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A Family of Efficient Regular Arrays 
for Algebraic Path Problem 

Pen-Yuang Chang and Jong-Chuang Tsay 

Abs&act--It has been shown that the method of decomposing a 
dependence graph into multiple phases with appropriate m-phase 
schedule function is useful for designing faster regular arrays for 
matrix multiplication and transitive closure. In this paper, we will 
further apply this method to design several parallel algorithms 
for Algebraic Path Problem and derive N x N 2-D regular arrays 
with execution time LyJ - 2 (cylindrical array and orthogonal 
one) and 4N - 2 (spherical one). 

Index Terms-Algebraic path problem, cylindrical array, par- 
allel algorithm design, systolic array, spherical array, transitive 
closure, VLSI architecture. 

I. IN’IRODUCTION 
WO major steps on the design of a regular array (RA) T [l] from a sequential algorithm for a problem are reg- 

ularization and spacetime mapping. Firstly, by regularization 
we can rewrite the sequential algorithm to a regular iterative 
algorithm (RIA) [21-[5], which has a corresponding graphic 
representation called dependence graph (DG); then an RA 
is derived by the spacetime mapping (T) procedure which 
comprises the selection of a schedule function (A) and a 
compatible processor assignment function (S). Diversified 
RA’s can be obtained by different combinations of this two 
steps. In [6], several new RA’s for the problem of matrix 
multiplication and transitive closure have been derived by 
constructing different multi-phase RIAs according to various 
selections of broadcast plane together with new proposed m- 
phase schedule function and compatible processor assignment 
function. In this paper, we will extend its application to 
Algebraic Path Problem (APP) which is a generalization of 
problems, such as transitive closure, shortest path problem, 
Gauss-Jodan elimination, and so on [7]. 

The design of RA’s for APP has been studied by several 
researchers in the literature [8]-[13]. The most significant RA 
designed by Lewis and Kung [ 121 with execution time 5N - 2 
is optimal in terms of pipelining period, block pipelining 
period, and the number of YO connections. Besides, the survey 
and comparison of several 2-D RA’s for APP are also cited in 
that paper. According to the DG (Fig. 3 in their paper) used 
by them, the longest path in this graph is 5N - 4. Therefore, 
for this DG, this design is also optimal in execution time 
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to within a small additive factor. The question we want to 
ask here is: Is there any DG for the APP with shorter longest 
path based on the same sequential algorithm? If the answer 
of this question is positive, we wish to design systematically 
2-D RA’s with execution time the same as the longest path 
of this new DG. 

The paper is organized as follows: Firstly, some preliminary 
definitions are presented in Section 11. In Section 111, three 
different new designs for APP are given. They are a cylindrical 
array with execution time LyJ -2 in Section 111-B, a spherical 
array with 4N - 2 in Section 111-C, and an orthogonal array 
with [YJ - 2 in Section 111-D. Finally, we make conclusions 
in Section IV which summarizes these new designs proposed 
in this paper. 

11. PRELIMINARY DEFINITIONS 

In this section, we give some preliminary definitions as a 
basis for following descriptions. 

Dejinition 2.1: A left-shift sequence, L(i;  1 ,N)  = ( i  + 
1,i + 2, . . . ,N, l ,2 , . . . ,2)  = (2~(1),Zc(2),...,Z~(N)), is a 
sequence of integers resulting from shifting the sequence 
(1,2, . - .  , N )  left cyclically i times, where 0 5 i 5 N - 1. 
The jth element in L is Z z ( j )  = ( i  + j - 1)modN + 1, where 
1 5 j I N .  

Dejinition 2.2: A right-shift sequence, R(i; 1, N) = 
( N  - i + l , N  - i + 2, . . . ,N,1 ,2 , . - . ,N - i )  
(rc(l), ~ , (2) ,  . . . , r c ( N ) ) ,  is a sequence of integers resulting 
from shifting the sequence (1,2,  . . . , N) right cyclically i 
times, where 0 5 i 5 N - 1. The jth element in R is 
r , ( j )  = ( j  - i + N - l )modN + 1, where 1 5 j 5 N .  

The following theorem shows the relationship between these 
two sequences. 

Theorem 2.1: Zi(j) = IC iff .%(IC)  = j ,  where 0 5 i 5 N- 1 
and 1 5  j , k  5 N 

= 

Proof: See [6]. 0 
The meaning behind this theorem is that if we want to know 

which position (say j )  the number IC appears in the left-shift 
sequence L(i;  1, N), we can read j from the value of ri(IC). 
For example, if we want to know which position the number 
4 appears in the left-shift sequence L(2; 1,5), we have the 
position j = ~ ( 4 )  = 2. 

The execution time ( t e )  of an RA is defined to be the time 
interval between the first operation executed and the last result 
calculated. By computation domain (0) we mean the set of 
finite indexes (or nodes) used by an RIA. Let I and I’ be two 
indexes in the computation domain 0 of an RIA A. AT is 
a linear schedule in the first row of transformation matrix T. 
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Assuming a unitary time increment, the execution time of an 
RA obtaining from the RIA A by transformation matrix T is 
t ,  = maxl,ltEe{AT(I - 1’)) + 1 [14]. The actual meanings 
of execution time of an RIA is the number of hyperplanes 
sweeping the index space. Let D be a dependence matrix 
of an algorithm. The result of T x D, denoted by D’, is 
a new dependence matrix in which the first row represents 
time delays and the remaining rows are the correspondent 
interconnections of array processors. 

In a computation domain, values of a variable may be 
needed to broadcast from a source node to several destina- 
tion nodes. We say the source node the broadcast point. A 
line connecting several broadcast points is a broadcast line. 
By aggregating several broadcast lines, we have a broad- 
cast plane. Different variables may have different broadcast 
planes. A broadcast center is located at the intersection of 
broadcast lines or planes. Broadcast removing is achieved 
by transforming the broadcast dependencies into propaga- 
tion dependencies. The broadcast point, in such case, is 
the position where propagation variable obtains its actual 
value. 

The general procedure of designing RA by moving the 
broadcast planes is as follows. 

1) The broadcast planes should be shifted to some position 
of the computation domain in order to reduce the longest 
path of the original DG. 

2) According to these broadcast planes, the computation 
domain of the original problem can be decomposed into 
several phases. The parallel algorithm in each phase 
should satisfy all properties of the RIA, e.g., all entries 
of dependence matrix for each phase have constant 
and shift-invariant values. We call this form of parallel 
algorithm multiphase RIA. 

3) For each phase, the execution order of the parallel 
algorithm is determined by an appropriate schedule 
vector. This schedule is called m-phase schedule and 
will be defined later. Each phase may have not the 
same schedule vector and even processor assignment 
function. Nevertheless, the parallel algorithm of every 
phase should begin execution at the same time. 

4) There may have dependencies between two different 
phases. We call them intra-phase dependencies. These 
dependencies may relate to the problem size. The inter- 
connection delays for mapping intra-phase dependencies 
can be determined by the m-phase schedule. 

5) The final RA is constructed by composing RA’s of all 
phases as well as the interconnections which come from 
mapping intra-phase dependencies. 

The meaning of the recurrence equations used in this 
paper can be illustrated by an example, c(i + 1, j ,  k) = 
a ( i , j ,  k) + b ( i , j ,  k). If in the computation domain node 
(1,2,3) is concerned, the above equation means that vari- 
ables a and b of node (1,2,3) are added on that node, 
then the result is sent to and saved in the variable c of 
node (2,2,3). Note that, unless this result of computation 
is the final output we desired, it is meaningless and ig- 
nored if node (i + l,j, k) locates outside its computation 
domain. 

III. DESIGN OF 2-D REGULAR ARRAYS 
FOR ALGEBRAIC PATH PROBLEM 

The APP [7], [12] is defined in terms of a weighted 
directed graph, G = (V, E), with N vertices, where V is 
the set of vertices and E is the set of directed edges. The 
edge weight from vertex i to vertex j is denoted by wij 
which is defined in a dioid (S, +, x). In S, operation + 
(addition) is a commutative monoid (closure, associativity, 
commutativity) and operation x (multiplication) is a monoid 
(closure, associativity). The elements 0 and 1 are identity (or 
neutral) elements of + and x, respectively. x is left and 
right distributive with respect to + and 0 is an absorbing 
element for x. The quasi-inverse of a, a*, is defined by 
1 + a + a x a + a x a x a + ..., where a is an element 
in S. Let C be an adjacency matrix of G, where 

wi,j if there is an edge from vertex i to vertex j ,  
ci . = 

‘3 { 0 otherwise. 

Then, the objective of APP is to compute matrix C in which 
each element, Z&, is the sum of the weights of all distinct 
paths from vertex i to vertex j .  The application of APP is 
diversified for different definitions of dioid [7]. For examples, 
the dioid ( (0 ,  l}, m a ,  min) is for the problem of transitive 
closure, (8 U {oo}, min, +) is for the shortest path problem, 
and (8, +, x)  with a* = & when a # 1, where a E 92, is for 
Gauss-Jodan elimination. TheJollowing recurrence equations 
are used to compute matrix C. 

Algon‘thm 3.1: For all indices ( i , j ,  k), 1 5 i, j ,  k 5 N, do 

[ c : , ~  + c t k  x (&)* x c ; , ~  if i # k and j # k 

if i = k a n d j  # k 

if i # k a n d j  = k 

if i = k a n d j  = k 

initial values c : , ~  = ci,j 

0 find results ~ i , j  = c F 1  
Removing broadcast dependencies in Algorithm 3.1 can 

be carried out by adding propagation variables d(e )  to carry 
c (k ,  k, k)* in horizontal (vertical) direction when i = k(j = 
k). In addition, the variable a is to propagate c(i, k, k) x 
e( i ,  k, k) (that is, c ( i ,  k, k) x c (k ,  k, k)*) in the j -  direction 
except i = k and the variable b is to propagate c (k ,  j ,  k) in 
the i-direction except j = k. Now, we have Algorithm 3.2 
and its DG (the k-plane) is shown in Fig. 1. The arc links in 
it represent to propagate computation results to the variable c 
from node (i, j ,  k) to node (i, j ,  k + 1) in the k-direction. The 
bold lines in it is to represent the broadcast lines. Broadcast 
planes can be constructed by aggregating these lines in the 
k-direction. The meaning of broadcast lines in here is that 
propagation variables a and b obtain their actual values in these 
lines and propagation variables d and e get c ( k , k , k ) *  value 
from the intersection of broadcast lines for each k-plane. Note 
that c(i, j ,  k) in Algorithm 3.2 corresponds to c ! , ~  in Algorithm 
3.1 and is computed at node (i, j ,  k) in DG shown in Fig. 1. 
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Fig. 1 .  Dependence graph for the original APP algorithm. 
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Fig. 2. Dependence graph for Design a l .  

Algorithm 3.2: For all indices ( i , j ,  k), 1 5 i ,  j ,  k 5 N ,  do 

u ( i , j ,  k)  = c(z,j, k )  x e( i , j ,  k )  
u ( i , j  + 1, k )  = u( i , j ,  k )  
u( i ,  j - 1, k )  = u ( i , j ,  k )  
d ( i , j ,  k)  = c( i , j ,  k)* 
d ( i , j +  1,k)  = d ( i , j , k )  
d ( i , j  - 1,k)  = d ( i , j , k )  
b ( i , j ,  k)  = c( i , j ,  I C )  
b(i  + l,j, I C )  = b ( i , j ,  k )  
b( i  - l , j ,  k )  = b ( i , j ,  k )  
e( i , j ,  k) = c( i , j ,  k)* 
e(i + l,j, k )  = e( i , j ,  k) 
e(i - I , j ,  k )  = e( i , j ,  k )  

initial values c(i,j ,  1) = ci,j 

if i # k and j = k 
if i # k a n d j  2 k 
if i # k a n d j  5 k 
if i = k a n d j  = k 
if i = k a n d j  2 k 
if i = k a n d j  5 k 
if i = k a n d j  # k 
if i 2 k a n d j  # k 
if i 5 k a n d j  # k 
if i = k a n d j  = k 
if i 2 k a n d j  = I C  
if i 5 k a n d j  = k  

final results Zi,j = c(i,j,  N + 1) 0 
Although the variable c propagating in the k-direction is 

regular in Algorithm 3.2, the propagation vectors of variables 
a ,  d, b, and e are irregular in each k-plane since the broadcast 
lines are not fixed. Thus there does not exist any valid linear 
schedule and compatible processor assignment function for 
that algorithm. If we design regular arrays based on this DG, 
the derived arrays will become time-variant, like the design 
shown in [131, i.e., each PE executes different functions and 
propagates results to different directions at every time step. 
There are many drawbacks for time-variant designs, such 
as control is complex, array irregular, more functional unit 
necessary, and so on. Thus, they are not very suitable for VLSI 
implementation. However, this irregularity can be eliminated 
by reindexing (i and j )  in each k-plane as S. Y. Kung et al. 
did in [12], [15]. Note that, in the following, long sequences 
of RIA statements will not be written since most of them are 
assignment statements for propagation variables. Nevertheless, 
we will show the DG’s and readers can easily capture their 
essence and derive RIA’S from them. 

A. An Orthogonal Array With t ,  = 5N - 3 

In this section, we show the idea of “reindexing” proposed 
by S .  Y. Kung et al. on their designing of orthogonal array for 
transitive closure and APP. This array is the optimal design so 
far. Note that, the orthogonal arrays for transitive closure [ 151 
and APP [l2] are the same in essence. The method used by S. 
Y. Kung is to reindex c(i, j ,  k) to c((i - k +N)mod N + 1, ( j  - 
k + N)mod N + 1, k)  in Algorithm 3.2 for each k-plane, and 
the resulting DG is shown in Fig. 2. Comparing Fig. 1 with 
Fig. 2, we know that the shifting of broadcast lines has the 
same effect as reindexing. 

By reindexing, the propagation vectors of variables a,  d, b 
and e in Fig. 1 will be unified in every k-plane where variables 
u (d) and b (e) propagate in [O 1 01 and [ l  0 01 direction, 
respectively. Consequently, the propagation vector of the 
variable c becomes [ - 1 - 1 11 as well as three spiral arcs. They 
arec( i - l ,N,k+I)  = c(i, I ,k )xe( i ,  1,k), c (N, j - l ,k+I)  = 
d ( l , j , k ) x c ( l , j , k ) , a n d c ( N , N , k + l )  = c( l , l ,k )* .The  
first spiral arc can be eliminated by letting c(i - 1, N ,  k + 1) = 
u( i ,  N ,  k). In addition, by introducing propagation variable 
f in [0 1 01 direction in the ( i  = N + 1)-plane where 

e (N + l , l , k )  = e ( N , l , k )  = ... = e ( l , l , k )  = c( l , l ,k )* ,  
wecan subst i tutec(N,j- l ,k+l)  = f ( N + l , j , k )  x b ( N +  
l , j , k )  and c ( N , N , k  + 1) = f ( N  + l , N , k )  for the rest 
two spiral arcs. The reason why we let the variable f rather 
propagate in the (i = N + 1)-plane than the (i = N)-plane is 
that if the former is selected then the dependence vector for 
c ( N , j  - 1, k + 1) = f ( N  + l,j, k )  x b(N + l,j, k )  becomes 
[-1 -1 11 which is the same as c(i - 1, j  - 1,k  + 1) = 
c(i,j,  k )  + u ( i , j ,  k )  x b ( i , j ,  k ) .  Such that, these two equations 
can share one interconnection in RA since they are never 
computed at the same time. Note that now the propagation 
variable d in Fig. 1 becomes useless because its duty has been 
replaced by the variable f in Fig. 2; thus, these arrows in the 
first row of DG in Fig. 2 disappear. 

f ( N + l , j + l , k )  = f ( N + l , j , k )  = ...  = f ( N + l , l , k )  = 

The dependence matrix D of Fig. 2 is 

D =  0 1 - 1  [: -1 -:] 
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f J 

Fig. 3. Orthogonal array of Design a l .  

By selecting transformation matrix T as follows: 

T = O O l ,  [: : I] 
D’= [‘ 0 0 1 ’1. we have 

0 1 - 1 0  

The orthogonal array for Fig. 2 by transformation matrix T 
is shown in Fig. 3. We call it Design al. The execution time 
of Design a1 is t ,  = 5N - 3, since t ,  = maxr,I,Ee{AT(I - 
I ‘ ) } + l =  ( N + l + N + 3 N ) - ( l + 1 + 3 ) + 1 =  5 N - 3 .  One 
thing should be clarified is that there is a small constant factor 
difference between the execution time of Design a1 and that of 
Lewis and Kung’s design (5N - 2). This is due to two factors: 
the first one is we add an extra row for every k-plane of the DG 
of Design a l ,  and the second one is definition difference for 
execution time, since they defined execution time as the time 
interval between the first operation executed and the last result 
outputted. Although there is minor differences between these 
two designs, the central concept of reindexing and moving 
broadcast plane are the same. That is just the idea we want 
to convey. 

B. A Cylindrical Array With t ,  = [y] - 2 

By inspecting the DG shown in Fig. 2, we know that the 
longest path is 5N-3.  Therefore, Design a1 is optimal for this 
DG because its execution time is also 5N - 3. The interesting 
question is : Can we reindex Algorithm 3.2 in different ways to 
get another new DG with a shorter longest path? The answer 
is, of course, YES. If we move the broadcast plane of the 
variable a (f) to the ( j  = [$])-plane as shown in Fig. 4. The 
longest path in this DG is no longer 5N - 3 but 

The criteria of designing a parallel algorithm for the DG 
shown in Fig. 4 are as follows. 

1) By using the broadcast plane of the variable a(f), we 
can decompose this DG into two phases. The first one 
is j 5 [$I and the second one is j 2 141. 

2) It is easy to determine propagation vectors of variables 
a(f) and b(e) for each phase. In phase 1, the propagation 
vectors of variables a (f) and b (e) are in [0 - 1 01 and [ 1 

- 2. 

Fig. 4. Dependence graph for Design a2. 

0 01 direction, respectively. In phase 2, the propagation 
vectors of variables a(f) and b(e) are in [0 1 01 and [l 
0 01 direction, respectively. 

3) The propagation vector of the variable c is the same for 
both phases. It is in [-1 -1 11 direction as well as some 
spiral arcs. Note that it is meaningless if the index of a 
variable does not appear in its own phase. For example, 

b ( i ,  [$I, IC) in phase 2. We will ignore these equations. 
4) There are four different types of spiral arcs for the 

variable c. They are c ( N , j  - 1, k + 1) = c(1, 1, I C ) *  x 
c( l , j ,  I C )  if j # I$], C(N, [$]-I, k + l )  = c(l,1, k)*. 
c ( i - l , N , k + l )  = c(i, l,IC)+a(i, 1 ,k)  x b(i,l,IC), and 
c(N,N,IC + 1) = f ( N  + 1,1, k) x b(N + l , l , k ) .  The 
first two can be replaced by c(N, j - 1, k + 1) = f ( N  + 
l , j , k )  x b(N + l , j , k )  i f j  # [$] and c(N, 161 - 
1 , k  + 1) = e ( N  + 1, [ $ ] , I C ) .  The last two have 
dependencies between two pkases. We call these intra- 
phase dependencies and use D to denote them. 

5) Since the (k = 1)-plane has been reindexed, the initial 
values c( i , j ,  1) are no longer equal to c;, j .  The rela- 
tionship between c(i,j ,  1) and c i / , j /  should be i’ = i 
and j ’  = r1uJ( j )  because the broadcast line of the 
variable a has’been moved from the (i, 1, 1)-line in Fig. 
1 to the (i, [$],l)-line in Fig. 4 and this is done by 
shifting right times cyclically in the j-direction 
for the (IC = 1)-plane. 

6) The last problem needs to be solved is how to read final 
results 5,,j, from c ( i , j , N  + 1). The same reason as 
above, we have i’ = i and j ’  = r 1 u J  (j). By Theorem 
2.1, we obtain i = i’ and j = Z,d,(j’). 

The dependence matrices Di of phase i, 1 5 i 5 2, in Fig. 
4 are 

c(i - 1, 141 - 1, k + 1) = c(i, [$I, IC) + a( i ,  [$I, k) x 

0 -1 1 0 -1 
D1= 0 -1 -1 a n d D 2 =  0 1 -1 . [: 0 11 [o 0 11 

By selecting transformation matrices Ti for D; as 
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we have 

D i =  [' 0 i '1 a n d D i =  [" :]- 0 -1 -1 0 1 -1 

In this design, two phases have different schedule vectors. 
We call it two-phase schedule and this schedule can be 
generalized into m-phase schedule. There are three different 
types of m-phase schedule. They are m-phase linear schedule, 
m-phase uniform afine schedule and m-phase afine schedule. 
Since only the m-phase uniform affine schedule is used to 
design 2 - 0  RA's for APP in this paper, we give its formal 
definition as follow: 

De$nition 3.1: m-phase uniform affine schedule: 
II;,z(I;) = ATI; + vi,+, where AT is the linear part of 
IIi,z and Ii is an index in the computation domain 0; of 
phase i. vi+ is some constant for variable 2 in phase i to 
denote the translation part of XI+, where 1 5 i 5 m. 

If all variables have the same translation part in one phase, 
then v; is short for for m-phase uniform affine schedule 
and AT becomes the first row of transformation matrix of 
77;. Since the execution time of an RIA is the number of 
hyperplanes sweeping the index space, we have execution 
time t ,  = maxr,,r;Eet{(ATI; + vi,=) - (ATIl + vi,y) + l}, 
1 5 i 5 m, for the m-phase uniform affine schedule, if all 
phases begin execution at the same time. 

Thus, the two-phase uniform affine schedule for Fig. 4 is 
IIl(I1) = AYI1 + vl = [l -1 3111 + v1 and IIz(I2) = 

+ v2 =[1 1 3112 + v2. 

Since nodes (2, [$I, k) belong to both phases, we have 

[I -1 31 [$I + v i  = [1 1 31 [$I + v ~ ,  

or - [$I + 3 k + v 1  = i +  [$I + 3 k + v 2 .  Let v2 = 0, then 
[:I [:.I 

if N is even 
if N is odd. N + 1 

Hence, IIl(I1) = [l -1 3111 + 2[%1 and I I z ( 1 2 )  = 
[l 1 3112. With this two-phase uniform affine schedule, it 
is easy to determine the interconnection delays, say 4, for 
mapping intra-phase dependencies, where 1 5 i 5 1, I is the 
number of intra-phase dependencies. 

1) 

~ ( i  - 1, N, k + 1) = ~ ( i , j ,  k) + ~ ( i , j ,  k) x b ( i , j ,  k) 
if i f  N +  1 a n d j  = 1 

i - 1 + N + 3k + 3 +  v2 = i - 1 + 3k + vl + 4 j 4 
3 if N is even 
2 if N is odd 

= N + 3 - ~ 1 =  

~ ( i  - 1, N, k + 1) = f ( i , j ,  k) x b ( i , j ,  k) 
if i = N + l  a n d j  = 1 

N 4- N 4- 3k + 3 + vz 

= N + 1 - 1 + 3k + vl + &, j &, 
3 if N is even 
2 if N is odd 

= N + 3 - ~ 1 =  

Fig. 5. Cylindrical array of Design a2. 

From 

we have spiral arcs for both types of intra-phase dependen- 
cies. Since these two intra-phase dependencies will never be 
computed at the same time, they can share one spiral arc. 

After composing these two phases together, a cylindrical 
array for Fig. 4 is constructed as shown in Fig. 5.  We call it 
Design a2. The execution time of Design a2 is t ,  = Ly] - 2, 
since 

t ,  = max{ (N + 1 - 1 + 3 N + 2  - Kl) 
- ( 1 -  +3+2[:1) + 1 ,  forphase 1 

( N + l + N + 3 N ) - ( l +  Kl - + 3 ) + 1 ,  

I for phase 2 

9 N  
2 

= 1-1 - 2 .  

C. A Spherical Array With t ,  = 4 N  - 2 

In the last section, only by moving the broadcast plane of 
variable a(f) to the center of DG in the j-direction, we could 
decrease the execution time from 5 N  - 3 to Ly] - 2. In this 
section, we will show how we can get a spherical array with 
execution time of 4 N  - 2 (if N is even, 4 N  - 3 if N is odd) 
by moving both broadcast planes of variables a(d) and b(e) 
to the center of DG in the j -  and i-direction, respectively. 
The DG is shown in Fig. 6. The general criteria of designing 
an RIA for this DG are similar to the last section. Besides, 
we have intra-phase dependencies between the seven phases 
shown at the bottom of the next page. 

The initial values assigned and final results obtained are 
changed as follows. 
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r’ 
i 

Fig. 6. Dependence graph for Design a3. 

we have 
1 

0 -1 -1 0 1 -1 
1 

We use a four-phase uniform affine schedule to let these 
four phases begin execution at the same time. The schedule 
for these four phases is 

Since nodes (I:] 151, k) belong to all four phases, we have Initial values c(zlj, 1) = ci/,jt where i’ = r L y J ( i ) ,  
j ’  = r L y , ( j ) ,  and final results Z ~ I , ~ I  = c(z , j ,  N + 1) where 

The dependence matrices Di of phase i, 1 5 i 5 4, in Fig. 
i = Zy+,(Z~), j = Z 1 y , ( j / ) .  

6 are 

-1 0 -1 
D1= [ ; -; - ; I ,  D2= 

[: : -:] D3= 0 1 -1 , D 4 =  

By selecting transformation matrices Ti for Di as follows: 

T3 = [a b a] , T2 = 

1 T4 = 

-1 1 3 
1 0 0  
0 1 0  

1 -1 3 
1 0 0  
0 1 0  

[ 
[ 

1 

= [-1 1 31[y] + v 2  

= [l -1 31[rp] +v4 
=[1 1 3 ] [ [ p l . ’ .  

j -2 - + y  = v z  = 2  +v3 =v4. Kl Kl 
Let v3 = 0, then 

if N is even 
if N is odd v2 = v4 = 2 1 q  = (“ and 

N +  1 
if N is even 

2N + 2 if N is odd 

c ( z , j , k ) + u ( i l j , k )  x b ( i , j , k )  i f i #  [El a n d j = l  
i f i =  121 & a n d j = l ’  4i1 j ,  k) x c( i ,  j ,  k )  

1) phase 2, 1: c( i  - 1 , N , k  + 1) = 

2)  phase 3, 4: c( i  - l , N , k  + 1) = c( i l j ,  k )  + u ( i , j , k )  x b ( i , j ,  k) if j = 1, 

3) p h a s e 2 , 4 : c ( i - 1 , N , k + 1 ) = c ( i , j l k ) + ~ ( i , j , k ) x b ( i , j , k ) i f i =  [:I + l a n d j = l ,  

5 )  phase 3, 2: c ( N , j  - 1, k + 1) = c(il j ,  k) + u(Z,j, k )  x b ( i l j ,  k) if i = 1, 

6) phase 4, 2: c ( N , j  - 1,k + 1) = c(il j ,  k) + u ( i , j , k )  x b ( i , j , k )  if i = 1 and j = + 1, 

7) phase 3, 1: c ( N , N , k  + 1) = c( i l j ,k )  + u ( i , j l k )  x b ( i , j , k )  if i = 1 and j = 1. 
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Hence, 

I I z ( I2 )  = [-1 1 3112 + 2  - , Kl 
n3(13) = [1 1 3113, 

II4(14> = [I -1 3114 + 2 - . Kl 
With this four-phase uniform affine schedule, the intercon- 
nection delays for mapping intra-phase dependencies can be 
calculated by similar ways as Design a2. They are 

(5,3,3,5,3,3,5) if N is even { (4,2,2,4,2,2,3) if N is odd * 
(&,...,a7) = 

The interconnections of RA for intra-phase dependencies can 
be gotten from the equation found at the bottom of the page. 
They represent spiral arcs as shown in Fig. 7. We call it Design 
a3 and its execution time is 

t e = {  4N - 3 if N is odd ' since 
4N - 2 if N is even 

t ,  = 

max{(- l - l+3N+4 Kl) - 

-(-[:I -[:1+3+4[:l)+l, forphase1 

( -1+N+3N+2  

- (-[:I + +3+2[:1) +1, forphase2 

( N + N + 3 N ) -  

(N - 1 + 3N + 2[:1) 

-([:I - 
+ 3 + 2 I:]) + 1, for phase 4 

4N - 2 if N is even 
4N - 3 if N is odd . 

t 

Fig. 7. Spherical array of Design a3. 

D. An Orthogonal Array With te = [y] - 2 

In this section, we propose an orthogonal array which 
eliminates the spiral arcs in Design a2 but remains the same 
execution time of [YJ - 2. 

We explain our design criteria as follows. 
1) In Design a2, the spiral arcs result from intra-phase 

dependencies. Removing intra-phase dependencies can 
be done by letting the variable c in the (k + 1)-plane 
get their k-plane value from different directions for two 
phases and using propagation vectors of the variable a 
to replace the intra-phase dependencies. In addition, it is 
necessary to divide DG into two parts in the k-direction. 

Part 1 (IC 5 [?I): The propagation vectors 
are in [-1 0 11 and [-1 -1 11 for the variable 
c in phase 1 and phase 2, respectively. Now, we 
can substitute c(i - 1, N, k + 1) = a(i ,  N, I C )  for 
the intra-phase dependencies c(i - 1, N, k + 1) = 
c(i, 1 ,k)  + a(i ,  1, I C )  x b( i ,  1, I C )  in Fig. 4. The 
other intra-phase dependencies, c ( N ,  N, k + 1) = 
f (  N + 1,1, k) x b(N+ 1,1, k), can be replaced by 
c(N, N, k+l)  = f (N+l ,  N, I C ) .  All dependencies 
in part 1 are shown in Fig. 8(a). 
Part 2 ( I C  > [?I): The similar method in part 
1 is used here again except the propagation vectors 
of the variable c in phase 1 and phase 2 of part 
2 become [-1 1 11 and [-1 0 11, respectively. 
Besides, we use c(i - l , l , k  + 1) = a(i ,  1 , k )  
and c(N, 1, k + 1) = f (N  + 1,1, I C )  to replace 
intra-phase dependencies as described above. All 
dependencies in part 2 are shown in Fig. 8(b). 

2) Notice that the initial values assigned and final results 
obtained are also changed as follows: Initial values 

-1 -1 -1 N - 1  N - 1  N - 1  N - 1  

1 1 1 1 1 1 1 
N - 1  N - 1  N - 1  -1 -1 -1 N-11  

1 -1 -1 -1 N - 1  N - 1  N - 1  N - 1  
N - 1  N - 1  N - 1  -1 -1 -1 N - 1 '  
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i 

Part 1 

N 
N+l 

rj 
i 

part 2 

N 
N+l 

phase 2 

C ".ti .-1 .l] 

ocaxb 

+a+a 

Phase 2 

k c 
b 

C 

AI-1 r,11 
c+ax b 

+a+a 

Fig. 8. (a) Part 1. (b) Part 2 of dependence graph for Design a4. 

c(Z,j, 1) = cit,?! where i' = i, 

and final results Z;,,j, = c ( i , j ,  N + 1) where i = i', 

The dependence matrices D;j for phase j of part i, 1 5 
i , j  5 2, are 

Dll = 

D2l = 

0 -1 1 0 -1 -1 

0 0  1 1  
0 -1 -1 1 0 -1 :], D22= [u 1 0 

0 0  1 [i --: 

Fig. 9. Orthogonal array of Design a4. 

By selecting transformation matrices T;j, 1 5 i , j  5 2, for 
D;j as follows 

l o  0 1  

we have 

Oil = 

DLl = 

'1, D i 2 =  [" i i ']. 
0 -1 0 0 1 - 1 0  

i k i '1, DL2= [" : '1. 
0 - 1 1 0  0 1 0  

After composing the designs of part 1 and part 2, an orthogonal 
array for Fig. 8 is constructed as shown in Fig. 9. We call it 
Design a4. 

A two-phase uniform affine schedule same as I I 1  and I I 2  in 
Section 111-B can be derived for the Design a4, where II1 is 
for phase 1 of part 1 and part 2, and I I 2  is for phase 2 of part 
1 and part 2. The execution time of Design a4 is the same as 
Design a2, that is, t ,  = LYJ - 2. 

IV. CONCLUSION 
In this paper, by decomposing a dependence graph into 

multiple phases with appropriate m-phase schedule functions, 
three novel more efficient regular arrays for APP have been 
derived systematically. They are summarized at Table I. Since 
the linear schedule vector is adopted by every phase for all de- 
signs, the derived arrays have the properties of simple-control 
and time-invariance, Le., each PE executes fixed computation 
and passes results to fixed PE's for every time step. Moreover, 
every design is time optimal for its DG since its execution time 
is the same as the longest path of its DG. 
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A m y  type 

TABLE I 
COMPAIUSON OF DEFEFSNT DESIGNS FOR ALGEBRAIC PATH PROBLEM 

Ezecution time Broadcast plane of 

variable a variable b 

Design Dependence graph r 
orthogonal 

cylindrical 

spherical 

orthogonal 

I I 

5N - 3 j = 1  i = l  

r Y 1 - 2  j = i =  1 

4N - 2t j = [$I i = [$I 
- 2  j = [$I i = 1 

Fig. 3.2 

Fig. 3.4 

Fig. 3.6 

Fig. 3.8 
new design for algebraic path p 

t 4 N - 2  if N is even, 4N - 3  if N is odd 

t pre-iodic; initial adjacency matrix is necessary 
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