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A family of boundary value methods (BVMs) with continuous coe
cients is derived and used to obtain methods which are applied
via the block uni�cation approach. 	e methods obtained from these continuous BVMs are weighted the same and are used to
simultaneously generate approximations to the exact solution of systems of second-order boundary value problems (BVPs) on
the entire interval of integration. 	e convergence of the methods is analyzed. Numerical experiments were performed to show
e
ciency and accuracy advantages.

1. Introduction

In what follows, we consider the general system of second-
order boundary value problems:��� = � (�, �, ��) , � ∈ [�, 	] ,� (�) = �0,� (	) = ��,

(1)

where � : R × R2� → R
� are continuous functions, �, ��,

and ��� ∈ R�, and � is the dimension of the system. 	ese
second-order boundary value problems are encountered in
several areas of engineering and applied sciences such as
celestial mechanics, circuit theory, astrophysics, chemical
kinetics, and biology. Most of these problems cannot be
solved analytically, thus the need for a numerical approach. In
practice, (1) is solved by the multiple shooting technique and
the �nite di�erence methods. 	e construction and imple-
mentation of higher ordermethods for the latter approach are
di
cult while the former approach su�ers from numerical
instability if the BVP is sti� [1–3] and singularly perturbed.

In the past few decades, the boundary value methods
(BVMs) have been used to solve �rst-order initial and

boundary value problems [4–8]. 	eir stability and conver-
gence properties have been fully discussed in [5].	eseBVMs
are also used to solve higher order initial and boundary value
problems by �rst reducing the higher order di�erential equa-
tions into an equivalent �rst-order system. 	is approach
increases the computational costs and time and also does
not utilize additional information associated with speci�c
di�erential equations such as the oscillatory nature of some
solutions [9, 10].

Lambert and Watson [11] have derived symmetric
schemes for periodic initial value problems of the special
second-order ��� = �(�, �). Brugnano and Trigiante [4–
6] have also derived BVMs for the �rst-order initial and
boundary value problems. Amodio and Iavernaro [12] used
BVMs to solve the special second-order problem ��� =�(�, �). Biala, Biala and Jator, Jator and Li [13–15] applied
the BVMs to solve the general second-order problem ��� =�(�, �, ��) and Aceto et al. [16] constructed symmetric linear
multistepmethods (LMMs)whichwere used as BVMs for the
special second-order problem ��� = �(�, �). In this paper, we
have derived a class of BVMs and given a general framework
via the block uni�cation approach on how to use the BVMs
on systems of BVPs for the general second-order di�erential
equations (ODEs).
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	e boundary value technique simultaneously generates

approximate solution (�1, �2, . . . , ��−1)� to the exact solution(�(�1), �(�2), . . . , �(��−1))� of (1) on the entire interval of
integration.	e BVMs can only be successfully implemented
if used together with appropriate additional methods [5]. In
this regard, we have proposed methods which are obtained
from the same continuous scheme and are derived via the
interpolation and collocation approach [15, 17–19].

	e paper is organised as follows. In Section 2, we derive
a continuous approximation �(�) of the exact solution�(�). Section 3 gives the speci�cation of the methods. 	e
convergence of the methods is discussed in Section 4. 	e
use and implementation of the methods on ODEs and
partial di�erential equations (PDEs) are detailed in Section 5.
Numerical tests and concluding remarks are given in Sections
6 and 7, respectively.

2. Derivation of Methods

In this section, we shall use the interpolation and colloca-
tion approach [17] to construct a 2]-step continuous LMM
(CLMM) which will be used to produce the main and
additional formulas for solving (1).

Our starting point is to construct the CLMM which has
the form

� (�) = 

]
(�) ��+] + 
0 (�) �� + ℎ2 2]∑

�=0
�� (�) ��+�, (2)

where 
0(�), 
](�), and ��(�) are continuous coe
cients and
] is chosen to be half the step number so that each formula,
derived from (2), satis�es the root condition. 	e main and
additional methods are then obtained by evaluating (2) at��+� (� = 1(1)2], � ̸= ]) to obtain the formulas of the form

��+� + 2��+] − �� = ℎ2 2]∑
�=0
����+�,

� = 1, . . . , ] − 1, ] + 1, . . . , 2], (3)
ℎ���+	 + 
�]��+] + 
�0�� = ℎ2 2]∑

�=0
�����+�, � = 0 (1) (2]) (4)

obtained from the �rst derivative of (2).
Next, we discuss the construction of (2) in the theorem

that follows.

�eorem 1. Let (2) satisfy the following equations:� (��+
) = ��+
 � = 0, ],��� (��+�) = ��+� � = 0 (1) (2]) . (5)


en, the continuous representation (2) is equivalent to

� (�) = 2]+2∑
�=0

det (��)
det (�) �� (�) , (6)

where one de�nes the matrix V as

� =((((((
(

�0 (��) �1 (��) ⋅ ⋅ ⋅ �2]+2 (��)�0 (��+]) �1 (��+]) ⋅ ⋅ ⋅ �2]+2 (��+])���0 (��) ���1 (��) ⋅ ⋅ ⋅ ���2]+2 (��)���0 (��+1) ���1 (��+1) ⋅ ⋅ ⋅ ���2]+2 (��+1)... ... ... ...���0 (��+2]) ���1 (��+2]) ⋅ ⋅ ⋅ ���2]+2 (��+2])

))))))
)
, (7)

�� is obtained by replacing the jth column of V by

! = (��, ��+], ��, ��+1, . . . , ��+2])� , (8)

and ��(�) = ��, � = 0(1)(2] + 2) are basis functions.
Proof. We require that method (2) be de�ned by the assumed
polynomial basis functions


� (�) = 2]+2∑
�=0

�+1,��� (�) , � = 0, ]

ℎ2�� (�) = 2]+2∑
�=0
ℎ2��+1,��� (�) , � = 0 (1) (2]) , (9)

where 
�+1,� and ℎ2��+1,� are coe
cients to be determined.
Substituting (9) into (2), we have

� (�) = 2]+2∑
�=0

�+1,0�� (�) �� + 2]+2∑

�=0

�+1,]�� (�) ��+]

+ 2]∑
�=0

2]+2∑
�=0
ℎ2��+1,��� (�) ��+� (10)

which is simpli�ed to� (�)
= 2]+2∑
�=0

{{{
�+1,0�� + 
�+1,]��+] +
2]∑
�=0
ℎ2��+1,���+�}}}�� (�)

(11)

and expressed in the form

� (�) = 2]+2∑
�=0
*��� (�) , (12)

where

*� = 
�+1,0�� + 
�+1,]��+] + 2]∑
�=0
ℎ2��+1,���+�. (13)

Imposing conditions (5) on (12), we obtain a system of(2] + 3) equations which can be expressed as �- = !, where
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- = (*0, *1, . . . , *2]+2)� is a vector of (2] + 3) undetermined
coe
cients.

Using Crammer’s rule, the elements of - are determined
and given as

*� = det (��)det (�) , � = 0 (1) (2] + 2) , (14)

where �� is obtained by replacing the �th column of � by!.
We rewrite (12) using the newly found elements of - as in (6);
that is,

� (�) = 2]+2∑
�=0

det (��)
det (�) �� (�) . (15)

3. Specification of Methods

In this section, we specify the family ofmethods by evaluating
the CLMM (2) at ��+�, � = �, ] − 1, ] + 1, . . . , 2], which is also
used to obtain the derivative formula given by

�� (�)
= 1ℎ (
�] (�) ��+] + 
�0 (�) �� + ℎ2 2]∑�=0��� (�) ��+�) , (16)

which is e�ectively applied by imposing that

�� (�) = ��0,�� (	) = ���, (17)

to produce derivative formulas of the form (4).

3.1. BVM of Orders 4, 6, and 8. For ] = 1, the BVM of order
4 is given as follows (where we have denoted a BVM with �
step number as BVM�):
BVM2

��+2 − 2��+1 + �� = ℎ212 (�� + 10��+1 + ��+2) , (18)

with the derivative formulas

ℎ��� − ��+1 + �� = ℎ224 (−7�� − 6��+1 + ��+2) ,
ℎ���+1 − ��+1 + �� = ℎ224 (3�� + 10��+1 − ��+2) ,
ℎ���+2 − ��+1 + �� = ℎ224 (�� + 26��+1 + 9��+2) .

(19)

For ] = 2, we obtain the BVM of order 6 given as follows:

BVM4

��+1 − 12��+2 − 12�� = ℎ2480 (−19�� − 204��+1− 14��+2 − 4��+3 + ��+4) ,
��+3 − 32��+2 + 12�� = ℎ2480 (17�� + 252��+1+ 402��+2 + 52��+3 − 3��+4) ,
��+4 − 2��+2 + �� = ℎ215 (�� + 16��+1 + 26��+2+ 16��+3 + ��+4) , < = 0 (4) (> − 4) ,

(20)

with the derivative formulas

ℎ��� − 12��+2 + 12�� = ℎ2180 (−53�� − 144��+1+ 30��+2 − 16��+3 + 3��+4) ,
ℎ���+1 − 12��+2 + 12�� = ℎ2720 (39�� + 70��+1− 144��+2 + 42��+3 − 7��+4) ,
ℎ���+2 − 12��+2 + 12�� = ℎ2180 (5�� + 104��+1 + 78��+2− 8��+3 + ��+4) ,
ℎ���+3 − 12��+2 + 12�� = ℎ2720 (31�� + 342��+1+ 768��+2 + 314��+3 − 15��+4) ,
ℎ���+4 − 12��+2 + 12�� = ℎ2180 (3�� + 112��+1 + 56��+2+ 240��+3 + 59��+4) .

(21)

For ] = 3, we obtain the BVM of order 8 given as follows:

BVM6

��+1 − 13��+3 − 23�� = ℎ260480 (−2803�� − 37950��+1− 14913��+2 − 7108��+3 + 3147��+4 −990��+5+ 137��+6) ,
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��+2 − 23��+3 − 13�� = ℎ260480 (−1291�� − 21906��+1− 32133��+2 − 6288��+3 + 1467��+4 −402��+5+ 53��+6) ,
��+4 − 43��+3 + 13�� = ℎ230240 (661�� + 10734��+1+ 19323��+2 + 27268��+3 + 2523��+4 −18��+5− 11��+6) ,
��+5 − 53��+3 + 23�� = ℎ212096 (535�� + 8550��+1+ 15501��+2 + 22900��+3 + 11889��+4 +1158��+5− 53��+6) ,
��+6 − 2��+3 + �� = ℎ22240 (141�� + 2430��+1+ 4131��+2 + 6756��+3 + 4131��+4 +2430��+5+ 141��+6) , < = 0 (6) (> − 6) ,

(22)

with the derivatives

ℎ��� − 13��+3 + 13�� = ℎ213440 (−3795�� − 14850��+1+ 2403��+2 − 6300��+3 + 3267��+4 −1026��+5+ 141��+6) ,
ℎ���+1 − 13��+3 + 13�� = ℎ2120960 (4019�� − 3426��+1− 7125��+2 + 18308��+3 − 11019��+4 + 3390��+5− 457��+6) ,
ℎ���+2 − 13��+3 + 13�� = ℎ2120960 (2293��+ 46830��+1 + 22683��+2 − 14204��+3+ 3579��+4 − 786��+5 + 85��+6) ,
ℎ���+3 − 13��+3 + 13�� = ℎ213440 (315�� + 4590��+1+ 9369��+2 + 6576��+3 − 1107��+4 + 270��+5− 33��+6) ,

ℎ���+4 − 13��+3 + 13�� = ℎ2120960 (2453��+ 44526��+1 + 70779��+2 + 135812��+3+ 51675��+4 − 3090��+5 + 245��+6) ,
ℎ���+5 − 13��+3 + 13�� = ℎ2120960 (2995��+ 40350��+1 + 85377��+2 + 103300��+3+ 145653��+4 + 47166��+5 − 1481��+6) ,
ℎ���+6 − 13��+3 + 13�� = ℎ213440 (141�� + 5886��+1+ 4995��+2 + 19812��+3 + 5859��+4 + 19710��+5+ 4077��+6) , < = 0 (6) (> − 6) .

(23)

4. Convergence of the Methods

In this section, we shall establish the convergence of the
BVMs derived in the previous section. We emphasize that
we evaluate (2) at ��+1, ��+2, . . . , ��+]−1, ��+]+1, . . . , ��+2] to
obtain

��+1 + 
(1)] ��+] + 
(1)0 �� = ℎ2 2]∑
�=0
�(1)� ��+�

��+2 + 
(2)] ��+] + 
(2)0 �� = ℎ2 2]∑
�=0
�(2)� ��+�

...
��+]−1 + 
(]−1)]

��+] + 
(]−1)0 �� = ℎ2 2]∑
�=0
�(]−1)� ��+�

��+]+1 + 
(]+1)]
��+] + 
(]+1)0 �� = ℎ2 2]∑

�=0
�(]+1)� ��+�

...
��+2] + 
(2])]

��+] + 
(2])0 �� = ℎ2 2]∑
�=0
�(2])� ��+�

(24)

and also evaluate ��(�) at ��+�, � = 0(1)(2]), to obtain
ℎ��� + 
�(0)]

��+] + 
�(0)0 �� = ℎ2 2]∑
�=0
��(0)� ��+�

ℎ���+1 + 
�(1)]
��+] + 
�(1)0 �� = ℎ2 2]∑

�=0
��(1)� ��+�
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...
ℎ���+2] + 
�(2])]

��+] + 
�(2])0 �� = ℎ2 2]∑
�=0
��(2])� ��+�.

(25)

We note that the formulas in (24) and 4 are ?(ℎ2]+4).
We introduce thematrices� and@ such that systems (24)

and 4 are given by �A − @B (A) + C = 0, (26)

and the exact form of the system is�A − @B (A) + C + - (ℎ) = 0, (27)

where � = [ �11 O�21 �22 ] ,
@ = [ @11 O@21 O

] . (28)

��� and @�� are > × > matrices, O is the zero

matrix, A = (ℎ��0, �1, . . . , ��−1, ℎ��1, . . . , ℎ���)�, B =(ℎ��0 , �1, . . . , ��−1, ℎ��1 , . . . , ℎ���)�, C is a vector of constants,
and -(ℎ) is the truncation error vector of the formulas in
(24) and 4.

Lemma 2. Let P be a 2×2 block lower triangular matrix given
by

� = [ �11 O�21 �22 ] , (29)

where each submatrix is of order N and O is the zero matrix.

en, P is invertible if and only if �11 and �22 are invertible.
Moreover,

�−1 = [ �−111 O−�−122 �21�−111 �−122 ] . (30)

�22 is an identity matrix so that ‖�−122 ‖ = 1.	us, to obtain

an estimate for ‖�−1‖, it su
ces to show the existence of the
inverse of �11.

Now, we de�ne �11 = G11 − �11, (31)

whereG11 = diag(�11) so thatG−111�11 = H − G−111�11 (32)

and consequently �11 is nonsingular provided I(G−111�11) < 1
([21]).

	us, �−1 exists provided I(G−111�11) < 1.
Lemma 3. If K < 1/ℎ2‖�−1‖‖@‖, then the matrix M =� − ℎ2@N is monotone, that is M−1 > 0, where N is also
a 2 × 2 block matrix of �rst partial derivatives and K =
max{|P��/P��|, |P��/P��� |, � = 1(1)>}.

Proof.

M = � − ℎ2@NM�−1 = H − ℎ2@N�−1
�M−1 = (H − ℎ2@N�−1)−1 = H + (ℎ2@N�−1)
+ (ℎ2@N�−1)2 + (ℎ2@N�−1)3 + ⋅ ⋅ ⋅= [H + ℎ2@N�−1]
⋅ [H + (ℎ2@N�−1)2 + (ℎ2@N�−1)4 + ⋅ ⋅ ⋅] .

(33)

	e two series converge provided the spectral radiusI(ℎ2@N�−1) < 1:
M−1 = [�−1 + ℎ2�−1@N�−1]
⋅ [H + (ℎ2@N�−1)2 + (ℎ2@N�−1)4 + ⋅ ⋅ ⋅] . (34)

	e in�nite series is nonnegative. 	us, to show that M is
monotone, it su
ces to show that

�−1 + ℎ2�−1@N�−1 > 0�−1 > ℎ2�−1@N�−1H > ℎ2�−1@NUUUUUℎ2�−1@NUUUUU ≤ ℎ2 UUUUU�−1UUUUU ‖@‖ ‖N‖ < 1
(35)

for ‖N‖ = K < 1/ℎ2‖�−1‖‖@‖.
�eorem 4. Let A be an approximation of the solution vectorA for the system obtained on a partition W� fl {� = �0 <�1 < �2 < ⋅ ⋅ ⋅ < ��−1 < �� = 	} from systems (24) and 4. IfX� = |�� −�(��)| and X�� = |��� −��(��)|, where the exact solution�(�) is assumed to be several times di�erentiable on [�, 	], and
if ‖Y‖ = ‖A−A‖, then, for su
ciently small ℎ, ‖Y‖ = ?(ℎ2]+2).
Proof. Subtracting (27) from (26), we obtain

MY = - (ℎ) . (36)

Under the conditions of Lemma 3, M−1 exists and is nonneg-
ative. 	erefore,

Y = (� − ℎ2@N)−1 - (ℎ)
= (H − ℎ2�−1@N)−1 �−1- (ℎ)

‖Y‖ ≤ UUUUUU(H − ℎ2�−1@N)−1UUUUUU UUUUU�−1UUUUU ‖- (ℎ)‖
≤ UUUUU�−1UUUUU ‖- (ℎ)‖1 − ℎ2 UUUU�−1UUUU ‖@‖ ‖N‖

(37)
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provided ℎ2‖�−1‖‖@‖‖N‖ < 1. Hence,
‖Y‖ ≤ UUUUU�−1UUUUU? (ℎ2]+4)1 − ℎ2KUUUU�−1UUUU ‖@‖ = ? (ℎ2]+2) . (38)

5. Use of Methods

In this section, we discuss the use of methods in (16) and
(17) for < = 0(2])(> − 2]), where > is a multiple of 2].
We emphasize that the methods in (16) and (17) are all main
methods since they are weighted the same and their use
leads to a single matrix equation which can be solved for the
unknowns. For example, for BVM6, we make use of each of
the methods above in steps of 6; that is, < = 0, 6, . . . , > − 6.
	is results in a system of 2> equations in 2> unknowns
which can be easily solved for the unknowns. Below is an
algorithm for the use of the methods.

	e methods are implemented as BVMs by e
ciently
using the following steps.

Step 1. Use the methods in (16) and (17) for < = 0 to obtain
Y1 in the interval [�0, �2]] and for < = 1 Y2 is obtained
in the interval [�2], �4V]. Similarly, for < = 2, 3, . . . , (Γ − 1),
we obtain Y3, . . . ,YΓ, where > = 2] × Γ in the intervals,[�4V, �6V], [�6V, �8V], . . . , [��−2], ��], respectively.
Step 2. 	e uni�ed block given by the system
Y1⋃Y2⋃ ⋅ ⋅ ⋅ ⋃YΓ−1⋃YΓ obtained in Step 1 results in
a system of 2> equations in 2> unknowns which can be
easily solved.

Step 3. 	e values of the solution and the �rst derivatives of
(1) are generated by the sequence {��}, {���}, < = 0, . . . , >,
obtained as the solution in Step 2.

We note that all computations were carried out in Math-
ematica 10.0 enhanced by the feature FindRoot[ ].
6. Numerical Examples

In this section, we consider seven numerical examples.
Examples 1 to 5 were solved using the BVMs � = 4, � =6, and � = 8 (derived in this paper) of orders 6, 8, and
10, respectively. Also, these examples were solved using the
Extended Trapezoidal Methods of the second kind (ETRs)
and the Top Order Methods (TOMs) given in [5] of orders
6 and 10, respectively. Comparisons are made between the
BVM � = 4 and the ETRs [5] as well as between the BVM� = 8 and the TOMs [5] by obtaining the maximum errorsY� in the interval of integration. We also compared our
methods with the Sinc-Collocation method [20]. Examples
6 and 7 were solved using the BVMs of order 6. We note
that the number of function evaluations (NFEs) involved in
implementing the BVMs is > × 2] in the entire range of
integration. 	e code was based on Newton’s method which
uses the feature FindRoot[ ] or NSolve[ ] for linear problems
in Mathematica. 	e e
ciency curves show the plot of the

logarithm of Y� against the number of function evaluations
for each method.

Example 1. We consider the linear system of second-order
boundary value problems given in [20]^2�1^�2 + (2� − 1) ^�1^� + cos (W�) ^�2^� = �1 (�) ,0 < � < 1^2�2^�2 + ��1 = �2 (�)�1 (0) = �2 (0) = �1 (1) = �2 (1) = 0,

(39)

where �1 (�) = −W2 sin (W�)+ (2� − 1) (W + 1) cos (W�) ,�2 (�) = 2 + � sin (W�)
Exact: �1 (�) = sin (W�) ,�2 (�) = �2 − �.

(40)

	is problem was solved using the ETRs and BVM of
order 6 as well as the TOMs and BVM of order 10. 	e maxi-
mum Euclidean norm of the absolute errors in �1 and �2 was
obtained in the entire interval of integration. In Table 1, we
compared the Sinc-Collocation method [20] with the BVM
of order 8. Table 2 shows the comparison between the ETRs,
BVM4,TOMs, andBVM8.While the results of thesemethods
are of approximate accuracy, we emphasize that the TOMs
and ETRs use 20 function evaluations per step while the
BVM4 and BVM8 use 8> and 16> function evaluations for
this system. Hence, the BVMs are quite accurate and e
cient.
We also calculated the Rate of Convergence (ROC) using the

formula log2(Y2ℎ/Yℎ), where Yℎ is the error obtained using
step size ℎ.	e ROC of the BVM4 and ETRs shows that these
methods are consistent with the theoretical order (order 6)
behavior of the methods. We omit the ROC of the TOMs
and BVM8 because their errors are mainly due to round-o�
errors rather than to truncation errors. Figure 1 also shows
the e
ciency curves of these methods.

Example 2. Consider the nonlinear BVP given in [22]^2�1^�2 + ��1 + 2��2 + ��21 = �1 (�) , 0 < � < 1^2�2^�2 + �2 + �2�1 + sin (�) �22 = �2 (�)�1 (0) = �2 (0) = �1 (1) = �2 (1) = 0,
(41)

where �1 (�) = −2 + � (� − �2) + � (� − �2)2− 2� sin (W�)
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Table 1: Maximum errors for Example 1.

Sinc-Coll. [20] BVM6> Y�1 Y�2 > Y�1 Y�220 3.128X − 05 1.175X − 06 18 5.309X − 09 2.853X − 1040 1.829X − 07 5.095X − 09 36 2.332X − 11 1.154X − 1260 3.573X − 09 7.696X − 11 54 8.883X − 13 4.535X − 1480 1.287X − 10 2.267X − 11 78 4.763X − 14 1.915X − 15100 6.389X − 12 1.026X − 13 96 9.326X − 15 1.388X − 16
Table 2: Maximum Errors for di�erent stepsizes for Example 1.> ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 7.281X − 8 1.391X − 7 5.736X − 11 6.952X − 1240 1.165X − 9 5.96 2.267X − 9 5.94 1.958X − 14 4.514X − 1480 2.023X − 11 5.86 3.530X − 11 6.01 3.818X − 16 3.856X − 16160 3.325X − 13 5.93 5.476X − 13 6.01 4.578X − 16 6.621X − 16
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ciency curve for Example 1.

�2 (�) = �3 (1 − �)+ sin (W�) (1 + sin (�) sin (W�))− W2 sin (W�)
Exact: �1 (�) = � − �2,�2 (�) = sin (W�) .

(42)

	e maximum Euclidean norm of the absolute errors in�1 and �2 was obtained in the range of integration. Table 3
shows the comparison between the ETRs, BVM4, TOMs, and
BVM8.While the results of thesemethods are of approximate
accuracy, we emphasize that the TOMs and ETRs use 20
function evaluations per step while the BVM4 and BVM8 use8> and 16> function evaluations for this system. We also
calculated the ROC of the BVM4 and ETRs which shows that
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Figure 2: E
ciency curve for Example 2.

thesemethods are consistent with the theoretical order (order
6) behavior of the methods. We do not calculate the ROC
of the TOMs and BVM8 because their errors are mainly due
to round-o� errors rather than to truncation errors. Figure 2
shows the e
ciency curves of these methods.

Example 3. We consider the nonlinear BVP with mixed
boundary conditions given in [23]

��� = (��)2 + �22X
 , 0 < � < 1� (0) − �� (0) = 0,� (1) + �� (1) = 2X
Exact: � (�) = X
.

(43)

	is problem was chosen to demonstrate the perfor-
mance of the BVMs on nonlinear BVPswithmixed boundary



8 International Journal of Di�erential Equations

Table 3: Maximum Errors for di�erent stepsizes for Example 2.> ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 7.448X − 08 1.895X − 07 3.189X − 11 9.489X − 1240 1.480X − 09 5.65 3.061X − 09 5.95 1.972X − 14 6.021X − 1480 2.576X − 11 5.84 4.772X − 11 6.00 5.722X − 16 1.450X − 15160 4.234X − 13 5.93 7.538X − 13 5.98 6.732X − 14 2.229X − 15
Table 4: Maximum errors for di�erent step sizes for Example 3.> ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 2.476X − 10 1.505X − 10 8.882X − 16 4.441X − 1640 6.019X − 12 5.36 2.347X − 12 6.00 4.441X − 16 4.441X − 1680 6.402X − 14 6.55 3.642X − 14 6.01 4.441X − 16 4.441X − 16160 1.010X − 15 5.99 6.661X − 16 5.77 4.441X − 16 4.441X − 16
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Figure 3: E
ciency curve for Example 3.

conditions. 	e maximum absolute errors were obtained
in the range of integration. Table 4 shows the comparison
between the ETRs, BVM4, TOMs, and BVM8. Figure 3 shows
the e
ciency curves of these methods.

Example 4. Consider the second-order BVP given in [24]
(bvpT17) ^2�^�2 = −3_�(_ + �2)2 , − 0.1 < � < 0.1

� (−0.1) = −0.1√_ + 0.001 ,� (0.1) = 0.1√_ + 0.001
Exact: � (�) = �√_ + �2 .

(44)

In order to assess the e
ciency of our methods, we solve
the boundary layer problem given in [24] (bvpT17). 	e
maximum absolute errors were obtained in the range of
integration. Tables 5 and 6 show the comparison between

the ETRs, BVM4, TOMs, and BVM8 with _ = 1 and 0.1,
respectively. Figure 4 shows the plot of the solution for values
of_ = 1, 0.1, 0.01, 0.001 and the solution has a boundary layer
at � = 0.
Example 5. Consider the second-order BVP given in [24]
(bvpT20)

_^2�^�2 = −(^�^�)2 + 1, 0 < � < 1
� (0) = 1 + _ log(cosh (−0.745_ )) ,� (1) = 1 + _ log(cosh (0.255_ ))

Exact: � (�) = 1 + _ log(cosh (� − 0.745_ )) .
(45)

Also, the e
ciency of the scheme is shown by solving the
problem given in [24] (bvpT20). 	e maximum absolute
errors were obtained in the range of integration. Tables 7 and
8 show the comparison between the ETRs, BVM4, TOMs,
and BVM8 with _ = 1 and 0.1, respectively. Figure 5 shows
the plot of the solution for values of _ = 1, 0.1, 0.01. From the
�gure, we see that the solution of the problem has a corner
layer at � = 0.745.
Example 6. We consider the Poisson equation given in [25]e

 (�, �) + e�� (�, �) = f (�, �) on g,e (�, 0) = e (�, 1) ,e (�, 2) = X−2� sin (W�) ,0 ≤ � ≤ 1e (0, �) = sin (W�) ,e (1, �) = X� sin (W�) , 0 ≤ � ≤ 2,

(46)
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Table 5: Maximum Errors for di�erent stepsizes for Example 4 for _ = 1.> ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 2.178X − 12 8.635X − 14 1.804X − 16 4.163X − 1740 3.782X − 14 5.85 1.200X − 15 6.17 1.457X − 16 4.857X − 1780 6.245X − 16 5.92 1.110X − 16 3.43 3.469X − 17 1.749X − 16160 5.551X − 17 3.49 3.747X − 16 1.76 7.633X − 17 4.163X − 17
Table 6: Maximum Errors for di�erent stepsizes for Example 4 for _ = 0.1.> ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 3.559X − 09 1.201X − 09 5.038X − 12 5.201X − 1440 5.279X − 11 6.07 1.820X − 11 6.04 2.498X − 13 4.663X − 1580 7.931X − 13 6.06 2.902X − 13 5.97 1.110X − 16 1.110X − 16160 1.221X − 14 6.02 6.106 − 15 5.57 1.665X − 16 4.163X − 16
Table 7: Maximum Errors for di�erent stepsizes for Example 5 for _ = 1.> ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 2.235X − 09 1.664X − 09 1.998X − 14 4.452X − 1440 3.570X − 11 5.96 2.823X − 11 5.88 1.776X − 15 4.441X − 1580 5.607X − 13 5.99 4.370X − 13 6.01 6.661X − 16 6.661X − 16160 9.104X − 15 5.94 6.883X − 15 5.99 6.661X − 16 8.882X − 16
Table 8: Maximum Errors for di�erent stepsizes for Example 5 for _ = 0.1.> ETRs [5] ROC BVM4 ROC TOMs [5] BVM820 7.808X − 05 2.000X − 04 6.950X − 08 8.527X − 0640 1.838X − 06 5.41 4.090X − 06 5.61 6.612X − 09 4.707X − 0680 3.163X − 08 5.86 5.784X − 08 6.14 4.674X − 12 8.212X − 09160 5.176X − 10 5.93 7.066X − 10 6.36 2.665X − 15 6.771X − 12
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Figure 4: Plot of solution for Example 4.

where g = {(�, �) : 0 ≤ � ≤ 1, 0 ≤ � ≤ 2} and f(�, �) =2W(2W�2 − 2W� − 1)X��(1−�) sin(W�):
Exact: e (�, �) = X�� sin (W�) + X��(1−�) sin (W�) . (47)
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Figure 5: Plot of solution for Example 5.

	is example shows the performance of the BVMs on
the Poisson equation. In order to solve the equation using
the BVMs, we carry out the semidiscretization of the spatial
variable � using the second-order �nite di�erence method
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Figure 6: Plot of solution for the Poisson equation.

to obtain the following second-order system in the second
variable �:
P2e�P�2 + e�+1 (�) − 2e� (�) + e�−1 (�)(Δ�)2 = f� (�) ,

� = 1, . . . ,i − 1,e (��, 0) = e (��, 1) ,e (��, 2) = X−2� sin (W��) ,
(48)

whereΔ� = (	−�)/i, �� = �+�Δ�, � = 0, 1, . . . ,i, u =[e1(�), . . . , e�(�)]�, g = [f1(�), . . . , f�(�)]�, e�(�) ≈e(��, �), and f�(�) ≈ f(��, �) which can be written in the
form

u
�� = f (�, u) , (49)

subject to the boundary conditionsu(�0) = u(��/2), u(��) =
u�, where f(�, u) = Au+ g andA is ani−1×i−1matrix
arising from the semidiscretized system and g is a vector of
constants. Table 9 shows the comparison between the BVM

Table 9: Maximum error for the Poisson equation on � = 1.ℎ Method in [20] BVM4116 3.266X − 02 2.605X − 03132 8.210X − 03 3.141X − 04164 2.053X − 03 3.947X − 051128 5.128X − 04 4.952X − 061256 — 6.199X − 07
and the method in [25]. Figure 6 shows the plot of the exact,
approximate, and error function of the problem.

Example 7. Lastly, we consider the Sine-Gordon nonlinear
hyperbolic equation given in [26]

e�� (�, �) = e

 (�, �) + sin (e) on g, (50)
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Figure 7: Plot of solution for the Sine-Gordon equation.

subject to the initial conditionse (�, 0) = 0,e� (�, 0) = 4 sech (W�) , − 1 ≤ � ≤ 1 (51)

and the boundary conditions

e (0, �) = 4 tan−1 (�) ,e (1, �) = 4 tan−1 (sech (1) �) , − 1 ≤ � ≤ 1, (52)

where g = {(�, �) : −1 ≤ � ≤ 1, −1 ≤ � ≤ 1}.Hence,
Exact: e (�, �) = 4 tan−1 (sech (�) �) . (53)

	is example shows the performance of the BVMs on the
hyperbolic problem. We discretize the � variable using �nite
di�erence schemes to obtain the system

P2e�P�2 = e�+1 (�) − 2e� (�) + e�−1 (�)(Δ�)2+ sin (e� (�)) , � = 1, . . . ,i − 1,e (��, 0) = 0,e� (��, 0) = 4 sech (W��) ,
(54)

whereΔ� = (	−�)/i, �� = �+�Δ�, � = 0, 1, . . . ,i, u =[e1(�), . . . , e�(�)]�, g = [f1(�), . . . , f�(�)]�, e�(�) ≈e(��, �), and f�(�) ≈ f(��, �) which can be written in the
form

u
�� = f (�, u) , (55)

subject to the initial conditions u(�0) = u0, u�(�0) = u�0,
where f(�, u) = Au + g and A is ani − 1 × i − 1 matrix
arising from the semidiscretized system and g is a vector of
constants. Table 10 shows the computational results for this
example using the BVM of order 6. Figure 7 shows the plot of
the exact, approximate, and the error function of the problem.
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Table 10: Maximum errors for the Sine-Gordon equation.

ℎ 116 132 164 1128 125633.6X − 04 4.7X − 06 6.0X − 07 7.6X − 08 9.6X − 09
7. Conclusions

	is paper is concerned with the solution of systems
of second-order boundary value problems. 	is has been
achieved by the construction and implementation of a family
of BVMs. 	e methods are applied as a block uni�cation
method to obtain the solution on the entire interval of
integration. We established the convergence of the methods.
We have also shown that the methods are competitive with
existing methods cited in the literature.

In the future, we would like to develop a variable step size
version of the BVMs with an automatic error estimation.
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