
IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 7, JULY 1994 769

A Family of Efficient Regular Arrays
for Algebraic Path Problem

Pen-Yuang Chang and Jong-Chuang Tsay

Abs&act--It has been shown that the method of decomposing a
dependence graph into multiple phases with appropriate m-phase
schedule function is useful for designing faster regular arrays for
matrix multiplication and transitive closure. In this paper, we will
further apply this method to design several parallel algorithms
for Algebraic Path Problem and derive N x N 2-D regular arrays
with execution time LyJ - 2 (cylindrical array and orthogonal
one) and 4N - 2 (spherical one).

Index Terms-Algebraic path problem, cylindrical array, par-
allel algorithm design, systolic array, spherical array, transitive
closure, VLSI architecture.

I. IN’IRODUCTION
WO major steps on the design of a regular array (RA) T [l] from a sequential algorithm for a problem are reg-

ularization and spacetime mapping. Firstly, by regularization
we can rewrite the sequential algorithm to a regular iterative
algorithm (RIA) [21-[5], which has a corresponding graphic
representation called dependence graph (DG); then an RA
is derived by the spacetime mapping (T) procedure which
comprises the selection of a schedule function (A) and a
compatible processor assignment function (S). Diversified
RA’s can be obtained by different combinations of this two
steps. In [6], several new RA’s for the problem of matrix
multiplication and transitive closure have been derived by
constructing different multi-phase RIAs according to various
selections of broadcast plane together with new proposed m-
phase schedule function and compatible processor assignment
function. In this paper, we will extend its application to
Algebraic Path Problem (APP) which is a generalization of
problems, such as transitive closure, shortest path problem,
Gauss-Jodan elimination, and so on [7].

The design of RA’s for APP has been studied by several
researchers in the literature [8]-[13]. The most significant RA
designed by Lewis and Kung [121 with execution time 5N - 2
is optimal in terms of pipelining period, block pipelining
period, and the number of YO connections. Besides, the survey
and comparison of several 2-D RA’s for APP are also cited in
that paper. According to the DG (Fig. 3 in their paper) used
by them, the longest path in this graph is 5N - 4. Therefore,
for this DG, this design is also optimal in execution time

Manuscript received February 5, 1992; revised June 24, 1993. This workwas
supported by the National Science Council of ROC under Contract NSC-81-

The authors are with the Institute of Computer Science and Information En-
gineering, College of Engineering, National Chiao Tung University, Hsinchu,
Taiwan 30050, Republic of China.

IEEE Log Number 9401098.

0408-E-009-568.

to within a small additive factor. The question we want to
ask here is: Is there any DG for the APP with shorter longest
path based on the same sequential algorithm? If the answer
of this question is positive, we wish to design systematically
2-D RA’s with execution time the same as the longest path
of this new DG.

The paper is organized as follows: Firstly, some preliminary
definitions are presented in Section 11. In Section 111, three
different new designs for APP are given. They are a cylindrical
array with execution time LyJ -2 in Section 111-B, a spherical
array with 4N - 2 in Section 111-C, and an orthogonal array
with [YJ - 2 in Section 111-D. Finally, we make conclusions
in Section IV which summarizes these new designs proposed
in this paper.

11. PRELIMINARY DEFINITIONS

In this section, we give some preliminary definitions as a
basis for following descriptions.

Dejinition 2.1: A left-shift sequence, L(i; 1 ,N) = (i +
1,i + 2, . . . ,N, l ,2 , . . . ,2) = (2~(1),Zc(2),...,Z~(N)), is a
sequence of integers resulting from shifting the sequence
(1,2, . - . , N) left cyclically i times, where 0 5 i 5 N - 1.
The jth element in L is Z z (j) = (i + j - 1)modN + 1, where
1 5 j I N .

Dejinition 2.2: A right-shift sequence, R(i; 1, N) =
(N - i + l , N - i + 2, . . . ,N,1 ,2 , . - . ,N - i)
(rc(l), ~ , (2) , . . . , r c (N)) , is a sequence of integers resulting
from shifting the sequence (1,2, . . . , N) right cyclically i
times, where 0 5 i 5 N - 1. The jth element in R is
r , (j) = (j - i + N - l)modN + 1, where 1 5 j 5 N .

The following theorem shows the relationship between these
two sequences.

Theorem 2.1: Zi(j) = IC iff .%(IC) = j , where 0 5 i 5 N- 1
and 1 5 j , k 5 N

=

Proof: See [6]. 0
The meaning behind this theorem is that if we want to know

which position (say j) the number IC appears in the left-shift
sequence L(i; 1, N), we can read j from the value of ri(IC).
For example, if we want to know which position the number
4 appears in the left-shift sequence L(2; 1,5), we have the
position j = ~ (4) = 2.

The execution time (t e) of an RA is defined to be the time
interval between the first operation executed and the last result
calculated. By computation domain (0) we mean the set of
finite indexes (or nodes) used by an RIA. Let I and I’ be two
indexes in the computation domain 0 of an RIA A. AT is
a linear schedule in the first row of transformation matrix T.

00 1 8-9430/94$O4.OO 0 1994 IEEE

770 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 7, JULY 1994

Assuming a unitary time increment, the execution time of an
RA obtaining from the RIA A by transformation matrix T is
t , = maxl,ltEe{AT(I - 1’)) + 1 [14]. The actual meanings
of execution time of an RIA is the number of hyperplanes
sweeping the index space. Let D be a dependence matrix
of an algorithm. The result of T x D, denoted by D’, is
a new dependence matrix in which the first row represents
time delays and the remaining rows are the correspondent
interconnections of array processors.

In a computation domain, values of a variable may be
needed to broadcast from a source node to several destina-
tion nodes. We say the source node the broadcast point. A
line connecting several broadcast points is a broadcast line.
By aggregating several broadcast lines, we have a broad-
cast plane. Different variables may have different broadcast
planes. A broadcast center is located at the intersection of
broadcast lines or planes. Broadcast removing is achieved
by transforming the broadcast dependencies into propaga-
tion dependencies. The broadcast point, in such case, is
the position where propagation variable obtains its actual
value.

The general procedure of designing RA by moving the
broadcast planes is as follows.

1) The broadcast planes should be shifted to some position
of the computation domain in order to reduce the longest
path of the original DG.

2) According to these broadcast planes, the computation
domain of the original problem can be decomposed into
several phases. The parallel algorithm in each phase
should satisfy all properties of the RIA, e.g., all entries
of dependence matrix for each phase have constant
and shift-invariant values. We call this form of parallel
algorithm multiphase RIA.

3) For each phase, the execution order of the parallel
algorithm is determined by an appropriate schedule
vector. This schedule is called m-phase schedule and
will be defined later. Each phase may have not the
same schedule vector and even processor assignment
function. Nevertheless, the parallel algorithm of every
phase should begin execution at the same time.

4) There may have dependencies between two different
phases. We call them intra-phase dependencies. These
dependencies may relate to the problem size. The inter-
connection delays for mapping intra-phase dependencies
can be determined by the m-phase schedule.

5) The final RA is constructed by composing RA’s of all
phases as well as the interconnections which come from
mapping intra-phase dependencies.

The meaning of the recurrence equations used in this
paper can be illustrated by an example, c(i + 1, j , k) =
a (i , j , k) + b (i , j , k). If in the computation domain node
(1,2,3) is concerned, the above equation means that vari-
ables a and b of node (1,2,3) are added on that node,
then the result is sent to and saved in the variable c of
node (2,2,3). Note that, unless this result of computation
is the final output we desired, it is meaningless and ig-
nored if node (i + l,j, k) locates outside its computation
domain.

III. DESIGN OF 2-D REGULAR ARRAYS
FOR ALGEBRAIC PATH PROBLEM

The APP [7], [12] is defined in terms of a weighted
directed graph, G = (V, E), with N vertices, where V is
the set of vertices and E is the set of directed edges. The
edge weight from vertex i to vertex j is denoted by wij
which is defined in a dioid (S, +, x). In S, operation +
(addition) is a commutative monoid (closure, associativity,
commutativity) and operation x (multiplication) is a monoid
(closure, associativity). The elements 0 and 1 are identity (or
neutral) elements of + and x, respectively. x is left and
right distributive with respect to + and 0 is an absorbing
element for x. The quasi-inverse of a, a*, is defined by
1 + a + a x a + a x a x a + ..., where a is an element
in S. Let C be an adjacency matrix of G, where

wi,j if there is an edge from vertex i to vertex j ,
ci . =

‘3 { 0 otherwise.

Then, the objective of APP is to compute matrix C in which
each element, Z&, is the sum of the weights of all distinct
paths from vertex i to vertex j . The application of APP is
diversified for different definitions of dioid [7]. For examples,
the dioid ((0 , l}, m a , min) is for the problem of transitive
closure, (8 U {oo}, min, +) is for the shortest path problem,
and (8, +, x) with a* = & when a # 1, where a E 92, is for
Gauss-Jodan elimination. TheJollowing recurrence equations
are used to compute matrix C.

Algon‘thm 3.1: For all indices (i , j , k), 1 5 i, j , k 5 N, do

[c : , ~ + c t k x (&)* x c ; , ~ if i # k and j # k

if i = k a n d j # k

if i # k a n d j = k

if i = k a n d j = k

initial values c : , ~ = ci,j

0 find results ~ i , j = c F 1
Removing broadcast dependencies in Algorithm 3.1 can

be carried out by adding propagation variables d(e) to carry
c (k , k, k)* in horizontal (vertical) direction when i = k(j =
k). In addition, the variable a is to propagate c(i, k, k) x
e(i , k, k) (that is, c (i , k, k) x c (k , k, k)*) in the j - direction
except i = k and the variable b is to propagate c (k , j , k) in
the i-direction except j = k. Now, we have Algorithm 3.2
and its DG (the k-plane) is shown in Fig. 1. The arc links in
it represent to propagate computation results to the variable c
from node (i, j , k) to node (i, j , k + 1) in the k-direction. The
bold lines in it is to represent the broadcast lines. Broadcast
planes can be constructed by aggregating these lines in the
k-direction. The meaning of broadcast lines in here is that
propagation variables a and b obtain their actual values in these
lines and propagation variables d and e get c (k , k , k) * value
from the intersection of broadcast lines for each k-plane. Note
that c(i, j , k) in Algorithm 3.2 corresponds to c ! , ~ in Algorithm
3.1 and is computed at node (i, j , k) in DG shown in Fig. 1.

CHANG AND TSAY: A FAMILY OF EFFICIENT REGULAR ARRAYS FOR ALGEBRAIC PATH PROBLEM

r
i

i

k

a+a4

Fig. 1 . Dependence graph for the original APP algorithm.

i

N
N+l

Fig. 2. Dependence graph for Design a l .

Algorithm 3.2: For all indices (i , j , k), 1 5 i , j , k 5 N , do

u (i , j , k) = c(z,j, k) x e(i , j , k)
u (i , j + 1, k) = u(i , j , k)
u(i , j - 1, k) = u (i , j , k)
d (i , j , k) = c(i , j , k)*
d (i , j + 1,k) = d (i , j , k)
d (i , j - 1,k) = d (i , j , k)
b (i , j , k) = c(i , j , I C)
b(i + l,j, I C) = b (i , j , k)
b(i - l , j , k) = b (i , j , k)
e(i , j , k) = c(i , j , k)*
e(i + l,j, k) = e(i , j , k)
e(i - I , j , k) = e(i , j , k)

initial values c(i,j , 1) = ci,j

if i # k and j = k
if i # k a n d j 2 k
if i # k a n d j 5 k
if i = k a n d j = k
if i = k a n d j 2 k
if i = k a n d j 5 k
if i = k a n d j # k
if i 2 k a n d j # k
if i 5 k a n d j # k
if i = k a n d j = k
if i 2 k a n d j = I C
if i 5 k a n d j = k

final results Zi,j = c(i,j, N + 1) 0
Although the variable c propagating in the k-direction is

regular in Algorithm 3.2, the propagation vectors of variables
a , d, b, and e are irregular in each k-plane since the broadcast
lines are not fixed. Thus there does not exist any valid linear
schedule and compatible processor assignment function for
that algorithm. If we design regular arrays based on this DG,
the derived arrays will become time-variant, like the design
shown in [131, i.e., each PE executes different functions and
propagates results to different directions at every time step.
There are many drawbacks for time-variant designs, such
as control is complex, array irregular, more functional unit
necessary, and so on. Thus, they are not very suitable for VLSI
implementation. However, this irregularity can be eliminated
by reindexing (i and j) in each k-plane as S. Y. Kung et al.
did in [12], [15]. Note that, in the following, long sequences
of RIA statements will not be written since most of them are
assignment statements for propagation variables. Nevertheless,
we will show the DG’s and readers can easily capture their
essence and derive RIA’S from them.

A. An Orthogonal Array With t , = 5N - 3

In this section, we show the idea of “reindexing” proposed
by S . Y. Kung et al. on their designing of orthogonal array for
transitive closure and APP. This array is the optimal design so
far. Note that, the orthogonal arrays for transitive closure [151
and APP [l2] are the same in essence. The method used by S.
Y. Kung is to reindex c(i, j , k) to c((i - k +N)mod N + 1, (j -
k + N)mod N + 1, k) in Algorithm 3.2 for each k-plane, and
the resulting DG is shown in Fig. 2. Comparing Fig. 1 with
Fig. 2, we know that the shifting of broadcast lines has the
same effect as reindexing.

By reindexing, the propagation vectors of variables a, d, b
and e in Fig. 1 will be unified in every k-plane where variables
u (d) and b (e) propagate in [O 1 01 and [l 0 01 direction,
respectively. Consequently, the propagation vector of the
variable c becomes [- 1 - 1 11 as well as three spiral arcs. They
arec(i - l ,N,k+I) = c(i, I ,k)xe(i , 1,k), c (N, j - l ,k+I) =
d (l , j , k) x c (l , j , k) , a n d c (N , N , k + l) = c(l , l ,k)* .The
first spiral arc can be eliminated by letting c(i - 1, N , k + 1) =
u(i , N , k). In addition, by introducing propagation variable
f in [0 1 01 direction in the (i = N + 1)-plane where

e (N + l , l , k) = e (N , l , k) = ... = e (l , l , k) = c(l , l ,k)* ,
wecan subst i tutec(N,j- l ,k+l) = f (N + l , j , k) x b (N +
l , j , k) and c (N , N , k + 1) = f (N + l , N , k) for the rest
two spiral arcs. The reason why we let the variable f rather
propagate in the (i = N + 1)-plane than the (i = N)-plane is
that if the former is selected then the dependence vector for
c (N , j - 1, k + 1) = f (N + l,j, k) x b(N + l,j, k) becomes
[-1 -1 11 which is the same as c(i - 1, j - 1,k + 1) =
c(i,j, k) + u (i , j , k) x b (i , j , k) . Such that, these two equations
can share one interconnection in RA since they are never
computed at the same time. Note that now the propagation
variable d in Fig. 1 becomes useless because its duty has been
replaced by the variable f in Fig. 2; thus, these arrows in the
first row of DG in Fig. 2 disappear.

f (N + l , j + l , k) = f (N + l , j , k) = ... = f (N + l , l , k) =

The dependence matrix D of Fig. 2 is

D = 0 1 - 1 [: -1 -:]

112 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 7, JULY 1994

f J

Fig. 3. Orthogonal array of Design a l .

By selecting transformation matrix T as follows:

T = O O l , [: : I]
D’= [‘ 0 0 1 ’1. we have

0 1 - 1 0

The orthogonal array for Fig. 2 by transformation matrix T
is shown in Fig. 3. We call it Design al. The execution time
of Design a1 is t , = 5N - 3, since t , = maxr,I,Ee{AT(I -
I ‘) } + l = (N + l + N + 3 N) - (l + 1 + 3) + 1 = 5 N - 3 . One
thing should be clarified is that there is a small constant factor
difference between the execution time of Design a1 and that of
Lewis and Kung’s design (5N - 2). This is due to two factors:
the first one is we add an extra row for every k-plane of the DG
of Design a l , and the second one is definition difference for
execution time, since they defined execution time as the time
interval between the first operation executed and the last result
outputted. Although there is minor differences between these
two designs, the central concept of reindexing and moving
broadcast plane are the same. That is just the idea we want
to convey.

B. A Cylindrical Array With t , = [y] - 2

By inspecting the DG shown in Fig. 2, we know that the
longest path is 5N-3. Therefore, Design a1 is optimal for this
DG because its execution time is also 5N - 3. The interesting
question is : Can we reindex Algorithm 3.2 in different ways to
get another new DG with a shorter longest path? The answer
is, of course, YES. If we move the broadcast plane of the
variable a (f) to the (j = [$])-plane as shown in Fig. 4. The
longest path in this DG is no longer 5N - 3 but

The criteria of designing a parallel algorithm for the DG
shown in Fig. 4 are as follows.

1) By using the broadcast plane of the variable a(f), we
can decompose this DG into two phases. The first one
is j 5 [$I and the second one is j 2 141.

2) It is easy to determine propagation vectors of variables
a(f) and b(e) for each phase. In phase 1, the propagation
vectors of variables a (f) and b (e) are in [0 - 1 01 and [1

- 2.

Fig. 4. Dependence graph for Design a2.

0 01 direction, respectively. In phase 2, the propagation
vectors of variables a(f) and b(e) are in [0 1 01 and [l
0 01 direction, respectively.

3) The propagation vector of the variable c is the same for
both phases. It is in [-1 -1 11 direction as well as some
spiral arcs. Note that it is meaningless if the index of a
variable does not appear in its own phase. For example,

b (i , [$I, IC) in phase 2. We will ignore these equations.
4) There are four different types of spiral arcs for the

variable c. They are c (N , j - 1, k + 1) = c(1, 1, I C) * x
c(l , j , I C) if j # I$], C(N, [$]-I, k + l) = c(l,1, k)*.
c (i - l , N , k + l) = c(i, l,IC)+a(i, 1 ,k) x b(i,l,IC), and
c(N,N,IC + 1) = f (N + 1,1, k) x b(N + l , l , k) . The
first two can be replaced by c(N, j - 1, k + 1) = f (N +
l , j , k) x b(N + l , j , k) i f j # [$] and c(N, 161 -
1 , k + 1) = e (N + 1, [$] , I C) . The last two have
dependencies between two pkases. We call these intra-
phase dependencies and use D to denote them.

5) Since the (k = 1)-plane has been reindexed, the initial
values c(i , j , 1) are no longer equal to c;, j . The rela-
tionship between c(i,j , 1) and c i / , j / should be i’ = i
and j ’ = r1uJ(j) because the broadcast line of the
variable a has’been moved from the (i, 1, 1)-line in Fig.
1 to the (i, [$],l)-line in Fig. 4 and this is done by
shifting right times cyclically in the j-direction
for the (IC = 1)-plane.

6) The last problem needs to be solved is how to read final
results 5,,j, from c (i , j , N + 1). The same reason as
above, we have i’ = i and j ’ = r 1 u J (j). By Theorem
2.1, we obtain i = i’ and j = Z,d,(j’).

The dependence matrices Di of phase i, 1 5 i 5 2, in Fig.
4 are

c(i - 1, 141 - 1, k + 1) = c(i, [$I, IC) + a(i , [$I, k) x

0 -1 1 0 -1
D1= 0 -1 -1 a n d D 2 = 0 1 -1 . [: 0 11 [o 0 11

By selecting transformation matrices Ti for D; as

CHANG AND TSAY A FAMILY OF EFFICIENT REGULAR ARRAYS FOR ALGEBRAIC PATH PROBLEM

we have

D i = [' 0 i '1 a n d D i = [" :]- 0 -1 -1 0 1 -1

In this design, two phases have different schedule vectors.
We call it two-phase schedule and this schedule can be
generalized into m-phase schedule. There are three different
types of m-phase schedule. They are m-phase linear schedule,
m-phase uniform afine schedule and m-phase afine schedule.
Since only the m-phase uniform affine schedule is used to
design 2 - 0 RA's for APP in this paper, we give its formal
definition as follow:

De$nition 3.1: m-phase uniform affine schedule:
II;,z(I;) = ATI; + vi,+, where AT is the linear part of
IIi,z and Ii is an index in the computation domain 0; of
phase i. vi+ is some constant for variable 2 in phase i to
denote the translation part of XI+, where 1 5 i 5 m.

If all variables have the same translation part in one phase,
then v; is short for for m-phase uniform affine schedule
and AT becomes the first row of transformation matrix of
77;. Since the execution time of an RIA is the number of
hyperplanes sweeping the index space, we have execution
time t , = maxr,,r;Eet{(ATI; + vi,=) - (ATIl + vi,y) + l},
1 5 i 5 m, for the m-phase uniform affine schedule, if all
phases begin execution at the same time.

Thus, the two-phase uniform affine schedule for Fig. 4 is
IIl(I1) = AYI1 + vl = [l -1 3111 + v1 and IIz(I2) =

+ v2 =[1 1 3112 + v2.

Since nodes (2, [$I, k) belong to both phases, we have

[I -1 31 [$I + v i = [1 1 31 [$I + v ~ ,

or - [$I + 3 k + v 1 = i + [$I + 3 k + v 2 . Let v2 = 0, then
[:I [:.I

if N is even
if N is odd. N + 1

Hence, IIl(I1) = [l -1 3111 + 2[%1 and I I z (1 2) =
[l 1 3112. With this two-phase uniform affine schedule, it
is easy to determine the interconnection delays, say 4, for
mapping intra-phase dependencies, where 1 5 i 5 1, I is the
number of intra-phase dependencies.

1)

~ (i - 1, N, k + 1) = ~ (i , j , k) + ~ (i , j , k) x b (i , j , k)
if i f N + 1 a n d j = 1

i - 1 + N + 3k + 3 + v2 = i - 1 + 3k + vl + 4 j 4
3 if N is even
2 if N is odd

= N + 3 - ~ 1 =

~ (i - 1, N, k + 1) = f (i , j , k) x b (i , j , k)
if i = N + l a n d j = 1

N 4- N 4- 3k + 3 + vz

= N + 1 - 1 + 3k + vl + &, j &,
3 if N is even
2 if N is odd

= N + 3 - ~ 1 =

Fig. 5. Cylindrical array of Design a2.

From

we have spiral arcs for both types of intra-phase dependen-
cies. Since these two intra-phase dependencies will never be
computed at the same time, they can share one spiral arc.

After composing these two phases together, a cylindrical
array for Fig. 4 is constructed as shown in Fig. 5. We call it
Design a2. The execution time of Design a2 is t , = Ly] - 2,
since

t , = max{ (N + 1 - 1 + 3 N + 2 - Kl)
- (1 - +3+2[:1) + 1 , forphase 1

(N + l + N + 3 N) - (l + Kl - + 3) + 1 ,

I for phase 2

9 N
2

= 1-1 - 2 .

C. A Spherical Array With t , = 4 N - 2

In the last section, only by moving the broadcast plane of
variable a(f) to the center of DG in the j-direction, we could
decrease the execution time from 5 N - 3 to Ly] - 2. In this
section, we will show how we can get a spherical array with
execution time of 4 N - 2 (if N is even, 4 N - 3 if N is odd)
by moving both broadcast planes of variables a(d) and b(e)
to the center of DG in the j - and i-direction, respectively.
The DG is shown in Fig. 6. The general criteria of designing
an RIA for this DG are similar to the last section. Besides,
we have intra-phase dependencies between the seven phases
shown at the bottom of the next page.

The initial values assigned and final results obtained are
changed as follows.

774 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 7, JULY 1994

r’
i

Fig. 6. Dependence graph for Design a3.

we have
1

0 -1 -1 0 1 -1
1

We use a four-phase uniform affine schedule to let these
four phases begin execution at the same time. The schedule
for these four phases is

Since nodes (I:] 151, k) belong to all four phases, we have Initial values c(zlj, 1) = ci/,jt where i’ = r L y J (i) ,
j ’ = r L y , (j) , and final results Z ~ I , ~ I = c(z , j , N + 1) where

The dependence matrices Di of phase i, 1 5 i 5 4, in Fig.
i = Zy+,(Z~), j = Z 1 y , (j /) .

6 are

-1 0 -1
D1= [; -; - ; I , D2=

[: : -:] D3= 0 1 -1 , D 4 =

By selecting transformation matrices Ti for Di as follows:

T3 = [a b a] , T2 =

1 T4 =

-1 1 3
1 0 0
0 1 0

1 -1 3
1 0 0
0 1 0

[
[

1

= [-1 1 31[y] + v 2

= [l -1 31[rp] +v4
=[1 1 3] [[p l . ’ .

j -2 - + y = v z = 2 +v3 =v4. Kl Kl
Let v3 = 0, then

if N is even
if N is odd v2 = v4 = 2 1 q = (“ and

N + 1
if N is even

2N + 2 if N is odd

c (z , j , k) + u (i l j , k) x b (i , j , k) i f i # [El a n d j = l
i f i = 121 & a n d j = l ’ 4i1 j , k) x c(i , j , k)

1) phase 2, 1: c(i - 1 , N , k + 1) =

2) phase 3, 4: c(i - l , N , k + 1) = c(i l j , k) + u (i , j , k) x b (i , j , k) if j = 1,

3) p h a s e 2 , 4 : c (i - 1 , N , k + 1) = c (i , j l k) + ~ (i , j , k) x b (i , j , k) i f i = [:I + l a n d j = l ,

5) phase 3, 2: c (N , j - 1, k + 1) = c(il j , k) + u(Z,j, k) x b (i l j , k) if i = 1,

6) phase 4, 2: c (N , j - 1,k + 1) = c(il j , k) + u (i , j , k) x b (i , j , k) if i = 1 and j = + 1,

7) phase 3, 1: c (N , N , k + 1) = c(i l j ,k) + u (i , j l k) x b (i , j , k) if i = 1 and j = 1.

CHANG AND TSAY A FAMILY OF EFLlCIENT REGULAR ARRAYS FOR ALGEBRAIC PATH PROBLEM

Hence,

I I z (I2) = [-1 1 3112 + 2 - , Kl
n3(13) = [1 1 3113,

II4(14> = [I -1 3114 + 2 - . Kl
With this four-phase uniform affine schedule, the intercon-
nection delays for mapping intra-phase dependencies can be
calculated by similar ways as Design a2. They are

(5,3,3,5,3,3,5) if N is even { (4,2,2,4,2,2,3) if N is odd *
(&,...,a7) =

The interconnections of RA for intra-phase dependencies can
be gotten from the equation found at the bottom of the page.
They represent spiral arcs as shown in Fig. 7. We call it Design
a3 and its execution time is

t e = { 4N - 3 if N is odd ' since
4N - 2 if N is even

t , =

max{(- l - l+3N+4 Kl) -

-(-[:I -[:1+3+4[:l)+l, forphase1

(-1+N+3N+2

- (-[:I + +3+2[:1) +1, forphase2

(N + N + 3 N) -

(N - 1 + 3N + 2[:1)

-([:I -
+ 3 + 2 I:]) + 1, for phase 4

4N - 2 if N is even
4N - 3 if N is odd .

t

Fig. 7. Spherical array of Design a3.

D. An Orthogonal Array With te = [y] - 2

In this section, we propose an orthogonal array which
eliminates the spiral arcs in Design a2 but remains the same
execution time of [YJ - 2.

We explain our design criteria as follows.
1) In Design a2, the spiral arcs result from intra-phase

dependencies. Removing intra-phase dependencies can
be done by letting the variable c in the (k + 1)-plane
get their k-plane value from different directions for two
phases and using propagation vectors of the variable a
to replace the intra-phase dependencies. In addition, it is
necessary to divide DG into two parts in the k-direction.

Part 1 (IC 5 [?I): The propagation vectors
are in [-1 0 11 and [-1 -1 11 for the variable
c in phase 1 and phase 2, respectively. Now, we
can substitute c(i - 1, N, k + 1) = a(i , N, I C) for
the intra-phase dependencies c(i - 1, N, k + 1) =
c(i, 1 ,k) + a(i , 1, I C) x b(i , 1, I C) in Fig. 4. The
other intra-phase dependencies, c (N , N, k + 1) =
f (N + 1,1, k) x b(N+ 1,1, k), can be replaced by
c(N, N, k+l) = f (N+l , N, I C) . All dependencies
in part 1 are shown in Fig. 8(a).
Part 2 (I C > [?I): The similar method in part
1 is used here again except the propagation vectors
of the variable c in phase 1 and phase 2 of part
2 become [-1 1 11 and [-1 0 11, respectively.
Besides, we use c(i - l , l , k + 1) = a(i , 1 , k)
and c(N, 1, k + 1) = f (N + 1,1, I C) to replace
intra-phase dependencies as described above. All
dependencies in part 2 are shown in Fig. 8(b).

2) Notice that the initial values assigned and final results
obtained are also changed as follows: Initial values

-1 -1 -1 N - 1 N - 1 N - 1 N - 1

1 1 1 1 1 1 1
N - 1 N - 1 N - 1 -1 -1 -1 N-11

1 -1 -1 -1 N - 1 N - 1 N - 1 N - 1
N - 1 N - 1 N - 1 -1 -1 -1 N - 1 '

776 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 7, JULY 1994

i

Part 1

N
N+l

rj
i

part 2

N
N+l

phase 2

C ".ti .-1 .l]

ocaxb

+a+a

Phase 2

k c
b

C

AI-1 r,11
c+ax b

+a+a

Fig. 8. (a) Part 1. (b) Part 2 of dependence graph for Design a4.

c(Z,j, 1) = cit,?! where i' = i,

and final results Z;,,j, = c (i , j , N + 1) where i = i',

The dependence matrices D;j for phase j of part i, 1 5
i , j 5 2, are

Dll =

D2l =

0 -1 1 0 -1 -1

0 0 1 1
0 -1 -1 1 0 -1 :], D22= [u 1 0

0 0 1 [i --:

Fig. 9. Orthogonal array of Design a4.

By selecting transformation matrices T;j, 1 5 i , j 5 2, for
D;j as follows

l o 0 1

we have

Oil =

DLl =

'1, D i 2 = [" i i '].
0 -1 0 0 1 - 1 0

i k i '1, DL2= [" : '1.
0 - 1 1 0 0 1 0

After composing the designs of part 1 and part 2, an orthogonal
array for Fig. 8 is constructed as shown in Fig. 9. We call it
Design a4.

A two-phase uniform affine schedule same as I I 1 and I I 2 in
Section 111-B can be derived for the Design a4, where II1 is
for phase 1 of part 1 and part 2, and I I 2 is for phase 2 of part
1 and part 2. The execution time of Design a4 is the same as
Design a2, that is, t , = LYJ - 2.

IV. CONCLUSION
In this paper, by decomposing a dependence graph into

multiple phases with appropriate m-phase schedule functions,
three novel more efficient regular arrays for APP have been
derived systematically. They are summarized at Table I. Since
the linear schedule vector is adopted by every phase for all de-
signs, the derived arrays have the properties of simple-control
and time-invariance, Le., each PE executes fixed computation
and passes results to fixed PE's for every time step. Moreover,
every design is time optimal for its DG since its execution time
is the same as the longest path of its DG.

CHANG AND TSAY A FAMILY OF EFFICIENT REGULAR ARRAYS FOR ALGEBRAIC PATH PROBLEM

A m y type

TABLE I
COMPAIUSON OF DEFEFSNT DESIGNS FOR ALGEBRAIC PATH PROBLEM

Ezecution time Broadcast plane of

variable a variable b

Design Dependence graph r
orthogonal

cylindrical

spherical

orthogonal

I I

5N - 3 j = 1 i = l

r Y 1 - 2 j = i = 1

4N - 2t j = [$I i = [$I
- 2 j = [$I i = 1

Fig. 3.2

Fig. 3.4

Fig. 3.6

Fig. 3.8
new design for algebraic path p

t 4 N - 2 if N is even, 4N - 3 if N is odd

t pre-iodic; initial adjacency matrix is necessary

REFERENCES

[I] H. T. Kung and C. E. Leiserson, “Systolic arrays for VLSI,” in Proc.
1978 Society for Indusf. Appl. Math., 1979, pp. 256282.

[2] S. K. Rao and T. Kailath, “Regular iterative algorithms and their
implementation on processor arrays,” Proc. IEEE, vol. 76, pp. 259-269,
Mar. 1988.

[3] -, “What is a systolic algorithm,”? in Proc. SPIE Highly Parallel
Signal Processing Architectures, 1986, pp. 3448.

[4] S. K. Rao, “Regular iterative algorithms and their implementations on
processor arrays.” Ph.D. thesis, Standford Univ., 1985.

[5] V. P. Roychowdhury and T. Kailath, “Subspace scheduling and parallel
implementation of non-systolic regular iterative algorithms,” J. V U 1
Signal Processing, vol. 1, pp. 127-142, 1989.

[6] J. C. Tsay and P. Y. Chang, “Some new designs of 2-D array for matrix
multiplication and transitive closure,” IEEE Trans. Parallel Disfrib.
Sysf., June 1991. submitted.

[7] M. Gondran and M. Minoux, Graphs andA1gorifhm.s. Chichester, UK:
Wiley, 1984.

[SI G. Rote, “A systolic array algorithm for the algebraic path problem,”
Computing, vol. 34, pp. 191-219, 1985.

[9] Y. Robert and D. Trystram, “Systolic solution of the algebraic path
problem,” in Proc. Int. Workshop on Sysfolic Arrays, 1986, pp. 171-180.

[IO] F. J. Nunez and M. Valero, “A block algorithm for the algebraic path
problem and its execution on a systolic array,” in Proc. Int. Con$ on
Systolic Arrays, 1988, pp. 265-274.

[I I] A. Benaini and Y. Robert, “Spacetime-minimal systolic architectures
for gaussian elimination and the algebraic path problem,” in Proc. Int.
Con& on Applicaf. Specific Array Processors, 1990, pp. 147-151.

[I21 P. S. Lewis and S. Y. Kung, “An optimal systolic array for the algebraic
path problem,” IEEE Trans. Compuf., vol. 40, pp. 100-105, Jan. 1991.

[I31 S. Rajopadhye, “An improved systolic algorithm for the algebraic path
problem,” Integration, fhe V U 1 J., vol. 14, pp. 279-296, Feb. 1993.

[I41 D. I. Moldovan and J. A. B. Fortes, “Partitioning and mapping algo-
rithms into fixed size systolic arrays,” IEEE Trans. Comput., vol. C-35,

[I51 S. Y. Kung, S. C. Lo, and P. S. Lewis, “Optimal systolic design for the
transitive closure and the shortest path problems,” IEEE Trans. Comput.,
vol. 36, pp. 603-614, May 1987.

pp. 1-12, Jan. 1986.

Pen-Yuang Chang was born in Kaohsiung, R.O.C.
in 1962. He received the M.S. degree in computer
science from the National Chiao Tung University
in 1986.

Since 1987, he has been an Associate Researcher
in Telecommunication Laboratories, Ministry of
Communications. Currently, he is a Ph.D. candidate
with the Institute of Computer Science and
Information Engineering, National Chiao-Tung
University. His research interests include systolic
arrays and multimedia information systems.

Jong-Chuang Tsay was born in Taipei, R.O.C. in
1943. he received the M.S. and Ph.D. degrees in
computer science from the National Chiao-Tung
University in 1968 and 1915, respectively.

Since 1968, he has been with the Faculty of
the Department of Computer Engineering, Naitonal
Chiao-Tung University. Currently, he is a Professor
in the Department of Computer Science and Infor-
mation Engineering. His current research interests
include systolic arrays, parallel computations, and
computer-aided typesetting.

