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A FAMILY OF CYCLIC QUARTIC FIELDS ARISING

FROM MODULAR CURVES

LAWRENCE C. WASHINGTON

Abstract. We study a family of cyclic quartic fields arising from the covering

of modular curves -Y,(16) —» ̂ (16). An integral basis and a fundamental

system of units are found. It is shown that a root of the quartic polynomial we

construct is a translate of a cyclotomic period by an integer of the quadratic

subfield of the quartic field.

Recently, O. Lecacheux [9, 10] and H. Darmon [4] showed how to use cov-

erings of modular curves to obtain cyclic extensions of Q. In particular, they

were able to give a geometric construction of a family of cyclic quintic fields

discovered by E. Lehmer [11]. The covering XX(N) -» XQ(N) (for N > 2)

has degree 4>(N)/2 and group (Z//VZ)X/{±1}. For the quintic case, they took

N = 25 , which gave a cyclic covering of degree 10, then took the subcovering of

degree 5. An important ingredient in the construction was the fact that X0(25)

has genus 0. This also occurs for N = 1, ... , 10, 12, 13, 16, 18. These all

give trivial or quadratic coverings except for N = 7, 9, 13, 16, 18 . The values

N — 1, 9, IS yield cubic extensions and can be shown to yield the family of

polynomials X3 - aX2 -(a + 3)X - 1, namely the "simplest cubic fields" [17].

(However, it should be remarked that every cyclic cubic extension of Q comes

from a polynomial of this form if a is allowed to be rational. Similarly, we are

guaranteed that the quadratic extensions obtained from the coverings mentioned

above correspond to polynomials of the form X - aX - 1 with a rational.)

The case N = 13 is treated by Lecacheux [9]. It might be suspected that the

sextic fields she obtains are the same as the "simplest sextics" constructed by

M.-N. Gras [6]. However, these latter fields were found by taking the fixed field

of an element of order 6 in PGL2(Q) = Aut(Q(X)). Therefore, they come from

a covering of curves of genus 0. But ^(13) has genus 2. Alternatively, these

sextic fields must be different because the discriminants of the quadratic, and

cubic, subfields are different.

In the present paper, we study the case N - 16. As above, it might be hoped

that this case would give a geometric construction of the quartic fields studied
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by M.-N. Gras [5], but these again come from a covering of curves of genus 0,

while X,(16) has genus 2 (and the family we construct yields a different set of

discriminants). So we obtain a new family of cyclic quartics. In § 1 we determine

the discriminant and find an integral basis. In §2 we find a fundamental system

of units. The regulators of these fields are small (which is what allows us to

show that the units are fundamental), hence the class numbers will tend to be

large. However, the conductors are composite, so these fields do not relate to

Vandiver's conjecture, as was the case with other families of cyclic fields [3, 15,

16].
Emma Lehmer [11] made the remarkable observation that in the quadratic,

cubic, and quartic "simplest" fields, the roots of the corresponding polynomials

are units which are integer translates of cyclotomic periods. This led her to

construct her family of quintic fields by showing that for suitable primes p = 1

(mod 5), the quintic cyclotomic period could be translated by an integer to

obtain a unit. In [15] it was shown that a cyclic quadratic, cubic, or quartic field

of prime conductor, having a unit which is an integer translate of a cyclotomic

period, must be one of these "simplest" fields (in the quartic case we need the

extra assumption that the unit have positive norm). Computations seem to

indicate that a similar result holds in the quintic case.

For the quartic fields constructed in the present paper, it is not true that the

units constructed are integer translates of periods, although this is not ruled

out by the result of [15, see also 8, Proposition 3.14] since the conductor is

composite. Instead, it is proved in §3 that the units are translates of periods

by an integer in the quadratic subfield of the quartic field. Whether there is

a relation between the modular construction of the fields and this connection

with periods remains to be seen (cf. [4]).

In the last section of the paper we give the construction, via modular curves,

of the family of quartic polynomials studied in the paper. However, once this

family has been found, the construction is not needed to prove any of the prop-

erties. It would be interesting to use the modular construction in an intrinsic

way to study the arithmetic of these fields. However, it should be mentioned

that most of the calculations needed to discover the results of § 1 were carried

out (in Mathematica) using the ^-expansions of the modular units. But once

they were discovered, it was straightforward to verify them algebraically.

1. The quartic fields

Let h # -1 be an odd integer such that h , h+ 2, and h + 4 are squarefree,

and define

fh(X) = Xa - h2X3 - (h3 + 2h2 + 4h + 2)X2 -h2X+l.

The discriminant of this polynomial is h2(h + 2)6(h2 + 4)3 ; we determine the
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discriminant of the associated field below. Let a, be a root of fh . Then

is also a root, and a3 = 1/a, and q4 = l/a2 are the remaining two roots.

It follows from the above that K = Q(ax) is a Galois extension of Q.

Clearly, fh has no rational roots. Since the discriminant is never a square,

it is easy to see that fh cannot factor as the product of two quadratics (this

can also be verified directly). Therefore, K/Q is a cyclic extension of degree 4.

Writing fh as X4 - cX3 - qX2 - cX + 1, we find that the quadratic subfield k

is Q(^/c2 + 4<7 + 8) = Q(v//j2 + 4) .

Since X~ fh(X) is a polynomial in X + j , it is easy to give closed formulas

for the roots of fh :

h2 + (h + 2)Vh2 + 4± \j2h(h + 2)(h2 + 4) + 2h2(h + 2)7F+1

4 '

h2-(h + 2)\/h2 + 4± \J2h(h + 2)(h2 + 4) - 2h2(h + 2)\/h2 + 4

4 "
Letting ax be the largest root, we immediately obtain the approximations

(which can also be computed directly or from the ^-expansions in §4)

,2    ,     ,     2      2 ,,12
ax= h   -r-A-r-1-r-T-J " '   ' C*2 = -« - 1 - -j- + — • • •   ,

n     n n     fi

J_      1_ 1     J_
"3" h2    h3'"' "4~   h + h2'"-

Let p = ax+ia2-a3-ia4 (Lagrange resolvent). A straightforward calculation

yields

/ = h2(h + 2)2(h2 + 4)(h-2i)2.

Since Q(i, ax) = Q(i, p), it is easy to determine the ramification for K : The

primes dividing h(h + 2) are ramified in K/k but not in k/<Q. The primes

dividing h -l- 4 are totally ramified in K/Q. It follows that K is the quartic

field corresponding to the character x - ¥2 ¥4 > where y/4 is a quartic character

of conductor h +4, and y/2 is the quadratic character of conductor h(h + 2).

The conductor-discriminant formula immediately yields that the discriminant

of K is

D = h2(h + 2)2(h2 + 4)3.

The quadratic subfield k has fundamental unit

h + \Jh2 + 4
e=-2-•
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An easy calculation shows that {1, e, ax, a2} is a basis for the ring of integers

of K. Moreover, {I, ax, e, eax} is also an integral basis for K, which shows

that {1, aj is an integral basis for K over k .

2. Fundamental units

Theorem.  {e,ax,a2} is a fundamental system of units for K when \h\ > 3.

When h = 1, the subgroup (-1, e, ax, a2) is of index 2 in the full group of

units.

Proof. An easy calculation shows that the regulator R1 obtained from these

units is

21og(e)(log2(Ql) + log2(|a2¡)).

If / denotes the index of (-1, ax, a2, e) in the full group of units, then

R' = IR.
Let U4 and U2 be the unit groups for K and k, respectively. Let a gen-

erate G = Gal(AVQ). The group ring Z[C7] acts on UJU2, and a2 + 1 is an

annihilator. It follows that U4/U2 can be regarded as a module over the Gauss-

ian integers Z[i], with i acting as a. Since UJU2 has Z-rank 2, it must be

isomorphic as a Z[/]-module to Z[z] © torsion. We want to show that the tor-

sion does not occur. Note that Z-torsion is the same as Z[/]-torsion. Suppose

ß £ U4 satisfies ß" £ U2 for some n > 1. Then (a2 ß)n = ß", so a2ß = ±ß,
■y

since ± 1 are the only roots of unity in the real field K. It follows that ß £ k ,

so we may assume n = 2 . Consider the extension k(ß)/k . Since ß is a unit,

this subextension of K/k can ramify only at primes above 2, hence must be

trivial. It follows that ß £ U2. Therefore, U4/U2 is isomorphic to Z[/] as

a Z[/]-module, so there exists a unit n such that r\ and r\ - a(r\) generate

U4/U2 as an abelian group. Since (a2 + l)n £ U2, we have

a (n) = -
n

for some ô £ U2.

An easy calculation using the basis {n, n', e} shows that the regulator is

Ä = 21og(e)niog|>/|-^log|a|)   +(log|,,'| + ¿log|(5|)  j.

In the spirit of [1], we consider the relative extension K/k . Let T>K¡k be the

relative discriminant for the extension K/k . Since

DK = Normk/q(DK/k)D2k

and D, = h2 + 4, we have

NoTmk/Q(DK/k) = h2(h + 2)2(h2 + 4).
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Since DK,k divides (n - a2n)2, we have

Normt/Q(D^)|Noimfc/Q^-^J   = [r¡ - Í)   lj-jjr)   ■

Let

x = Maxi^L,yj ,       y^Max^Vu^Vf1)

A\ (       1\2/       P2

"? H*+îJ r?

Then, since |¿||á'| = 1, we find that

(*)       h2(h + 2)2(h2 + 4)<(n-Ô-^j   L'

If x > 3.25, then x + £ < l.lx, while if 1 < x < 3.25 we use the estimate

x + r\ < 2x . We use similar estimates for y . Assume first that at least one of

x > 3.25 and y > 3.25 holds. Then, by Cauchy-Schwarz, we have

l0g ( (* + x~) (y + j) ) - l0g(2-2) + l0g(x) + l°è{y)

< log(2.2) + 72(log2(x) + log2(j;))* < log(2.2) + (J^

It follows that

,„,       ,   2¡\h(h + 2)\(h2 + 4)A ^    R        2n   2,      , .   2,    nr )   log (^J-^2—- J£ ioi(i)= 7(log |a> i+log N} •

Since the right side is approximately -ylog \h\ and the left side is approxi-

mately 9log \h\, we see that / < 2, hence / = 1, for sufficiently large h.

However, to work with all h, we need estimates on the size of ax and a2.

Since

fh((h + l)2) = h(h + 2)2(h4 + 3h3 + 2h2-l),

f(h2) = -(h1 + 2h6 + 4h5 + 3h4-l),

fh(-h) = -(h4 + 3h3 + 2h2-l),

f(-h -2) = h4 + 5h3 + %h2 + 8/z + 9,

2 2
it follows that \ax\ is between h   and (A + l) , and \a2\ is between \h\ and

|Ä + 2|, for |A|>3.
For h > 0 we obtain

r/1,     2„.   ,   1V2,  , ,     !..   ,  ,.W1     2/'|A(A + 2)|(A2 + 4)*\/<2(log ((A + l) ) + log (A+ 2))/log  I ̂ -^-¿-I .

This yields / < 2 for A > 5. Similarly, I <2 for A < -5 . Therefore / = 1 in

these cases. When h = 3, the roots a, and a2 can be computed numerically

and substituted into (**) to obtain I <2 .
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If both |x| < 3.25 and \y\ < 3.25 then (*) yields

A2(A + 2)2(A2 + 4)< ^3.25 + ^5)   .

This implies that h = 1 or - 3 .
We have therefore proved that / = 1 except for possibly A = 1 and -3.

These values may be treated individually. The regulators have been computed

(see [2] and the associated unpublished table) for these fields. When A = -3,

the regulator equals R', so 1=1. However, when A = 1 the regulator equals

R'/2,so 1 = 2. In fact, (-aia2)1/2 , which is a root of X4-3X3-X2 + 3X+l,

is a unit of the quartic field.

Remark. The referee has pointed out that the inequality I <2 obtained above

can also be obtained by the method of M.-N. Gras [5, p. 9, Proposition 5].

3. Relations with cyclotomic periods

Let C = Cf = e2ni/f, where

/ = A(A + 2)(A2 + 4).

Let a be the generator of Gal(A7Q) satisfying a(ax) = a2 . We may assume

that x(a) = '*> where / is the Dirichlet character for K introduced in §1

(otherwise, replace x by X~l) ■ Define the cyclotomic periods p. e K by

Pj = aJ~x TrQ(f)/JC(C),     1<;<4.

Theorem. Assume A > 0. Let S = p(h(h + 2)(A2 + 4)) = ±1 and n = (\)ô =

±1. Choose a, to be the largest root of fh(X). Then

h2-S + ((h + 2) + nWh2 + 4
ai-4-

is a cyclotomic period.

Remarks. A similar result can of course be obtained for A < 0, but we omit it.

The result of the theorem says that if ax is expressed as a Z-linear combination

of periods, say Apx + Bp2 + Cp3 + Dp4, then A = C and B - D = ±1, or

A-C = ±l and B = D.

Proof of the Theorem. The main part of the proof will be to determine the

minimal polynomial for px over the quadratic field k .

Define the (imprimitive) Gauss sums

/

a=l

Then

Pi = ?(c?l + c?2 + c?3 + c?4) » P2 = i(-**i - 82 + ¿Si + 84) '

Pi =  4"(-c?l + g2 - £3 + c?4) . P4 = i(»Sl -8l~ Z'<?3 + 84) ■
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(The first relation is easy to prove; the others can be deduced from the Galois

action.) We want to study the periods, but first we consider these Gauss sums,

since they seem to be easier to work with. Note that g4 = TrQ(iwQ((). If p is

prime and p \ a, then TrQ(i wQ({ ACpCa) - ~Ca ; it follows by induction on the

number of prime factors of / that

where p is the Möbius function.

Lemma. Let y/ be a Dirichlet character mod m. If n is a positive integer with

m\n and with (m, %¡) = 1, define

Gn=    £    V(a)CH.
0<a<n

(a,n)=l

Then

Gn = p(n/m)y/(n/m)Gm.

Proof. Write mx + %y = 1 for integers x, y. Note that y/(y)y/(n/m) = 1.

Fix b with (b, m) = 1. Choose b' = b  (modm) with (b', n) = 1. Then

E      C = TrQ(íj/Q(íjtó ) = C Tr(0 = Cymbp(n/m),
0<a<n

(a,n)=l
a=b (modm)

as above. Therefore,

Gn=p(n/m)    ^2    V(b)C„ = p(n/m)y/(n/m)Gm.   □
0<b<m

(b,m)=l

In our case we have y/ = x , which is quadratic of conductor m = h + 4,

so Gm = Vh2 + 4. The lemma implies that

g2 = p(h(h + 2))x\h(h + 2))y/h2 + 4,
2 2

where x is regarded as a primitive character mod A + 4. Note that if A > 0

then

^-))=(^) = (^)(^);'(^)=-(t).

the last equality following from a case-by-case consideration of the values of A

(mod 8).

It remains to treat g¡  and g3.   Since K and Q(/) are disjoint over Q,

we may consider a as an element of Gal(Ä^(/)/Q(/)).   Note that a(gx) =

-igx. It follows that g\ £ k(i), g\ i Q(i), and gx £ Q(i). Let p be the
Lagrange resolvent from §1. Then a(p) = -ip, so gx = ßp for some ß £ Q(i).

Therefore,

g\ = y?4/ = ßAh2(h + 2)2(A2 + 4)(A - 2/)2.
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But \gx |4 = f2 = A2(A + 2)2(A2 + 4)2 = \p\4 , so \ß\ = \. Since A(A + 2)(A2 + 4)

is odd and squarefree in Z, it is also squarefree in Z[/]. Therefore, p is

fourth-power-free in Z[z]. Since gx £ Z[i], ß must have trivial denominator.

Therefore, ß £ Z[i], so ß = ±1 or ±i. It follows that ß4 = 1 and

g\ = ±h(h + 2)(A - 2i)\¡h2 + 4.

Since Y{ = X(~l)g3 = 83, we have

g2 + S2 = ±2A2(A + 2)v/A2 + 4.

Also, gxg3 = \gx\2 = /. Therefore ,

(gx + g3)2 = 2f + 2yh2(h + 2)\/A2 + 4,

where y = ±1. We shall determine y later.

Note that px and p3 are conjugate over & . Since px +p3 = \(g2 + g4) and

1 2 2
Pl/>3 = Tg^ + ^t)    -(c?,+c?3)  )>

we can compute the roots of the minimal polynomial of px in terms of A . We

obtain

¿t + S2Vh2 + 4 ± ^2/ + 2yA2(A + 2) v/A2T4

4^ '

where Sl = ^(/) and ¿2 = p(h(h + 2))/2(A(A + 2)).

We may write the roots of fh(X) as

A2 + ô3(h + 2)Vh2 + 4 + Ô4yj2f+2ô3h2(h + 2)>/ÂT+4

4^ '

where <53, (54 = ±1. The largest root, namely ax, is obtained by choosing

S3 = S4 = 1  . The root a( obtained by setting ô3 = y and S4 = 1 is a¡ if
2 2

y = 1 , and is a2 or q4 if y = -1 . It cannot be a3 = a (a,) since a fixes

\/A2 + 4. We find that

A2-á,+((A + 2)7-<52)\/A2 + 4
ai -Pj =-'-4-•

where i = 1, 2, or 4, and 7 = 1 or 3. Applying a or a~ if y = — 1, and

taking into account the sign change of v A  + 4, we find that in all cases

h2-ôx +((h + 2)-yô2)Vh2 + 4
Q>-4-

is one of the cyclotomic periods px, p2, p3, p4.

Since a¡ - Pj is an algebraic integer, we must have

h2 -àx = (h + 2)-yô2 (mod 4).
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It follows upon considering the four possibilities for <5,, 82 that y = -(j)àxà2,

where (|) is the Legendre symbol. This completes the proof of the theorem.   D

4. Modular curves

Recall that

ro(16) = {(c   5)eSL2(Z)|c = 0(modl6)|

and

r,(16) = Uac   J) e T0(16) \a,d=l (modl6)J .

These groups act on the upper half plane ßf as fractional linear transforma-

tions. We set

X0(16) = r0(16)\^U {cusps}

and, similarly,

*,(16) = r,(16)VFu{cusps}.

Both XQ(\6) and XX(16) can be regarded as algebraic curves defined over Q.

Four of the six cusps of ^(16) are then rational over Q, namely 0, 5 , |, 00 .

Six of the fourteen cusps of X,(16) are rational over Q, namely 0, 3 , |, i ,

2, 5 • Call these Px, P3, Ps, P7, P2, P6, respectively. In the quartic covering

X,(16) -> ^(16), the cusps Px, P3, P5, P7 lie above 0, and P2, P6 lie above

j (for details, see [14]).

Let p(z, x) be the Weierstrass p-function for the lattice tZ + Z (with t g

£7). For an integer s, let

Then <f>rs := 4>r - 4>s is a modular form of weight 2 on TX(16) for any two

indices r, s. The Fourier expansion of each </>s can be computed, and one

finds that <j> has a zero of order at least {st}/d at the cusp Pt. Here, d =

(t, 16) = 1 or 2 (= ramification index over the corresponding cusp of X(16))

and {st} is defined by {st} = ±st (modl6), 0 < {st} < 8 (see [14]). It follows

that the divisors of <t>3 and 04 satisfy

(03) > 3PX + 1P3 + P5 + 5P7 + 3P2 + P6,

(04) > 4P, + 4P3 + 4P5 + 4P7 + 4P2 + 4P6.

Therefore,

(<7334) > min{(03), (</»,)} = 3PX + 4P3 + P5 + 4P, + 3P2 + P6.

But a nonzero modular form of weight k = 2 for r,(16) has exactly

fc[r:r,(16)]/12= 16 zeros modulo r,(16). Therefore,

(034) = 3PX + 4P3 + P5 + 4P, + 3P2 + P6.

Similarly,

(4>54) = 4P, +P3 + 4P, + 3P7 + 3P2 + P6.
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Therefore,

(^)=-i>1 + 3/53-3P5 + P7.

Note that </>34/054 has its zeros and poles only at the cusps, so it is what is

known as a "modular unit" (see [7]).

Let KX(16) denote the field of meromorphic functions on Xx( 16), so Kx(\6)

is the field of meromorphic functions f(x) on ß? which are also meromorphic

at the cusps and which are invariant under the change of variables x i-> y(x)

for every y £ r,(16). We define KQ(16) similarly. The matrices

3     2 V
0<;<3,

16   11

form a set of coset representatives for r,(16)\ro(16) and, consequently, give

the elements of Gal(Kx(l6)/K^(16)). More explicitly, Gal(Kx(\6)/K0(l6)) is
cyclic of order 4, generated by the map

•"w-'G&rr)
for f £ KX(16).  Note that  ( ,36 ,2, )  maps PX,P3,P5, P7 to P5,PX,P7, P3

(modulo the action of r,(16)), respectively.

An easy calculation yields a(^>¡jl^k¡) = <f>xu n770ii* m (indices are taken

mod 16), hence a(<f>34/<f)54) = 0,4/074, ff2^/^) = 054/034 > ^(^4/^54) =

4>74/<f>X4 . In terms of the Klein forms we have (see [7, p. 51]),

t>2 f2
A,     /A, (°^) JL      /J, (O.TS)
034^54 = ~72> <t>lJ<t>74 = --¿2-^-

This indicates that we should try taking square roots; in fact,

'¿34^14^ _*«>.*) Vife)
^54^74/ 6(0,^)ê(0,^)

is a modular function for r,(16). This may be checked by using the transfor-

mation laws for Klein forms (see [7, pp. 27-28]). These laws also show that

a2 := a(ax) = -JLilJ^Àl,     rj2^) = i/Qi,     a\a¿ = i/^.
(°.Ä)   O.Ä)

The Klein forms have product expansions [7, p. 29] in terms of q = e nn,

from which we obtain expansions for a, and a2. It is convenient to change

variables to -1/16t (the Atkin-Lehner involution):

qi:=*i(m)=q~2 n (i-o n a-«")-1,
v ' n=±5,±7(16) «=±1 ,±3(16)

«>0 n>0

^-«■(ia)--«"'  n (»-«")  n ^«v1
v 7 n=±l,±7(16) «=±3, ±5(16)

n>0 n>0

(since (^"q1) normalizes r,(16), these are functions on ^,(16)).
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The curve ^0(16) has genus 0, hence there is a Hauptmodul, namely a func-

tion H such that AT0(16) = C(H). We may take

H=2E"^q     2=I + 2g3-g7 + ---.
y^ (2*+l)2        q

l^nezq

Then H is a modular function on ro(16) and has a simple pole at oo and no

other poles. This may be seen as follows. Standard techniques show that both

¿Zn€z<l{2n)2 and E„ez<l{2"+1)2 are modular forms of weight {- on T0(16).

The number of zeros of such a modular form is j[T : ro(16)]/12 = 1, so

Y^nei * "+ nas exactly one zero, which is clearly at oo . Therefore, H has

one pole, which is likewise at oo. A standard argument now shows that H is

a Hauptmodul.

The minimal polynomial for a, over K0(16) is

fH(X) = (X- ax)(X - a2)(X - \/a\)(X - 1/a,).

The coefficient of X , call it c*, has ^-expansion

-2       a   2      t   6   ,   0   10  ,-q    - 4q  - 2q  + %q    +■■■ ,

2 1 Q
which agrees with the ^-expansion of -H at least through the q term. We

want to show that they are in fact equal. The function a, has divisor -2P, +

P3-Pi + 2P7 and a2 has divisor -P,-2P3 + 2P5 + P7, so a, +a2 + 1/a, + l/a2

has poles at most at P,, P3, P5, P7. Under the change of variables t >-► -1 /1 6t

these cusps are mapped to cusps of ^,(16) lying above the cusp oo of ^T0(16).

Therefore, c* + H = a*x + a*2 + 1/a* + l/a*2 + H is a function on ^(16)

having poles at most at oo . But c* + H has a zero of order at least 10 at oo,

hence has no poles, and therefore must vanish identically. Similarly, we find

that the coefficient of X2 is -(H3 + 2H2 + 4H + 2). Therefore,

fH(X) = X4 - H2X3 - (H3 + 2H2 + 4H + 2)X2 - H2X + 1.

This polynomial has Galois group Z/4Z over C(H). Its specialization to H =

A e Z yields the polynomial fh of § 1.
It might be worth noting that while the equation f(H, X) = fH(X) = 0

gives an equation for Xx(\6) as an algebraic curve, it is easy to modify it into

a more standard form. The extension C(H, a*)/C contains the intermediate

field k = C(H, \/h2 + 4). This corresponds to the function field for the genus

zero curve u - v  = 4, which has the rational parametrization

- 1 + t2                     4t
« = 2-t- ,        v =-r.

1 -12 l-t2

Therefore, k = C(f). Since

1       H2 + (H + 2)\/H2 + 4
z:=ax + — =-:-,

1      a, 2
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the extension K/k is generated by

r2~^_-i6t(t2 + \)(t2-2t-i)

(t-l)\t+l)2

Therefore, K = C(t, \Jt(t2 + 1)(1 + 2f - t2)).  It follows that an equation of

XX(16) as an algebraic curve is

Y2 = X(X2 + l)(l+2X-X2).

This of course agrees with the fact that ^¡(16) has genus 2. The discriminant

of the polynomial in X on the right-hand side is -2048 = -211, which reflects

the fact that ^,(16) has good reduction outside 2.

The transformation

e-l (c-l)J

changes the above equation into

z2 = (c2 + l)(c- l)(c3-c2-3c- 1),

which was obtained by Beppo Levi [12, p. 113] in 1906.

It also seems worth mentioning that it is easy to use either of the above

equations to find the rational points on AT, (16). Levi did this using the latter

equation; similarly, with the first equation we obtain by the standard type of

argument that either X, X + 1, 1 + 2X - X2 are all squares, or X is a square

and the latter two factors are 2 times squares. The standard descent argument

([13, pp. 16-18]) shows that the only rational solutions to a = b4 + 1 are

(±1,0), and the only rational solutions to 2a2 = b4 + 1 are (±1, ±1) (with all

four choices of signs). We find that we must have (X, Y) = (0, 0), (±1, ±2)

(with all four choices of signs). There is also the point at infinity. Since there

are six rational cusps, these six points must correspond to the cusps. Therefore,

X,(16) has no noncuspidal rational points.
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