclu-
sion,º J. Parallel and Distributed Computing, vol. 33, pp. 107-121,
1996.

[3] L. Lamport, ªTime, Clocks and the Ordering of Events in
Distributed Systems,º Comm. ACM, vol. 21, no. 7, pp. 558-565,
July 1978.

[4] M. Maekawa, ªA
�����
N
p

Algorithm for Mutual Exclusion in
Decentralized Systems,º ACM Trans. Computer Systems, vol. 3,
no. 2, pp. 145-159, May 1985.

[5] M. Naimi, M. Trehel, and A. Arnold, ªA log�n� Distributed Mutual
Exclusion Algorithm Based on Path Reversal,º J. Parallel and
Distributed Computing, vol. 34, pp. 1-13, 1996.

[6] K. Raymond, ªA Tree-Based Algorithm for Distributed Mutual
Exclusion,º ACM Trans. Computer Systems, vol. 7, no. 1, pp. 61-77,
Feb. 1989.

[7] G. Ricart and A. K. Agrawala, ªAn Optimal Algorithm for Mutual
Exclusion in Computer Networks,º Comm. ACM, vol. 24, no. 1,
pp. 9-17, Jan. 1981.

[8] B. Sanders, ªThe Information Structure of Distributed Mutual
Exclusion Algorithms,º ACM Trans. Computer Systems, vol. 5, no. 3,
pp. 284-299, Aug. 1987.

[9] M. Singhal, ªA Taxonomy of Distributed Mutual Exclusion,º J.
Parallel and Distributed Computing, vol. 18, no. 1, pp. 94-101, May
1993.

[10] M. Singhal, ªA Dynamic Information Structure Mutual Exclusion
Algorithm for Distributed Systems,º IEEE Trans. Parallel and
Distributed Systems, vol. 3, no. 1, pp. 121-125, Jan. 1992.

[11] M. Singhal, ªA Heuristically Aided Algorithm for Mutual
Exclusion in Distributed Systems,º IEEE Trans. Computers,
vol. 38, no. 5, pp. 651-662, May 1989.

[12] I. Suzuki and T. Kasami, ªA Distributed Mutual Exclusion
Algorithm,º ACM Trans. Computer Systems, vol. 3, no. 4, pp. 344-
349, Nov. 1985.

[13] Y. Yan, X. Zhang, and H. Yang, ªA Fast Token-Chasing Mutual
Exclusion Algorithm in Arbitrary Network Topologies,º J. Parallel
and Distributed Computing, vol. 35, pp. 156-172, 1996.

[14] J.-H. Yang and J. Anderson, ªTime Bounds for Mutual Exclusion
and Related Problems,º Proc. 26th Ann. ACM Symp. Theory of
Computing, pp. 224-233, May 1994.

[15] J.-H. Yang, J. Anderson, ªA Fast, Scalable Mutual Exclusion
Algorithm,º Distributed Computing vol. 9, no. 1, pp. 51-60, Aug.
1995.

Sandeep Lodha received the BTech degree in
computer science and engineering from the
Indian Institute of Technology, Delhi, India in
1997, and the MS degree in computer engineer-
ing from the University of Cincinnati in 2000.
Currently, he is working at Synopsys, Inc., in
Mountain View, California. His research inter-
ests include parallel and distributed systems,
physical design automation of VLSI systems,
high level synthesis, VLSI design, and CAD for
reconfigurable systems.

Ajay Kshemkalyani received the BTech degree
in computer science and engineering from the
Indian Institute of Technology, Bombay, in 1987,
and the PhD degree in computer and information
science from the Ohio State University in 1991.
From Fall 2000, he is an associate professor of
electrical engineering and computer science at
the University of Illinois at Chicago. He has also
worked at IBM, Research Triangle Park, North
Carolina, in computer networks and distributed
systems. His current research interests are in

distributed computing, computer networking, and operating systems. He
is a member of the ACM and a senior member of the IEEE.

LODHA AND KSHEMKALYANI: A FAIR DISTRIBUTED MUTUAL EXCLUSION ALGORITHM 549


