
A Family of Fast Syndrome Based

Cryptographic Hash Functions

Daniel Augot1, Matthieu Finiasz1,2, and Nicolas Sendrier1

1 Projet Codes, INRIA Rocquencourt,
BP 105, 78153 Le Chesnay - Cedex, France

{Daniel.Augot,Matthieu.Finiasz,Nicolas.Sendrier}@inria.fr
2 LASEC, École Polytechnique Fédérale de Lausanne (EPFL),

Station 14, 1015 Lausanne, Switzerland

Abstract. Recently, some collisions have been exposed for a variety of
cryptographic hash functions [20,21] including some of the most widely
used today. Many other hash functions using similar constructions can
however still be considered secure. Nevertheless, this has drawn attention
on the need for new hash function designs.

In this article is presented a family of secure hash functions, whose
security is directly related to the syndrome decoding problem from the
theory of error-correcting codes.

Taking into account the analysis by Coron and Joux [4] based on
Wagner’s generalized birthday algorithm [19] we study the asymptotical
security of our functions. We demonstrate that this attack is always
exponential in terms of the length of the hash value.

We also study the work-factor of this attack, along with other attacks
from coding theory, for non asymptotic range, i.e. for practical values.
Accordingly, we propose a few sets of parameters giving a good security
and either a faster hashing or a shorter description for the function.

Keywords: cryptographic hash functions, provable security, syndrome
decoding, NP-completeness, Wagner’s generalized birthday problem.

1 Introduction

The main cryptographic hash function design in use today iterates a so called
compression function according to Merkle’s and Damg̊ard’s constructions [6,12].
Classical compression functions are very fast [13,16] but, in general, cannot be
proven secure. However, provable security may be achieved with compression
functions designed following public key principles, at the cost of being less ef-
ficient. This has been done for instance by Damg̊ard in [6], where he designed
a hash function based on the Knapsack problem. Accordingly, this function has
been broken by Granboulan and Joux [8], using lattice reduction algorithms.
The present paper contributes to the hash function family by designing functions
based on the syndrome decoding problem, which is immune to lattice reduction
based attacks.

E. Dawson and S. Vaudenay (Eds.): Mycrypt 2005, LNCS 3715, pp. 64–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Family of Fast Syndrome Based Cryptographic Hash Functions 65

Unlike most other public key cryptosystems, the encryption function of the
McEliece cryptosystem [10] (or of Niederreiter’s version [14]) is nearly as fast
as a symmetric cipher. Using this function with a random matrix instead of the
usual parity check matrix of a Goppa code, a provably secure one-way function
has been constructed in [1]: since there is no trapdoor, its security can be readily
related to the difficulty of syndrome decoding. For instance, there is no polyno-
mial time algorithm to decode a random code, thus there is no polynomial time
algorithm to invert the compression function and/or find a collision.

However, for the practical parameters which have been proposed in [1], there
is an efficient attack with a cost as low as 243 (or 262 depending on the set of
parameters), as demonstrated by Coron and Joux [4], using Wagner’s method
for the generalized birthday problem [19].

The purpose of this paper is to propose updated parameters for the hash
function family presented in [1]. We do not only extend the parameters to be out
of reach of the Coron-Joux attack, but we also thoroughly study the asymptotical
behavior of their attack. We shall establish that this attack is exponential, such
that the design for the hash function is sound.

The paper is organized as follows. In Section 2, we introduce the Fast Syn-
drome Based (FSB) compression function, derived from a hard problem similar
to syndrome decoding. In Section 3 we show that the security of FSB is reduced
to the average case difficulty of two new NP-complete problems. Then, in Sec-
tion 4, we show how the best known decoding techniques, and the new method
based on Wagner’s ideas, can be adapted to the cryptanalysis of our functions.
From that we can evaluate the practical security and the scalability of the sys-
tem. In Section 5, we propose some choices of parameters and, eventually, we
compare the obtained functions with other existing constructions. For clarity of
the presentation, NP-completeness proofs are postponed in the appendix.

2 The Hash Function

We present what is called the Fast Syndrome Based (FSB) hash function in [1].

2.1 General Construction of Hash Functions

We follow Merkle’s and Damg̊ard’s design principle of hash functions [6,12]:
iterating a compression function (here denoted F), which takes as input s bits
and returns r bits (with s > r). The resulting function is then chained to operate
on strings of arbitrary length (see Fig. 1). The validity of such a design has been
established [6,12], and its security is proven not worse than the security of the
compression function. Therefore we will only concentrate on the security of the
latter.

2.2 Description of the Compression Function

The core of the compression function is a random binary matrix H of size r×n.
The parameters for the hash function are:

66 D. Augot, M. Finiasz, and N. Sendrier

C
o
m
p
re
ss
io
n

Chaining

Last round

D

D
o
c
u
m
e
n
t

Last round

First round

P
a
d
d
in
g

I.
V
. Hash value

F

Fig. 1. A standard hash function construction

– n the number of columns of H;
– r the number of rows of H and the size in bits of the function output;
– w the number of columns of H added at each round.

Definition 1. A word of length n and weight w is called regular if it has exactly
one non-zero position in each of the w intervals

�
(i − 1)

n

w
; i

n

w

�
i=1..w

. We call

a block such an interval.

In order to encode a regular word of length n and Hamming weight w, s =
w log2(

n
w) bits are needed. This is the size in bits of the input of the compression

function F . When practical parameters will be chosen, it will be made in such
a manner that round figures for log2(

n
w) are obtained. That is n

w has to be a
power of 2 and ideally, for software efficiency, log2(

n
w) too.

The matrix H is split into w sub-blocks Hi, of size r × n
w , and the algorithm

describing F is:

FSB compression function
Input: s bits of data

1. split the s input bits in w parts s1, . . . , sw of log2(
n
w) bits;

2. convert each si to an integer between 1 and n
w ;

3. choose the corresponding column in each Hi;
4. add the w chosen columns to obtain a binary string of length r.

Output: r bits of hash

The speed of F is directly related to the number of XORs required at each
round: one needs to XOR w columns of r bits, that is wr binary XORs. The
number of bits read in the document at each round is w log2

n
w − r (input size

minus chaining size). Hence, the average number of binary XORs required for
each document input bit is:

NXOR =
r · w

w log2
n
w − r

.

This value will be the right measure for the global speed of the FSB hash function.

A Family of Fast Syndrome Based Cryptographic Hash Functions 67

3 Theoretical Security

As stated in [11,17], a cryptographic hash function has to be pre-image resistant,
second pre-image resistant and collision resistant. As the second pre-image resis-
tance is strictly weaker than collision resistance, we will only check that the hash
function is collision free and resistant to inversion. We show that the inversion
and collision finding are related to two problems very close to syndrome decod-
ing, which is a hard problem [3]. We describe them here and show (in appendix)
that they are also NP-complete.

3.1 Two New NP-Complete Problems

Regular Syndrome Decoding (RSD)
Input: w matrices Hi of dimension r × n

w and a bit string S of length r.
Property: there exists a set of w columns, one in each Hi, summing to S.

Definition 2. A 2-regular word is a word of weight less than or equal to 2w,
which contains either 0 or 2 non zero positions in each block. It is the sum of
two regular words.

2-Regular Null Syndrome Decoding (2-RNSD)
Input: w matrices Hi of dimension r × n

w .
Property: there exists a set of 2w′ columns (with 0 < w′ ≤ w), 0 or 2 in each
Hi, summing to 0.

Thus solving 2-Regular Null Syndrome Decoding requires to find a non
null 2-regular word of weight less than or equal to 2w.

3.2 Security Reduction

In this section we will recall how finding collisions or inverting the FSB hash
function is exactly as hard as solving an instance of one of the NP-complete
problems described in the previous section.

Let us be given an algorithm for the inversion of the compression function,
which, given a hash value S, finds an inverse m such that F(m) = S, in time
T with probability p of success. Then it is a tautology that this algorithm is
able to solve any instance of the problem Regular Syndrome Decoding, in
the same time and with the same probability of success. Similarly an algorithm
which is able to find a collision gives in fact two different regular words c1 and c2

of weight w such Hct
1 = Hct

2. Then c = c1 ⊕ c2 is a non null 2-regular word and
has a null syndrome. So c is directly a solution for 2-Regular Null Syndrome
Decoding.

These reductions to NP-complete problems only prove worst case difficulty.
However, following Gurevich and Levin [7,9] discussion for syndrome decoding,
we believe that both these problems are difficult on average.

3.3 Average Case Consideration

From a cryptographic point of view, knowing that some instances of a problem
are hard is not enough to consider it a hard problem. It is more important that

68 D. Augot, M. Finiasz, and N. Sendrier

the number of weak instances is small enough, that is, the probability of having
to solve such a weak instance when attacking the system is negligible.

However, defining a weak instance is not so simple as it will depend on the
algorithm used to attack the system: the instances solved with the smallest
complexity will vary when changing algorithm. A weak instance should hence
be defined as an instance which is weak for at least one algorithm: an instance
for which one algorithm yields a noticeably smaller complexity than the average
complexity of the best algorithm.

A problem should not be considered hard if the proportion of those weak
instances among the total number of possible instances is not negligible. When
trying to find collisions for FSB, each binary r × n matrix defines a different
instance. In Section 4.6, after seeing the possible attacks on the system, we will
try to estimate the proportion of these matrices defining such a weak instance.

4 Practical Security

We recall the possible practical attacks on the compression function F , and
study the minimal work-factors required to perform these attacks. There are
two kinds of algorithms: Information Set Decoding and Wagner’s Generalized
Birthday Paradox. We will survey the results on Information Set Decoding al-
gorithm, which has been studied in [1]. As for Wagner’s Generalized Birthday
Paradox [19], we will give an extended analysis: first we slightly generalize Wag-
ner’s algorithm, then we describe how its complexity is exponential when the
length of the hash value goes to infinity.

4.1 Information Set Decoding

The problem of decoding a random code has been extensively studied and many
algorithms devoted to this task have been developed (see [2] for a survey). All
these algorithms are exponential. Still, as stated by Sendrier [18], the most effi-
cient attacks all seem to be derived from Information Set Decoding (ISD).

Definition 3. An information set is a set of k = n − r (the dimension of the
code) positions among the n positions of the support.

Definition 4. Let ((Hi)1≤i≤w, w,S) be an instance of RSD. An information set
will be called valid with respect to the instance if there exists a solution to this
problem which has no 1s among the k positions of the set.

The ISD algorithm consists in picking information sets at random, until a valid
one is found. Checking whether the information set is valid or not is done in
polynomial time1, so the exponential nature of the algorithm originates from
the exponentially small probability of finding a valid information set: let V (r)
be the cost of checking the validity of an information set, and Pw the probability
1 one simply has to perform a Gaussian elimination on the matrix, using the columns

outside the chosen information set.

A Family of Fast Syndrome Based Cryptographic Hash Functions 69

for a random information set to be valid; then the complexity of this algorithm
is V (r)/Pw .

The probability Pw depends on the probability Pw,1, that a given information
set is valid for one given solution of RSD, and on the expected number Nw of
solutions to RSD. We shall consider:

Pw = 1 − (1 − Pw,1)Nw .

For simplicity, we will use the convenient approximation Pw � Pw,1 ×Nw.
In the case of RSD, one needs to find a regular word of weight w having a

given syndrome S. The number of regular solutions to RSD is, on average:

Nw =

(
n
w

)

2r

w

.

As the solutions are not random words, the attacker should first choose the
information sets which have the best chance of being valid. One can see that he
will maximize his chances when choosing the same number of positions in each
block, that is, choosing k

w positions w times. The probability of success is then:

Pw,1 =

((
n/w−1

k/w

)

(n/w
k/w

)

)w

=

(
r
w

)w

(
n
w

)w .

The final probability Pinv of choosing a valid set to invert RSD is: Pinv =

Pw,1 ×Nw = (r
w)
2r

w

. Note that it does not depend on n.
For collisions, one needs to find a 2-regular word with null syndrome. If i is

the number of non-zero blocks in this word, the number of such words is:

Ni =

(
w
i

)(
n/w

2

)i

2r
.

Using, as for inversion, an equal repartition of the information set among the
blocks, that is, k

w positions in each block, we get, for each value of i, the proba-
bility of validity:

Pi,1 =

(
w
i

)(
n/w−k/w

2

)i

(
w
i

)(
n/w

2

)i
=

(
r/w
2

)i

(
n/w

2

)i
.

The total probability of success for one information set is then:

Pcol total =
w∑

i=1

(
w
i

)(
r/w
2

)i

2r
=

1
2r

[(r
w

2

)
+ 1

]w

.

However the adversary may decide to use another strategy and look for spe-
cific words. He can consider words with non-zero positions only in a given set
of w0 < w blocks, take all the information set points available in the remaining

70 D. Augot, M. Finiasz, and N. Sendrier

w − w0 blocks and distribute the rest of the information set in the w0 chosen
blocks. The probability of success is then:

Pcol w0
=

1
2r

[(n
w − k0

w0

2

)
+ 1

]w0

=
1
2r

[(r
w0

2

)
+ 1

]w0

,

with k0 = k − (w − w0) × n
w = n·w0

w − r. As the attacker has the possibility to
choose the best strategy, he can choose the most suitable value for w0 (as long
as it remains smaller than w):

Pcol optimal =
1
2r

max
w0∈�1;w�

[(r
w0

2

)
+ 1

]w0

.

It is shown in [1] that this maximum is reached for w0 = α · r, where α ≈ 0.24
is a constant, and that:

Pcol optimal =
1
2r

[(1
α

2

)
+ 1

]αr

� 2
r

3.3 .

4.2 Wagner’s Generalized Birthday Problem

We now describe the attack from Coron and Joux [4], which relies on the Gen-
eralized Birthday Problem introduced by Wagner [19], who established:

Theorem 1. Let L1, L2,. . . ,L2a be 2a lists of r bits strings, each list being of
size L = 2

r
a+1 . Then a solution to the equation x1 ⊕ x2 ⊕ · · · ⊕ x2a = 0, with

xi ∈ Li, can be found in time O(2a2
r

a+1).

Let us recall the algorithm. At first step 2a lists of size L are given. Then the lists
are merged pair by pair to create a new list: for instance, the merge L1 �� L2 of
the lists L1 and L2 is made from the sum of the elements x1, x2 of L1, L2 such
that x1⊕x2 is zero on the first r

a+1 bits. One readily checks that the size L1 �� L2

is still 2
r

a+1 on average. Using sorting algorithms, this merge operation can be
done in time O(r2

r
a+1) (one can eliminate the r factor, and thus obtain Wagner’s

complexity, using hash tables, however this will require larger memory space).
Once the 2a−1 new lists are obtained, one proceeds recursively, until there are
only two remaining lists (See Fig. 2). Then a collision is found between these two
lists using the classical birthday paradox. Since there are 2a merge operations,
the total complexity is O(r2a2

r
a+1).

This algorithm translates into an attack for collisions as follows. Each list Li

is associated to w
2a blocks of the matrix, and contains the syndromes of 2-regular

words, of weight less than or equal to 2w
2a , defined over these blocks. Finding a

solution Hx1 ⊕ Hx2 ⊕ · · · ⊕ Hx2a = 0 gives a collision.
The adversary will try to optimize a in order to get the lowest complexity. But

the auxiliary a is subject to the following constraint: each list (of size L = 2
r

a+1)
can not be larger than the number of words of weight 2w

2a (or lower), which are

A Family of Fast Syndrome Based Cryptographic Hash Functions 71

�2
��3

...

�2¶ �2
�-1¶

�2
(-1)�

�1
(-1)�

�1¶¶

...

... ..
.

�¶¶2�-2

?

Weight /2 words.�

Weight /2 words, with 1 zeros.� � �/ +
�-2

Weight /2 words, with 2 1 zeros.� � �¢ / +
�-3

Weight , with 1 1 zeros.� � � �(-) / +¢

�-1
�1 �2

�1¶

Fig. 2. Application of Wagner’s algorithm to collision search. All the lists remain of
constant size L = 2

r
a+1 . On average, there remains a single solution at the end of the

algorithm.

part of a 2-regular word, with a given set of blocks. Since in each block there are(n
w
2

)
+ 1 words of weight 2 or 0, this gives:

r

a + 1
≤ w

2a
log2

[(n
w

2

)
+ 1

]
,

or equivalently:
2a

a + 1
≤ w

r
log2

[(n
w

2

)
+ 1

]
. (1)

This shows that a can not grow as desired by the adversary. In the case of
inversion search, the constraint is that the size of the list must be smaller than
the number of regular words of weight w

2a , with 1’s in some w
2a blocks. This gives,

similarly to the collision case:

2a

a + 1
≤ w

r
log2(

n

w
). (2)

4.3 Extension of Wagner’s Algorithm to Non-fitting Cases

In general, it may be the case that the size L = 2� of the lists to be dealt with
is not exactly 2

r
a+1 .

We first deal with the case when � < r
a+1 . In that case, we apply Wagner’s

method, with the constraint of zeroing � bits of the partial sums (instead of
r

a+1) during each merge operation, hence keeping lists of constant size. So, the
two remaining lists, at the end of the recursion, will only have (a − 1)� bits
equal to zero. Then the probability to have a collision between these two lists
is 2(a+1)�

2r . If the algorithm fails and there is no collision, then the whole process
is started from the beginning, choosing another set of bits to be set to zero.
Since the complexity of building the two final lists is O(�2a2�), the total cost
is O(�2r+a−a�). Again, for this complexity to hold, the size of the list must be

72 D. Augot, M. Finiasz, and N. Sendrier

smaller than 2
r

a+1 . The contrary would correspond to having more than one
collision in the end, which won’t help improving the complexity.

Secondly, we deal with the case when � > r
a+1 . Here the strategy is to prepare

each list using a precomputation step, by zeroing a few bits in a each list. We
shall denote by α this number of bits and calculate its optimal value. After
zeroing α bits, the size of the lists is on average 2�−α. In the context of the
hash function, this precomputation step is performed by using two sublists and
merging them using the birthday paradox. Then Wagner’s algorithm is applied
to set to zero the r′ = r − α remaining bits. Ideally α is chosen to fit the new
parameters of Wagner’s algorithm: we must have �−α = r′

a+1 . Solving these two
equations gives:

α =
�(a + 1) − r

a
and r′ =

a + 1
a

(r − �),

and the total cost of Wagner’s algorithm is O(r′2a2
r′

a+1). Note that preparing all
the lists, with the birthday paradox, costs O(2a2

�
2), so there might be a concern

that this step becomes preponderant. Solving the inequalities tells us that this
is only the case when � > 2r

a+2 , which means that we fall in the range where a+1
could have been used for the attack (see Equations (1) and (2)).

4.4 Some Security Curves

The curves on Fig. 3 show how the different attacks described in this section
behave when applied to concrete parameters. It is clear that the attack based on
Wagner’s Generalized Birthday Paradox gives far better results than Informa-
tion Set Decoding techniques applied to regular words. This is mainly because
Information Set Decoding algorithms are efficient when applied to a problem
having a single solution. This is often the case when decoding a random code,
but here, each instance has a huge number of solutions.

It is also important to note that, for a same security level, the scope of
available parameters is much wider if one is only looking for a one-way function
(no collision resistance). For instance, with r = 400 and n = 216, for a security
of 280operations, w could be chosen anywhere in the interval �0; 145� instead of
�0; 67�.

4.5 Asymptotical Behavior

We want to prove that, even though a can vary depending on the parameters,
when r goes to infinity a can not grow fast enough to make Wagner’s attack
sub-exponential. The only constraint on a is:

2a

a + 1
≤ w

r
log2

(n

w

)
.

If we consider n and w as polynomial in r (noted Poly (r)), then n
w is also

polynomial in r and we have:
2a

a + 1
≤ Poly (r) log2 (Poly (r)) .

A Family of Fast Syndrome Based Cryptographic Hash Functions 73

0

100

200

12040 16080

250

150

50

200

�

80

0

100

200

12040 16080

250

150

50

200

�

80

400

3.3

Fig. 3. Comparison of the costs of the different attacks as a function of w when r = 400
and n = 216. On the left when applied to inversion and on the right to collision
search. The vertical scale corresponds to the logarithm of the work-factor required
to perform Information Set Decoding (dashed line), Wagner’s Generalized Birthday
Paradox (dotted line) or Extended Wagner Paradox (plain line).

From this we deduce a = Poly (log2 r). Asymptotically, the best attack having a
cost of O(r2a2

r
a+1) remains thus exponential in r. Moreover, it should be possible

to find parameters which scale well when trying to increase the security level.
The simplest solution to achieve so is to scale the parameters linearly with

r. For instance, suppose we have two constants ω and ν such that w = ω × r
and n = ν × r. We get:

2a

a + 1
≤ ω log2

(ν

ω

)
so a � log2 ω log2 log2

ν

ω
= κ a constant.

This means that the best a an attacker can use will remain constant whatever
the value of r. Asymptotically this construction will scale with:

– exponential security: 2
r

a+1 = 2O(r),
– constant block size: log2

n
w = log2

ν
ω = constant (n

w remains a power of 2),
– linear hash cost: NXOR = r2ω

r(ω log ν
ω −1) = O (r),

– quadratic matrix size: r × n = r2ν = O (
r2

)
.

Using this method it is possible to convert any set of efficient parameters to
another efficient set giving any other required security, by simply scaling r.

4.6 Weak Instances

As defined in Section 3.3, a weak instance will correspond to a matrix H for which
there exists an algorithm being able to find a collision (a 2-regular word having
a null syndrome) with a complexity lower than that of the best attack: here the

74 D. Augot, M. Finiasz, and N. Sendrier

Wagner-based attack. We shall hence go over known attacks and evaluate the
number of weak instances each one will generate.

Instances for which the Wagner-based attack can have a complexity lower
than the average are those for which, when using smaller lists all along the
algorithm, there remains, on average, one solution in the end. However, this is
only possible if the matrix is not of full rank: the algorithm can then be applied
using r′ = Rank(H) instead of r. However, the probability of H not being full
rank is very small (about O (2r−n)) and these weak instances can be neglected.

Concerning the Information Set Decoding attack, instances which will have a
low complexity will also represent a negligible proportion of all possible matrices:
it requires that there is an abnormally large amount of solutions of low weight,
so that when choosing a random information set, it will have a larger probability
of being valid. This probability will be even smaller than that of H not being of
full rank.

The only remaining property which could weaken an instance against collision
search is the presence of a very low weight collision (say 2w0). This way, a brute
force search among all low weight words could find this collision with a lower
complexity. A search among all words of weight up to 2w0 will have, using the
birthday paradox, a complexity of O (√Nw0

)
where Nw0 denotes the number

of 2-regular words of weight 2w0. This attack will hence only be of interest for
values of w0 such that Nw0 < 2

2r
a+1 (the square of the average complexity of the

Wagner-based attack). The probability that an instance has a solution of weight
2w0 is O

(Nw0
2r

)
and thus the proportion of such weak instances can not be

larger than O
(
2(a−1) −r

a+1

)
, which, as we will see in the next section, will always

be negligible for secure parameters.
We can hence conclude that no known attack yields a non negligible propor-

tion of weak instances in our construction.

5 Proposed Parameters

Usually hash functions have a security of 2
r
2 against collisions, that is, the best

attack is based on the classical birthday paradox. In our case this would cor-
respond to a being equal to 1 at most. However, if this is the case, F will
necessarily have an input shorter than its output and this is incompatible with
the chaining method. If we want to have an input size larger than the output size
(i.e. compression), then the attacker will always have the possibility to choose
at least a = 3 (when looking for collisions). If we suppose our parameters place
us exactly at a point where an attacker can use a = 3, we have:

r =
(3 + 1)w

23
log2

[(n
w

2

)
+ 1

]
≥ w

2
log2

[(n

w

)2

× 1
2

]
= w log2

(n

w

)
− w

2
.

If this is the case we will then have:

NXOR ≥ rw
w
2

= 2r.

A Family of Fast Syndrome Based Cryptographic Hash Functions 75

For a security of 280 and with a = 3 we would need at least r = 320 and
hence at least 640 binary XORs per input document bit. This is not so huge in
practice but it would still give a relatively slow hash rate. For instance, it is just
above 10 Mbits/s, using a vanilla C implementation on a Pentium 4.

If we instead choose to limit the attacker to a = 4 we will have much more
freedom in the parameter choice. First of all, we get:

NXOR =
rw

(
1 − 5

8

)
log2

(
n
w

)
+ 5

16w
.

Changing the values of n and w (which are still linked by the constraint a = 4)
will let us change the hash cost. However, as we see on Fig. 4, the lowest values
for NXOR also correspond to the largest values of n and so, to larger matrix
sizes. Table 1 collects a list of parameter sets all corresponding to a = 4 and
r = 400, that is, a security of 280. In fact, practical security will be a little higher
as we have neglected a r2a factor. The security should hence rather be around
292 operations, and an exact security of 280 would be achieved with r = 340.
However an attacker with huge memory can get rid of the r factor. We will hence
stick to the 2

r
a+1 approximation of the security.

0

10

20

12040 16080

25

30

15

5

200

log()�

�
0

100

200

12040 16080

250

300

150

50

200

N
���

�

Fig. 4. Evolution of log2 n (on the left) and NXOR (on the right) as a function of w
for r = 400 when always staying as close as possible to the point a = 4

If we choose to use the set of parameters where log2
n
w = 8, which is very

convenient for software implementation, we will have at the same time a good
efficiency (7 times faster than when trying to force a = 3) and a reasonable
matrix size. As we have seen in Section 4.5, we can then scale these parameters.
We have ω = 85

400 = 0.2125 and ν = 256 × ω = 54.4. If we now want to hash
with a security of 2128 (equivalent to that of SHA-256) we simply need to use
r = 128 × (a + 1) = 640 and so w = 640 × ω = 136 and n = 34816.

76 D. Augot, M. Finiasz, and N. Sendrier

Table 1. Possible parameters for r = 400 and a = 4

log2

(
n
w

)
w n NXOR matrix size

16 41 2 686 976 64.0 ∼ 1 Gbit

15 44 1 441 792 67.7 550 Mbits

14 47 770 048 72.9 293 Mbits

13 51 417 792 77.6 159 Mbits

12 55 225 280 84.6 86 Mbits

11 60 122 880 92.3 47 Mbits

10 67 68 608 99.3 26 Mbits

9 75 38 400 109.1 15 Mbits

8 85 21 760 121.4 8.3 Mbits

7 98 12 544 137.1 4.8 Mbits

6 116 7 424 156.8 2.8 Mbits

5 142 4 544 183.2 1.7 Mbits

4 185 2 960 217.6 1.1 Mbits

We propose three sets of parameters giving a security of 280 against collision
search for different output hash sizes. Each of these sets can be scaled linearly
to obtain a better security.

– Short Hash: r = 320, w = 42 and log2
n
w = 8. This solution has a hash size

of 320 bits only, but is quite slow with a throughput around 10 Mbits/s.
– Fast Hash: r = 480, w = 170 and log2

n
w = 8. This solution will be very

fast (around 90 Mbits/s) with still a reasonable matrix size (20 Mbits).
– Intermediate: r = 400, w = 85 and log2

n
w = 8. This is in our opinion the

best compromise, with reasonable hash length and matrix size and still a
good efficiency (around 70 Mbits/s).

If looking only for a one-way function (no collision resistance) then we have
the choice to either be faster, or have a smaller output.

– Short One-Way: r = 240, w = 40 and log2
n
w = 8. This solution has an

output of only 240 bits and should work at around 70 Mbits/s.
– Fast One-Way: r = 480, w = 160 and log2

n
w = 16. This solution uses a

very large matrix (4 Gbits) but should have a throughput above 200 Mbits/s.

6 Comparison to Existing Hash Functions

As stated at the beginning of Section 5, from a practical security point of view,
our functions are somehow weaker than other existing functions: we will never
be able to reach a security of O (

2
r
2
)

against collision search. Accordingly, the
output size of our functions will always have to be above 320 bits.

The description of one of our function will also always be much larger than
that of other functions: the matrix should be included in the description and is
always quite large when looking for fast hashing. However, as long as one uses

A Family of Fast Syndrome Based Cryptographic Hash Functions 77

Table 2. Throughputs of some other hash functions, using the crypto++ library [5]

Algorithm Mbits/s

MD5 1730
RIPEMD-160 420

SHA-1 544
SHA-512 90

parameters for which the matrix isn’t of many Gigabits this shouldn’t cause any
problem.

From a speed point of view, our functions also seem much slower than exist-
ing functions. For instance, as seen in Table 2, using Wei Dai’s crypto++ library,
other hash functions are much faster than the 90 Mbits/s of Fast Hash. One
should however take into account the fact that these 90 Mbits/s are obtained us-
ing a very basic C implementation, taking no advantage of the extended Pentium
operations (MMX, SSE. . .).

The operations in FSB are however very simple: the only costly operations are
binary XORs. Hence what will slow the process will mainly be memory access
problems as the matrix H has no chance to fit in the machine’s CPU cache.
Without any fully optimized implementation of the algorithm it seems hard to
estimate the place left for improvement.

However, depending of the use made of the hash function, the flexibility in
the parameter choice of FSB can compensate this lack of speed. Imagine hashing
for a 1024 bits RSA signature: you need to output a 1024 bits hash and at the
same time do not require a security higher than 280 as it would be higher than
that of the RSA part of the signature. For such application, with r = 1024, one
could use one of the following parameter sets:

a security log2
n
w w n NXOR matrix size

11 285 8 11655 2 983 680 129 3 Gbits
8 2113 8 1942 497 152 137 485 Mbits

Still using our basic implementation this would yield throughputs around
70Mbits/s, which is not bad for a 1024 bits hash function. It seems that, for
FSB, the throughput will depend more on the required security level than on
the output hash size.

7 Conclusion

We have proposed a family of fast and provably secure hash functions. This
construction enjoys some interesting features: both the block size of the hash
function and the output size are completely scalable; the security depends di-
rectly of the output size and is truly exponential, it can hence be set to any
desired level; the number of XORs used by FSB per input bit can be decreased
to improve speed.

78 D. Augot, M. Finiasz, and N. Sendrier

However, reaching very high output rates requires the use of a large matrix.
This can be a limitation when trying to use FSB on memory constrained devices.
On classical architectures this will only fix a maximum speed.

Another important point is the presence of weak instances of this hash func-
tion: it is clear that the matrix H can be chosen with bad properties. For instance,
the all zero matrix will define a hash function with constant zero output. How-
ever, these bad instances only represent a completely negligible proportion of
all the matrices and when choosing a matrix at random there is no real risk of
choosing such a weak instance.

Also note that it is easy to introduce a trapdoor in a matrix by simply choosing
one column to be the sum of some other columns of the matrix. This will then
allow the person who generated the matrix to easily generate collisions. As stated
by Preneel in [15], it is possible to avoid this problem if the matrix generation is
reproducible by a user. The matrix could then simply be the output of a pseudo-
random generator and this would solve both the problems of trapdoors and that
of the huge matrix size. However, the security proof would no longer apply.

Finally, concerning the hash size/collision security ratio, this construction
does not allow to have the usual ratio of 2, obtained when using a classical
birthday paradox to find collisions. This can be changed by simply applying
a final output transformation to the last hash: this transformation can further
compress it to a size of twice the expected security against collision search.
Further work has then to be done to study the required properties of this final
transformation, both from a theoretical point of view, in order to keep the well
founded security of these scheme, and from the practical point of view, in order
to propose sound parameters.

References

1. D. Augot, M. Finiasz, and N. Sendrier. A fast provably secure cryptographic hash
function. Cryptology ePrint Archive, 2003. http://eprint.iacr.org/2003/230/.

2. A. Barg. Complexity issues in coding theory. In V. S. Pless and W. C. Huffman,
editors, Handbook of Coding theory, volume I, chapter 7, pages 649–754. North-
Holland, 1998.

3. E. R. Berlekamp, R. J. McEliece, and H. C. van Tilborg. On the inherent in-
tractability of certain coding problems. IEEE Transactions on Information Theory,
24(3), May 1978.

4. J.-S. Coron and A. Joux. Cryptanalysis of a provably secure cryptographic hash
function. Cryptology ePrint Archive, 2004. http://eprint.iacr.org/2004/013/.

5. Wei Dai. Crypto++ library. http://www.eskimo.com/∼weidai/.
6. I.B. Damg̊ard. A design principle for hash functions. In Gilles Brassard, editor,

CRYPTO 89, volume 435 of Lecture Notes in Computer Science, pages 416–426.
Springer-Verlag, 1989.

7. Y. Gurevich. Average case completeness. Journal of Computer and System Sci-
ences, 42(3):346–398, 1991.

8. A. Joux and L. Granboulan. A practical attack against knapsack based hash
functions. In Alfredo De Santis, editor, Advances in Cryptology - Eurocrypt ’94,
volume 950 of Lecture Notes in Computer Science, pages 58–66. Springer-Verlag,
1994.

http://eprint.iacr.org/2003/230/

A Family of Fast Syndrome Based Cryptographic Hash Functions 79

9. L. Levin. Average case complete problems. SIAM Journal on Computing,
15(1):285–286, 1986.

10. R. J. McEliece. A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA, pages 114–116,
January 1978.

11. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1996.

12. R. C. Merkle. One way hash functions and DES. In Gilles Brassard, editor,
Advances in Cryptology - Crypto ’89, volume 435 of Lecture Notes in Computer
Science, pages 428–446. Springer-Verlag, 1990.

13. National Insitute of Standards and Technology. FIPS Publication 180: Secure Hash
Standard, 1993.

14. H. Niederreiter. Knapsack-type crytosystems and algebraic coding theory. Prob.
Contr. Inform. Theory, 15(2):157–166, 1986.

15. Bart Preneel. The state of cryptographic hash functions. In Ivan Damg̊ard, editor,
Lectures on Data Security: Modern Cryptology in Theory and Practice, volume
1561 of Lecture Notes in Computer Science, pages 158–182. Springer-Verlag, 1999.

16. R. L. Rivest. The MD4 message digest algorithm. In A.J. Menezes and S.A.
Vanstone, editors, Advances in Cryptology - CRYPTO ’90, volume 537 of Lecture
Notes in Computer Science, pages 303–311. Springer-Verlag, 1991.

17. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In Bimal Roy and Willi Meier, editors, Fast Software
Encryption 2004, volume 3017 of Lecture Notes in Computer Science, pages 371–
388, 2004.

18. N. Sendrier. On the security of the McEliece public-key cryptosystem. In M. Blaum,
P.G. Farrell, and H. van Tilborg, editors, Information, Coding and Mathemat-
ics, pages 141–163. Kluwer, 2002. Proceedings of Workshop honoring Prof. Bob
McEliece on his 60th birthday.

19. D. Wagner. A generalized birthday problem. In M. Yung, editor, CRYPTO
2002, volume 2442 of Lecture Notes in Computer Science, pages 288–304. Springer-
Verlag, 2002.

20. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanal-
ysis of the hash functions md4 and ripemd. In Ronald Cramer, editor, Advances in
Cryptology – Eurocrypt 2005, volume 3494 of Lecture Notes in Computer Science,
pages 1–18, Aarhus, Denmark, May 2005. Springer-Verlag.

21. Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In
Ronald Cramer, editor, Advances in Cryptology – Eurocrypt 2005, volume 3494 of
Lecture Notes in Computer Science, pages 19–35, Aarhus, Denmark, May 2005.
Springer-Verlag.

A NP-Completeness Proofs

The most general problem we want to study concerning syndrome decoding with
regular words is:

b-regular Syndrome Decoding (b-RSD)
Input: w binary matrices Hi of dimension r × n and a bit string S of length r.
Property: there exists a set of b×w′ columns (with 0 < w′ ≤ w), 0 or b columns
in each Hi, summing to S.

80 D. Augot, M. Finiasz, and N. Sendrier

Note that, in this problem, b is not an input parameter. The fact that for any
value of b this problem is NP-complete is much stronger than simply saying that
the problem where b is an instance parameter is NP-complete. This also means
that there is not one, but an infinity of such problems (one for each value of b).
However we consider them as a single problem as the proof is the same for all
values of b.

The two following sub-problems are derived from the previous one. They
correspond more precisely to the kind of instances that an attacker on the FSB
hash function would need to solve.

Regular Syndrome Decoding (RSD)
Input: w matrices Hi of dimension r × n and a bit string S of length r.
Property: there exists a set of w columns, 1 per Hi, summing to S.

2-regular Null Syndrome Decoding (2-RNSD)
Input: w matrices Hi of dimension r × n.
Property: there exists a set of 2 × w′ columns (with 0 < w′ ≤ w), taking 0 or 2
columns in each Hi summing to 0.

It is easy to see that all of these problems are in NP. To prove that they
are NP-complete we will use a reduction similar to the one given by Berlekamp,
McEliece and van Tilborg for syndrome decoding [3]. We will use the following
known NP-complete problem.

Three-Dimensional Matching (3DM)
Input: a subset U ⊆ T × T × T where T is a finite set.
Property: there is a set V ⊆ U such that |V | = |T | and no two elements of V
agree on any coordinate.

Let’s study the following example: let T = {1, 2, 3} and |U | = 5

U1 = (1, 2, 2)
U2 = (2, 2, 3)
U3 = (1, 3, 2)
U4 = (2, 1, 3)
U5 = (3, 3, 1)

One can see that the set consisting of U1,U4 and U5 verifies the property.
However if you remove U1 from U then no solution exist. In our case it is more
convenient to represent an instance of this problem in another way: we associate
a 3|T |× |U | binary incidence matrix A to the instance. For the previous example
it would give the matrix shown in Table 3.

A solution to the problem will then be a subset of |T | columns summing to
the all-1 column. Using this representation, we will now show that any instance
of this problem can be reduced to solving an instance of RSD, hence proving
that RSD is NP-complete.

Reductions of 3DM to RSD. Given an input U ⊆ T × T × T of the 3DM
problem, let A be the 3|T | × |U | incidence matrix described above. For i from 1
to |T | we take Hi = A.

If we try to solve the RSD problem on these matrices with w = |T | and
S = (1, . . . , 1) a solution will exist if and only if we are able to add w ≤ |T |

A Family of Fast Syndrome Based Cryptographic Hash Functions 81

Table 3. Incidence matrix corresponding to an instance of 3DM

U1 U2 U3 U4 U5

122 223 132 213 331

1 1 0 1 0 0
2 0 1 0 1 0
3 0 0 0 0 1

1 0 0 0 1 0
2 1 1 0 0 0
3 0 0 1 0 1

1 0 0 0 0 1
2 1 0 1 0 0
3 0 1 0 1 0

columns of A (possibly many times the same one) and obtain a column of 1s.
As all the columns of A contain only three 1s, the only way to have 3 × |T | 1s
at the end is that during the adding no two columns have a 1 on the same line
(each time two columns have a 1 on the same line the final weight decreases by
2). Hence the |T | chosen columns will form a suitable subset V for the 3DM
problem.

This means that if we are able to give an answer to this RSD instance, we
will be able to answer the 3DM instance we wanted to solve. Thus RSD is NP-
complete.

Reduction of 3DM to b-RSD. This proof will be exactly the same as the
one above. The input is the same, but this time we build the following matrix:

B =

A

A

A

0

0

the block matrix with b times A
on the diagonal

Now we take Hi = B and use S = (1, . . . , 1). The same arguments as above
apply here and prove that for any given value of b, if we are able to give an
answer to this b-RSD instance, we will be able to answer the 3DM instance we
wanted to solve. Hence, for any b, b-RSD is NP-complete.

Reduction of 3DM to 2-RNSD. We need to construct a matrix for which
solving a 2-RNSD instance is equivalent to solving a given 3DM instance. A
difficulty is that, this time, we can’t choose S = (1, . . . , 1) as this problem is
restricted to the case S = 0. For this reason we need to construct a somehow
complicated matrix H which is the concatenation of the matrices Hi we will use.
It is constructed as shown in Fig. 5.

82 D. Augot, M. Finiasz, and N. Sendrier

H =

A 0

Id Id

0

A 0

Id Id

0

A 0

Id

Id

Id

Id

0

0

0

01

0
U

1

1T

1T()

0

Fig. 5. The matrix used to reduce 3DM to 2-RNSD

This matrix is composed of three parts: the top part with the A matrices,
the middle part with pairs of identity |U | × |U | matrices, and the bottom part
with small lines of 1s.

The aim of this construction is to ensure that a solution to 2-RNSD on this
matrix (with w = |T |+1) exists if and only if one can add |T | columns of A and
a column of 1s to obtain 0. This is then equivalent to having a solution to the
3DM problem.

The top part of the matrix will be the part where the link to 3DM is placed:
in the 2-RNSD problem you take 2 columns in some of the block, our aim is to
take two columns in each block, and each time, one in the A sub-block and one in
the 0 sub-block. The middle part ensures that when a solution chooses a column
in H it has to choose the only other column having a 1 on the same line so that
the final sum on this line is 0. This means that any time a column is chosen
in one of the A sub-blocks, the “same” column is chosen in the 0 sub-block.
Hence in the final 2w′ columns, w′ will be taken in the A sub-blocks (or the 1
sub-block) and w′ in the 0 sub-blocks. You will then have a set of w′ columns
of A or 1 (not necessarily distinct) summing to 0. Finally, the bottom part of
the matrix is there to ensure that if w′ > 0 (as requested in the formulation of
the problem) then w′ = w. Indeed, each time you pick a column in the block
number i, the middle part makes you have to pick one in the other half of the
block, creating two ones in the final sum. To eliminate these ones the only way
is to pick some columns in the blocks i − 1 and i + 1 and so on, until you pick
some columns in all of the w blocks.

As a result, we see that solving an instance of 2-RNSD on H is equivalent
to choosing |T | columns in A (not necessarily different) all summing to 1. As
in the previous proof, this concludes the reduction and 2-RNSD is now proven
NP-complete.

A Family of Fast Syndrome Based Cryptographic Hash Functions 83

It is interesting to note that instead of using 3DM we could directly have used
RSD for this reduction. You simply replace the A matrices with the w blocks
of the RSD instance you need to solve and instead of a matrix of 1s you put a
matrix containing columns equal to S. Then the reduction is also possible.

	Introduction
	The Hash Function
	General Construction of Hash Functions
	Description of the Compression Function

	Theoretical Security
	Two New NP-Complete Problems
	Security Reduction
	Average Case Consideration

	Practical Security
	Information Set Decoding
	Wagner's Generalized Birthday Problem
	Extension of Wagner's Algorithm to Non-fitting Cases
	Some Security Curves
	Asymptotical Behavior
	Weak Instances

	Proposed Parameters
	Comparison to Existing Hash Functions
	Conclusion
	NP-Completeness Proofs

