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Abstract— In many application of noise cancellation, the 

changes in signal characteristics could be quite fast. This 

requires the utilization of adaptive algorithms, which converge 

rapidly. Least Mean Squares (LMS) and Normalized Least 

Mean Squares (NLMS) adaptive filters have been used in a wide 

range of signal processing application because of its simplicity 

in computation and implementation. The Recursive Least 

Squares (RLS) algorithm has established itself as the 

"ultimate" adaptive filtering algorithm in the sense that it is the 

adaptive filter exhibiting the best convergence behavior. 

Unfortunately, practical implementations of the algorithm are 

often associated with high computational complexity and/or 

poor numerical properties. Recently adaptive filtering was 

presented, have a nice tradeoff between complexity and the 

convergence speed. This paper describes a new approach for 

noise cancellation in speech enhancement using the two new 

adaptive filtering algorithms named fast affine projection 

algorithm and fast Euclidean direction search algorithms for 

attenuating noise in speech signals. The simulation results 

demonstrate the good performance of the two new algorithms in 

attenuating the noise. 

 

Index Terms—Adaptive Filter, Least Mean Squares, 

Normalized Least Mean Squares, Recursive Least Squares, Fast 

Affine Projection, Fast Euclidean Direction Search, Noise 

Cancellation, and Speech Enhancement. 

 

I. INTRODUCTION 

It is well known that two of most frequently applied 
algorithms for noise cancellation [1] are normalized least 
mean squares (NLMS) [2]-[5] and recursive least           
squares (RLS) [6]-[10] algorithms. Considering these two    
algorithms, it is obvious that NLMS algorithm has                                      
the advantage of low computational complexity. On the 
contrary, the high computational complexity is the weakest 
point of RLS algorithm but it provides a fast adaptation rate. 
Thus, it is clear that the choice of the adaptive algorithm to be 
applied is always a tradeoff between computational 
complexity and fast convergence. The convergence property 
of the FAP and FEDS algorithms is superior to that of the 
usual LMS, NLMS, and affine projection (AP) algorithms 
and comparable to that of the RLS algorithm [11]-[14]. In 
these algorithms, one of the filter coefficients is updated one 
or more at each time instant, in order to fulfill a suitable 
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tradeoff between convergences rate and computational 
complexity [15]. The performance of the proposed 
algorithms is fully studied through the energy conservation 
[16], [17] analysis used in adaptive filters and the general 
expressions for the steady-state mean square error and 
transient performance analysis were derived in [15], [18].  
What we propose in this paper is the use of the FAP and 
FEDS algorithms in noise cancellation for speech 
enhancement. We compare the results with classical adaptive 
filter algorithm such as LMS, NLMS, AP and RLS 
algorithms. Simulation results show the good performance of 
the two algorithms in attenuating the noise. In the following 
we find also the optimum parameter which is used in these 
algorithms. 

We have organized our paper as follows: 
In the next section, the classical adaptive algorithms such 

as LMS, NLMS, AP and RLS algorithms will be reviewed. In 
the following the FAP algorithm in [15] and FEDS in  [18] 
will be briefly introduced. Section 4 presents the adaptive 
noise cancellation setup. We conclude the paper with 
comprehensive set of simulation results. 
Throughout the paper, the following notations are adopted: 
 
 

 

II. BACKGROUND ON LMS, NLMS, APA AND RLS 

ALGORITHMS 

In Fig. 1, we show the prototypical adaptive filter setup, 
where )n(x , )n(d

 and )n(e  are the input, the desired and 

the output error signals, respectively. The vector )n(h  is the 

1M  column vector of filter coefficient at time n , in such a 
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 T.   Transpose of a vector or a matrix 

   

  1
.


 
 Inverse of a scalar or a matrix 
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way that the output of signal, )n(y , is good estimate of the 

desired signal, )n(d . 

 
 
 
 
 

 
Fig.1. Prototypical adaptive filter setup 

 
It is well known that the filter vector update equation for 

the LMS algorithm is given by [9]: 
 

)n(e)n(x)n(h)1n(h  ,                                               (1) 

 
where  
 

T
)]1Mn(x,),1n(x),n(x[)n(x   ,                       (2) 

 
and   is the step-size that determines the convergence speed 

and steady-state mean-square error (MSE). Also, the output 
error signal, )(ne , is given by  

 

)n(x)n(
T

h)n(d)n(e  .                                                     (3) 

 
To increase the convergence speed of the LMS algorithm, 

the NLMS and AP algorithms was proposed which can be 
stated as [9] 

 (n)e(n)x
2

(n)x

μ
(n)h1)(nh                                       (4) 

 

(n)]hX(n)(n)d[
1

(n))
T

X(n)XI(ε(n)
T

Xμ

(n)h1)(nh





             
(5)

 
           

where  

T
1)]K(nx,1),(nx(n),x[X(n)                                 (6)  

and 

T
1)]Kd(n,1),d(n[d(n),(n)d                                   (7) 

 
The filter vector update equation in RLS algorithm is [14]: 
 

)n(e)n(x)n(
1

C)n(h)1n(h
 ,                                         (8) 

 
where )n(C  is the estimation of the autocorrelation matrix. 

This matrix is given by 
 





n

0i
)i(

T
x)i(xin)n(C  .                                                   (9) 

 
The   parameter is the forgetting factor and 10  . 

III. FAPA AND FEDS ALGORITHMS 

A.  Notation and problem description 

With reference to Figure 1, the error signal, )(ne , can be 

expressed as: 
 







1M

k
)kn(x)n(

k
h)n(d)n(e


.                                    (10)                      

 
Considering the samples ,n,,2Ln,1Ln   where 

we focus on the situation where ML  , Eq.7 can be written 
as: 
 

)n(h)n(X)n(d)n(e  ,                                                     (11)     

 
where 
 

)]n(1Mx),...,n(1x),n(x[)n(X   .                                 (12) 

 
 These columns are furthermore defined through  
 

T
)]1Ljn(x),...,1jn(x),jn(x[)n(jx  .           (13)  

 
 The vector of desired signal samples is given by 
 

T
)]1Ln(d),...,1n(d),n(d[)n(d  ,                              (14) 

 

and )n(e  is defined similarly. The adaptive filtering problem 

can now be formulated as the task of finding the update for   

)n(h , at each time instant n , such that the error is made as 

small as possible. 

Note that )n(h)n(X  can be written as 

 







1M

k
)n(kx)n(

k
h)n(h)n(X


,                                            (15) 

 
i.e. as a weighted sum of the columns of )n(X  with the 

elements of )n(h  being the weighting factors. A greedy 

algorithm for successively building (better) approximations 
to a given vector using linear combinations of vectors from a 
given set is the BMP algorithm. Inspired by this algorithm, 
conceived and developed in another context and with other 
motivations than those of this paper, we devise a procedure 

for recursively building an approximation to )n(d  using 

linear combinations of the columns of )n(X .  

B. Algorithm development 

    Assuming that we have an approximation to  )1n(d   at 

time 1n   given by )1n(h)1n(X  , the apriori 

approximation error at time n  is 
 

)1()()()(  nhnXndne .                                             (16) 

)n(e

)n(d

)n(y
)n(h  

)n(x
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 In building a better approximation through the update of 

only one coefficient in )1n(h  , we would write the new 

error  as 

 

))()(
)(

)()1()(()()(1 njun
update

nj
hnXnhnXndne





 
                                                                                         

(17)   
                                                                                                                                                                                                             

Note that )n(j


 is the index of the coefficient to be update 

in the zero'th P-iteration at time n , and ju is the M-vector 

with 1 in position j and 0 in all other positions. Intuitively, it 

would make sense to select )n(j


as the index corresponding 

to that column of )n(X  that is most similar to the apriori 

approximation error of Eq. 13. Thus, coefficient )(nj  has 

been identified as the one to update. We have identified two 
ways of selecting )(nj  : I) incrementing )(nj sequently by 

n  modulo M  and  II) selecting )(nj in such a way as to 

maximally reduce the residual of the corresponding update 
computation. The former selection in conjunction with Eq.14 
is the FEDS algorithm, whereas the latter in conjunction with 
Eq.14 results in the FAP algorithm. Thus, in the FAPA, 

)n(j


 is found as the index of the column of )n(X  onto 

which )n(e  
has its maximum projection, -or in other words:

 
 

 )n(jx 

  )n(jx),n(e  
maxarg
j

)n(j






,                                       (18) 

 
Where   .,.  denotes an inner product between the two 

vector arguments. Given the index )n(j


, the update of the 

corresponding filter coefficient is  
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Where )n(
update

)n(j
h



 is the value of the projection of )n(e  

onto the unit vector with direction given by )n()n(jx


, i.e.: 
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 .                                      (20) 

 
Thus, the zero'th P-iteration updates the filter vector as  

follows: 
 

)n(ju)n(
update

)n(j
h)1n(h)n(

)(
h



  .                              (21) 

 
To have control on the convergence speed and stability of 

the algorithms, we introduce the step-size in the algorithm as 
following: 

 

)n(ju)n(
update

)n(j
h)1n(h)n(

)(
h



 

                            

(22) 

 
Given this, the updated error expression of Eq.14 can be 

written as: 
 

)n(
)(

h)n(X)n(d)n(1e
 .                                              (23) 

 
If we want to do more than one P-iteration at time n , the 

procedure described above starting with finding the 

maximum projection of )n(e  
onto a column of )n(X

 can 

be repeated with )n(1e  taking the role of )n(e . This can be 

repeated as many times as desired, say P times, leading to a 
sequence of coefficient updates: 

 

)n(
)n(

1P
j

h,),n(
)n(

1
j

h),n(
)n(j

h






.                             (24) 

 
Note that if 2P   it is entirely possible that one particular 

coefficient is updated more than once at a given time n . The 
resulting filter coefficient vector after P iterations at time n  

is denoted )n(
)1P(

h
 , but where there is no risk of 

ambiguity, we shall refer to this filter vector simply as )n(h . 

      The procedure described above corresponds to applying 
the BMP algorithm to a dictionary of vectors given by the 
columns of )n(X  for the purpose of building an 

approximation to )n(d . The only difference is that we do this 

for each new time instant n while keeping the results of the 
BMP from the previous time instant 1n  . It is interesting to 
note that a slightly different, but equivalent, procedure to the 
one described above would result if we tried to find the least 
squares solution to the over determined set of equations 
(remember M  L  ): 
 

)n(d)n(h)n(X                                                                    (25) 

  
Subject to the constrain that, given an initial solution, say 

)n(h , we are allowed to adjust only one element of this 

vector. 
 From the above, it is evident that the key computations of 

our adaptive filter algorithm are those of Eqs.15 and 17. 
Making use of Eqs. 13 and 12, we find 
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and 
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 )n()n(jx 

1
)n(

update
)n(jh









.            

(27)  
 

These are the pertinent equations if one coefficient update, 
i.e. one P-iteration is performed for each new signal sample. 
Note that having computed the terms of Eq. 23, very little 
additional work is involved in finding the update of Eq. 24. It 
is instructive to explicitly state these equations also for 

iteration no. 0  i   at time n : 
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and  
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(29) 
 

From these equations it is evident that some terms depend 
only on n , i.e. they need to be computed once for each  n  
and can subsequently be used unchanged for all P-iterations 
at time n . Other terms depend on both n and the P-iteration 

index and must consequently be updated for each P-iteration. 
Since we must associate the update depending only on n  
with iteration no. 0, this is the computationally most 
expensive update. 

From the above it is evident that the inner products 

  )n(jx),n(d  and   )n(jx),n(kx  play prominent roles in 

the computations involved in the algorithm. As formulated 
up to this point, obvious recursions for these inner products 
are 

 

)()()()(

)1(),1()(),(

LjnxLndjnxnd

njxnd njxnd 




,                       (30)  

 
and 
 

)()()()(

)1(),1()(),(

LjnxLknxjnxknx

njxnkx njxnkx 




          

(31)  
 

We close this section by pointing out that efficient 
implementations of FEDS/FAP are available. For 
exponentially weighted and sliding window versions, it is 
known that implementations having a multiplicative 
complexity given by MP)5(   can be devised [15]. If we 

use a block exponentially weighted version [19], 
implementations with a multiplicative complexity of 

MP)3(   are possible. 

  

IV. ADAPTIVE NOISE CANCELLATION 

Fig. 2 shows the adaptive noise cancellation setup. In this 
application, the corrupted signal passes through a filter that 
tends to suppress the noise while leaving the signal 
unchanged. This process is an adaptive process, which means 
it cannot require a priori knowledge of signal or noise 
characteristics.  

Adaptive noise cancellation algorithms utilize two or more 
microphones (sensor). One microphone is used to measure 
the speech + noise signal while the other is used to measure 
the noise signal alone. The technique adaptively adjusts a set 
of filter coefficients so as to remove the noise from the noisy 
signal. This technique, however, requires that the noise 
component in the corrupted signal and the noise in the 
reference channel have high coherence. Unfortunately this is 
a limiting factor, as the microphones need to be separated in 
order to prevent the speech being included in the noise 
reference and thus being removed. With large separations the 
coherence of the noise is limited and this limits the 
effectiveness of this technique. In summary, to realize the 
adaptive noise cancellation, we use two inputs and an 
adaptive filter. One input is the signal corrupted by noise 

(Primary Input, which can be expressed as )n(
0

n)n(s  ). 

The other input contains noise related in some way to that in 
the main input but does not contain anything related to the 

signal (Noise Reference Input, expressed as )n(
1

n ). The 

noise reference input pass through the adaptive filter and 
output )n(y  is produced as close a replica as possible of 

)n(
0

n . The filter readjusts itself continuously to minimize 

the error between  )n(
0

n  and )n(y  during this process. 

Then the output )n(y  is subtracted from the primary input to 

produce the system output y
0

nse  , which is the 

denoised signal. Assume that s ,
0

n , 
1

n  and y  are 

statistically stationary and have zero means. Suppose that s  

is uncorrelated with 
0

n  and 
1

n , but 
1

n  is correlated with 

0
n . We can get the following equation of expectations: 
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]
2

)y
0

n[(E]
2

s[E]
2

e[E                                          (32) 

  

When the filter is adjusted so that ]
2

e[E  is minimized, 

]
2

)y
0

n[(E  is also minimized. So the system output can 

serve as the error signal for the adaptive filter. The adaptive 
noise cancellation configuration is shown in Fig. 2. In this 
setup, we model the signal path from the noise source to 

primary sensor as an unknown FIR channel 
e

W . Applying 

the adaptive filter to reference noise at reference sensor, we 
then employ an adaptive algorithm to train the adaptive filter 
to match or estimate the characteristics of unknown channel 

e
W . 

If the estimated characteristics of unknown channel     have 
negligible differences compared to the actual characteristics, 
we should be able to successfully cancel out the 
noisecomponent in corrupted signal to obtain the desired 
signal. Notice that both of the noise signals for this 
configuration need to be uncorrelated to the signal )n(s .   In 

addition, the noise sources must be correlated to each other in 
some way, preferably equal, to get the best results. 

Do to the nature of the error signal, the error signal will 
never become zero. The error signal should converge to the 
signal )n(s , but not converge to the exact signal. In other 

words, the difference between the signal )n(s  and the error 

signal )n(e  will always be greater than zero. The only option 

is to minimize the difference between those two signals. 
 
 

 
 

 

 

 

 

 

 
Fig. 2. Adaptive noise cancellation setup 

 

V. EXPERIMENTAL RESULTS 

In this section we evaluate the performance of each 
algorithm in noise cancellation setup as shown in Fig. 2. The 
original, primary, and reference signals are from the 
reference [20]. The original speech is corrupted with office 
noise. The signal to noise ratio (SNR) of the primary signal is 
-10.2180 dB. This signal is then processed as in Fig. 2. Fig. 3 
shows the signals. 

The order of the filter was set to  M=8. The parameter   

was set to 0.002 in the LMS and 0.005 in the NLMS and AP 
algorithms. Fig. 4 shows the filtered output signal and the 
mean squared error (learning curve) in the LMS algorithm. 
The SNR of the filtered signal is calculated for this 

experiment. The SNR improvement (SNRI) is defined as the 
final SNR minus the original SNR. The SNRI in the LMS 
algorithm is 13.5905. Fig. 5, 6 shows the results for NLMS 
and AP algorithms. As we can see the convergence speed in 
the NLMS and AP algorithms is faster than LMS algorithm. 
This fact can be seen in both filtered output and learning 
curve. For the NLMS and AP algorithms the SNRI are 
respectively 16.8679, 20.0307.  
In Figs. 7-8, we presented the results for FEDS and            FAP 
algorithms. The parameters was set to 

002.0,8P,25L  . 

The results show that the FEDS and FAP has faster 
convergence speed than LMS, NLMS, AP algorithms and 
comparable with the RLS algorithm. The SNRI in these 
algorithms is 22.2623 and 24.9078. 

Fig. 9 shows the results for RLS algorithm. In this 
algorithm, the parameter   was set to 0.99. The results show 

that the RLS algorithm has faster convergence speed 
compared with LMS, NLMS and AP algorithms. The SNRI 
in this algorithm is 29.7355.  Table 2 summarizes the SNRI 
results. 

Figs. 10-15 show the filter coefficients evolutions of the, 
LMS, NLMS, AP, FEDS, FAP and RLS algorithms. Again, 
the results show that the performance of the FEDS and FAP 
is better than the LMS, NLMS and AP algorithms and 
comparable with the RLS algorithm. 

In order to obtain the optimum order the filter in FEDS and 
FAP algorithms, we changed the order of filter from 1 to 300 
and then calculated SNRI for each order of filter. Figs. 16-17. 
is SNRI versus order of filter. In this simulation the 
parameters was set to 002.0,1,25  PL  This figure 

shows that the FEDS and FAP has the maximum SNRI in 
8M  . Figs. 18-19 shows the SNRI versus L . The 

parameters was set to 002.0,1,8  PM
 This figure 

shoes that the FEDS and FAP has the maximum SNRI for 
25L  . Figs. 20-21 and 22-23 show the SNRI versus the  , 

and P respectively.  
 

TABLE II. SNR IMPROVEMENT IN DB 

Algorithm   SNRI(db) 

   
LMS    13.5905 

   
NLMS  16.8679 

   
APA  20.0307 

   
FEDS  22.2623 

   
FAPA  24.9078 

   
RLS  29.7355 

   
   

   

 

VI. CONCLUSION  

In this paper we have applied FEDS and FAP algorithms 
on adaptive noise cancellation setup. The simulation results 
were compared with the classical adaptive filters, such as 
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Adaptive 
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LMS, NLMS, AP and RLS algorithms, for attenuating noise 
in speech signals. In each algorithm the time evolution of 
filter taps, mean square error, and the output of filter were 
presented. The simulation results show that the convergence 
rate of these algorithms is comparable with the RLS 
algorithm. Also, the optimum values of the FEDS and FAP 
algorithms were calculated through experiments. In these 
algorithms, the number of iterations to be performed at each 
new sample time is a user selected parameter giving rise to 
attractive and explicit tradeoffs between 
convergence/tracking properties and computational 
complexity. 
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Fig. 3. Original, primary and reference signals. 
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Fig. 4. Filtered output signal and MSE curve of the LMS algorithm. 

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

-0.5

0

0.5

output of filtered

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1

2

3
Mean Squared Error

 
Fig. 5. Filtered output signal and MSE curve of the  NLMS algorithm. 
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Fig. 6. Filtered output signal and MSE curve of the     

 AP algorithm. 
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Fig. 7. Filtered output signal and MSE curve of the     

 FEDS algorithm. 
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Fig. 8. Filtered output signal and MSE curve of the     

 FAP algorithm. 
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Fig. 9. Filtered output signal and MSE curve of the     RLS algorithm. 
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Fig. 10. Time evolution of filter taps in ANC through LMS algorithm. 
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Fig. 11. Time evolution of filter taps in ANC through NLMS algorithm. 
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Fig. 12. Time evolution of filter taps in ANC through AP algorithm. 
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Fig. 13. Time evolution of filter taps in ANC through FEDS algorithm. 
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Fig. 14. Time evolution of filter taps in ANC through FAP algorithm. 
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Fig. 15. Time evolution of filter taps in ANC through RLS algorithm. 
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Fig. 16. SNRI versus M for FEDS algorithm. 
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Fig. 17. SNRI versus M for FAP algorithm. 
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Fig. 18.  SNRI versus L for FEDS algorithm. 
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   Fig. 19.  SNRI versus L for FAP algorithm 
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                Fig. 20. SNRI versus µ for FEDS algorithm. 
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Fig. 21. SNRI versus µ for FAP algorithm. 

0 50 100 150 200 250 300
13

14

15

16

17

18

19

20

21

22

P

S
N

R
im

p
ro

v
e
m

e
n
t(

d
b
)

FEDS Algorithm , =.002,M=8,L=25,P=1

 

 

SNRI versus P

                
Fig.22. SNRI versus P for FEDS algorithm. 
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Fig.23. SNRI versus P for FAP algorithm. 
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