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Abstract Probabilistic classifier chains have recently gained interest in multi-label classifi-

cation, due to their ability to optimally estimate the joint probability of a set of labels. The

main hindrance is the excessive computational cost of performing inference in the prediction

stage. This pitfall has opened the door to propose efficient inference alternatives that avoid

exploring all the possible solutions. The ǫ-approximate algorithm, beam search and Monte

Carlo sampling are appropriate techniques, but only ǫ-approximate algorithm with ǫ = 0

theoretically guarantees reaching an optimal solution in terms of subset 0/1 loss. This paper

offers another alternative based on heuristic search that keeps such optimality. It consists of

applying the A* algorithm providing an admissible heuristic able to explore fewer nodes than

the ǫ-approximate algorithm with ǫ = 0. A preliminary study has already coped with this

goal, but at the expense of the high computational time of evaluating the heuristic and only

for linear models. In this paper, we propose a family of heuristics defined by a parameter that

controls the trade-off between the number of nodes explored and the cost of computing the

heuristic. Besides, a certain value of the parameter provides a method that is also suitable

for the non-linear case. The experiments reported over several benchmark datasets show that

the number of nodes explored remains quite steady for different values of the parameter,

although the time considerably increases for high values. Hence, low values of the parameter
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give heuristics that theoretically guarantee exploring fewer nodes than the ǫ-approximate

algorithm with ǫ = 0 and show competitive computational time. Finally, the results exhibit

the good behavior of the A* algorithm using these heuristics in complex situations such as

the presence of noise.

Keywords Multi-label classification · Probabilistic classifier chains · Inference · A* ·

Admissible heuristics

1 Introduction

Multi-label classification (MLC) is a machine learning problem in which models are sought

that assign a subset of (classes) labels to each instance, unlike conventional (single-class)

classification that involves predicting only a single class. Multi-label classification problems

are ubiquitous and naturally occur, for instance, in assigning keywords to a paper, tags to

resources in a social network, objects to images or emotional expressions to human faces.

In general, the problem of multi-label learning comes with two fundamental challenges.

The first refers to the computational complexity of the algorithms. If the number of labels is

large, then a complex approach might not be applicable in practice. Therefore, the scalability

of algorithms is a key issue in this field. The second problem is related to the ’own nature’

of multi-label data. Not only is the number of labels typically large, but each instance also

belongs to a variable-sized subset of labels simultaneously. Moreover, and perhaps even more

importantly, the labels will normally not occur independently of each other; instead, there are

statistical dependencies between them. From a learning and prediction point of view, these

relationships constitute a promising source of information, in addition to that coming from

the mere description of the instances. Thus, it is hardly surprising that research on MLC

has very much focused on the design of new methods that are able to detect—and benefit

from—interdependencies among labels.

Several approaches have been proposed in the literature to cope with MLC. Firstly,

researchers tried to adapt and extend different state-of-the-art binary or multi-class clas-

sification algorithms (Elisseeff and Weston 2005; McCallum 1999; Zhang and Zhou 2007).

Secondly, they further analyzed in depth the label dependence and attempt to design new

approaches that exploit label correlations (Dembczyński et al. 2012). In this regard, two

kinds of label dependence have been formally distinguished, namely, conditional depen-

dence (Dembczyński et al. 2010; Montañés 2011, 2014; Read et al. 2011) and marginal

(unconditional) dependence (Cheng and Hüllermeier 2009). Also, pairwise relations (Elis-

seeff and Weston 2005), relations in sets of different sizes (Read et al. 2011; Tsoumakas

and Vlahavas 2007), or relations in the whole set of labels (Cheng and Hüllermeier 2009;

Montañés 2011) have also been exploited.

Regarding conditional label dependence, the approach called probabilistic classifier chains

(PCC) has aroused great interest among the multi-label community, since it offers the excel-

lent property of being able to estimate the conditional joint distribution of the labels. However,

the original PCC algorithm (Dembczyński et al. 2010) suffers from high computational cost,

since it performs an exhaustive search as inference strategy to obtain optimal solutions in

terms of a given loss function. Several efforts that use different searching and sampling strate-

gies in order to overcome this drawback are being made currently. This includes uniform-cost

search (Dembczynski et al. 2012), beam search (Kumar et al. 2012, 2013) and Monte Carlo

sampling (Dembczynski et al. 2012; Read et al. 2014). All of these algorithms successfully
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estimate an optimal solution reached by the original PCC (Dembczyński et al. 2010), at the

same time that they reduce the computational cost in terms of both the number of candidate

solutions explored and execution time. The main contribution of this paper is to propose

an alternative based on an heuristic search strategy. In particular, the proposal consists of

obtaining admissible heuristics for the well-known A* algorithm (Hart et al. 1968). In this

respect, we have already started to fill this gap in the literature with a recent published pre-

liminary work (Mena et al. 2015), concluding that the proposal guarantees, not only optimal

predictions in terms of subset 0/1 loss, but also that it explores fewer nodes than all previous

methods that also provide optimal predictions. Unfortunately, and after studying in depth this

heuristic, two main drawbacks can be stated: (i) it could only be defined for linear models and

(ii) its computation is moderately high. In this direction, the goal of this paper is twofold. On

the one hand, this work goes further by defining a family of heuristics through a parameter

that controls the trade-off between the number of nodes explored and the cost of computing

the heuristic. Besides, a special value of the parameter leads to an heuristic suitable for non-

linear models. On the other hand, this work also studies and analyzes situations in which the

computation of the heuristic compensates the whole computational cost, showing a steady

behavior with regard to other algorithms. All these methods are analyzed and experimentally

compared over a wide range of multi-label datasets.

The rest of the paper is organized as follows. Section 2 formally describes the multi-

label framework and the principles of PCC. Section 3 describes and discusses the properties

and behavior of the different state-of-the-art approaches for inference in PCCs. Section 4

details the heuristic search framework and defines admissible heuristics for the A* algorithm.

Exhaustive experiments are shown and discussed in Sect. 5. Finally, Sect. 6 offers some

conclusions and includes new directions for future work.

2 Probabilistic classifier chains in multi-label classification

This section formally describes the MLC task and the PCC methods.

2.1 Formal settings of multi-label classification and loss functions

Let be L = {ℓ1, ℓ2, . . . , ℓm} a finite and non-empty set of m labels and S = {(x1, y1), . . . ,

(xn, yn)} a training set independently and randomly drawn according to an unknown prob-

ability distribution P(X, Y) on X × Y , where X and Y are the input and the output

space, respectively. The former is the space of the instance description, whereas the lat-

ter is given by the power set P(L) of L. To ease notation, we define yi as a binary vector

yi = (yi,1, yi,2, . . . , yi,m) in which yi, j = 1 indicates the presence (relevance) and yi, j = 0

the absence (irrelevance) of ℓ j in the labeling of xi . Hence, yi is the realization of a cor-

responding random vector Y = (Y1, Y2, . . . , Ym). Using this convention, the output space

can also be defined as Y = {0, 1}m . The goal in MLC is to induce from S a hypothesis

f : X −→ Y that minimizes the risk in terms of certain loss function L(·) when it provides

a vector of relevant labels y = f (x) = ( f1(x), f2(x), . . . , fm(x)) for unlabeled query

instances x. This risk can be defined as the expected loss over the joint distribution P(X, Y),

that is,

RL( f ) = EX,Y L(Y, f (X)). (1)

therefore, denoted by P( y | x) the conditional distribution Y = y given X = x, then the

so-called risk minimizer f ∗ can be expressed by

123



146 Mach Learn (2017) 106:143–169

f ∗(x) = arg min
f

∑

y∈Y

P( y | x)L( y, f (x)). (2)

Let us comment that the conditional distribution P( y | x) presents different properties

which are crucial for optimizing different loss functions. In this respect, the strategy followed

by a certain MLC algorithm for modeling label dependence determines the loss function that

is optimized. But, unfortunately, for most of the algorithms it is quite complex and confusing

to discover the loss function they attempt to optimize.

With regard to the loss functions, several performance measures have been taken for

evaluating MLC. The most specific ones are the subset 0/1 loss and the Hamming loss, but

there exist other measures that have been taken from other research fields, as such F1 or the

Jaccard index. Here, we will focus on just the subset 0/1 loss, since it is the measure PCCs

are able to optimize. The subset 0/1 loss checks if the predicted and relevant label subsets

are equal or not and is defined by1

L S0/1( y, f (x)) = [[ y �= f (x)]]. (3)

In the case of this evaluation measure, it is sufficient to take the mode of the entire joint

conditional distribution for optimizing this loss. Formally, the risk minimizer adopts the

following simplified form

f ∗(x) = arg max
y∈Y

P( y | x). (4)

2.2 Probabilistic classifier chains

PCCs (Dembczyński et al. 2010) [such as CC (Read et al. 2009, 2011)] are based on learning

a chain of classifiers. These methods take an order of the label set and train a probabilistic

binary classifier for estimating P(y j | x, y1, . . . , y j−1) for each label ℓ j following this order.

Hence, the probabilistic model obtained for predicting label ℓ j , denoted by f j is of the form

f j : X × {0, 1} j−1 −→ [0, 1]. (5)

The training data for this classifier is the set S j = {(x1, y1, j ), . . . , (xn, yn, j )} where

xi = (xi , yi,1, . . . , yi, j−1), that is, the features are xi supplemented by the relevance of the

labels ℓ1, . . . , ℓ j−1 preceding ℓ j in the chain and the category is the relevance of the label

ℓ j .

In the testing stage of the methods based on learning a chain of classifiers, the goal is to

perform inference for each instance, which consists of estimating the risk minimizer for a

given loss function over the estimated entire joint conditional distribution. The idea revolves

around repeatedly applying the general product rule of probability to the joint distribution of

the labels Y = (Y1, Y2, . . . , Ym), that is, computing

P( y | x) =

m
∏

j=1

P(y j | x, y1, . . . , y j−1). (6)

Before analyzing this issue in the next section, note that from a theoretical point of view,

this expression holds for any order considered for the labels. But, in practice, these methods

are label order dependent for several reasons. On the one hand, it is not possible to assure that

the models obtained in the training stage perfectly estimate the joint conditional probability

P( y | x). On the other hand, predicted values instead of true values are successively taken in

1 For a predicate p, the expression [[p]] evaluates to 1 if p is true and 0 otherwise.
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Fig. 1 A generic node and its children of the probability binary tree. The top part of each node contains the

combination of labels and the bottom part includes the joint probability of such a combination. The edges are

labeled with the conditional probability

the testing stage. This is more serious if the highest errors occur at the beginning of the chain,

since error predictions are successively propagated (Montañés 2014; Senge et al. 2012a, b).

In any case, in this paper we assume the order of the labels in the chain to be given, since the

goal is just to analyze the performance of the methods, without taking into account the effect

of different orders. Hence, we do not include any study about which order can be the best.

Before going into the detailed description of the state-of-the-art of the inference approaches

and of our proposal, we note that the training phase is common to all of them, thus, the models

f j induced by the binary classifiers will be the same. So, in what follows we will focus just

on the testing stage.

3 Inference in probabilistic classifier chains

First of all, let us consider the task of performing different inference procedures as different

manners of exploring a probability binary tree in order to facilitate the explanation and

analysis of the inference approaches in the next section. In such a tree, the k-th node of level

j < m with k ≤ 2 j is labeled by yk
j = (v1, v2, . . . , v j ) with vi ∈ {0, 1} for i = 1, . . . , j .

This node has two children respectively labeled as y2k−1
j+1 = (v1, v2, . . . , v j , 0) and y2k

j+1 =

(v1, v2, . . . , v j , 1) and with marginal joint conditional probability P(y1 = v1, . . . , y j =

v j , y j+1 = 0 | x) and P(y1 = v1, . . . , y j = v j , y j+1 = 1 | x). The weights of the edges

between both parent and children are respectively P(y j+1 = 0 | x, y1 = v1, . . . , y j = v j )

and P(y j+1 = 1 | x, y1 = v1, . . . , y j = v j ), which are respectively estimated by 1 −

f j+1(x, v1, . . . , v j ) and f j+1(x, v1, . . . , v j ). The marginal joint conditional probability of

the children is computed by the product rule of probability. Then, P(y1 = v1, . . . , y j =

v j , y j+1 = 0 | x) = P(y j+1 = 0 | x, y1 = v1, . . . , y j = v j ) · P(y1 = v1, . . . , y j = v j | x)

and P(y1 = v1, . . . , y j = v j , y j+1 = 1 | x) = P(y j+1 = 1 | x, y1 = v1, . . . , y j = v j ) ·

P(y1 = v1, . . . , y j = v j | x). The root node is labeled by the empty set. Figure 1 illustrates

this.

Several approaches have been proposed for inference in PCCs. The method the first pro-

posed is the one based on greedy search (GS), being the integral part of the original CC method

(Read et al. 2009). Its successor is the exhaustive search (ES), called the PCC method (Dem-

bczyński et al. 2010). The ǫ-approximate (ǫ-A) algorithm (Dembczynski et al. 2012) is a
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uniform-cost (UC) search algorithm that can output optimal predictions in terms of subset

0/1 loss and also reduces significantly the computational cost of ES. A more recent approach

based on beam search (Kumar et al. 2012, 2013) (BS) presents good behavior both in terms

of performance and computational cost. Finally, Monte Carlo sampling (Dembczynski et al.

2012) is an appealing and simpler alternative (Dembczynski et al. 2012; Read et al. 2014) to

overcome the high computational cost of ES.

This section copes with the particularities of these inference methods, except the Monte

Carlo sampling approaches. We have already studied Monte Carlo approaches (Dembczynski

et al. 2012; Read et al. 2014) and compared them with the ǫ-A algorithm and BS techniques

(Mena et al. 2015). The conclusions of that work were that, although they are well suited for

minimization of other losses, e.g., Hamming loss or example-based F-measure, (i) they need

to explore many more nodes to be closer to the optimal, despite the fact that their performance

could sometimes be better, (ii) they enlarge as the size of the sample drawn grows and (iii)

they are quite slow even for low values of the sample. Hence, we do not consider them as

competitive methods in the present work, although they could sometimes be appealing.

3.1 Greedy search

At the testing stage, the GS strategy, originally called CC (Read et al. 2009, 2011), provides

an output ŷ = (ŷ1, . . . , ŷm) for a new unlabeled instance x by successively querying each

classifier f j that estimates the conditional probability P(y j | x, y1, . . . , y j−1). This means

exploring just one node in each level j . Given that only the two children of the explored node

in level j are taken, their marginal joint conditional probability only differs in the marginal

conditional probability P(y j | x, y1, . . . , y j−1), since both children have the same parent.

Thus, the path selected is that of the child with the highest marginal conditional probability

P(y j | x, y1, . . . , y j−1) and the prediction for an instance x is of the form

ŷ = ( f1(x), f2(x, f1(x)), f3(x, f1(x), f2(x, f1(x))), . . .). (7)

Figure 2a shows the path followed by an instance using this strategy. In this example,

only the right node is explored in each level. The optimal solution is not reached, since the

optimal solution is that which ends in the sixth leaf, whereas the method falls in the last leaf.

Concerning the optimization of subset 0/1 loss, a rigorous analysis (Dembczynski et al.

2012) establishes bounds for the performance of the GS, showing the poor performance of

the method for this loss, although it tends to optimize it.

3.2 Exhaustive search

Unlike GS that explores only a single label combination, ES estimates the entire joint condi-

tional distribution P(· | x) for a new unlabeled instance x, since it provides a Bayes optimal

inference. Hence, it explores all possible paths in the tree. Then, for each h(x), it computes

P( y | x) and L( y, f (x)) for all combination of labels y = (y1, y2, . . . , ym) and outputs the

combination ŷ = (ŷ1, . . . , ŷm) = f ∗(x) with minimum risk for the given loss L(·, ·). By

doing so, it generally improves in terms of performance, since it perfectly estimates the risk

minimizer, albeit at the cost of a higher computational cost, as it comes down to summing

over an exponential (2m) number of label combinations for each h(x).

Figure 2b illustrates this approach where, by exploring all paths, the optimal solution is

always reached.
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(a)

(b)

Fig. 2 An example of paths followed by an instance using a Greedy Search (CC) and b exhaustive Search

(PCC). The dotted arrows show the path followed by the algorithm

3.3 ǫ-approximate algorithm

The ǫ-Approximate (ǫ-A) algorithm (Dembczynski et al. 2012) arises as an alternative to the

high computational cost of ES and to the poor performance of CC. In terms of the probability

tree defined above, it expands only the nodes whose marginal joint conditional probability

exceeds the threshold ǫ = 2−k with 1 ≤ k ≤ m (notice that ǫ =0 and all values of ǫ between

0 and 2−m are in fact the same case of ǫ = 2−m). This marginal joint conditional probability

for a node in level j , which deals with the label ℓ j and for an unlabeled instance x is

P(y1, . . . , y j | x) =

j
∏

i=1

P(yi | x, y1, . . . , yi−1), (8)

where P(yi , | x, y1, . . . , yi−1) is estimated by fi (x, y1, . . . , yi−1).

The nodes are expanded in the order established by this probability, calculating the mar-

ginal joint conditional probability for their children. So, the algorithm does not follow a

specific path, otherwise it changes from one path to another depending on the marginal joint
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conditional probabilities. In the end, two situations can be found: (i) the node expanded is a

leaf or (ii) there are no more nodes that exceed the threshold. If the former situation happens,

the prediction for the unlabeled instance x will be ŷ = (ŷ1, . . . , ŷm) corresponding to the

combination of the leaf reached (see Fig. 3a). Conversely, if situation (ii) takes place, then

GS is applied to the nodes whose children do not exceed the threshold, and the prediction

ŷ = (ŷ1, . . . , ŷm) for the unlabeled instance x in this case will be that with the highest entire

joint conditional probability P(y1, . . . , ym | x) (see Fig. 3b, c).

The parameter ǫ plays an important role in the algorithm. The particular case of ǫ =0 (or

any value in the interval [0, 2−m], that is, k = m) is of special interest, since the algorithm

performs a UC that always finds the optimal solution. Figure 3a illustrates this situation.

Conversely, the method is looking to GS as ǫ grows, being the GS in the case of ǫ = 0.5

(or equivalently ǫ = 2−1, that is, k = 1). This is so because in this case two situations are

possible: (i) only one node has a marginal joint conditional probability greater than ǫ, in

which case the algorithm follows one path, or (ii) no nodes have a marginal joint conditional

probability greater than ǫ, in which case a GS is applied from here to the bottom of the tree.

Figure 3b shows an example of this particular case.

Notice that this method provides an optimal prediction if the entire joint conditional

probability of the corresponding label combination is greater than ǫ. The interpretation of

the method for a generic value of ǫ = 2−k is that the method guarantees reaching a partial

optimal solution at least until the k − th level on the tree. Figure 3c shows the particular case

of ǫ = 0.25.

Consequently, this algorithm estimates the risk minimizer for the subset 0/1 loss to a

greater or lesser extend, depending on the value of ǫ. Moreover, a theoretical analysis of

this estimation (Dembczynski et al. 2012) allows bounding its goodness as a function of the

number of iterations, which in turn depends on ǫ.

3.4 Beam search

Beam Search (BS) (Kumar et al. 2012, 2013) also explores more than one path in the proba-

bilistic tree. This method includes a parameter b called the beam width that limits the number

of combinations of labels explored. The idea is to explore b possible candidate sets of labels

at each level of the tree. Hence, depending on such a value, a certain number of the top levels

are exhaustively explored, particularly a total of k∗ − 1 levels, k∗ being the lowest integer

such that b < 2k∗
. Then, only b number of possibilities are explored for each of the remainder

levels. The combinations explored from the level k∗ to the bottom are those with the highest

marginal joint conditional probability seen thus far. This marginal joint conditional proba-

bility for a node of level j for an unlabeled instance x is the same as for the ǫ-A algorithm.

Hence, such a probability is

P(y1, . . . , y j | x) =

j
∏

i=1

P(yi | x, y1, . . . , yi−1), (9)

where P(yi , | x, y1, . . . , yi−1) is estimated by fi (x, y1, . . . , yi−1).

In the end, the algorithm outputs ŷ = (ŷ1, . . . , ŷm) with the highest entire joint conditional

probability P(y1, . . . , ym | x).

BS differs from GS in that (i) BS explores more than one combination whereas GS just

explores one and also in (ii) the probability taken for deciding a path to follow in the tree

is different from one method to the other. Concerning (ii), both take the marginal joint

conditional probability P(y1, . . . , y j |x), but in the case of GS, that is equivalent to taking
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(a)

(b)

(c)

Fig. 3 Several examples of the paths followed by the ǫ-A algorithm for different values of ǫ. The nodes

with a cross are those that have a marginal joint conditional probability lower than ǫ and, hence, they are not

explored any more. The dotted arrows show the path followed by the algorithm. The solid arrows indicate

the path followed by the algorithm when the marginal joint conditional probability does not exceed the value

of ǫ, and, hence a GS is applied to this node from here to the bottom of the tree. a ǫ-A algorithm with ǫ = 0

(k = m), b ǫ-A algorithm with ǫ = 0.5 (k = 1) and c ǫ-A algorithm with ǫ = 0.25 (k = 2)
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Fig. 4 An example of paths followed by an instance using Beam Search (BS) with b = 2. The nodes with a

cross mean that this node has none of the highest marginal joint conditional probabilities and, hence, it is not

explored any more. The dotted arrows show the path followed by the algorithm

the marginal conditional probability P(y j , | x, y1, . . . , y j−1) since the two nodes explored

in each level of the tree have the same parent, as explained before. However, in the case of

BS, the b nodes explored do not have to have the same parent, even in the case of b = 2. Of

course, if b > 2, this is impossible to happen in a binary tree.

Let consider the case of b = 1. In this case, BS expands just one node in each level, the

one with the highest marginal joint conditional probability that coincides with the highest

marginal conditional probability, so BS when b = 1 follows just one path that coincides with

the one followed by GS. Also, if b = 2m , BS performs an ES. Hence, BS encapsulates both

GS and ES respectively considering b = 1 and b = 2m . This makes it possible to control the

trade-off between computational cost and performance of the method by tuning b between 1

and 2m .

As a final remark, the fact that BS considers marginal joint conditional probabilities makes

the method tend to estimate the risk minimizer for the subset 0/1 loss. Kumar et al. (2012)

and Kumar et al. (2013) do not include any theoretical analysis about the goodness of the

estimation of the risk minimizer, but they empirically show that by taking certain values of

b (b < 15), the risk minimizer provided by the method converges to the one obtained using

ES.

Figure 4 shows an example of the paths explored by the BS algorithm when b = 2.

4 A* algorithm for inference in PCC

The algorithm A* is the most widely-known form of best-first search (Pearl 1984), in which

the best node at each iteration, according to an evaluation function e, is expanded. The

particularity of the A* algorithm is that e can be seen as a function E of the other two

functions g and h, e(k) = E(g(k), h(k)), where g(k) evaluates the cost of reaching node k

from the root and h(k) evaluates the cost of reaching a solution (a leaf) from k. Hence, e(k)

evaluates the total cost of reaching a solution from the root through k. In general, it is possible

to obtain the exact value of the known information (g), but the unknown information must

be estimated through an heuristic (h). To obtain an optimal solution, h must not overestimate

the actual cost of reaching a solution, that is, it must be an admissible heuristic. These kinds

of heuristics are optimistic, because they estimate that the cost of obtaining a solution is less
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than it actually is. Also, the A* algorithm is optimally efficient for any heuristic, because no

other optimal algorithm using the same heuristic guarantees to expand fewer nodes than A*.

4.1 Building an admissible heuristic

In order to adapt A* for inference in PCC, we must take into account that we have probabilities

instead of costs. So, (1) A* must select the node with the highest estimated probability, (2) h

must not underestimate the probability from the node to a leaf, that is, h must be an admissible

heuristic2 and (3) E must be the product function, e = g · h. Considering all these aspects,

e will provide an estimation of the entire joint conditional probability P(y1, . . . , ym | x) for

optimizing subset 0/1 loss. In order to derive g and h, let us say that the product rule of

probability to the joint distribution of the labels Y=(Y1, Y2, . . . , Ym) can be rewritten as

P(y1, . . . , ym | x) = P(y1, . . . , y j | x)

× P(y j+1, . . . , ym | x, y1, . . . , y j ). (10)

Hence, for a node at level j , let us consider g to be the marginal joint conditional probability

P(y1, . . . , y j | x) and h an heuristic that does not underestimate the marginal joint conditional

probability P(y j+1, . . . , ym | x, y1, . . . , y j ). Let us remember that the values of y1, . . . , y j

are known at level j .

Before discussing the heuristic h proposed here, let us notice that g is the same marginal

joint conditional probability that both the ǫ-A algorithm and the BS calculate to select the

nodes to be expanded. Even more, ǫ-A with ǫ = 0 is not only equivalent to the UC search,

but also to A* with the constant heuristic h = 1. This heuristic is admissible too, since no

probability is greater than 1. But, on the other hand, it is also the worst admissible heuristic,

since any other admissible heuristic will dominate it3 and consequently the A* algorithm

using such an heuristic will never expand more nodes than the A* algorithm using h =1.

Let us go now to discuss the heuristic proposed in this paper. Since our heuristic must

not underestimate the marginal joint conditional probability P(y j+1, . . . , ym | x, y1, . . . , y j )

in order to be admissible, it is quite straightforward to pick the maximum value of such

probability for obtaining an optimal heuristic h∗:

h∗ = max(y j+1,...,ym )∈{0,1}m− j P(y j+1, . . . , ym | x, y1, . . . , y j )

= max(y j+1,...,ym )

∈{0,1}m− j

∏m
i= j+1 P(yi | x, y1, . . . , y j , y j+1, . . . , yi−1). (11)

However, obtaining such a maximum is, in fact, applying an ES over the set of labels

L = {ℓ j+1, . . . , ℓm}. Hence, this optimal heuristic is not computationally applicable. So, we

need to obtain a tractable heuristic in exchange for renouncing such optimality. This leads to

design an heuristic ĥ also admissible, but less dominant than h∗ (h∗ ≺ ĥ). For this purpose,

let us consider (y j+1, . . . , ym) the values that define h∗, that is

h∗ =

m
∏

i= j+1

P(yi | x, y1, . . . , y j , y j+1, . . . , yi−1), (12)

2 An heuristic h is admissible for our search problem if and only if it satisfies that h∗(k) ≤ h(k) for any node

k, where h∗(k) is the highest (and unknown) probability from the node k to a leaf.

3 In our case, an heuristic h1 dominates another heuristic h2 (denoted by h1 ≺ h2) if and only if it satisfies

that h1(k) ≤ h2(k) for any node k.
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and let us notice that values (y j+1, . . . , ym) which maximize the product do not have to

maximize each individual term, then

P(yi | x, y1, . . . , y j , y j+1, . . . , yi−1)

≤ max
(y j+1,...,yi−1)

∈{0,1}i−1− j

P(yi | x, y1, . . . , y j , y j+1, . . . , yi−1). (13)

Hence, by defining ĥ as

ĥ =

m
∏

i= j+1

max
(y j+1,...,yi−1)

∈{0,1}i−1− j

P(yi | x, y1, . . . , y j , y j+1, . . . , yi−1). (14)

it is easy to deduce that ĥ is admissible and less dominant than h∗ (h∗ ≺ ĥ). But again,

ĥ is not computationally applicable in general. However, this is not the case if we restrict

ourselves to the case of linear models, for instance using logistic regression. Remember that

P(yi | x, y1, . . . , yi−1) is estimated through the model fi (x, y1, . . . , yi−1) using a sigmoid

function to transform the output of fi (x, y1, . . . , yi−1) into a probability. Particularly,

P(yi = 1 | x, y1, . . . , yi−1) =
1

1 + exp− fi (x,y1,...,yi−1)
(15)

P(yi = 0 | x, y1, . . . , yi−1) = 1 −
1

1 + exp− fi (x,y1,...,yi−1)
. (16)

In order to obtain the maximum value between P(yi = 1 | x, y1, . . . , yi−1) and P(yi =

0 | x, y1, . . . , yi−1), we need first to obtain the maximum value of both terms on their

own. In this direction and according to the above expressions of both probabilities, P(yi =

1 | x, y1, . . . , yi−1) will be maximum if fi (x, y1, . . . , yi−1) is the maximum and analogously

P(yi = 0 | x, y1, . . . , yi−1) will be maximum when fi (x, y1, . . . , yi−1) is the minimum.

Hence, let us now focus on obtaining the maximum and the minimum of fi (x, y1, . . . , yi−1).

From now on, let us consider that fi is a linear model, then fi adopts the following form

fi (x, y1, . . . , yi−1) = 〈wi
x , x〉 + 〈wi

y, (y1, . . . , yi−1)〉 + β i , (17)

that splitting the second term in the known part (from ℓ1 to ℓ j ) and unknown part (from ℓ j+1

to ℓi ) it leads to

fi (x, y1, . . . , y j , y j+1, . . . , yi−1) = 〈wi
x , x〉 +

j
∑

k=1

wi
y,k yk +

i−1
∑

k= j+1

wi
y,k yk + β i . (18)

Since x is given and y1, . . . , y j are fixed, the second summation contains the variables for

which the maximum and the minimum must be obtained. Let Ci be the constant part of fi

with regard obtaining the maximum and the minimum, that is,

Ci (x, y1, . . . , y j ) = 〈wi
x , x〉 +

j
∑

k=1

wi
y,k yk + β i . (19)

Then fi can be rewritten as

fi (x, y1, . . . , y j , y j+1, . . . , yi−1) = Ci (x, y1, . . . , y j ) +

i−1
∑

k= j+1

wi
y,k yk . (20)

123



Mach Learn (2017) 106:143–169 155

Consequently, the function whose maximum must be obtained is

i−1
∑

k= j+1

wi
y,k yk = wi

y, j+1 y j+1 + . . . + wi
y,i−1 yi−1. (21)

Let us now denote by K +
i, j and K −

i, j the positive and negative indexes of the coefficients wi
y,k

with j + 1 ≤ k ≤ i − 1, that is,

K +
i, j = {k | j + 1 ≤ k ≤ i − 1, wi

y,k ≥ 0}

K −
i, j = {k | j + 1 ≤ k ≤ i − 1, wi

y,k < 0}.
(22)

Hence, (21) is maximum when yk for j + 1 ≤ k ≤ i − 1 are

yk =

{

1 if k ∈ K +
i, j

0 if k ∈ K −
i, j

(23)

and (21) is minimum when yk for j + 1 ≤ k ≤ i − 1 are

yk =

{

1 if k ∈ K −
i, j

0 if k ∈ K +
i, j

(24)

Hence,

(i) Let y
i,1
j+1, . . . , y

i,1
i−1 ∈ {0, 1} be the values which maximize (21), that is, the values

that maximize fi (x, y1, . . . , y j , y j+1, . . . , yi−1) and hence, the values which makes

P(yi = 1 | x, y1, . . . , y j , y j+1, . . . , yi−1) be maximum and,

(ii) Let y
i,0
j+1, . . . , y

i,0
i−1 ∈ {0, 1} be the values that minimize (21), that is, the values that

minimize fi (x, y1, . . . , y j , y j+1, . . . , yi−1) and hence, the values which makes P(yi =

0 | x, y1, . . . , y j , y j+1, . . . , yi−1) be maximum.

Hence, max(y j+1,...,yi−1)

∈{0,1}i−1− j

P(yi | x, y1, . . . , y j , y j+1, . . . , yi−1) will be

max
v∈{0,1}

{P(yi = v | x, y1, . . . , y j , y
i,v
j+1, . . . , y

i,v
i−1)}. (25)

Notice that y
i,1
k = 1 − y

i,0
k for j + 1 ≤ k ≤ i − 1 and that according to

the above definition of the sigmoid function, if fi (x, y1, . . . , y j , y
i,1
j+1, . . . , y

i,1
i−1) ≥

− fi (x, y1, . . . , y j , y
i,0
j+1, . . . , y

i,0
i−1), then the maximum of P(yi = v | x, y1, . . . , y j ,

y
i,v
j+1, . . . , y

i,v
i−1) is reached when v = 1 and otherwise when v = 0.

Therefore, the final expression for the heuristic will be

ĥ =

m
∏

i= j+1

max
v∈{0,1}

{P(yi = v | x, y1, . . . , y j , y
i,v
j+1, . . . , y

i,v
i−1)}. (26)

Remember that h∗ and ĥ only differ on the values of y j+1, . . . , yi−1. In the former, the

same values are common for all the factors of the product, whereas in the latter these values

depend on each term i of the product, and hence, they can be different, which makes ĥ not

be an optimal heuristic. On the other hand, the cost of computing ĥ is of polynomial order,

unlike h∗ which is of exponential order. Figure 5 exemplifies ĥ. Let us focus on the root

node of the subtree in Fig. 5. The marginal joint conditional probability until this node is

g = 0.6. For computing ĥ, first we evaluate the maximum marginal conditional probabilities
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Fig. 5 An example of the computation of heuristic ĥ

Fig. 6 An example of A* using the heuristic ĥ. The dotted arrows show the path followed by the algorithm.

The values of g are provided inside each node

P(y2 | x, y1 = 1) provided by f2(x, y1) and P(y3 | x, y1 = 1, y2) provided by f3(x, y1, y2)

which respectively are 0.6 and 1.0. Then we carry out their product by applying the product

rule of the probability to estimate the marginal joint conditional probability from that node

to a leaf. Notice that the maximum at each level does not correspond to the same branch of

the tree. In other words, the maximum in the first level corresponds to y2 = 1, whereas the

maximum in the second level is obtained by P(y3 | x, y1 = 1, y2 = 0) when y3 = 1 fixing

y2 = 0. This is what makes the heuristic ĥ not to be the optimal h∗.

Figure 6 shows the path followed by A* using ĥ. It reaches the optimal leaf as is theoret-

ically expected. Comparing this graph with the one in Fig. 3a that illustrates ǫ-A with ǫ =0,

and taking into account the properties of the heuristics related to the dominance, ǫ-A, ǫ =0

(equivalent to A* using h = 1 or UC search) explores more nodes than A* using ĥ.

As a final remark, the A* algorithm using ĥ perfectly estimates the risk minimizer for

the subset 0/1 loss, as both ǫ-A with ǫ = 0 and ES do it. Even more, A* with ĥ expands

equal or fewer nodes, since ĥ is more dominant than the heuristic h = 1 (ĥ ≺ h = 1).

Obviously, computing ĥ is more costly than computing h = 1 or applying just a UC search.

The question is then if this additional computing time compensates the theoretical guarantee

it has of expanding fewer nodes.
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4.2 A general admissible heuristic for trading off the number of nodes explored

and its computing time

The previous section pointed out that both ĥ and h = 1 are admissible heuristics. Besides,

using the former theoretically guarantees that the A* algorithm explores fewer nodes than

using the latter. But the cost of computing ĥ could be high in comparison to just considering

a constant heuristic h = 1. This trade-off sheds light on including a parameter d for limiting

the depth of the heuristic. Hence, for a node of level j and a value of d with 0 ≤ d ≤ m − j ,

only the terms P(yi | x, y1, . . . , y j , yi
j+1, . . . , yi

i−1) of ĥ are evaluated using fi for nodes

from level j + 1 to level j + k whereas these terms are estimated by the constant 1 for nodes

from level j + k + 1 to level m, that is,

ĥd =

j+d
∏

i= j+1

P(yi | x, y1, . . . , y j , yi
j+1, . . . , yi

i−1) ·

m
∏

i= j+d+1

1, (27)

or equivalently

ĥd =

j+d
∏

i= j+1

P(yi | x, y1, . . . , y j , yi
j+1, . . . , yi

i−1). (28)

It is clear that ĥ is more dominant than ĥd (ĥ ≺ ĥd ) and it continues being admissible. In turn,

ĥd is more dominant than h = 1 (ĥd ≺ h = 1). Hence, it is expected that using the heuristic

ĥd with 0 ≤ d ≤ m − j and 1 ≤ j ≤ m − 1, the A* algorithm explores more number or

equal number of nodes than ĥ, but less number or equal number of nodes than h = 1. In fact,

ĥd encapsulates both heuristics, since taking the extreme values of d leads to them. On the

one hand, taking the maximum value of d leads to ĥm− j with 1 ≤ j ≤ m −1 (we will denote

this heuristic as ĥ∞), which is in fact the heuristic ĥ detailed in Sect. 4.1. On the other hand,

taking the minimum value of d leads to ĥ0 which is indeed the heuristic h = 1. In general,

ĥd1 is more dominant than ĥd2 if d1 > d2. However, the computational time of obtaining the

values of ĥd increases as d increases. Hence, tuning d adequately one can obtain a balance

between the number of nodes explored and the computational time employed to evaluate the

heuristic.

The case of d = 1 has especial interest, since the heuristic is also valid for non-linear

models f j . The form of the heuristic is

ĥ1 =

j+1
∏

i= j+1

P(yi | x, y1, . . . , y j , yi
j+1, . . . , yi

i−1) ·

m
∏

i= j+2

1, (29)

that simplifying leads to

ĥ1 = P(y j+1 | x, y1, . . . , y j ). (30)

As seen, this heuristic ĥ1 means just evaluating the model of the node f j (x, y1, . . . , y j ),

hence without making any restriction on the linearity of f j .

Figure 7 shows an example of the path followed by the A* algorithm when ĥ1 is taken as

an heuristic. As seen, the A* algorithm explores more nodes using this heuristic than using

ĥ, but the computational time of evaluating the heuristic is considerably reduced, as we will

show later on in the experiments.
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Fig. 7 An example of A* using the heuristic ĥ1. The dotted arrows show the path followed by the algorithm.

The values of g are provided inside each node

4.3 Implementation details

Here we significantly extend the results of A* using ĥ presented in the preliminary work

(Mena et al. 2015). However, they present differences because we have carried out an improve-

ment in the implementation of the algorithms in order to become more efficient. In fact, the

time results reported there in comparison with the number of nodes explored was the key to

make us reconsider the implementation of the algorithms. Algorithm 1 shows the pseudocode

of A* using ĥd .

Particularly, the differences between this version and that of the preliminary work (Mena

et al. 2015) are that now:

1. The models fi (parameters wi
x , wi

y and β i ) are ordered according to the label order of

the chain.

2. All repeated computations are calculated just once and stored:

(a) The evaluation of 〈wi
x , x〉 for each linear model fi , which is common for all nodes

corresponding to fi , is computed once and saved in variable W X (line 2).

(b) Sets K + and K −, that is the best values of yk for the unknown part of the heuristic,

are computed only once before starting the main loop of A∗ (lines 3–8).

3. Open set, Q, stores tuples of four elements: label combination, level, e and g. Q is stored

in a resizable vector whose positions are reused. The left child is stored in the position

of its parent (line 21). Notice that parent information is not required to obtain the final

solution, since Q contains all the required information for each node.

4. The design of Q allows us to optimize the function Max , the operation to obtain the

best node to be expanded. The function Max only needs to evaluate the first elements

(1 . . . last) of Q (line 13), because the rest of the vector is unused.

5. Algorithm 1 contains several auxiliary functions to make the pseudocode shorter and

more easily understood. However, in the actual program all these functions were coded

inline, making the code faster because all the calls to functions with large parameters,

like the function Heuristic, are avoided.

4.4 Complexity analysis

Despite the theoretical optimality properties of the A* algorithm, it might not be useful

in some problems because it may explore an exponential number of nodes with regard to
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Algorithm 1 Pseudocode of the implementation of A∗ algorithm using ĥd

1: function A
∗

Input: x, [W, β] a CC Linear Model, m, d, BlockSi ze

Output: Label combination with highest probability for x

2: W X ← Wx ∗ x // Computes 〈wx , x〉 for all labels

3: K + ← AllocMemory(m)

4: K − ← AllocMemory(m)

5: for label = [2 : m] do // Starts at 2nd level, no label attributes in the 1st model

6: K +[label] ← [[Wy [label] >= 0]]

7: K −[label] ← [[Wy [label] < 0]]
8: end for

9: Q ← AllocMemory(BlockSi ze) // tuples {Labels, Level, e, g}
10: Q[1] ← {[ ], 0, 1, 1} // root node, empty label set, level 0, e and g = 1

11: last ← 1 // last element used in Q

12: while true do

13: [Best, Position] ← Max(Q, last)

14: if Best.Level = m then

15: return Best.Labels // Leaf node

16: end if

17: level ← Best.Level + 1

18: P ← 1/(1 + exp(−(W X [level] + β[level] + 〈wy [level], Best.Labels〉)))
19: // Left child

20: ĥd ← Heuristic(d, level, [Best.Labels 0], K +, K −, W X, Wy , x) // Eq(28)

21: Q[Position] ← {[Best.Labels 0], level, Best.g ∗ (1 − P) ∗ ĥd , Best.g ∗ (1 − P)}
22: // Right child

23: last ← last + 1

24: if last > Q.si ze then

25: Q ← resi ze(Q, BlockSi ze)

26: end if

27: ĥd ← Heuristic(d, level, [Best.Labels 1], K +, K −, W X, Wy , x) // Eq(28)

28: Q[last] ← {[Best.Labels 1], level, Best.g ∗ P ∗ ĥd , Best.g ∗ P}
29: end while

30: end function

the depth of the tree [see Pearl (1984) and Russell and Norvig (2003)]. Only under certain

conditions over the heuristic taken, is it possible to obtain an algorithm with a theoretical

complexity less than exponential. This is the case if one is able to prove that the heuristic

h satisfies the following condition for any level j with regard to the optimal heuristic h∗

(Russell and Norvig 2003)

|h∗( j) − h( j)| ≤ O(log h∗( j)). (31)

In general, it occurs that that error is at least linear with regard to the path cost, hence

leading to exponential growth. However, by taking care of designing good heuristics, one

can obtain huge profit in relation to not providing any kind of heuristic information. That is

the case with our heuristic ĥd with regard to the heuristic h = 1, which does not provide any

kind of heuristic information, in spite of being an improvement of the ES.

On what follows, let us focus on the heuristic ĥ∞, since it is the most dominant heuristic

among the heuristics proposed. According to the results where the noise is increasing (see

Figs. 9, 10 of Sect. 5.3), it is not clear that ĥ∞ is exponential at all as the rest of the algorithms

clearly show, at least for the datasets taken. This behavior of ĥ∞ sheds light on performing a

deeper analysis over other situations. In this sense, let us consider a theoretical case when the

difference between ĥ∞ and h∗ is maximum. For instance, this situation occurs (see Fig. 8)

when the first level has probability 0 in the left branch and 1 in the right branch, all the
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Fig. 8 An example of worst cases for heuristic ĥ

probabilities of the left subtree are 0 (for the left branches) and 1 (for the right branches) and

all the probabilities of the right subtree are 1/2 (for all the branches). In this case, the error

can be bounded as follows for any level j

|h∗( j) − ĥ∞( j)| ≤ |1/2 j−1 − 1|. (32)

This bound tends to 1 as the level j grows, hence, in this case, it is not possible to guarantee

that the theoretical complexity is less than exponential. However, these extreme cases are

hardly likely to occur. Let us remember that the probabilities are evaluated from the models,

where the description x of the examples plays an important role. This description is equal

for obtaining the probabilities of all the nodes of the same level, hence, such probabilities

will probably not differ so much among them as in the extreme case considered.

5 Experiments

This section deals with the experiments carried out with all the approaches. Before discussing

the experimental results in Sects. 5.2 and 5.3, let us describe in Sect. 5.1 the common settings

of all experiments: datasets, learning algorithms and parameter selection procedures. Finally,

Sect. 5.3 reports the computational results of the methods for more complex problems, such

as those that include noise.

5.1 Settings

The experiments were performed over several benchmark multi-label datasets whose main

properties are shown in Table 1. As can be seen, there are significant differences in the number

of attributes, instances and labels. The cardinality—number of labels per instance—varies

from 1.07 to 4.27. Concerning the number of labels, there are some datasets with just 5, 6 or

7 labels, whereas others have more than 100, one of them even has almost 400 labels.
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Fig. 9 Number of nodes expanded and computational time employed (ms) for the algorithm A* with the

heuristic ĥ for different values of the parameter d (1, 2, 3, ∞) and for the ǫ-A with ǫ = 0, for different

percentages of noise and for datasets with few labels (from 5 to 7). a Image (5), b emotions (6), c scene (6),

d flags (7) and e reuters (7)
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Fig. 10 Number of nodes expanded and computational time employed (ms) for the algorithm A* with the

heuristic ĥ for different values of the parameter d (1, 2, 3, ∞) and for the ǫ-A with ǫ = 0, for different

percentages of noise and for datasets with more labels (from 14 to 159). a Yeast (14), b slashdot (22), c

medical (45), d enron (53), e mediamill (101) and f bibtex (159)
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Table 1 Properties of the datasets

Datasets Instances Attributes Labels Cardinality

Bibtex 7395 1836 159 2.40

Corel5k 5000 499 374 3.52

Emotions 593 72 6 1.87

Enron 1702 1001 53 3.38

Flags 194 19 7 3.39

Image 2000 135 5 1.24

Mediamill* 5000 120 101 4.27

Medical 978 1449 45 1.25

Reuters 7119 243 7 1.24

Scene 2407 294 6 1.07

Slashdot 3782 1079 22 1.18

Yeast 2417 103 14 4.24

The approaches for inference in PCC compared with our proposal were those discussed

throughout the paper, except for the ES. No experiment was carried out with the ES method

due to its computational cost. Hence, the methods compared with the A* algorithm with the

heuristic ĥ for different values of the parameter d (1, 2, 3,∞) were GS, ǫ-A algorithm for

different values of ǫ (.0, .25, .5) and BS for different values of beam width b (1, 2, 3, 10).

Let us remember that the ǫ-A algorithm with ǫ = 0.5 is equivalent to GS and to BS with

b = 1.

The results will be presented in terms of the example-based subset 0/1 loss estimated by

means of a 10-fold cross-validation.

The base learner employed to obtain the binary classifiers that compose all these

multi-label models was logistic regression (Lin et al. 2008) with probabilistic output. The

regularization parameter C was established for each individual binary classifier performing

a grid search over the values C ∈ {10−3, 10−2, . . . , 103} optimizing the brier loss estimated

by means of a balanced 2-fold cross validation repeated 5 times. The brier loss (Brier 1950) is

a proper score that measures the accuracy of probabilistic predictions, as logistic regression

does. The expression is as follows

1

n

n
∑

i=1

( p̂i − ai )
2, (33)

where for an instance i , pi is the predicted probability of a certain label and ai is the actual

value of the label (0 or 1).

5.2 Results over benchmark datasets

Tables 2, 3 and 4 respectively show the subset 0/1 loss, the number of nodes explored and

the computational time (in seconds) averaged per test instances for the different methods

compared.

Before discussing the results of the tables, let us remember that only the A* algorithm

using ĥd (and consequently also the ǫ-A with ǫ =0, since it is the A* algorithm with h = 1 or

ĥ0) provides a Bayes optimal inference, as the ES does. This means that they always predict
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Table 2 Subset 0/1 loss for the different methods

Datasets ĥ (*) ǫ-A(.0) ǫ-A(.25) GS/BS(1) ǫ-A(.5) BS(2) BS(3) BS(10)

Bibtex 81.92 81.95 82.19 81.88 81.92 81.92

Corel5k 97.48 98.62 98.90 98.30 98.04 97.48

Emotions 71.16 71.82 72.83 72.16 71.32 71.16

Enron 83.14 84.26 85.43 83.43 83.37 83.14

Flags 87.13 87.16 86.13 88.21 87.13 87.13

Image 68.35 68.35 69.75 68.35 68.35 68.35

Mediamill* 83.86 84.58 85.80 84.10 83.86 83.86

Medical 30.37 30.37 30.67 30.37 30.37 30.37

Reuters 22.73 22.70 23.60 22.69 22.73 22.73

Scene 31.86 31.86 33.28 31.90 31.86 31.86

Slashdot 51.80 52.22 54.49 51.77 51.80 51.80

Yeast 76.95 77.62 79.77 76.83 77.08 76.95

Those scores that are equal to or better than optimal predictions reached by ǫ-A and ES are shown in bold

the label combination with the highest joint conditional probability. Despite the fact that other

methods may predict other label combinations with lower joint conditional probability for

some examples, in a few cases they obtain better subset 0/1 scores. This fact is due to several

reasons, mainly (a) the relatively small size of testing sets, and (b) that the models f j obtained

to estimate the joint conditional probability P( y | x) do not usually return true estimations.

Theoretically, under perfect conditions (large test sets and perfect models), the A* algorithm

using ĥd would obtain the best scores. In general, the performance of the ǫ-A algorithm

decreases as the value of ǫ increases and the performance of the BS method increases as b

increases. The BS method reaches stability for low values of the beam b, it even converges

to the performance of the A* algorithm but at the cost of exploring many more nodes.

With regard to the number of nodes explored (see Table 3), GS (equivalent to ǫ-A algorithm

with ǫ = 0.5 and to BS(1)) is the method which explores the least number of nodes, since

it only goes over one path in the tree. In fact, such a number corresponds to the number of

labels (plus one if the root is considered as an explored node). It follows the A* algorithm

using our heuristic ĥd for any value of d , although it is exceeded by the ǫ-A algorithm with

ǫ > 0 and by BS with b > 1 in some cases. However, let us remember that neither GS nor

the ǫ-A algorithm with ǫ > 0 nor BS with any value of the beam b guarantee reaching an

optimal solution as the A* algorithm using heuristic ĥd does. So, it is not surprising that they

explore fewer nodes. What it is actually surprising is that for most of the cases they explore

more nodes even without reaching an optimal solution.

Let us now focus on the methods that theoretically reach the optimum (the A* algorithm

with the heuristic ĥd or the ǫ-A algorithm with ǫ =0). As it has theoretically been shown, the

A* algorithm with the heuristic ĥ∞ explores the least number of nodes, followed by the same

algorithm but with the heuristic ĥ3, then with the heuristic ĥ2, after that with the heuristic ĥ1

and finally the ǫ-A algorithm with ǫ =0.

The computational time is expected to be higher as more nodes are explored, but looking

at Table 4 one can see that this does not happen at all. This is true for GS, the ǫ-A algorithm

and the BS technique, but the A* algorithm obtains higher computational time in spite of

exploring considerably fewer nodes. The reason for that is the time spent in computing the
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ĥ

2
ĥ
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heuristic. In this respect, the A* algorithm is faster as the parameter d diminishes, although

this implies exploring more nodes. Hence, considering the methods that reach the optimum,

the ǫ-A approximation algorithm with ǫ =0 is the fastest method, followed by A* using the

heuristic ĥ1, then ĥ2 and so on until ending with the heuristic ĥ∞.

As a conclusion, the A* algorithm with the heuristic h1 can be considered a good alterna-

tive for guaranteeing optimal performance in terms of subset 0/1 and balancing the trade-off

between the number of nodes explored and the computational time. Besides, it is also applica-

ble for non-linear models.

5.3 Results with noise

We have also performed experiments including noise in the datasets in order to analyze more

in depth the power of the A* algorithm for inference in PCCs. This study arises from the

fact that the number of nodes explored by A* is quite low in comparison with the number

of labels (depth of the tree). This is so even using the heuristic h = 1 (ǫ-A with ǫ = 0)

which does not provide information as other heuristics do, for instance, ĥ. This means that

the algorithm A* performs few backtracking in the tree, hence, the probabilities provided

by the models may be not so close from 0.5 or, even more, they may be close to 0 or 1. In

this way, by adding noise we expect the probabilities to be closer to 0.5, making the problem

more complex where more informative heuristics can show their strength.

Certain grades of noise in terms of percentage were added to the datasets. No kinds of

noise were included in the description of the examples, that is, in the x part, otherwise, the

noise was only introduced in the labels of the examples, that is, in the y part. In this sense, a

percentage of the values of the labels was swapped from being relevant to become irrelevant

and vice versa for the whole dataset. This means that for a given example the relevance of

either all their labels or only some of them or even none of them was changed. The percentage

of noise included ranges from 0 to 25 % for datasets with fewer than 22 labels. However, the

experiments did not finish in a prudential time by using all the percentages of this range for

datasets with more than 45 labels. In particular, the maximum percentage considered in this

respect for medical (45 labels), enron (53 labels), mediamill (101 labels) and bibtex (159

labels) respectively was 18, 10, 8 and 4 %.

Figures 9 and 10, respectively show for datasets with few labels (from 5 to 7) and for

datasets with more labels (from 14 to 159), the number of nodes expanded and the compu-

tational time employed by the A* algorithm with the heuristic ĥ for different values of the

parameter d (1, 2, 3,∞) and by the ǫ-A with ǫ =0, all of them for different percentages of

noise.

Obviously, both the number of nodes explored and the computational time increases as

the percentage of noise increases. Regarding the number of nodes explored, it decreases as

d increases as theoretically expected. In this respect, the number of nodes expanded using

the heuristic ĥ∞ keeps quite steady as the noise increases in comparison to using the rest of

the heuristics. In fact, by using these other heuristics, the number of nodes rockets from a

certain percentage of noise. This is so in general, but it especially happens for datasets with

more than 14 labels.

Concerning the computational time and for datasets with few labels, A* using ĥd from

d > 1 is steadier than using ĥ1 or ǫ-A with ǫ =0 as the noise increases. In fact, these two last

approaches are the best options, ĥ1 being clearly better than ǫ-A with ǫ = 0. However, for

high percentages of noise the other options begin to show their strength. Only flags among

the datasets with few labels presents a different behavior. In this case, the behavior of the

computational time is similar to that of the datasets with more labels, which coincides with
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the behavior of the number of nodes. So, the computational time increases as d decreases

and ĥ∞ becomes clearly the best option. In any case, we are measuring the computational

time in milliseconds, so the worth of the heuristics becomes crucial for datasets with more

than 22 labels.

6 Conclusions

This paper proposes a family of admissible heuristics for the A* algorithm for performing

inference in PCCs. In this way, providing admissible heuristics leads obtaining optimal pre-

dictions in terms of subset 0/1 loss and exploring fewer nodes than previous approaches that

also produce optimal predictions. The family of heuristics (ĥd ) is defined by a parameter d

which determines the depth in the tree for evaluating the heuristic and, hence, controls the

trade-off between the number of nodes explored and the computational time of the algorithm

due to the evaluation of the heuristic. In this manner, the algorithm A*(ĥd ) explores fewer

nodes but it expends more time in reaching a solution as d increases. So far, only uniform-cost

search (or ǫ-A(ǫ = .0), which in turn is the particular case of the A*(ĥ0)) has been shown to

provide optimal subset 0/1 loss, unlike other approaches such as GS, ǫ-A(ǫ > 0) or BS that

only estimate it. The algorithm A*(ĥd ) with d > 1 is limited to linear models, but this is not a

major drawback because it is quite common to employ linear models. This is usually the case

for MLC problems with many labels in which the examples of some classes may be scarce,

since using non-linear models in such problems can lead to overfitting. Only the particular

case of d = 1 is also suitable for non-linear models, since it just involves evaluating the

models from all the known values of the labels.

In the experiments performed over the benchmark datasets, the algorithm A*(ĥ1) or

uniform-cost search (or ǫ-A(ǫ = .0) or A*(ĥ0)) are better choices than A*(ĥd ) for d > 1,

since the computational cost of evaluating the heuristic does not seem to compensate for the

reduction in nodes explored. In this respect, adding noise to the benchmark datasets, and,

hence, obtaining more complex problems, allows us to show the strength of A*(ĥd ) for d > 1.

In this sense, the behavior of A*(ĥ∞) is quite steady as the percentage of noise increases,

unlike A*(ĥd ) for the rest of the values of d , including d = 0 (ǫ-A(ǫ = .0)). Furthermore,

only for small datasets in a number of labels, ĥ1 becomes the best alternative.

In our opinion, the heuristic search is a promising line of research for inference in PCCs. As

future work, new admissible heuristics can be devised, keeping in mind that we should look

for a trade-off between their computational complexity and the quality of the estimations.
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