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Abstract

We describe a new family of topic-ranking algorithms for multi-labeled documents. The moti-

vation for the algorithms stem from recent advances in online learning algorithms. The algorithms

are simple to implement and are also time and memory efficient. We provide a unified analysis of

the family of algorithms in the mistake bound model. We then discuss experiments with the pro-

posed family of topic-ranking algorithms on the Reuters-21578 corpus and the new corpus released

by Reuters in 2000. On both corpora, the algorithms we present achieve state-of-the-art results and

outperforms topic-ranking adaptations of Rocchio’s algorithm and of the Perceptron algorithm.

1. Introduction

The focus of this paper is the problem of topic ranking for text documents. We use the Reuters1

corpus release 2000 (often referred to as RCV1) as our running example. In this corpus, there

are about a hundred different topic codes. Each document in the corpus is tagged with a set of

topics which are relevant to its content. For instance, a document from late August 1996 discusses

a bill by Bill Clinton to increase the minimum wage by $0.90. This document is associated with

9 topics, such as labour, economics, unemployment, and retail sales. This example shows

that often there is a semantic overlap between the topics that are marked as relevant. Given a feed

of documents, such as the Reuters newswire, the task of topic ranking is concerned with ordering

the topics according to their relevance for each document independently. We cast topic-ranking

as a supervised learning problem. That is, we receive a training set of documents where each

document is provided with a set of relevant topics. Given the set of labeled documents, the goal of

the learning algorithm is to find a topic-ranking function that outputs a ranking of the topics for an

input document. The rankings of the topics should reflect their relevance according to the content

of the document.

In the machine learning community this setting is often referred to as a multi-label classification

problem. The motivation of most if not all of the machine learning algorithms for this problem stem

from a decision theoretic view. Namely, the output of the algorithms is a predicted set of relevant

topics and the quality of the predictions are measured by how successful we are in making a separate

decision on whether each topic is relevant or non-relevant. In this paper we attempt to combine

1. See http://about.reuters.com/researchandstandards/corpus for information.
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techniques from statistical learning theory with the more practical goals of information retrieval

(IR) tasks. We do so by adapting and generalizing techniques from online prediction algorithms

to the particular task of topic ranking. Our starting point is the Perceptron algorithm (Rosenblatt,

1958), which was originally designed for binary classification problems.

Despite (or because of) its age and simplicity, the Perceptron algorithm and its variants have

proved to be surprisingly effective in a broad range of applications in machine learning and infor-

mation retrieval (see for instance (Freund and Schapire, 1998, Ng et al., 1997) and the references

therein). The original Perceptron algorithm was designed for binary classification problems. Al-

though generalizations of the Perceptron algorithm to non-binary classification problems were out-

lined in Duda and Hart’s book (Duda and Hart, 1973), it has been only recently that provably-correct

extensions of the Perceptron algorithm to non-binary decision problems have been suggested (Cram-

mer and Singer, 2001b,a). In this paper, we build on recent work and devise an efficient generaliza-

tion of the Perceptron algorithm to the task of topic ranking given multiclass multi-label feedback.

While this work borrows ideas from recent work on multiclass problems (Crammer and Singer,

2001b), the task of topic ranking is more involved and requires a somewhat different proof tech-

nique. Since all algorithms in the family are generalizations of the Perceptron algorithm to topic

ranking using multiclass multi-label feedback, we refer to the various variants as the MMP algo-

rithm.

A few learning algorithms for multi-labeled data have been devised in the machine learning

community. Two notable examples are two multi-label versions of AdaBoost called AdaBoost.MH

and AdaBoost.MR (Schapire and Singer, 1999) and a multi-label generalization of Vapnik’s Support

Vector Machines by Elisseeff and Weston (2001). These two multi-label algorithms take the same

general approach by reducing a multi-label problem to multiple binary problems and comparing all

pairs of labels (topics in our setting). Thus, they require time and space that scale quadratically with

the total number of topics per example. The two papers above suggested computational shortcuts

to overcome the quadratic complexity. These shortcuts, however, imposed additional technical dif-

ficulties. Our starting point is similar as we use an implicit reduction into pairs. Yet, using a simple

pre-computation, as we describe in the sequel, the space complexity of MMP is linear in the number

of topics and sub-quadratic in time. In addition, MMP can be combined with almost any general

ranking-loss so long as the loss is bounded. Different losses may reflect different requirements

from the topic-ranking rule. Thus the ability to incorporate losses into the learning algorithm adds

flexibility that could help in achieving high accuracy with respect to losses that are less common

in the machine learning community such as the average precision that is often used in information

retrieval tasks.

The paper is organized as follows. We start with a formal description of the problem in Sec-

tion 2. We then describe the family of topic-ranking algorithms called MMP. The algorithms in

the family differ in the topic-ranking loss they attempt to decrease. We then describe experiments

with two multi-labeled corpora: the Reuters-21578 corpus and a newer and much larger release

by Reuters (release 2000). The results obtained on the new release of Reuters are among the first

published results for this corpus. We compare the results achieved by MMP with an adaptation of

the Perceptron algorithm to multi-label settings and also with a multi-label version of Rocchio’s

algorithm. The results obtained in the experiments indicate that MMP offers a viable alternative to

existing algorithms that can be used with the largest text corpora that are currently available.
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2. Problem Setting

As discussed above, the text application that the paper is concerned with is topic-ranking of docu-

ments where each document can be associated with multiple relevant topics. In this problem we are

given access to a stream of documents. Each document is associated with zero or more topics from a

predefined set of topics. We denote the set of possible topics by Y and the number of different topics

by k (k = |Y |). In the new distribution of the Reuters corpus (which we refer to as Reuters-2000),

there are 103 different topics2, while Reuters-21578 consists of 91 different topics. Since there are

semantic overlaps between the topics, a document is typically associated with more than one topic.

More formally, a document is labeled with a set y⊂ Y of relevant topics. In the Reuters-2000 cor-

pus, the average size of y is 3.2 while in Reuters-21578 the average size of y is 1.24. We say that a

topic r, also referred to in the machine learning community as a class or category, is relevant for a

given document if r is in the set of relevant topics, r ∈ y.

There are numerous different information filtering and routing tasks that are of practical use for

multi-label problems. The focus of this paper is the design, analysis, and implementation of a family

of topic-ranking algorithms. That is, given a document, the algorithms we consider return a list of

topics ranked according to their relevance. However, the feedback for each document is the set

y. Thus, the topics of each document in the training corpus are not ranked but rather designated as

relevant or non-relevant. Put another way, while the topic-ranking algorithm outputs a total ordering

of the topics, the feedback can be viewed as a coarse partial ordering into two sets.

Each document in our study is represented using the vector space model (Salton, 1991) as a

vector in R
n. We thus denote a document by its vector representation x̄ ∈ R

n. All the topic-ranking

algorithms we discuss in this paper use the same mechanism: each algorithm maintains a set of

k prototypes, w̄1, w̄2, . . . , w̄k. Analogous to the representation of documents, each prototype is a

vector, w̄r ∈ R
n. The specific vector-space representation we used is based on the pivoted length

normalization of Singhal et al. (1996) whose description is deferred to Section 9.2. The family

of algorithms we present constructs the prototype vectors from examples, i.e., from a corpus S

containing T documents, each of which is associated with a set of relevant topics,

S =
{

(x̄t ,yt) | 1≤ t ≤ T, x̄t ∈ R
n, yt ⊂ Y

}

.

The set of prototypes induces a ranking on the topics according to their similarity to the vector

representation of the document. That is, given a document x̄ the inner-products w̄1 · x̄, w̄2 · x̄, . . . , w̄k · x̄
induce an ordering according to the relevance level of each topic. We say that topic r is ranked higher

than topic s if w̄r · x̄ > w̄s · x̄. Given a feedback, i.e. the set of relevant topics y of a document x̄,

we say that the ranking induced by the prototypes is perfect if all the relevant topics are ranked

higher than the non-relevant topics. More formally, in a perfect ranking for any pair of topics r ∈ y

and s 6∈ y (s ∈ Y −y) the relevance score induced by w̄r is higher than that the one induced by w̄s:

w̄r · x̄ > w̄s · x̄. We measure the quality of a perfect topic-ranking using the following notion of

margin3 We define the margin to be the size of the gap between the lowest score among the relevant

topics to the highest score among the non-relevant topics,

min
r∈y
{w̄r · x̄}−max

s 6∈y
{w̄s · x̄} . (1)

2. The topics in this corpus are organized in a hierarchical structure. In this paper we do not exploit this hierarchical

structure and treat all topics in the same manner.

3. The definition of margin for topic-ranking is a generalization of the margin definition for multiclass problems with

single-labeled data (Crammer and Singer, 2001b).
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Note that the margin of a document x̄ depends both on the set of relevant topics y and the prototypes

w̄1, . . . , w̄k. Clearly, if the topic-ranking of a document is perfect then the document’s margin is

positive. The margin can also be computed when the prototypes do not induce a perfect ranking.

In this case the margin is negative. An illustration of topic-ranking margins is given in Fig. 1. The

illustration shows the margin in case of a perfect ranking (left) and an imperfect one (right). In both

cases there are 9 different topics. The relevant topics in the illustration are marked with circles and

the non-relevant topics with squares. The values of the margins are designated by the lengths of the

arrows where a positive margin is denoted by an arrow pointing down and a negative margin by an

arrow pointing up. The notion of margin is rather implicit in the algorithms we discuss in the paper.

However, it plays an important role in the formal analysis of the algorithms.

The family of algorithms we discuss in the paper are online algorithms where the amount by

which we update each prototype is proportional to the instantaneous loss suffered on each round.

This loss reflects how the prototype-induced ranking is far from being perfect. Rather than dis-

cussing specific losses, we prescribe a family of algorithms that can be employed with general

bounded losses that attain a value of zero when the predicted ranking is perfect. Formally, give

an instance x̄ and a set of prototypes w̄1, . . . , w̄k we define rank(x̄,r) to be the ranking of the topic

indexed by r as induced by the inner-products x̄ · w̄1, . . . , x̄ · w̄k. That is, we set rank(x̄,r) to i if

|{s : x̄ · w̄s > x̄ · w̄r}| = i. (We break ties arbitrarily.) Put another way, the ranking of each topic is

its index in the list of topics sorted in descending order according to the inner-products between the

prototypes and the vector representation of a document.

In our setting a ranking-loss for multilabled data is a function of the form,

loss : 2Y ×π|Y |→ R+ ,

where πk denotes the set of all permutations over the k topics. We denote by

R = (rank(x̄,1), . . . ,rank(x̄,k))

the topic-ranking obtained by applying w̄1, . . . , w̄k to x̄. Using the above notation the loss that we

suffer is loss(y,R ). Note that the ranking-loss functions are asymmetric due to the different role

and form of the predicted ranking and the feedback. An example of such a loss is the ranking-loss

employed by RankBoost (Freund et al., 1998). The ranking-loss employed by RankBoost counts

the number of wrongly ordered pairs and, as we later see, it is one of the losses that we analyze and

experiment with. We would like to note that our framework is somewhat more general than the one

employed in (Freund et al., 1998), since the family of online algorithm we discuss subsequently can

be used with other bounded losses.

3. Online Learning of Topic Ranking

The learning paradigm and the analysis that we use in this paper belongs to the mistake bound

model for online learning. The algorithms we consider work in rounds. On round t an online

learning algorithm receives a document x̄t . Given the document x̄t , the learning algorithm outputs a

ranking R t = (rank(x̄t ,1), . . . ,rank(x̄t ,k)) which is induced by the inner-products x̄t · w̄t
1, . . . , x̄

t · w̄t
k.

The algorithm then receives the (correct) set of relevant topics yt . Given the feedback yt and the

predicted topic-ranking R t , the algorithm computes the associated loss ℓt = loss(yt ,R t). If ℓt is

zero, the algorithm does not modify the set of prototypes it employs. Otherwise, it updates its topic-

ranking rule by modifying the set of prototypes w̄t
1, . . . , w̄

t
k in proportion to ℓt . As we discuss in
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Figure 1: Illustration of the notion of the margin for a perfect ranking (left) and an imperfect rank-

ing.

Section 5, the goal of the online topic-ranking algorithm is to suffer cumulative loss (∑t ℓ
t) that is

competitive with a zero cumulative loss. (A zero cumulative loss is achieved by a set of prototypes

w̄∗1, . . . , w̄
∗
k whose predicted rankings are always perfect.)

The family of algorithms we describe (and its corresponding analysis) employs a refined notion

of mistake by examining all pairs of topics (labels). Whenever ℓt = loss(yt ,R t) > 0 and the pre-

dicted ranking is not perfect, there must be at least one pair of topics (r,s) whose ordering according

to the predicted ranking R t disagrees with the feedback yt , i.e., topic r is ranked not-above topic s

(x̄t · w̄t
r ≤ x̄t · w̄t

s) but r is one of the relevant topics while s is not (r ∈ y , s 6∈ y). We therefore define

the error-set of (x̄,y) as the set of all pairs whose predicted ranking disagrees with the feedback.

The error-set is formally defined as,

Et = {(r,s) ∈ y× (Y − y) : w̄t
r · x̄

t ≤ w̄t
s · x̄

t} . (2)

Many online algorithms update their prediction rule only on rounds on which they make a

prediction error. Such algorithms are called conservative. We now give a definition that extends

the notion of conservativeness to multi-label settings. This definition generalizes the definition

from (Crammer and Singer, 2001b) used for multiclass problems with a uni-label feedback.

Definition 1 (Ultraconservative) An online learning algorithm for topic (label) ranking from multi-

label feedback that employs a set of prototypes w̄1, . . . , w̄k is ultraconservative if on round t it modi-

fies only the prototypes corresponding to pairs from the error-set Et .

When the predicted ranking is perfect, the error-set is empty and therefore all the prototypes are left

intact. Note also that the above definition does not require that all the prototypes from the error-set

to be modified. Indeed, we discuss below one possible update scheme that modifies only a single

pair from Et .

4. A Family of Topic-Ranking Algorithms

To remind the reader, MMP is a descendant of the Perceptron algorithm and as such it is an online

algorithm: It gets an example, outputs a ranking, and updates the hypothesis it maintains – the set of
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Initialize: w̄1
1 = w̄1

2 = · · ·= w̄1
k = 0

Loop: For t = 1,2, . . . ,T

• Get a new instance x̄t ∈ R
n.

• Compute w̄t
1 · x̄

t , . . . , w̄t
k · x̄

t .

• Set predicted ranking: R t = (rank(x̄t ,1), . . . ,rank(x̄t ,k))
• Get feedback: yt ⊂ Y .

• Compute loss: ℓt = loss(yt ,R t).
• If ℓt > 0 update the prototypes (otherwise ∀p w̄t+1

p = w̄t
p):

1. Set Et = {(r,s) | r ∈ yt , s /∈ yt , w̄t
r · x̄

t ≤ w̄t
s · x̄

t}

2. Form a set of parameters αt
r,s that satisfies the following:

(a) αt
r,s ≥ 0.

(b) If (r,s) /∈ Et then αt
r,s = 0.

(c) ∑r∈y ∑s/∈y αt
r,s = 1.

3. Set for p = 1,2, . . . ,k:

τt
p =



















ℓt ∑
s/∈y

αt
p,s p ∈ yt

−ℓt ∑
r∈y

αt
r,p p ∈ Y − yt

4. For p = 1,2, . . . ,k update:

w̄t+1
p ← w̄t

p + τt
p x̄t

Output : H(x̄) = Topic ranking function of Y using {w̄T+1
p · x̄}.

Figure 2: Pseudocode of the MMP algorithm for topic ranking.

prototypes w̄1, . . . , w̄k. Online algorithms become especially handy when the training corpus is very

large, since they require minimal amounts of memory. In the case of batch training (i.e. when the

training corpus is provided in advance and not example by example) we need to augment the online

algorithm with a wrapper. Several approaches have been proposed for adapting online algorithms

for batch settings. A detailed discussion is given in (Freund and Schapire, 1998). The approach we

take in this paper is the simplest to implement. We run the algorithm in an online fashion on the

provided training corpus and use the final set of topic prototypes, which is obtained after a single

pass through the data. This set is used to rank the topics of new documents. We do however describe

the results of experiments that cycle through the data multiple times. More sophisticated prediction

schemes such as voting and averaging with inner-product kernels (Freund and Schapire, 1998) were

not tested in this study due to the vast amounts of memory that such schemes would require for

large corpora such as RCV1. In the following description, we omit the index t of the document and

its set of relevant topics and denote them as x̄ and y, respectively.

The core of MMP is a parametric family of possible updates of the prototypes it maintains.

Rather than describing a few possible variants of update schemes, we first describe the parametric

form of the update in general by casting a rather flexible set of constraints. We later discuss possible
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realizations that satisfy these constraints and report experiments with a different update schemes

for the prototypes. We also do not need to specify a particular topic-ranking loss for the algorithm.

As we show in our analysis, it suffices to assume that the loss suffered by an imperfect ranking is

bounded. For concreteness and simplicity, let us assume for now that we suffer a unit loss on each

document for which the predicted ranking is not perfect (and otherwise the loss is zero).

The error-set defined in Equation (2) plays a major role in updating the prototypes. Generalizing

the Perceptron’s update which moves the (single) separating hyperplane toward the example x̄, we

would like in our setting to move each prototype representing a relevant topic toward x̄ and, anal-

ogously, each prototype representing a non-relevant topic away from x̄. However, there might be

quite a few topics which are ranked correctly. These topics include all of the relevant topics that are

ranked at the top of the list of topics (above all of the non-relevant topics) and the non-relevant top-

ics ranked at the bottom of the list (below any relevant topic). By definition, the indices of wrongly

ordered pairs of topics constitute the error-set. For each pair (r,s) of relevant and non-relevant topics

in the error-set, we assign a weight denoted αr,s. We set the weights αr,s for topic-pairs not in E

to zero. We impose two, rather general, constraints on αr,s. The first requires that each αr,s is non-

negative. The second constraint confines the total sum of αr,s to be 1. Given a specific set of values

that satisfy the constraints, we now define the amount by which the prototype of each relevant topic

in E is moved toward x̄ and analogously the amount by which each non-relevant topic in E is moved

away from x̄. For a relevant topic indexed r (r ∈ y) we define τr to be ∑s 6∈y αr,s and add to w̄r the

input instance x̄ scaled by τr: w̄r← w̄r + τrx̄. Therefore, relevant topics whose predicted rank is low

are likely to be moved more aggressively toward x̄ compared to relevant topics whose predicted rank

is relatively high for which there are only a few non-relevant topics listed above them. Similarly,

the non-relevant topics are pushed away from x̄ in different proportions, depending on how high

they are (wrongly) ranked. The general form of this update increases the value of inner-products

between x̄ and each of the prototypes in the subset of relevant topics in E and similarly decreases

the inner-product values between x̄ and the non-relevant topics in E .

To further illustrate the update, let us a look at a specific realization of the values αr,s which

satisfy the constraints. Concretely, let us assume that all the values are equal. We can therefore

assume that αr,s = 1 for (r,s) ∈ E and at the end scale all the values of τr by a constant. In this case,

the amount by which we move each prototype directly depends on its location in the ranked list.

The value τr of a relevant topic is equal to the number of non-relevant topics ranked above it and

the value −τs of a non-relevant topic s is equal to the number of relevant topics ranked below topic

s. Finally, the normalization of the values αr,s ensures that total amount by which we change to the

prototypes in terms of x̄ is fixed and does not differ between examples.

It remains to describe the more general case when the loss on each round is not constant and

depends on the quality of the predicted ranking. The modification for general bounded losses is

rather simple and intuitive. We multiply each of the values τr and τs by the instantaneous loss ℓt .

Therefore, the total amount by which we modify the prototypes depends on how good (or bad) the

predicted ranking is. We modify the prototypes more aggressively on rounds on which the predicted

rankings are rather poor. The pseudo code describing the family of topic algorithms for bounded

ranking-losses is given in Fig. 2. We next discuss the formal properties of the algorithm.

1031



CRAMMER AND SINGER

5. Analysis

In Section 7 we describe a few possible ranking-losses we experimented with. To analyze the

algorithm in the mistake bound model it suffices however to assume that the loss suffered on each

round with imperfect predicted ranking is bounded above by a constant A. We later provide a more

refined analysis for one of the losses we experimented with. The following theorem states that

the cumulative ranking loss MMP suffers is bounded. Concretely, it is inversely proportional to

the generalized notion of margin as given in Equation (1) and proportional to radius of the sphere

enclosing all the examples. This type of result is common to Perceptron-like algorithms and implies

that large ranking-margin yields good performance. We would like to note in passing that using the

technique of Helmbold and Warmuth (1995) it is possible to derive a generalization bound on the

performance of the algorithms from the online mistake bound below.

Theorem 2 (Mistake bound) Let (x̄1,y1) . . . (x̄T ,yT ) be an input sequence for MMP where x̄t ∈ R
n

and yt ∈ {1 . . .k}. Denote by B = maxt ‖x̄
t‖. Assume that there exists a set of prototypes w̄∗1, . . . , w̄

∗
k

of a unit norm (∑r (w̄∗r )
2 = 1) whose predicted rankings on entire sequence are all perfect with a

margin,

γ= min
t

{

min
r∈yt
{w̄∗r · x̄

t}− max
s∈Y−yt

{w̄∗s · x̄
t}

}

> 0 .

If MMP is run with a loss function such that for all t, ℓt ≤ A then its cumulative loss is bounded by,

T

∑
t=1

ℓt ≤ 2A
B2

γ2
.

Proof Let us fix an example (x̄t ,yt) which the algorithm received on round t. By construction

we have that w̄t+1
p = w̄t

p + τt
px̄t for p = 1, . . . ,k. We compute the mistake bound of the algorithm

by bounding the term ∑p ‖w̄
T+1
p ‖2 from above and below. We first compute the lower bound by

bounding the quantity ∑p w̄t+1
p · w̄∗p. If no error occurred on the tth round then w̄t+1

p = w̄t
p for p =

1, . . . ,k, and therefore we have that ∑p w̄t+1
p · w̄∗p = ∑p w̄t

p · w̄
∗
p. We can therefore assume that MMP

ranking was imperfect and thus the set Et = {(r,s) ∈ yt × (Y − yt) : w̄t
r · x̄

t ≤ w̄t
s · x̄

t} is not empty.

By definition we also have that,

∑
p

w̄t+1
p · w̄

∗
p = ∑

p

w̄t
p · w̄

∗
p +∑

p

τt
p

(

w̄∗p · x̄
t
)

. (3)

We further bound the right term of Equation (3) from below. We substitute the values of the coeffi-

cients τt
p using the values of τt

r and τt
s as defined in Fig. 2 and get,

∑
p

τt
p

(

w̄∗p · x̄
t
)

= ∑
r∈yt

[

ℓt ∑
s/∈yt

αt
r,s

]

(

w̄∗r · x̄
t
)

+ ∑
s∈Y−yt

[

−ℓt ∑
r∈y

αt
r,s

]

(

w̄∗s · x̄
t
)

= ℓt ∑
r∈yt

∑
s/∈yt

αt
r,s

(

w̄∗r · x̄
t
)

− ℓt ∑
r∈y

∑
s∈Y −yt

αt
r,s

(

w̄∗s · x̄
t
)

= ℓt ∑
r∈yt

∑
s∈Y −yt

αt
r,s

(

w̄∗r · x̄
t − w̄∗s · x̄

t
)

. (4)
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Given the assumption that w̄∗r · x̄
t − w̄∗s · x̄

t ≥ γ for r ∈ yt and s ∈ Y − yt we get,

∑
p

τt
p

(

w̄∗p · x̄
t
)

≥ ℓt ∑
r∈yt

∑
s∈Y −yt

αt
r,sγ

= γℓt ∑
r∈yt

∑
s∈Y −yt

αt
r,s .

Using the third constraint imposed by MMP (∑r,s αt
r,s = 1) we finally get,

∑
p

τt
p

(

w̄∗p · x̄
t
)

≥ γℓt . (5)

Unfolding the sum over t of Equation (3) using Equation (5) we have,

∑
p

w̄T+1
p · w̄∗p ≥ γ

T

∑
t=1

ℓt .

Applying Cauchy-Schwartz inequality and using the assumption ∑r (w̄
∗
r )

2 = 1 we get the desired

lower bound,

∑
p

‖w̄T+1
p ‖2 ≥ γ2

(

T

∑
t=1

ℓt

)2

. (6)

Next, we bound the term ∑p ‖w̄
T+1
p ‖2 from above. As before, assume that the topics of example

(x̄t ,yt) were ordered using the set of prototypes (w̄t
1, . . . , w̄

t
k) and denote by (w̄t+1

1 , . . . , w̄t+1
k ) the rule

after round t. Again, if the predicted ranking is perfect then w̄t+1
p = w̄t

p for p = 1, . . . ,k. We thus

assume again that the predicted ranking is imperfect. We now rewrite the term ∑p ‖w̄
t+1
p ‖

2 in a more

explicit form.

∑
p

‖w̄t+1
p ‖

2 = ∑
p

‖w̄t
p + τt

px̄t‖2

= ∑
p

‖w̄t
p‖

2 + 2∑
p

τt
p

(

w̄t
p · x̄

t
)

+∑
p

(

τt
p

)2
‖x̄t‖2 (7)

We first bound the middle term of Equation (7) from above. Using the same derivation as of Equa-

tion (4) we get,

∑
p

τt
p

(

w̄t
p · x̄

t
)

= ℓt ∑
r∈yt

∑
s∈Y −yt

αt
r,s

(

w̄t
r · x̄

t − w̄t
s · x̄

t
)

.

From the MMP’s first constraint on αt
r,s we have αt

r,s ≥ 0 and from the second constraint we get that

αt
r,s = 0 if w̄t

r · x̄
t − w̄t

s · x̄
t ≥ 0. Since ℓt ≥ 0, we can bound the middle term from the right hand side

of Equation (7) by,

∑
p

τt
p

(

w̄t
p · x̄

t
)

≤ 0 . (8)

For the right term of Equation (7) we use the bound on the losses ℓt ≤A and that ∑s/∈yt αt
r,s ,∑r∈y αt

r,s≤
1 (due to the first and third conditions) and get

∑
p

(

τt
p

)2
= ∑

r∈yt

(

τt
r

)2
+ ∑

s∈Y−yt

(

τt
s

)2
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= ∑
r∈yt

(

ℓt ∑
s/∈yt

αt
r,s

)2

+ ∑
s∈Y−yt

(

ℓt ∑
r∈y

αt
r,s

)2

≤ Aℓt

[

∑
r∈yt

(

∑
s/∈yt

αt
r,s

)

+ ∑
s∈Y−yt

(

∑
r∈y

αt
r,s

)]

. (9)

Using the third constraint of the algorithm described in Fig. 2 we get,

∑
p

(

τt
p

)2
≤ Aℓt(1+ 1) = 2Aℓt . (10)

Using the bounds from Equations (10) and (8) in Equation (7) with the bound ‖x̄t‖2 ≤ B2 we get,

∑
p

‖w̄t+1
p ‖

2 ≤ ∑
p

‖w̄t
p‖

2 + 2AB2 ℓt .

Unfolding the sum over t we get the desired upper bound,

∑
p

‖w̄T+1
p ‖2 ≤ 2AB2

T

∑
t=1

ℓt . (11)

Finally, combining Equations (6) and (11) we get,

γ2

(

T

∑
t=1

ℓt

)2

≤∑
p

‖w̄T+1
p ‖2 ≤ 2AB2

T

∑
t=1

ℓt ,

which gives the desired bound.

To conclude this section, we would like to note that in the simple case where the instantaneous

loss is either zero or one. For this simple loss, the ranking-loss bound of the theorem above reduces

to a bound on the number of rounds on which the predicted rank was not perfect, which is simply

2B2/γ2. We refer below to this type of loss as IsErr.

We would also like to note that when all the examples are uni-labeled then using MMP with IsErr

as its loss results in an update that is equivalent to the additive algorithm described in (Crammer and

Singer, 2001b).

6. Prototype Update Schemes

The family of additive online algorithm prescribes a set of constraints. Any conservative update that

satisfies the constraints attains the mistake bound given in Thm. 2. We now describe four different

schemes for updating the parameters that satisfy the constraints. Experiments with the different

updates are reported in Section 9.

Uniform Update: The uniform update allocates the same weight for each wrongly ordered pair

(r,s) ∈ E , setting αr,s = 1/|E|. In addition, we need to set the weights of all pairs not in the error

to 0. Clearly, this update satisfies the constraints on αr,s. Note that although each pair (r,s) ∈ E is

allocated the same weight of 1/|E|, the weights τr are different. Qualitatively, the lower a relevant

topic r is ranked, the more it will be “pushed” toward x̄ by setting τr to a large value. Analogously,

a highly ranked topic s which is not relevant will be “pulled” away from x̄ strongly since τs is going

to be negative with a large absolute value. We use the abbreviation Uniform for this update.
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Loss Range Bound

IsErr {0,1} 1

ErrSetSize {0,1, , . . . , |y||k− y|} k2/4

OneErr {0,1} 1

1-AvgP {0,1/2, . . . ,B(|y|,k)} (k−1)/k

maxF1 {0, . . . ,1} 1

Table 1: Summary of the losses used in the experiments.

Max Update: In this update, we modify only two prototypes: the prototype corresponding to the

lowest ranked relevant topic and the prototype corresponding to the highest ranked non-relevant

topic. Formally, let r̃ be the index of the relevant topic for which w̄r̃ · x̄ ≤ w̄r · x̄ (r ∈ y) and similarly

s̃ is the index of the non-relevant topic w̄s̃ · x̄ ≥ w̄s · x̄ (s 6∈ y). Then, α r̃,s̃ is set to 1 and we set the

rest of the weights αr,s to zero. We therefore concentrate on a single pair from E . Thus, τ r̃ = 1 and

τ s̃ =−1 and we update only two prototypes. We use the abbreviation Max for this update.

Margin-proportional Update: This update is a variation on the uniform update that takes the

ranking margin into account. In this update, the weight αr,s is proportional to the difference between

the inner-products of x̄ with w̄r and w̄s. Let [z]+ denote the hinge function which equals to the

argument z if z > 0 and is zero otherwise, [z]+ = max{z,0}. Then, the margin proportional update

is defined to be,

αt
r,s =

[w̄t
s · x̄− w̄t

r · x̄]+

∑(p,q)∈y×Y −y[w̄t
p · x̄− w̄t

q · x̄]+
.

On the first round we have by construction that w̄t
p · x̄ = 0 and thus the value of αr,s is ill-defined.

We therefore set αr,s to some arbitrary feasible values for the first round of the algorithm.

Randomized Update: This update is a randomized version of the uniform update. In this update,

we pick at random a vector from the simplex ∆|E| as follows. We choose for each pair (r,s) ∈ E

a value in [0,1] uniformly at random. We then normalize the weights αr,s so that they sum to one.

The results is a distribution over the simplex ∆|E| that is dense in the middle of the simplex and gets

sparser as we move toward the vertices of the simplex.

7. Ranking losses

We have implemented and evaluated the MMP algorithm with five different ranking-losses. The

ranking-losses we employed constitute some of the common ranking-losses used in machine learn-

ing and information retrieval. A topic ranking algorithm that performs well with respect to all of

the ranking-losses is likely to be effective in various applications requiring ranking of topics. We

describe below the ranking-losses we used. All of the losses are additive and thus each loss is de-

scribed for a single document. In assessing the performance on a whole corpus, we simply compute

the empirical expectation of each loss.
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IsErr stands for Is-Error. This ranking-loss is simply the indicator of whether the induced ranking

is perfect or not. Formally, IsErr is 1 if |E|> 0 and 0 otherwise. IsErr is one of the commonly used

performance criteria in the analysis of learning algorithms.

ErrSetSize measures the size of the error-set |E| for an induced ranking. It is therefore zero if the

induced topic ranking is perfect. In the worst case, when all the relevant topics are ranked below the

non-relevant topics, ErrSetSize is |y|(k−|y|) and thus ErrSetSize can be as large as k2/4.

OneErr is an abbreviation for the term one-error introduced by Schapire and Singer (1999). The

OneErr of a single document is defined to be 1 if the top ranked topic is not one of its relevant topics.

It is defined to be 0 otherwise. Formally, OneErr is equal to 1 if ∀r ∈ y : rank(x̄,r) ≥ 1 and is 0

otherwise. Therefore, the average OneErr of a corpus reflects the fraction of times the top ranked

topic was a non-relevant topic.

AvgP is an abbreviation of average-precision. AvgP is a commonly used ranking-loss in informa-

tion retrieval tasks such as the ad hoc document retrieval. AvgP measures the average proportion of

relevant topics in a ranked list of topics. The average is taken over all of the positions of the relevant

topics in the ranked list and is formally defined as,

AvgP =
1

|y|∑r∈y

|{r′ ∈ y : rank(x̄,r′)≤ rank(x̄,r)}|

rank(x̄,r)
.

A perfect ranking thus attains an AvgP of 1. Since in our evaluation we employ both learning-

theoretic and IR ranking-losses, we would like to use the same range for all ranking-losses. There-

fore, we use 1−AvgP as the ranking-loss for average precision since it attains a value of 0 for a

perfect ranking. However, in reporting performance results we use the more intuitive and common

measure AvgP. Whenever it is clear from the context, we also refer to 1−AvgP as the average-

precision. For a ranking rule which wrongly ranks all the relevant topics below the non-relevant

ones 1−AvgP can be as large as

B(|y|,k)
def
= 1−

|y|

∑
i=1

i

k−|y|+ i
.

The largest value of B(|y|,k), and thus the largest loss for AvgP, is attained when there is a single

relevant topic that is wrongly ranked at the bottom of the list. In this case the value of 1−AvgP =
B(1,k) is 1− 1

k
= k−1

k
.

maxF1 is derived from the F1 ranking-loss which is also common in performance evaluations of

IR tasks. Given a ranked list of topics, recall-at-r is defined as the fraction of relevant topics down to

position r out of the total number of relevant topics for the document. Precision-at-r is the fraction

of relevant topics in the top r positions. We denote the two values as Recall(r) and Precision(r).
The F1 value at r is defined as,

F1(r) =
2Recall(r)Precision(r)

Recall(r)+ Precision(r)
.

For more information and further motivation for using F1 as a ranking-loss, see (van Rijsbergen,

1979). The maxF1 is defined as the maximum over r of the values that F1 can attain. As in the case

of average precision, we use 1−maxF1 as the ranking-loss employed in training.

The properties of the various losses are summarized in Table 1. For each each ranking-loss, we

give its range and an attainable upper bound on its value.
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8. Refined Analysis for ErrSetSize

To conclude the formal part of the paper, we give a refined analysis for the case when the ranking-

loss is ErrSetSize with the Uniform update. Examining Table 7, we see that the maximum loss for

ErrSetSize is k2/4. Therefore, using Thm. 2 straightforwardly we get a bound which is quadratic

in the number of topics. We now show how to improve the bound to be linear in the number of

topics. We follow the same line of proof until we get to Equation (9). We now modify the proof as

follows. Note that for the specific choices of ranking-loss and update scheme we have that ℓt = |Et |.
In addition, the sum ∑s/∈yt αt

r,s is proportional to the number of non-relevant topics (s /∈ yt ) which are

ranked higher than the relevant topic indexed r. Assuming that for each document there is at least

one relevant topic and one non-relevant topic, the above sum is bounded by,

∑
s/∈yt

αt
r,s ≤

k−1

|Et |
=

k−1

ℓt
. (12)

A similar argument holds for the sum ∑r∈y αt
r,s and we thus get,

∑
r∈y

αt
r,s ≤

k−1

ℓt
. (13)

We now replace Equation (9) with,

∑
p

(

τt
p

)2
= ∑

r∈yt

(

τt
r

)2
+ ∑

s∈Y−yt

(

τt
s

)2

= ∑
r∈yt

(

ℓt ∑
s/∈yt

αt
r,s

)2

+ ∑
s∈Y−yt

(

ℓt ∑
r∈y

αt
r,s

)2

= ∑
r∈yt

(

ℓt ∑
s/∈yt

αt
r,s

)(

ℓt ∑
s/∈yt

αt
r,s

)

+ ∑
s∈Y−yt

(

ℓt ∑
r∈y

αt
r,s

)(

ℓt ∑
r∈y

αt
r,s

)

Using Equations (12) and (13) we get

∑
p

(

τt
p

)2
≤ ∑

r∈yt

(k−1)

(

ℓt ∑
s/∈yt

αt
r,s

)

+ ∑
s∈Y−yt

(k−1)

(

ℓt ∑
r∈y

αt
r,s

)

= (k−1)ℓt

[

∑
r∈yt

(

∑
s/∈yt

αt
r,s

)

+ ∑
s∈Y−yt

(

∑
r∈y

αt
r,s

)]

= 2(k−1)ℓt ,

where the last equality follows from the third condition (∑r,s αt
r,s = 1) of the algorithm. We thus

have replaced Equation (10) with a tighter bound of 2(k−1)ℓt . We now proceed with the rest of the

proof as before and get the following corollary.

Corollary 3 Let (x̄1,y1) . . . (x̄T ,yT ) be an input sequence for MMP where x̄t ∈ R
n and yt ∈ {1 . . .k}.

Denote by B = maxt ‖x̄
t‖. Assume that there exists a set of prototypes w̄∗1, . . . , w̄

∗
k of a unit norm

(∑r (w̄∗r )
2 = 1) whose predicted rankings the on entire sequence are all perfect with a ranking margin

γ= min
t

{

min
r∈yt
{w̄∗r · x̄

t}− max
s∈Y−yt

{w̄∗s · x̄
t}

}

> 0 .
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Reuters-21578 Reuters-2000

(average) Subset 1 Subset 2 Subset 3 Full Set

Train Set Size 8,631.2 639 5,139 50,139 521,439

Test Set Size (used) 2,157.8 10,000 10,000 10,000 287,944

No. of classes 89.8 102 102 102 102

Average topics per document 1.24 3.11 3.16 3.12 3.20

No. of features

Before feature selection 25,061 225,201 225,324 225,324 225,329

After feature selection 3,468.2 4,529 4,174 5,015 9,325

Average no. of unique Terms

Before feature selection 49.2 151.9 131.7 137.0 137.0

After feature selection 36.7 111.9 95.0 108.6 121.2

Table 2: Summary of properties of the datasets used in the experiments. For Reuters-21578 the

numbers are averaged over five folds of the whole dataset while for Reuters release 2000

we used a fixed split into a training set and a test set (see text).

If MMP is used with ErrSetSize and the Uniform update, then its cumulative loss is bounded by,

T

∑
t=1

ℓt ≤ 2(k−1)
B2

γ2
.

9. Experiments

In this section we describe the experiments we performed that compare the above updates of MMP

with various ranking-losses. For comparison purposes we also implemented and evaluated an adap-

tation of the Perceptron algorithms for multi-labeled documents and a multi-label version of Roc-

chio’s algorithm (Rocchio, 1971). We start with a description of the datasets used in our experi-

ments.

9.1 Datasets

We evaluated the algorithms on two text corpora. Both corpora were provided by Reuters.

Reuters-21578: The documents in this corpus were collected from the Reuters newswire during

1987, and are available from http://www.daviddlewis.com/resources/testcollections . We used the

ModApte pre-processing of the corpus and further processed the documents as follows. All words

were converted to lower-case, digits were mapped to a single token designating it is a digit, and

non alpha-numeric characters were discarded. We also used a stop-list to remove very frequent

words. The number of different words left after pre-processing is 27,747. After the pre-processing,

the corpus contains 10,789 documents each of which is associated with one or more topics. The

number of different topics in the ModApte version of Reuters-21578 is 91. Since this corpus is of

relatively small size, we used 5-fold cross validation in our experiments and did not use the original
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Figure 3: The distribution of the number of relevant topics per document in the Reuters-21578

corpus (left) and in Reuters-2000 corpus (right).

partition into a training set and a test set. While each document in the Reuters-21578 corpus can

be multi-labeled, in practice the number of such documents is relatively small. Over 90% of the

documents are associated with a single topic. On the left hand side of Fig. 3, we show the empirical

distribution of the number of relevant topics. The average number of relevant topics per document

is 1.24. A summary of the properties of the Reuters-21578 dataset appears in Table 2.

Reuters-2000: This corpus contains 809,383 documents collected from the Reuters newswire

in a year period (1996-08-20 through 1997-08-19). Since this corpus is large, we used the first

two-thirds of the corpus for training and the remaining third for evaluation. The training set con-

sisted of all documents that were posted from 1996-08-20 through 1997-04-10, resulting in 521,439

training documents. The size of the corpus which was used for evaluation is 287,944. We pre-

processed the corpus as follows. We converted all upper-case characters to lower-case, replaced all

non alpha-numeric characters with white-spaces, and discarded all the words appearing only once in

the training set. The number of different words that remained after this pre-processing is 225,329.

Each document in the collection is associated with zero or more topic codes. There are 103 differ-

ent topics in the entire corpus, however, only 102 of them appear in the training set. The remaining

topic marked GMIL (for millennium issues) appears as a relevant topic in only 5 documents in the

test set. We therefore discarded this topic. Each document in the corpus is also tagged by multiple

topics with a much larger overlap between the topics than the Reuters-21578 corpus. About 70%

of the documents are associated with at least three different topics. The average number of topics

associated with each document is 3.2. The distribution of the number of relevant topics per docu-

ment appears on the right hand-side of Fig. 3. Since the training set is large, we also evaluated the

algorithms on subsets of the training set. We picked subsets of size 500, 5000 and 50000 from the

entire training set. We then added to each subset a pre-selected set of 139 documents from the tail

of the full training set. This construction ensures that each topic appears at least twice in each of

the reduced training sets. It also ensures that all the training sets share a common subset (prefix)

of documents. We are thus able to compare the online results for the different training sets on the

common subset. We refer to these training sets as Subset 1,2 and 3, respectively. A summary of the

properties of the dataset is given in Table 2.
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9.2 Documents Representation

All the algorithms we evaluated use the same document representation. We implemented the pivoted

length normalization of Singhal et al. (1996) as our term-weighting algorithm. This algorithm is

considered as one of the most effective algorithms for document ranking and retrieval.

We now outline the pivoted length normalization. Let dl
i denote the number of times a word

(or term) indexed l appears in the document indexed i. Let mi denote the number of unique words

that appear in the document indexed i, mi = |{l : dl
i > 0}|. Let rl be the number of documents

in which the term indexed l appears. As before, the total number of documents in the corpus is

denoted by m. Using these definitions, the inverse document frequency (idf) of the word indexed l

is idfl = log(m/rl). The average frequency of the terms appearing in document indexed i is,

d̂i =
∑l dl

i

mi

,

and the empirical average number of unique terms per-document, denoted û, is calculated from the

entire corpus as follows,

û =
1

m

m

∑
i=1

mi .

Using these definitions, the tf weight of a word indexed l appearing in the document indexed i is,

tfi
l =

(

1+ log(dl
i )
)

/
(

1+ log(d̂i)
)

1.0− slope+ slope× (mi/û)
.

Here slope is a parameter between 0 and 1. We set slope = 0.3, which leads to the best performance

in the experiments reported in (Singhal et al., 1996). Finally, the features constituting each document

are the products of the tf and idf weights of the words appearing in the document, xi
l = idfl× tfi

l .

9.3 Algorithms for Comparison

In addition to the different update schemes of MMP, we also implemented two more algorithms:

Rocchio’s algorithm (Rocchio, 1971) and the Perceptron algorithm. As with MMP, these algorithms

use the same pivoted length normalization as their vector space representation and employ the same

form of topic-ranking by using a set of prototypes w̄1, . . . , w̄k. Note that, with the exception of

Rocchio, all the algorithms we implemented and evaluated are online algorithms.

Rocchio. We implemented an adaptation of Rocchio’s method as adapted by Ittner et al. (1995) to

text categorization. In this variant of Rocchio, the set of prototype vectors w̄1, . . . , w̄k are calculated

as follows,

wl
r

def
= max

{

0,
β
|Rr|

∑
i∈Rr

xi
l−

γ
|Rc

r |
∑

i∈Rc
r

xi
l

}

,

where Rr is the set of documents which contain the topic r as one of their relevant topics and Rc
r is

its complement, i.e., all the documents for which r is not one of their relevant topics. Following the

parameterization used by Ittner et al. (1995), we set β = 16 and γ= 4. Last, as suggested by Amit

Singhal in a private communication, we normalize all of the prototypes to have a unit norm.
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Perceptron. Since the Perceptron algorithm is designed for binary classification problems, we

decomposed the multi-label problem into multiple binary classification problems. For each topic r,

we constructed a separate training set as follows. We labeled all the documents whose indices appear

in Rr as positive and the rest of the documents are labeled as negative. We then ran the Perceptron

algorithm on each of the binary problems separately and independently. We therefore obtained again

a set of prototypes w̄1, . . . , w̄k each of which is an output of the corresponding Perceptron algorithm.

9.4 Feature Selection

For all datasets, the number of unique terms after the pre-processing stage described above was still

large: 27,747 words in the complete Reuters-21578 and 225,329 words in the complete training set

of Reuters-2000. Since we used cross-validation for Reuters-21578, the actual number of unique

terms was slightly lower, 25,061 on the average. Since this number of unique terms was still rela-

tively large, we employed feature selection for both corpora to further reduce this number. We used

the weights of the prototypes generated by the adaptation of Rocchio’s algorithm described above

as our method for feature selection. For each topic, we sorted the terms according to their weights

as assigned by Rocchio. We then took for each topic the maximum between a hundred terms and the

top portion of 2.5% terms from the list sorted according the scores of Rocchio. This ensures that for

each topic we have at least 100 terms. The combined set of selected terms is used as the feature set

for the various algorithms and is of size 3,468.2 for Reuters-21578 and 9,325 for the complete train-

ing set of Reuters-2000. The average number of unique words per document in the cross-validated

training sets was reduced from 49 to 37 for Reuters-21578 and from 137 to 121 for the complete

training set of Reuters-2000. After this feature selection stage, we applied all the algorithms to the

same representation of documents. A summary of the properties of the Reuters-21578 and the four

training sets of Reuters-2000 is given in Table 2.

9.5 Experimental Setup

As we have just discussed, we evaluated the algorithms on five training sets in our experiments:

the Reuters-21578 corpus with 5-fold cross-validation and four training sets forming subsets of

different sizes of the Reuters-2000 corpus. For each training set, we first generated prototypes by

running Rocchio’s algorithm with all the features available. We then selected a subset of features

as described in Section 9.4. We represented the training set and the test set using the new set

of features as described in Section 9.2, and built twenty two different sets of prototypes for each

training set we have experimented with: the first set of prototypes was generated by Rocchio, the

second set was generated using the modified Perceptron algorithms, and the rest of prototypes were

created by MMP with five different ranking-losses (IsErr, ErrSetSize, OneErr, 1-AvgP, 1-maxF1)

where each loss was trained with four different update schemes (Uniform, Max, Prop, and Rand),

yielding twenty different sets of prototypes. We then evaluated each of the algorithms using the

corresponding test sets (see again Table 2). The evaluation of each of the learned sets of prototypes

was performed with respect to all of the ranking-losses. As we discuss shortly, by evaluating each

variant of MMP not only with respect to the loss it was trained with but also with respect to all the

other losses we are able to check whether there exists a ranking-loss that is universally good for

training topic-rankers regardless of the actual ranking-loss employed for evaluation. Each of the

online algorithms was run five times on the training set. After each epoch we evaluated the resulting

set of prototypes on the test set. Since in most cases training the algorithms using more than one

1041



CRAMMER AND SINGER

10
3

10
4

0.1

0.15

0.2

0.25

0.3

0.35

IsErr

Round Number

A
v
e
ra

g
e
d
 C

u
m

u
la

ti
v
e
 I
s
E

rr

Perceptron
Uniform
Max
Proprtional
Rand

10
3

10
4

5

10

15

20

ErrorSetSize

Round Number

A
v
e
ra

g
e
d
 C

u
m

u
la

ti
v
e
 E

rr
o
rS

e
tS

iz
e

Perceptron
Uniform
Max
Proprtional
Rand

10
3

10
4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

OneError

Round Number

A
v
e
ra

g
e
d
 C

u
m

u
la

ti
v
e
 O

n
e
E

rr
o
r

Perceptron
Uniform
Max
Proprtional
Rand

10
3

10
4

0.7

0.75

0.8

0.85

0.9

0.95

1

AvgP

Round Number

A
v
e
ra

g
e
d
 C

u
m

u
la

ti
v
e
 A

v
g
P

Perceptron
Uniform
Max
Proprtional
Rand

10
3

10
4

0.6

0.8

1

MaxF1

Round Number

A
v
e
ra

g
e
d
 C

u
m

u
la

ti
v
e
 M

a
x
F

1

Perceptron
Uniform
Max
Proprtional
Rand

Figure 4: The round-averaged ranking-loss as a function of the number of training documents that

were processed for Reuters-21578. The vertical line in each figure indicates the end of

the first epoch.
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Figure 5: The round-averaged ranking-losses as a function of the number of training documents that

were processed for Reuters-2000. The vertical line indicates the end of the first epoch.
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Algorithm Ranking-Loss used for Evaluation

Training-Loss Update IsErr x100 ErrSetSize OneErr x100 AvgP x100 maxF1 x100

Rocchio 18.82 1.17 14.48 89.73 84.53

Perceptron 15.71 4.87 9.59 90.50 88.56

Uniform IsErr 13.07 1.33 8.65 93.63 90.32

ErrSetSize 17.99 0.78 13.42 91.07 85.53

OneErr 15.14 2.03 8.63 92.79 89.64

AvgP 12.72 1.12 8.20 93.93 90.75

maxF1 12.36 0.94 8.23 94.14 90.80

Max IsErr 14.53 2.60 9.54 92.43 89.17

ErrSetSize 23.50 3.58 17.65 86.81 80.74

OneErr 17.16 4.35 9.75 90.90 88.05

AvgP 14.14 2.50 9.03 92.58 89.59

maxF1 15.02 2.77 10.10 92.04 88.61

Proportional IsErr 12.88 1.50 8.48 93.60 90.45

ErrSetSize 20.31 1.05 15.56 89.74 83.33

OneErr 15.63 2.49 8.95 92.30 89.23

AvgP 12.83 1.28 8.28 93.83 90.63

maxF1 13.57 1.27 9.10 93.45 89.87

Rand IsErr 12.52 1.31 8.18 93.89 90.81

ErrSetSize 18.02 0.80 14.00 90.99 85.08

OneErr 14.48 1.99 8.18 93.08 90.12

AvgP 12.60 0.99 8.11 94.11 90.84

maxF1 13.09 1.06 8.56 93.75 90.38

Table 3: A comparison of the performance of the various algorithms on the test-set for different

ranking-losses on Reuters-21578.

epoch over the training set yielded only minor improvement, we mostly report results obtained at

the end of the first epoch and defer the comparison of the performance with more than a single

epoch to the end of the section.

9.6 Results

We start with a comparison of the performance of the online algorithms (all the variants of MMP

and the Perceptron) on the training data. In Fig. 4 and Fig. 5 we show the performance of MMP

and Perceptron with respect to the five ranking-losses on Reuters-21578 and Reuters-2000. One of

the goals in comparing the online performances of the algorithms is to assess whether the empirical

results agree with the formal analysis. Therefore it is natural to use the loss employed by the update

also for evaluation. We thus evaluated each of the variants of MMP only with respected to the loss it

employed for updating the prototypes. On each round (new document), we computed the cumulative

loss of the algorithms divided by the number of documents processed so far, ∑s
t=1 loss(yt ,R t)/s.

Each plot in Fig. 4 and Fig. 5 shows the average cumulative ranking-loss as a function the number

of examples along five epochs through the data. The vertical line in each plot designates the end of

the first epoch. We can see from the figures that the MMP algorithm used with the Uniform update

performs well with respect to all of the ranking-losses. The second best update after Uniform

is Rand, then Prop, and Max is the worst performer, often lagging significantly behind the other
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Algorithm Ranking-Loss used for Evaluation

Training-Loss Update IsErr x100 ErrSetSize OneErr x100 AvgP x100 maxF1 x100

Rocchio 70.71 12.42 24.42 72.62 63.25

Perceptron 38.86 10.43 6.04 87.40 85.65

Uniform IsErr 30.68 2.87 4.73 92.12 89.70

ErrSetSize 34.59 2.84 5.81 90.98 87.95

OneErr 42.14 5.02 5.60 88.95 86.11

AvgP 32.68 3.02 5.01 91.65 89.02

maxF1 31.98 2.94 5.15 91.78 89.10

Max IsErr 34.83 6.04 5.76 90.03 87.53

ErrSetSize 51.36 11.50 11.50 83.34 78.76

OneErr 53.04 20.57 8.66 81.44 79.29

AvgP 41.00 9.06 7.29 87.48 84.57

maxF1 38.83 8.00 6.73 88.32 85.58

Proportional IsErr 31.87 3.47 5.36 91.45 88.83

ErrSetSize 37.72 3.51 7.29 89.62 85.97

OneErr 45.36 6.57 6.66 87.50 84.36

AvgP 35.27 3.80 5.82 90.55 87.65

maxF1 34.16 3.71 5.86 90.79 87.89

Rand IsErr 30.71 2.91 4.88 92.08 89.58

ErrSetSize 34.91 2.87 6.03 90.87 87.71

OneErr 43.33 5.25 5.94 88.58 85.55

AvgP 32.94 3.05 5.03 91.58 88.94

maxF1 32.07 2.98 5.26 91.72 88.99

Table 4: A comparison of the performance of the various algorithms on the test-set for different

ranking-losses on Reuters-2000.

three updates. Nonetheless, the Perceptron algorithm often seems to be doing even worse than

Max. Two notable exceptions are the results of the Perceptron algorithm with respect to IsErr and

OneErr on Reuters-21578. This relatively good performance of the Perceptron might be attributed

to the fact that the Reuters-21578 corpus is essentially uni-labeled and thus IsErr, OneErr and the

classification error used by the Perceptron are practically synonymous. As we discuss in the sequel,

the performance after most of the documents have been processed is also highly correlated with the

performance of the algorithms on the unseen test data. This type of behavior indeed agrees with the

formal analysis of online algorithms (Helmbold and Warmuth, 1995).

The performance of the algorithms on the test sets is summarized in five tables, one for each

training set. A summary of the performances on Reuters-21578 is given in Table 3. A summary of

the performances on the full training set of Reuters-2000 is given in Table 4. The results for the three

smaller subsets of Reuters-2000 are given in Tables 6, 7, 8 in App. A. For Rocchio, Perceptron and

each update of MMP, we give the results with respect to five different ranking-losses. In addition,

for each update we provide results obtained by using each of the five ranking-losses for training.

We thus use each loss both for training and for evaluation and therefore have 5×5 = 25 results for

each update. Each ranking-loss used for evaluation constitutes a column in each table. For each

such loss, we designate the best loss achieved by any of the algorithms with a rectangle. For each

update, we use bold-face to highlight the best results with respect to each of the losses. In addition
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we also provide in Fig. 6, 7 and 8 precision-recall graphs for Reuters-21578, the full training set

of Reuters-2000, and the smallest subset of Reuters-2000, respectively.

The relative performance of the variants of MMP and the Perceptron algorithm with respect to

most of the ranking-losses on the test set is consistent with their behavior on the training sets. Again,

the Uniform update attains the lowest ranking-loss in most settings, and then Rand, Prop, Max and

finally the Perceptron algorithm. In all the experiments, we see that with respect to the ErrSetSize

ranking-loss, the best performing algorithm is MMP trained with ErrSetSize itself. However, the

relative performance of the variants of MMP with respect to the other four ranking-losses is not

systematic. There is no clear winner in general, though for Reuters-21578 it seems that for the

rest of ranking-losses the best ranking-loss to use for training are AvgP and maxF1. The relative

performance of all the variants is clearer on the full training set of the Reuters-2000 corpus. Here

the best ranking-loss to be used for training seems to be IsErr no matter what ranking-loss is used

for evaluation. Note that IsErr is either 0 (when the predicted ranking is perfect) or 1. Thus, using

this loss for training implies that all examples with imperfect predicted ranking receive the same

overall weight. We defer a discussion of why IsErr seems the best loss for training to the closing

section.

Though the Perceptron algorithm performs worse in most of the cases with respect to all of

the different ranking-losses, its performance is still rather impressive. The main deficiency of the

Perceptron is its poor performance in terms of ErrSetSize. It achieves the worst ErrSetSize values

in most cases. This behavior can also be observed in the precision-recall graphs. The precision

the Perceptron algorithm for low recall values is competitive with all the variants of MMP and

even better than the variants that employ ErrSetSize on Reuters-21578 for recall values below 0.9.

However, as the recall value increases the precision of the Perceptron algorithm drops sharply, and

for high recall values, it exhibits the worst precision. One possible explanation for this behavior

is that the Perceptron is tailored for classification and is thus insensitive to particularly bad topic-

rankings that spread the relevant topics all over the ranked list. It therefore moves each of the

prototypes in the same proportion regardless of how bad or good the ranking is.

Despite our attempt to implement a state-of-the-art version of Rocchio which takes into account

phenomena like the length of the documents, Rocchio’s performance was the worst in all experi-

ments with the exception of the smallest subset of Reuters-2000. This is especially surprising since

in a head-to-head comparison of Rocchio with recent variants of AdaBoost (Schapire et al., 1998)

the performance on various corpora of the two algorithms was practically indistinguishable. (De-

spite the fact that it took two orders of magnitude longer to train the latter.) Amit Singhal in a private

communication offered one possible explanation for this relatively poor performance. Rocchio was

originally designed for document retrieval. Furthermore, the recent improvements that that employ

length normalization were tuned on TREC’s document retrieval tasks. Despite its similarity in na-

ture to document ranking, the topic ranking task seems to exhibit different statistical characteristics

and these are likely to require new adaptations and tuning for topic ranking problems. Nonetheless,

on the smallest subset of Reuters-2000, Rocchio was the best performer with respect to all ranking-

losses except for OneErr. This behavior is also reflected in the precision-recall graphs (Fig. 8). It is

clear from the figure that, on the smallest subset, Rocchio achieves the highest precision for almost

all of the recall values. Rocchio’s performance is in particular good on the small subset for high

recall values. For very low recall values, the performance of the different algorithms on the smallest

subset of Reuters-2000 is very similar with the exception of the max update. This again might be
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Figure 6: Precision (y-axis) versus recall (x-axis) graphs for the various algorithms on Reuters-

21578.
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Figure 7: Precision (y-axis) versus recall (x-axis) graphs for the various algorithms on Reuters-

2000.
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Figure 8: Precision (y-axis) versus recall (x-axis) graphs for the various algorithms on smallest

subset of Reuters-2000.
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Figure 9: A comparison of the performance of the various algorithms on the test-set as a function of

the number of cycles through the training set using five ranking-losses (IsErr, ErrSetSize,

OneErr, AvgP, maxF1) on Reuters-2000. Each ranking-loss was used both for training

and for evaluations.
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No. of Cycles

Measure Algorithm 1 2 3 4 5

IsErr x100 Perceptron 15.71 14.67 14.37 14.05 14.20

Uniform 13.07 11.92 11.93 11.85 11.82

Max 14.53 12.83 12.23 12.18 12.08

ErrSetSize Perceptron 4.87 4.44 4.46 4.58 4.75

Uniform 0.78 0.71 0.70 0.70 0.69

Max 3.58 2.71 2.41 2.37 2.36

OneErr x100 Perceptron 9.59 9.20 8.81 8.72 8.77

Uniform 8.63 8.06 8.07 7.84 8.04

Max 9.75 8.94 8.66 8.73 8.67

AvgP x100 Perceptron 90.50 91.09 91.20 91.35 91.20

Uniform 93.93 94.34 94.25 94.23 94.22

Max 92.58 93.63 93.76 93.78 93.81

maxF1 x100 Perceptron 88.56 89.21 89.56 89.68 89.60

Uniform 90.80 91.76 91.79 91.69 91.60

Max 88.61 90.55 90.70 90.63 91.03

Table 5: A comparison of the performance of the various online algorithms on the test sets (cross-

validated) of Reuters-21578 as a function of the number of cycles through the training

set.

attributed to the fact that, for very low recall values, the precision value is highly correlate with

1−OneErr.

The performance of the various algorithms on test data from Reuters-2000 as a function of the

training set sizes is given in Fig. 9. As before, we evaluated each variant of MMP only with respect

to the ranking-loss that was used during its training. (The behavior of the algorithms when training

and testing with different ranking-losses was found to be similar.) We can see from the figure that

the performance of the online algorithms (Perceptron and MMP) improves as the size of the training

set increases. The most notable improvement is when the number of training documents increases

from 639 to 5,139. On the other hand, Rocchio’s performance does not seem to improve at all as

the number of training documents increases. Furthermore, in some cases Rocchio exhibits a slight

degradation in performance as the training set size increases. One possible explanation for this

behavior is the feature selection scheme we employed which was fixed regardless of the training

set size. Since the weights of the prototypes built by Rocchio are not modified based on the actual

performance, a careful tuning and selection that takes the training set size into account seems to be

crucial.

Finally, we focus our attention on the performance of the online algorithms as a function of

the number of training epochs. The results of these experiments setting are summarized in Table 5

for Reuters-21578 and in Tables 9 and 10 (in App. B) for Reuters-2000. Each row in the tables

corresponds to a different ranking-loss that was used in training and in the evaluation stage on test

data. For each such loss, we compare the Perceptron and MMP with two updates: Uniform and

Max. We confined ourselves to these two updates, since the results after a single epoch indicate that
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Uniform is the best performing update while Max is the worst. Although for brevity we do not report

here results for the other updates, these results indeed fall between the results for Uniform and Max.

We report in the tables the performance at the end of each of the five epochs. We see from the tables

that cycling through the training data does improve the performance of the algorithms with respect

to IsErr, ErrSetSize and OneErr. Using AvgP and maxF1 as the ranking-losses (both for training and

evaluation) does not yield a significant improvement. The Max update seems to benefit the most

from multiple cycles through the training data. Since the Max update takes care of only a single

wrongly ordered pair of topics, multiple runs can be used to modify the weights of most if not all

of the wrongly ordered topic pairs. It seems that there is a natural trade-off between the complexity

of the updates (in terms of the number of pairs they modify) and the number of epochs that are

needed to reach good performance. The Perceptron algorithm also seems to benefit from multiple

runs through the data. Concretely, for IsErr, the loss of the Perceptron on Reuters-21578 decreases

from a value of 15.7% after the first epoch to about 14% after the last epoch – an improvement of

10%. On the same corpus, MMP with the Max update reduces IsErr from a value of 14.5% after

the first epoch to about 12% after the last epoch – an improvement of 20%. In contrast, examining

the results obtained Reuters-2000 we see that MMP with the Uniform update using IsErr both for

training and evaluation does not improve with the number of training epochs. Furthermore, it seems

that often there is a slight degradation in performance, which indicates that MMP with Uniform

starts to overfit the large training set. Voting and averaging techniques (Freund and Schapire, 1998)

might help in preventing overfitting in such cases.

10. Summary and Discussion

In this paper we described a simple yet effective family of online algorithms for topic-ranking. Each

algorithm in the family is defined through an instantiation of a set of constraints and a loss function

that it attempts to minimize along its run. The approach that we took reduces the topic-ranking

problem into multiple pairs of relevant and non-relevant topics that are immediately summed into

weights. Thus, the run time of each algorithm per-document is linear in the number of topics. We

discussed a simple analysis in the mistake bound model that provides a uniform bound for all the

algorithms in the family. We performed extensive experiments with two text corpora. The experi-

ments reveal that the online performance on the training data is pretty much reflected when testing

the algorithms on new unseen data without adaption. To our surprise, the experiments indicate that

the loss used for training does not necessarily achieve the best empirical loss. Furthermore, there

does not seem to be a single ranking loss that consistently performs well in all settings. Nonetheless,

we found that the simple notion of ranking-loss, IsErr, often results in very good performance. In

particular, on the full training set of Reuters release 2000, IsErr outperforms all of the other ranking

losses regardless of the loss used for evaluation. In terms of the type of the update, we found that

Uniform update, which allocates the same weight for each wrongly ordered pair of topics, achieves

the overall best results, but cycling through the data can improve the performance of variants which

update only a subset of the wrongly ordered pairs on each round. It is interesting to note that the

Max update reduces to the update devised by Collins and Duffy (2002) in re-ranking applications of

uni-labeled data. Therefore, our results suggest that it might be possible to further improve the per-

formance of the Perceptron re-ranking algorithm of Collins and Duffy if we employ update schemes

that are similar to the Uniform update used in this paper. Last, we would like to note that all of the

updates discussed in the paper ignore the norms of the resulting prototypes. However, there is strong
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theoretical and empirical evidence (see for instance (Vapnik, 1998, Cristianini and Shawe-Taylor,

2000) and the many references therein) that motivates updates which take into account the norm of

the resulting prototypes. We leave this research direction for future work.
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Appendix A. Detailed summary of results for Reuters-2000

Algorithm Ranking-Loss

Loss Update IsErr x100 ErrSetSize OneErr x100 AvgP x100 maxF1 x100

Rocchio 68.16 10.97 23.77 74.07 65.13

Perceptron 80.30 56.07 22.07 60.09 58.68

Uniform IsErr 70.16 20.43 21.03 70.59 64.41

ErrSetSize 86.95 17.81 40.37 58.94 45.20

OneErr 80.16 27.42 26.98 63.24 56.11

AvgP 71.70 18.40 21.36 70.49 63.93

maxF1 74.29 18.22 22.15 69.98 63.09

Max IsErr 80.23 58.09 27.37 58.49 54.84

ErrSetSize 93.84 58.24 39.15 50.54 41.99

OneErr 93.40 86.10 32.82 46.81 44.80

AvgP 83.78 57.88 29.35 56.19 51.75

maxF1 82.57 59.33 27.71 57.07 53.21

Proportional IsErr 74.89 28.76 25.10 67.42 60.20

ErrSetSize 89.95 20.92 36.06 59.36 47.28

OneErr 84.98 36.82 28.57 59.68 52.58

AvgP 75.94 25.64 22.25 67.11 61.11

maxF1 75.64 26.23 24.04 67.02 60.53

Rand IsErr 71.95 20.09 19.94 70.81 64.75

ErrSetSize 87.76 18.82 40.93 58.33 44.40

OneErr 82.24 31.00 27.16 61.46 54.45

AvgP 76.58 18.41 22.44 69.27 62.25

maxF1 71.78 18.97 22.97 69.68 62.66

Table 6: A comparison of the performance of the various algorithms on the test-set for different ranking-

losses using Subset 1 (639 training documents) of Reuters-2000.
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Algorithm Ranking-Loss

Loss Update IsErr x100 ErrSetSize OneErr x100 AvgP x100 maxF1 x100

Rocchio 68.26 9.98 20.35 76.13 67.97

Perceptron 55.60 29.01 9.85 76.74 76.39

Uniform IsErr 47.03 8.33 8.03 85.41 82.26

ErrSetSize 57.29 6.73 13.20 81.55 75.62

OneErr 65.17 14.03 9.74 78.02 74.76

AvgP 49.04 6.90 8.99 85.12 81.21

maxF1 46.75 7.01 8.47 85.60 82.04

Max IsErr 51.85 23.73 11.50 79.57 77.06

ErrSetSize 76.85 32.79 20.24 69.16 63.68

OneErr 73.65 44.49 14.98 67.76 66.23

AvgP 60.80 26.75 11.82 77.16 74.40

maxF1 58.88 26.63 11.96 77.47 74.95

Proportional IsErr 48.13 11.28 8.53 84.35 81.36

ErrSetSize 63.69 8.80 16.47 78.41 71.41

OneErr 57.94 16.05 11.51 78.89 75.40

AvgP 49.32 9.46 9.51 84.27 80.57

maxF1 50.04 9.93 9.11 84.13 80.60

Rand IsErr 50.23 8.51 8.65 84.81 81.26

ErrSetSize 58.87 7.12 13.19 81.16 75.22

OneErr 60.05 13.14 9.53 79.52 76.17

AvgP 49.58 7.38 8.31 85.02 81.50

maxF1 48.10 7.14 8.75 85.38 81.66

Table 7: A comparison of the performance of the various algorithms for different ranking-losses

using Subset 2 (5,139 training documents) of Reuters-2000 for training.
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Algorithm Ranking-Loss

Loss Update IsErr x100 ErrSetSize OneErr x100 AvgP x100 maxF1 x100

Rocchio 70.99 10.76 20.74 75.13 66.81

Perceptron 45.15 14.96 6.84 84.60 83.07

Uniform IsErr 35.76 4.00 5.16 90.64 87.99

ErrSetSize 43.19 3.93 8.82 87.66 83.36

OneErr 48.99 7.44 7.01 86.04 82.84

AvgP 39.01 4.04 5.75 89.85 86.84

maxF1 36.67 3.92 5.46 90.28 87.48

Max IsErr 42.39 10.57 7.07 86.98 84.35

ErrSetSize 65.35 18.34 15.04 77.89 72.30

OneErr 68.78 31.93 11.88 73.92 71.66

AvgP 47.55 14.35 8.02 84.73 81.90

maxF1 45.93 13.75 7.34 85.39 83.04

Proportional IsErr 37.38 4.92 5.71 89.72 86.97

ErrSetSize 48.00 4.99 11.65 85.57 79.97

OneErr 49.33 8.92 8.24 85.33 81.71

AvgP 40.36 5.01 6.21 89.01 85.93

maxF1 40.99 4.94 6.24 89.05 85.93

Rand IsErr 35.98 4.02 5.55 90.51 87.70

ErrSetSize 43.36 4.01 8.87 87.63 83.23

OneErr 51.30 7.42 6.88 85.50 82.25

AvgP 38.68 4.06 5.58 90.03 87.07

maxF1 36.93 3.97 5.88 90.21 87.14

Table 8: A comparison of the performance of the various algorithms for different ranking-losses using Sub-

set 3 (50,139 training documents) of Reuters-2000 for training.
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Appendix B. Results of Cycling though Training Set

No. of Cycles

Training Set Size Measure Algorithm 1 2 3 4 5

639 IsErr x100 Perceptron 80.30 77.72 76.38 74.98 73.00

Uniform 70.16 71.26 69.66 70.08 68.88

Max 80.23 80.48 72.93 70.53 70.66

ErrSetSize Perceptron 56.07 56.61 56.55 57.72 57.36

Uniform 17.81 16.05 15.90 15.91 15.94

Max 58.24 51.89 46.82 45.25 44.92

OneErr x100 Perceptron 22.07 20.19 20.15 19.75 19.78

Uniform 26.98 26.21 24.80 24.46 24.90

Max 32.82 29.61 30.02 27.20 28.23

AvgP x100 Perceptron 60.09 61.11 61.20 61.31 62.18

Uniform 70.49 72.52 71.91 72.17 72.23

Max 56.19 63.15 65.07 65.97 66.45

maxF1 x100 Perceptron 58.68 60.04 60.49 61.00 61.84

Uniform 63.09 67.09 66.86 66.81 67.62

Max 53.21 58.59 61.05 61.01 61.79

5139 IsErr x100 Perceptron 55.60 52.75 50.44 50.48 50.21

Uniform 47.03 46.40 47.09 45.97 45.73

Max 51.85 48.80 46.83 46.88 46.30

ErrSetSize Perceptron 29.01 24.00 23.21 23.61 24.07

Uniform 6.73 5.68 5.69 5.69 5.73

Max 32.79 24.28 21.83 21.15 21.07

OneErr x100 Perceptron 9.85 8.92 8.83 8.79 8.74

Uniform 9.74 10.22 9.10 8.70 10.15

Max 14.98 13.02 11.81 12.83 10.45

AvgP x100 Perceptron 76.74 79.38 80.33 80.23 80.25

Uniform 85.12 86.63 86.59 86.75 86.67

Max 77.16 81.75 82.86 83.42 83.41

maxF1 x100 Perceptron 76.39 78.33 79.21 79.22 79.26

Uniform 82.04 83.33 83.41 83.38 83.55

Max 74.95 80.20 80.95 81.48 81.40

Table 9: The performance of the various algorithms as a function of the number of epochs using Subset 1

and Subset 2 of Reuters-2000 for training.
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No. of Cycles

Training Set Size Measure Algorithm 1 2 3 4 5

50139 IsErr x100 Perceptron 45.15 44.04 44.31 44.27 44.15

Uniform 35.76 36.72 37.83 37.12 38.65

Max 42.39 39.81 40.27 39.84 39.86

ErrSetSize Perceptron 14.96 13.75 13.29 13.81 13.43

Uniform 3.93 3.43 3.53 3.61 3.66

Max 18.34 13.02 11.82 10.99 10.85

OneErr x100 Perceptron 6.84 6.59 7.19 7.53 7.46

Uniform 7.01 7.36 6.97 6.97 7.35

Max 11.88 9.93 9.48 9.01 8.40

AvgP x100 Perceptron 84.60 85.31 85.32 84.82 84.91

Uniform 89.85 89.65 89.26 89.31 89.11

Max 84.73 86.67 87.18 87.34 87.70

maxF1 x100 Perceptron 83.07 83.60 83.31 82.81 82.92

Uniform 87.48 86.71 86.41 86.26 86.50

Max 83.04 84.97 85.31 85.04 85.12

521439 IsErr x100 Perceptron 38.86 38.79 38.71 38.65 38.62

Uniform 30.68 30.64 31.10 31.39 31.65

Max 34.83 34.37 34.63 34.34 34.25

ErrSetSize Perceptron 10.43 9.08 8.45 7.80 7.63

Uniform 2.84 2.90 3.08 3.18 3.27

Max 11.50 8.18 6.55 5.57 5.18

OneErr x100 Perceptron 6.04 6.40 6.31 6.66 6.36

Uniform 5.60 6.30 5.92 6.37 6.26

Max 8.66 8.32 7.95 8.49 7.74

AvgP x100 Perceptron 87.40 87.64 87.78 87.86 87.94

Uniform 91.65 91.23 91.02 90.96 90.87

Max 87.48 88.36 88.34 88.56 88.63

maxF1 x100 Perceptron 85.65 85.54 85.64 85.48 85.66

Uniform 89.10 88.80 88.60 88.36 88.38

Max 85.58 85.91 86.27 86.16 86.16

Table 10: The performance of the various algorithms as a function of the number of epochs using Subset 3

of Reuters-2000 for training.
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