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Abstract: Fitness landscapes are a powerful metaphor for understanding the evolution of biological
systems. These landscapes describe how genotypes are connected to each other through mutation and
related through fitness. Empirical studies of fitness landscapes have increasingly revealed conserved
topographical features across diverse taxa, e.g., the accessibility of genotypes and “ruggedness”. As a
result, theoretical studies are needed to investigate how evolution proceeds on fitness landscapes
with such conserved features. Here, we develop and study a model of evolution on fitness landscapes
using the lens of Gene Regulatory Networks (GRNs), where the regulatory products are computed
from multiple genes and collectively treated as phenotypes. With the assumption that regulation
is a binary process, we prove the existence of empirically observed, topographical features such
as accessibility and connectivity. We further show that these results hold across arbitrary fitness
functions and that a trade-off between accessibility and ruggedness need not exist. Then, using
graph theory and a coarse-graining approach, we deduce a mesoscopic structure underlying GRN
fitness landscapes where the information necessary to predict a population’s evolutionary trajectory
is retained with minimal complexity. Using this coarse-graining, we develop a bottom-up algorithm
to construct such mesoscopic backbones, which does not require computing the genotype network
and is therefore far more efficient than brute-force approaches. Altogether, this work provides
mathematical results of high-dimensional fitness landscapes and a path toward connecting theory to
empirical studies.

Keywords: fitness landscapes; gene regulatory networks; coarse-graining; biological computation;
graph theory

1. Introduction

Since its introduction by Wright [1], the concept of fitness landscapes has grown and
matured into a cornerstone of biology [2–4]. A fitness landscape consists of a space of geno-
types that are mutually accessible through mutations and a fitness value associated with
the phenotype each genotype encodes. In this context, fitness describes the evolutionary po-
tential of each genotype, and the set of navigable genotypes on these landscapes is termed
the genotype network [5]. Continuing with this metaphor, the evolution of a population can
be depicted as a trajectory wandering on the fitness landscape. As a consequence, the topog-
raphy of a fitness landscape sheds light on various evolutionary processes, including con-
straints on adaptation [6–9], speciation via genetic incompatibilities [10,11], (dis)advantages
of sexual reproduction and recombination [12–14], the repeatability/reversibility (or not)
of evolutionary trajectories [15–18], and the role of neutral networks—components of the
genotype network with the same fitness—in epochal evolution [19–24].
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Despite being introduced by Wright [1], Fisher’s 1930 geometric model of adaptation is
the first mathematical model of evolution on what we now call fitness landscapes [15,25,26].
Later work by Kingman [27] and Kauffman and Levin [28] constructed what they termed a
“house of cards” (HoC) model where fitness values for each genotype are drawn indepen-
dently from a specified probability distribution. Building on the HoC model, Kauffman and
Weinberger [29] introduced the NK model, which forces each locus to interact with a fixed
number of other loci and where a genotype’s fitness becomes the sum of the fitness contri-
butions of every interaction group. More recently, the “rough Mount Fuji model” [30,31]
combines the HoC landscape with an additional field penalizing a genotype’s Hamming
distance away from a referenced genotype with the optimal fitness. The dependence of
a genotype’s fitness on that of neighboring genotypes is thought to be a key feature of
empirical fitness landscapes.

Over the past three decades, the fitness landscapes for various organisms, including
bacteria [32–34], fungi [35,36], and fruit flies [37], have been empirically reconstructed.
While the number of genotypes included in these early landscapes was limited, modern
sequencing techniques and high-throughput analyses have enabled the construction of
many large landscapes. Notable studies have been conducted in HIV [38,39], yeast [40],
E. coli [41], jellyfish [42], human cancers [43], human stem cells [44], and DNA/RNA
networks [45–49]. Comprehensive landscapes for multiple eukaryotic species have also
been analyzed based on the binding affinity of transcription factors [50] and after accounting
for the ecological context the species experiences [51]. What emerged from these studies is
a set of prominent topographical features conserved across diverged taxa [52].

Together, empirical and modeled fitness landscapes exhibit three key topographical
features. First, fitness landscapes are more often “rugged” than smooth [52]. The degree
of ruggedness can be assessed via a variety of measures, such as the roughness of the
slope ratio [53,54] and the number of local fitness maxima [55], which are often strongly
correlated with each other [4]. Empirical studies typically show moderate ruggedness in the
observed fitness landscapes [32–34,36,50,56]. The degree of ruggedness in these empirical
landscapes is less than the HoC model assumes and comparable to a fine-tuned NK model or
rough Mount Fuji model [4]. Second, fitness landscapes reveal mutational trajectories from one
genotype to another where the fitness is non-decreasing, which implies accessibility (typically
to a fitness optimum) across the landscape [32,57–60]. Lastly, whereas the inaccessible region
in the HoC model expands when distant from the fitness optimum [61], other models find
accessible trajectories despite high genotypic dimensionality [62,63].

Due to the often pervasive interaction between loci, determining phenotype from
genotype can have a high degree of computational complexity [64,65]. Many existing
fitness landscape models have dealt with this complexity by strongly constraining the
state-space of possible genotypic interactions and/or reducing the complexity of how
information is processed when mapping genotype to phenotype. For example, studies
have focused on the folded structure of short RNA sequences, where the resulting stability
or affinity is a fitness proxy [66–70], networks of molecular/genetic pathways whose
expression pattern or homeostasis determines fitness [71–75], and modular mutational
effects at different loci in Fisher’s geometric model [76].

Here, we model the genotype–phenotype map using the pathway framework of gene
regulatory networks (GRNs), where mechanistic knowledge of how phenotypes are com-
puted from genotypes is encoded in the GRN (see [77,78] for a more formal introduction).
To study the fitness landscapes induced by GRN evolution, we integrate the pathway
framework into a family of fitness landscape models where the fitness value is uniquely
determined by the phenotype corresponding to the regulatory outcome of a genotype. For
a fitness landscape of GRNs, we first prove the existence of two key topographical features:
(a) GRNs with the same phenotype are themselves connected in the underlying genotypic
network, and (b) there exists accessible trajectories between all pairs of GRNs with similar
phenotypes. Second, utilizing the idea of symmetries and automorphisms in the genotype
network, we coarse-grain GRNs into groups with equivalent roles in the fitness landscapes
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and deduce an underlying mesoscopic structure with which we can predict the trajectory
of evolution with minimal complexity. Lastly, using this coarse-graining, we develop a
bottom-up algorithm for constructing the underlying fitness landscape of GRNs, which
does not require computing the genotype network and is thus more efficient than the
conventional brute-force approach.

2. Methods

Here, we introduce a family of fitness landscape models where the genotype-phenotype
mapping is constructed from regulatory interactions. We first summarize a modeling frame-
work of GRNs proposed in our previous work [77,78], termed the pathway framework,
and then fitness landscape models of GRNs built upon the pathway framework.

2.1. Pathway Framework of GRNs

Genotypes in the pathway framework of GRNs contain all necessary information to
construct a regulatory network [77,78]. More specifically, alleles at each locus include both
a transcription activator and a protein product, which means the regulatory interactions
among the loci can be deduced by connecting genes whose expression product corresponds
to the activator of another. Compared to existing work on regulatory circuits—where
mutations are modeled as rewiring a single interaction between genes [79,80]—the pathway
framework considers a mutation as changing the activator/product of a gene. Lastly, the
phenotype is determined by the set of loci reached in a regulatory cascade induced by
external stimuli. These stimuli could be completely external to the individual or simply
come from another regulatory network in the organism. For additional details on the
pathway framework, see [77,78] and Figure 1 for illustration.

Figure 1. Cartoon illustration of the pathway framework of GRNs adapted from [77,78]. Under our
four simplified assumptions, a GRN (genotype) consists of a fixed number of proteins as nodes and a
constant number of directed edges depicting the activator/product pairs of genes. The phenotype is
modeled as the Boolean states of proteins (colored), which are determined by their reachability from
the external stimulus (lightning icon).

In this work, when building the family of fitness landscape models, we restrict the
pathway framework with four assumptions. First, we consider a fixed set of genes under-
lying the genotypes, i.e., gene duplication and deletion events are excluded. Second, we
assume a fixed underlying collection of proteins that can possibly exist in the organism.
Third, we consider the case where a gene’s expression is activated by a specific protein, and
it generates only one protein product. Fourth, we assume that the associated chemical state
of each protein is modeled as a Boolean/binary variable (present or absent), and external
environmental signals stimulate the existence of specific proteins in the organism. As a
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consequence, the Boolean state of a phenotype-related protein is determined by whether it
is reached by a regulatory cascade starting from an initial stimulus.

While the above assumptions seem naive, as we will show in Section 3, this simpli-
fied model still predicts the topographical features observed in empirical landscapes (see
Section 1). As a result of these assumptions, we are able to derive rigorous theoreti-
cal insights into GRN evolution and obtain fitness landscapes consistent with far more
complicated models. We believe these assumptions are conservative with respect to the
biology and a justified starting point for modeling fitness landscapes, and we discuss the
implications of these assumptions and possible extensions to the model in Section 4.

2.2. Fitness Landscape of GRNs under the Pathway Framework

Let Γ and Ω be the fixed, underlying collection of loci and proteins, respectively. A
genotype is represented by its GRN g such that every locus γ ∈ Γ is associated with
a protein activator/product pair eg(γ) = (u, v), u, v ∈ Ω. Equivalently, any GRN is a
directed graph with |Ω| nodes labeled by the proteins Ω and |Γ| edges labeled by the loci
Γ. In the rest of this paper, we will use the terminology “source/target” node of edge γ
interchangeably to refer to the protein activator/product of locus γ. We also write G to be
the set of all GRNs with the underlying loci Γ and proteins Ω.

The backbone of a fitness landscape of GRNs, i.e., the genotype network, is an undi-
rected network of networks encoding the mutational relationship between the GRNs. Let
G be the genotype network, and we denote its mega-nodes by V(G) = G and its edges by
E(G). There is an edge (g1, g2) ∈ E(G) between any GRNs g1, g2 ∈ G when they only differ
by the allele of a single locus γ, eg1(γ) 6= eg2(γ). In other words, g1 and g2 are connected in
G when they can be transformed into each other through one edge rewiring.

Furthermore, we write xω to be the binary state of protein ω ∈ Ω, where xω = 1
indicates the presence of ω, and xω = 0 designates its absence. We also partition Ω into
three disjoint groups: (a) proteins Ω0 whose presence is externally stimulated by the given
environment, (b) proteins Ω̂ whose states influence the fitness value, and (c) the remaining
ones, which we call the dummy proteins Ω′ since their specific identities are irrelevant to
the external environment and the resultant phenotypes/fitness. (In this paper, we assume
that the stimuli Ω0 must be proteins that cannot be produced by expression, and we leave
no constraint to the fitness-relevant and dummy proteins Ω̂ and Ω′).

A phenotype is then treated as a vector of zeros and ones, where each entry corre-
sponds to the binary state of a protein in Ω̂. The resultant phenotype xΩ̂(g) of a GRN g
is determined by the reachability in g: For any ω ∈ Ω̂, xω = 1 if and only if there is a
stimulus ω0 ∈ Ω0 and a path from ω0 to ω in g, which represents a chain of sequentially
expressed genes that generates protein ω. Finally, the fitness f is simply a function of the
phenotype xΩ̂(g).

Combined, a fitness landscape of GRNs is characterized by three key elements: the
genotype network G, the external stimuli Ω0, and the fitness function of phenotype f (which
implicitly identifies the fitness-relevant proteins Ω̂). The genotype network G serves as
the skeleton of the fitness landscape, whereas the environment-dependent stimuli Ω0 and
fitness function f determine the phenotypes of GRNs and their selective advantages.

3. Results

In this work, we derive three theoretical insights into fitness landscape models using
GRNs as the embedded genotype–phenotype mapping. First, we show that the resulting
family of fitness landscapes must always contain two topographical properties: connec-
tivity, i.e., GRNs with the same phenotype can be mutually reached via mutations, and
accessibility, i.e., that any GRN can be reached from an arbitrary less-fit GRN (once certain
similarity criterion is met). Second, we propose a mesoscopic coarse-graining for fitness
landscapes, which is a more compact alternative to analyzing evolutionary processes than
the original landscape. This mesoscopic backbone recognizes “symmetries” in the geno-
type network, and it aggregates GRNs with the same role in the fitness landscape into a
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single representative genotype. Third, we provide a bottom-up approach to algorithmically
construct this mesoscopic backbone and demonstrate its efficiency over coarse-graining the
genotype network using brute force.

3.1. Connectivity and Accessibility in a Fitness Landscape of GRNs

A fitness landscape model of GRNs features a handful of properties that have either
been discovered in empirical fitness landscapes or investigated mathematically. First, its
underlying space, i.e., the genotype network G, presents immense dimensionality. Second,
the fitness function f is flexible and can effectively tune the ruggedness of the fitness
landscape. For example, a highly rugged “holely” landscape can be modeled by a binary
f such that any GRN g ∈ G has high fitness once some single protein ω ∈ Ω̂ is present,
xω = 1, and otherwise, g has low/zero fitness. Because one can always find several
mutational neighbors of g whose phenotype shows an opposite state xω, the resultant
fitness landscape is inevitably rugged. In what follows, we further show that fitness
landscape models of GRNs must hold the characteristics of connectivity and accessibility.

Let y be a phenotype and denote by Gy the set of all GRNs with phenotype y, i.e.,
xΩ̂(g) = y for g ∈ Gy, under the given external stimuli Ω0. We also write Ω+

y to be the
required-present proteins in the phenotype y, so xω = 1 for ω ∈ Ω+

y and xω′ = 0 for any
other ω′ ∈ Ω̂ \Ω+

y . Note that the number of required-present proteins |Ω+
y | is bounded

from above by the number of loci |Γ| since any present protein that is not a stimulus must
be triggered by the expression of some locus.

We observe that some GRNs G̃y ⊂ Gy play a “central” role among GRNs with the
same phenotype y. Specifically, for any g̃ ∈ G̃y, all the edges in g̃ point from the stimuli Ω0
to the required-present proteins Ω+

y , and each ω ∈ Ω+
y is targeted by at least one edge in g̃.

We demonstrate an example of such g̃ in Figure 2a. These G̃y are deemed central because
they can be reached by any GRN g ∈ Gy through mutations among Gy themselves: First,
for every edge in g that points to an ω ∈ Ω+

y , we rewire the edge such that it still points to
ω but now from an ω0 ∈ Ω0. Arbitrarily rewiring the remaining edges between Ω0 and
Ω+

y then leads to some central GRN in G̃y (see Figure 2a).

Figure 2. Connectivity exists between all GRNs of the same phenotype. (a) Any GRN can be rewired/
mutated into a “central” GRN (shown on the right). (b) A redundant edge (dark green) makes it
feasible to turn any central GRN into another via edge rewiring. (c) There is a mutational trajectory
between any GRNs of the same phenotype through the central GRNs.

In addition, if the phenotype y has strictly less required proteins than the number of
loci, the central GRNs Gy are mutually reachable by edge rewiring among G̃y. There is
always a redundant edge whose rewiring makes no change to the phenotype, and it helps



Entropy 2022, 24, 622 6 of 24

us rewire each edge to any desired source/target pair between Ω0 and Ω+
y (see Figure 2b),

which subsequently creates a chain of mutations between any g̃, g̃′ ∈ G̃y. These results
implicate that, for any phenotype y with |Ω+

y | < |Γ| and any g1, g2 ∈ Gy, there is always a
mutational trajectory between g1 and g2 that only traverses over GRNs in Gy, especially
through the central ones G̃y (see Figure 2c). In the extreme case where |Ω+

y | = |Γ|, however,
Gy fragments into multiple connected components (detailed in Appendix A).

Next, we turn to accessibility between GRNs of different phenotypes y and y′, where
without loss of generality f (y′) ≥ f (y). We observe that, if |Ω+

y ∪Ω+
y′ | ≤ |Γ|+ 1, there

are always two “peripheral” GRNs ĝ ∈ Gy and ĝ′ ∈ Gy′ , which only differ by one edge
rewiring. To be more specific, there are two independent chains in ĝ, one of which begins
with a stimulus ω0 ∈ Ω0 and sequentially connects the proteins required to be present in y
but not in y′, i.e., Ω+

y \Ω+
y′ , while the other consecutively joins Ω+

y′ \Ω+
y . The rest of the

edges in ĝ merely point from Ω0 to Ω+
y ∩Ω+

y′ , and each ω ∈ Ω+
y ∩Ω+

y′ is targeted by at
least one edge (see example in Figure 3, left). The other GRN ĝ′ only differ from g by the
first edge in the chain of Ω+

y \Ω+
y′ , which is rewired such that it points from the stimulus

ω0 to the first node in the chain of Ω+
y′ \Ω+

y (Figure 3, right).

Figure 3. Example of peripheral GRNs connecting two different phenotypes—a peripheral GRN
ĝ of phenotype y in this example. There is a chain that triggers the presence state of proteins
Ω+

y \ Ω+
y′ = {3, 4}. However, the other peripheral GRN ĝ′ of phenotype y′ contains a chain of

proteins Ω+
y′ \Ω+

y = {5, 6}. ĝ and ĝ′ are mutational neighbors since they only differ by rewiring the
dark green edge, i.e., the first edge in either chain.

Our observation suggests that there is a sequence of mutations with non-decreasing
fitness from any GRN g ∈ Gy to any GRN g′ ∈ Gy′ , as long as |Ω+

y ∪Ω+
y′ | ≤ |Γ|+ 1. In

particular, when |Ω+
y | < |Γ|, the mutational trajectory starting at g first traverses within Gy

to a peripheral GRN and then transitions into Gy′ to reach g′. An analogous trajectory exists
even under the extreme scenario |Ω+

y | = |Γ| (see Appendix A). We also note that if the
number of fitness-relevant proteins is |Ω̂| ≤ |Γ|+ 1, then the condition |Ω+

y ∪Ω+
y′ | ≤ |Γ|+ 1

is assuredly satisfied for any two phenotypes y and y′. As a corollary, if |Ω̂| ≤ |Γ|+ 1, the
fitness optimum will always be accessible.

3.2. Mesoscopic Skeleton Derived from “Symmetries” in the Genotype Network of GRNs

Because the number of possible GRNs grows super-exponentially as the underlying
loci and proteins expand, constructing the genotype network becomes extremely challeng-
ing beyond a small Γ and Ω. Here, we present a more compact skeleton of the fitness
landscape of GRNs based on “symmetries” in the genotype network.

As the underlying space of a fitness landscape of GRNs, the genotype network G
appears to contain redundant information. On the one hand, GRNs leading to the identical
phenotype are deemed to have equal fitness. On the other hand, given any GRN, for
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example, the mega-node rounded by orange in Figure 4a, one can always find some other
GRN such that their neighborhoods in G are locally similar, e.g., the mega-node rounded
by blue. This simple demonstration suggests that the structure of the genotype network G
is not arbitrary; instead, some structural symmetries exist.

Figure 4. The genotype network has symmetry such that multiple GRNs have similar local neighbor-
hoods, as we demonstrate in (a) since the corresponding GRNs only differ by exchanging the role of
loci A and B. More formally, these GRNs constitute an equivalence class under phenotype-preserving
automorphisms, which can be found by graphical operations of (b) permuting loci, (c) permut-
ing dummy proteins (circles), (d) exchanging edges pointing from two different stimuli (squares),
and (e) exchanging self-loops at two different nodes.

In graph theory, symmetries in a network are formally described through the network’s
automorphisms. An automorphism of a graph is a way to shuffle the labels of its nodes
such that the graph remains identical before and after shuffling. For instance, in Figure 5b,
exchanging nodes 2 and 3 generates the same network and is thus an automorphism,
whereas exchanging nodes 2 and 4 is not because there is an edge from 2 to 3 after shuffling.
Formally, an automorphism of the genotype network G is a permutation σ of all plausible
GRNs G = V(G) such that, for any g1, g2 ∈ G, (σ(g1), σ(g2)) ∈ E(G) if and only if we also
have (g1, g2) ∈ E(G). (A permutation of G is a mapping σ : G → G where no two GRNs
are mapped to the same GRN, i.e., σ(g1) 6= σ(g2) if g1 6= g2 for any g1, g2 ∈ G.) Once two
GRNs g and g′ are related through an automorphism σ of G, e.g., g′ = σ(g), they share the
same mega-node properties that are fully determined by the connections in the genotype
network (see Proposition A1).

Furthermore, automorphisms partition the GRNs by their roles in the genotype net-
work through the mathematical concept of equivalence classes. For a high-level and general
description, imagine a set of elements and a group of operations acting on them. Each
operation turns one element into another, and these two elements are related by the op-
eration, which describes the similarity between them. An equivalence class consists of
elements that are mutually related by any operation, and the set of elements is said to be
partitioned into equivalence classes under the action of the operations (see Figure 5a for
an illustrative example). For automorphisms Σ(G′) of a graph G′, the equivalence classes
of nodes V(G′) under the action of Σ(G′) then gather nodes with a similar “structural
position” in G′ (Figure 5c).
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Figure 5. (a) As a minimal example, imagine an operation that rotates a geometric object 90
degrees clockwise. The rotation maps one object onto another (dashed arrows), and it leads to
equivalence classes where objects are grouped by their symmetry under rotation (pink rectangles).
(b) An automorphism of a graph is a permutation of nodes that retains the same graph. (c) Equivalence
classes under graph automorphisms bring together nodes that have similar roles connection-wise in
the graph.

However, to reveal GRNs with identical roles in a fitness landscape, these automor-
phisms also need to preserve the phenotype. Denote by Σx(G) the set of such automor-
phisms of G, i.e., for any σ ∈ Σx(G), and GRN g ∈ G, σ(g) and g have the same phenotype.
The equivalence classes of mega-nodes V(G) under the action of phenotype-preserving
automorphisms Σx(G) then unite GRNs that (a) show similar mutational relationships
with others and (b) lead to the same fitness due to their identical phenotype. We will mildly
abuse the terminology to call them the equivalence classes of GRNs, which we denote by Θ,
and each θ ∈ Θ is a set of GRNs related through Σx(G). Crucially, since the mutational
relationship and the resultant phenotype are the two components that characterize a GRN
in the fitness landscape, GRNs in a θ ∈ Θ are deemed equivalent semantically, and they can
be reduced to an arbitrary representative among them. Therefore, the equivalence classes
of GRNs provide an efficient way to depict the underlying space of the fitness landscape.

However, what exactly composes the phenotype-preserving automorphisms Σx(G) of
the genotype network? From a sufficiency direction, we show that there exist a few graphical
operations on the GRNs that produce phenotype-preserving automorphisms. These graphical
operations involve permuting/shuffling different sorts of elements in a GRN:

(i) The identities of loci Γ, e.g., exchanging edge labels of loci A and B in Figure 4b;
(ii) The identities of dummy proteins Ω′, e.g., exchanging node labels of proteins 3 and

4 in Figure 4c.

Then, potentially rewiring a given edge (see details in Definitions A1 and A2):

(iii) Change the source node of an edge from one stimulus to another stimulus and vice
versa, e.g., in Figure 4d, moving an edge pointing from node 1 to node 3 to pointing
from node 2. (Note that this operation is not necessarily equivalent to permuting the
identities of stimuli since at most only the single focal edge will be affected.)

(iv) Move a self-loop at one node to another node and vice versa, for example,
re-allocating a self-loop at node 3 to node 4 in Figure 4e.

For the formal proofs, we point the reader to Theorem A1. Additionally, from a
necessity direction, one can computationally obtain a partition Θ̂ of the GRNs G that is
coarser than the equivalence classes Θ. (A partition P is coarser than another partition
P ′ if any group in P ′ is included in some group in P .) Specifically, start with a partition
Θ̂0 where GRNs with the same resultant phenotype are grouped together. We create a
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sequence of partitions of G through the following iterative procedure: Given the partition
Θ̂i, the next partition Θ̂i+1 is obtained by further dividing groups into Θ̂i (if needed) such
that for each group θ ∈ Θ̂i and θ′ ∈ Θ̂i+1, any two GRNs in θ′ have the same number of
neighbors among θ. This iterative procedure is terminated when no further division is
required, i.e., Θ̂k+1 = Θ̂k for some integer k (see Figure 6a for an illustrative cartoon of the
iterative procedure). We then have Θ̂ = Θ̂k to be our desired partition of GRNs.

Figure 6. (a) Consider a toy example genotype network of GRNs. (Here, we omit the exact content
of GRNs.) Given the partition Θ̂k, note that mega-nodes in a group (dashed orange rectangle) may
share a different number of connections among other groups (blue shaded circles), and they are
further divided to generate the next partition Θ̂k+1. (b) Both the equivalence classes of GRNs and the
stationary partition from our iterative procedure are equitable, e.g., each mega-node in group (1) has
one connection among (1), another connection with (2), and none with other groups.

To see why the proposed iterative procedure generates a coarser partition Θ̂ than the
equivalence classes Θ of GRNs, we stress that the equivalence classes under automorphisms
always form an equitable partition. A partition P = {Pi}m

i=1 of nodes of a graph is
equitable [81] if for every Pi, Pj ∈ P , any two nodes u, v in group Pi have the same number
of neighbors in Pj (Figure 6b). Since GRNs in an equivalence class θ ∈ Θ must have the
same amount of neighbors for each different phenotype, we inductively show that any
two GRNs g1, g2 ∈ θ are never separated during the iterative procedure that generates
Θ̂ (see Theorem A2). Therefore, any equivalence class θ ∈ Θ must be included in a
computationally acquired group θ̂ ∈ Θ̂.

Figure 7 demonstrates the coarser partition Θ̂ generated by the iterative procedure for
an arbitrary toy example. The obtained Θ̂ contains 154 groups of GRNs, and the size of
groups ranges from 2 to 96. We also count the number of different kinds of GRNs that can
not be transformed through graphical operations (i) and (ii), and this number varies from
1 to 4 in our example Θ̂. Moreover, for every group in Θ̂, we observe that those different
kinds of GRNs can be related by changing the stimulus that an edge is pointing from and
re-allocating self-loops (e.g., see Figure 7b). Θ̂ is thus not simply a coarser partition than
the equivalence classes; according to (i)–(iv), we know that groups in Θ̂ are exactly the
equivalence classes Θ. This arguably general toy example implicates that there is no need
for other graphical operations to determine the equivalence classes of GRNs.

As a result, we conjecture that all the phenotype-preserving automorphisms Σx(G)
of the genotype network can be generated by combining graphical operations (i) to (iv)
on the GRNs. In other words, two GRNs g1 and g2 belong to the same equivalence class
if and only if, after removing all the self-loops and merging stimuli Ω0 into a single node,
there exist permutations of loci Γ and dummy proteins Ω′ that jointly transform g1 into g2.
This condition reconciles with the concept of isomorphisms between graphs. Whereas an
automorphism is a mapping of nodes such that a graph preserves itself, an isomorphism is
a mapping of nodes that transform one graph into another. We will borrow the terminology
and call the two permutations of Γ and Ω′ together a phenotype-preserving isomorphism from
g1 to g2.
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Figure 7. Example partition coarser than the equivalences classes of GRNs. We run the proposed
iterative procedure with |Γ| = 3 and |Ω0| = |Ω′| = |Ω̂| = 2, where stimuli Ω0 are drawn as squares
and the present/absent state of fitness-relevant proteins Ω̂ are colored by orange/blue. (a) The
number of GRNs and the number of isomorphism classes of GRNs in each group of the obtained
partition Θ̂, where the dashed lines separate groups of different phenotypes and (b) isomorphism
classes of GRNs in a group.

3.3. Algorithmic Construction of the Mesoscopic Backbone of GRN Fitness Landscape

Next, we investigate algorithmic approaches to construct the mesoscopic backbone of
a fitness landscape based on equivalence classes, where a representative GRN replaces all
other GRNs in an equivalence class due to their identical role. In particular, the desired
algorithm must (a) acquire the equivalence classes Θ from scratch and (b), for a representa-
tive GRN in any equivalence class, count the number of its mutational neighbors in other
equivalence classes and also within the class it belongs to.

To avoid any confusion, we emphasize that, although drawing mutational connections
between equivalence classes Θ can be achieved by grouping mega-nodes in the genotype
network G, this naive exercise is unsuitable. First and foremost, grouping mega-nodes
demands prior knowledge of the genotype network itself, but its construction is computa-
tionally heavy. Second, in contrast to coarse-graining nodes in a graph where the groups of
nodes are pre-specified, listing all GRNs in an equivalence class requires examining pairs
of GRNs and assuring a phenotype-preserving isomorphism between them after removing
self-loops and merging stimuli. Determining the equivalence classes Θ from all the GRNs
G = V(G) can thus be costly as well. These reasons again show the value of the equivalence
classes Θ, which consolidate GRNs into their equivalent representatives.

Here, we present a bottom-up approach that enumerates each equivalence class of
GRNs and simultaneously computes the number of mutational connections among them.
To begin, recall from Section 2.2 that a mutation from a GRN g1 ∈ G to another g2 ∈ G
corresponds to rewiring a single edge in g1, where g1 may rewire a self-loop/non-self-loop
edge to a self-loop/non-self-loop edge in g2. We observe that the number of non-self-loop
edges in mutational neighbors g1 and g2 differ at most by one. We denote by Γ′(g) the
loci representing the non-self-loop edges in the GRN g, and |Γ′(g)| the number of those
non-self-loop edges. In other words, given equivalence classes θ, θ′ ∈ Θ and representative
GRNs g ∈ θ and g′ ∈ θ′, g has no mutational neighbors in θ′ if ||Γ′(g)| − |Γ′(g′)|| > 1.

We can therefore build the mesoscopic backbone by incrementally examining each
equivalence class with an increasing number of non-self-loop edges in the representative
GRN. This strategy is envisioned in Figure 8, where the backbone can be viewed as “layers”
of equivalence classes of GRNs. Let Θk be the set of equivalence classes where for every
θ ∈ Θk, the representative GRN g ∈ θ has exactly k non-self-loop edges, |Γ′(g)| = k. We
start with layer Θ0, which consists of the only equivalence class with no non-self-loop edges.
Then, with layers Θ0, Θ1, . . . , Θk and all the mutational connections among them, we will
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find the equivalence classes in the next layer Θk+1 and their mutational connections with
layer Θk and within themselves up until k = |Γ|, where all the edges are non-self-loops.

Figure 8. Layering the GRNs by their number of non-self-loop edges. A GRN’s mutational neighbors
must fall into the same or the adjacent layers. For ease of illustration, we only show the non-self-loop
edges and neglect the protein states in GRNs.

To be more precise, we introduce the concept ofM+ neighborhood: For any GRN
g ∈ G, denote byM+(g) the mutational neighbors of g that have one more non-self-loop
edge than g. M+ neighborhoods are sufficient to capture the relationship between two
mutational neighbors g and g′:

• If g′ has one more non-self-loop edge than g, then g′ ∈ M+(g);
• If g′ has one less non-self-loop edge than g, then we have g ∈ M+(g′);
• If g′ has the same number of non-self-loop edges as g, and then they share a common

mutational neighbor g′′, where the only different edge between g and g′ is rewired to
a self-loop and thus g, g′ ∈ M+(g′′).

The mutational connections between equivalence classes can hence be uncovered
by examining the M+ neighborhood of the representative GRNs. Moreover, the M+

neighborhood of representative GRNs in layer Θk reveals the equivalence classes in layer
Θk+1 because any GRN must have a mutational neighbor with one less non-self-loop edge.
All that remains is to join differentM+ neighbors into equivalence classes. In particular:

(A) For an equivalence class θ ∈ Θk and its representative GRN g ∈ θ, under what
condition will g′1, g′2 ∈ M+(g) belong to the same equivalence class in layer Θk+1?

(B) For two distinct equivalence classes θ1, θ2 ∈ Θk and their representative GRNs
g1 ∈ θ1 and g2 ∈ θ2, under what condition will g′1 ∈ M+(g1) and g′2 ∈ M+(g2)
belong to the same equivalence class in layer Θk+1?

For our ease of illustration, we hereafter choose the GRNs g, g1, g2, g′1 and g′2 such
that only one stimulus node is incident to out-going edges.

To address (A), let g′1, g′2 ∈ M+(g) belong to the same equivalence class, so there is
a phenotype-preserving isomorphism π from g′1 to g′2 after self-loop removal. Recalling
from Section 2.2, eg(γ) = (u, v) denotes that “the source–target pair of edge γ is (u, v)
in GRN g.” Furthermore, we write eg′1

(γ1) = (u1, v1) and eg′2
(γ2) = (u2, v2), where γ1

and γ2 are the non-self-loop edges “added” to g that forms g′1 and g′2, respectively. A few
observations follow:

1. There is an integer p such that πp(γ1) = γ1 and (πp(u1), πp(v1)) = (u1, v1);
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2. There is another integer q < p such that πq(γ1) = γ2 and (πq(u1), πq(v1)) = (u2, v2);
3. eg′2

(πk(γ1)) = (πk(u1), πk(v1)) for k = 1, 2, . . . , q;

4. eg′2
(πk(γ1)) 6= (πk(u1), πk(v1)) for k = q + 1, q + 2, . . . , p;

5. For any locus γ and non-self-loop source–target pair (u, v) such that (γ, u, v) 6=
(πk(γ), πk(u1), πk(v1)) for 0 ≤ k ≤ q− 1, we have eg(π(γ)) = (π(u), π(v)) if and
only if eg(γ) = (u, v).

We detail the reasoning behind these observations in Lemma A1–A3. Critically, our
fifth observation implies that, after self-loop removal, the isomorphism π between g′1 and
g′2 is in fact a phenotype-preserving automorphism of a subgraph ḡ of the GRN g. In
addition, observations 3. and 4. show that those edges in g—but not in ḡ—are sequentially

mapped from one to another via this automorphism π, i.e., Γ′(g) \ Γ′(ḡ) =
{

πk(γ1)
}q−1

k=1
,

and they bridge the newly added edges γ1 and γ2 = πq(γ1). We show that the converse
is also true (see Theorem A3): After self-loop removal, if we find a phenotype-preserving
automorphism π of a subgraph ḡ of g where γ1 is consecutively mapped to γ2 through the
edge differences Γ′(g) \ Γ′(ḡ), π is guaranteed a phenotype-preserving isomorphism from
g′1 to g′2.

The sufficient and necessary condition for twoM+ neighbors of g to be in the same
equivalence class, intriguingly, lies in the phenotype-preserving automorphisms of sub-
graphs of the representative GRN g. Here, we demonstrate a few simple examples in
Figure 9a. In the top row, an automorphism of g directly maps between the two addi-
tional edges (u1, v1) = (3, 5) and (u2, v2) = (1, 4). In the middle row, the two edges
(u1, v1) = (1, 2) are consecutively mapped to (u2, v2) = (3, 4) through edge (2, 3), and
(u2, v2) is consecutively mapped back to (u1, v1) through the non-edge (4, 1), so we have
q = 2 and p = 4. As a mixture of both, in the bottom row, (u1, v1) = (2, 5) is consecu-
tively mapped to (u2, v2) = (3, 6) through edge (1, 4), and this isomorphism is exactly an
automorphism of a subgraph ḡ of g where edge (1, 4) is removed.

Switching gears to the remaining question (B), suppose that g1 and g2 are the repre-
sentative GRN in two different equivalence classes where |Γ′(g1)| = |Γ′(g2)| and that
g′1 ∈ M+(g1) and g′2 ∈ M+(g2) belong to the same equivalence class. Let γ1 and
γ2 be the newly added edges to g1 and g2 that generate g′1 and g′2, respectively, where
eg′1

(γ1) = (u1, v1) and eg′2
(γ2) = (u2, v2), and let π be a phenotype-preserving isomor-

phism from g′1 to g′2 after self-loop removal. We observe that applying the permutation π
on g1 transforms it into another GRN g̃1 in the same equivalence class. Since g1 simply has
one less edge γ1 than g′1, and g̃1 and g′2 only differ by a missing edge π(γ1). Namely, we
have g′2 ∈ M+(g̃1) with the additional edge eg′2

(π(γ1)) = (π(u1), π(v1)). Moreover, since
g′2 also belongs to theM+ neighborhood of g2 with the additional edge eg′2

(γ2) = (u2, v2),
by removing both the extra edges from g′2, we find a GRN g′′ such that g̃1, g2 ∈ M+(g′′).

We again present an illustrative example in Figure 9b. Here, a GRN g̃1 in the equiv-
alence class of g1 can be found via the isomorphism π between g′1 and g′2. We note that
the newly added edge (u1, v1) = (4, 1) is transformed into (π(u1), π(v1)) = (3, 4) in
g′2, which is missing in g̃1. Removing both (π(u1), π(v1)) = (3, 4) and (u2, v2) = (3, 1)
from g′2 produces a GRN g′′, which is a common neighbor of g2 and g̃1 with one less
non-self-loop edge.

Our observation resolves the necessary condition of (B): For the representative GRNs
of two different equivalence classes g1 ∈ θ1 and g2 ∈ θ2, if theirM+ neighbor g′1 ∈ M+(g1)
and g′2 ∈ M+(g2) belong to the same equivalence class, then we can always find two GRNs
g̃1 and g′′ such that (a) g̃1 falls into the equivalence class of g1, and (b) g̃1 and g2 areM+

neighbors of g′′. Moreover, the converse is true as well (Theorem A4). Therefore, whether
theM+ neighborhood of g1 and g2 reveal a common equivalence class depends on the
existence of a GRN g′′ that both the equivalence classes θ1 and θ2 are rooted from.
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Figure 9. Sufficient conditions that twoM+ neighbors belong to an equivalence class. For illustration
purposes, we only show the dummy proteins and omit the protein states, edge labels and self-loops in
(a) three examples such that twoM+ neighbors of a GRN g are isomorphic, and (b) an example where
theM+ neighbors g′1 and g′2 of GRNs g1 and g2 in different equivalence classes are isomorphic.

Our strategy to build the mesoscopic backbone is now complete, and here, we detail
our algorithm that incrementally generates the equivalence classes Θ of GRNs and estab-
lishes the mutational connections among them. Suppose that we have already built layers
of equivalence classes Θ0, Θ1, . . . , Θk and determined the mutational connections among
them. For each representative GRN g in layer Θk and every g′ ∈ M+(g), we will view g′

as the combination of g and an additional, non-self-loop edge eg′(γ) = (u, v), for which we
write g′ = g⊕ (γ, u, v). All such combinations form a collection ofM+ neighbors of the
representative GRNs in layer Θk, for which we abuse the notationM+(Θk).

We initially put each g′ ∈ M+(Θk) into an individual group, and we define a collection
of operations Φ that join groups ofM+ neighbors:

(I) For every representative GRN g in Θk and every phenotype-preserving automor-
phism σ of g, there is an operation ψg,σ that joins together the groups of
g′1 = g⊕ (γ, u1, v1) and g′2 = g⊕ (γ, u2, v2), where u1, u2 ∈ Ω0 and v2 = σ(v1);

(II) For every representative GRN g in Θk and every phenotype-preserving automor-
phism σ̄ of each subgraph ḡ of g such that the edge differences Γ′(g) \ Γ′(ḡ) are
sequentially connected via σ̄, there is an operation φg,ḡ,σ̄ that joins together the
groups of g′1 = g ⊕ (γ1, u1, v1) and g′2 = g⊕ (γ2, u2, v2), where automorphism σ̄
consecutively transforms edge γ1 into γ2 through Γ′(g) \ Γ′(ḡ);

(III) For every representative GRN g′′ in Θk−1 and each g̃1 = g′′ ⊕ (γ′′1 , u′′1 , v′′1 ) and
g̃2 = g′′ ⊕ (γ′′2 , u′′2 , v′′2 ) in two different equivalence classes θ1 and θ2, such that we
have phenotype-preserving isomorphisms π1/π2 from g̃1/g̃2 to the representative GRN
g1/g2 after self-loop removal, there is an operation ϕg,g̃1,g̃2 that joins together the groups
of g′1 = g1 ⊕ (π2(γ

′′
2 ), π2(u′′2 ), π2(v′′2 )), and g′2 = g2 ⊕ (π1(γ

′′
1 ), π1(u′′1 ), π1(v′′1 )).

The resulting groups of M+ neighbors, after applying the joining operations Φ,
constitute the equivalence classes in the next layer Θk+1. We hereafter denote byM+

Φ(θ
′)

the corresponding consequent group of an equivalence class θ′ ∈ Θk+1. We then choose
an arbitrary M+ neighbor in M+

Φ(θ
′) as the representative GRN of the equivalence

class θ′, such that only one stimulus node is incident to out-going edges in the chosen
representative GRN.



Entropy 2022, 24, 622 14 of 24

The joining operations Φ further provide useful information to count the number of
mutation neighbors that a representative GRN g ∈ θ in layer Θk has among any equiva-
lence class θ′, which we will denote by Ag(θ′). Let us first consider θ′ ∈ Θk+1. For any
g̃′ ∈ M+

Φ(θ
′), g̃′ is a mutational neighbor of g if it can be viewed as a combination of g and

an arbitrary extra non-self-loop edge, and hence

Ag(θ
′) = |M+

Φ(θ
′) ∩M+(g)| , for θ′ ∈ Θk+1 . (1)

Note that, in this case, Ag(θ′) is easily acquired when building up the layer Θk+1 through Φ.
Second, for θ′ ∈ Θk−1, Ag(θ′) can be computed given Ag′(θ), where g′ is the repre-

sentative GRN of θ′. Since the equivalence classes Θ generate an equitable partition of
the genotype network G (see Section 3.2), we have Ag(θ′)× |θ| = Ag′(θ)× |θ′| equal to
the total number of mutational connections between θ and θ′. Moreover, the size of the
equivalence class θ is (see Appendix D)

|θ| = |Π′|
|Σ′(g)| × nl(|Γ| − k)×ms(g)× r(g) , (2)

where (a) we denote by Π′ the set of all permutations of dummy proteins Ω′ and denote by
Σ′(g) the set of automorphisms of the representative GRN g after self-loop removal that
only permutes Ω′; (b) nl(|Γ| − k) is the number of ways to allocate |Γ| − k labeled self-loops
among the proteins Ω; (c) ms(g) is the number of ways to re-distribute the edges pointing
from stimuli Ω0 in g; and (d) r(g) is the number of ways to divide loci Γ into self-loops,
non-self-loop edges pointing from stimuli, and others. As a result,

Ag(θ
′) = Ag′(θ)×

|Σ′(g)|
|Σ′(g′)| ×

nl(|Γ| − k + 1)ms(g′)r(g′)
nl(|Γ| − k)ms(g)r(g)

, for θ′ ∈ Θk−1 . (3)

Third, we turn to the case where θ′ ∈ Θk but θ′ 6= θ. Recall that, if any g̃′ ∈ θ′ is a
mutational neighbor of g, then there is a GRN g̃′′ in layer Θk−1, where g, g̃′ ∈ M+(g̃′′),
and such g̃′′ is unique up to arbitrary self-loop re-allocation. Additionally, the extra edge in
g and g̃′ must correspond to the same locus, so

Ag(θ
′) = ∑

θ′′∈Θk−1

Ag(θ′′)

nl(1)
× Ag′′(θ

′) , for θ′ ∈ Θk−1, θ′ 6= θ , (4)

in which we use g′′ to be the representative GRN of equivalence class θ′′. Lastly, if θ′ = θ,
we also need to include the scenario that the mutational neighbor g̃′ of g is generated by
rewiring a self-loop to another self-loop. Therefore,

Ag(θ) = (|Γ| − k)× (nl(1)− 1) + ∑
θ′′∈Θk−1

Ag(θ′′)

nl(1)
×
[

Ag′′(θ)− 1
]

. (5)

In Algorithm 1, we summarize our proposed approach that constructs the mesoscopic
backbone. It is apparent that the core of our algorithm is determining the joining operations
Φ for a given layer Θk. This task can be achieved by pre-computing the phenotype-
preserving automorphisms of every representative GRN once it is chosen. In addition, since
these joining operations reflect the mutational neighbors and the phenotype-preserving
isomorphisms in previous layers, the type-(III) Φ for layer Θk is generated as a composition
of the already uncovered operations. Furthermore, the remaining Φ of type (II) consists of
combinations of the uncovered joining operations and the newly computed automorphisms
of representative GRNs in layer Θk. As a result, the only prerequisite in our proposed
algorithm is producing the phenotype-preserving automorphisms of a GRN.
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Algorithm 1 Constructing the underlying space of a fitness landscape of GRNs

Require: The fixed underlying collections of loci Γ and proteins Ω of GRNs
Ensure: The representative GRN gθ of each equivalence class θ ∈ Θ, and its number of

mutational neighbors Agθ
(θ′) in any equivalence class θ′ ∈ Θ

1: k← 0 . initialization
2: gθ0 ← a GRN with no self-loop, where θ0 is the only equivalence class in layer Θ0
3: Store the phenotype-preserving automorphisms Σx(gθ0).
4: Compute Agθ0

(θ0) via Equation (5).
5: while k < |Γ| do . incrementally find Θ
6: Construct and store the joining operations Φ for layer Θk.
7: M+

Φ ← grouping ofM+(Θk) acted by Φ
8: Θk+1 corresponds to the groups inM+

Φ .
9: for all θ′ ∈ Θk+1 do

10: gθ′ ← a GRN inM+
Φ(θ

′) . choose the representative GRN
11: Store the phenotype-preserving automorphisms Σx(gθ′).
12: end for
13: for all θ ∈ Θk, θ′ ∈ Θk+1 do . count the number of mutational neighbors
14: Compute Agθ

(θ′) and Agθ′ (θ) via Equations (1) and (3).
15: end for
16: for all θ′1, θ′2 ∈ Θk+1 do
17: Compute Agθ′1

(θ′2) via Equations (4) and (5).

18: end for
19: k← k + 1
20: end while
21: Set any remaining, not computed Agθ

(θ′) to zero.

4. Conclusions

In this work, we integrate mechanistic knowledge of how phenotypes are computed
from genotypes via regulatory interactions into fitness landscape models. The resulting
family of fitness landscape models features flexibility for tunable ruggedness and accessi-
bility among phenotypes. Furthermore, we introduce the concept of equivalence classes
of GRNs, where GRNs of the same phenotype and with similar structural positions in the
genotype network are coarse-grained into a group. These equivalence classes of GRNs lead
to a compact and informative description of the fundamental space of a fitness landscape.
Using this coarse-graining, we develop a bottom-up, efficient algorithm for constructing
the underlying space of a fitness landscape based on the equivalence classes. Critically, this
algorithm does not require pre-computing the genotype network and therefore permits the
exploration of substantially larger GRNs.

Naively, ruggedness and accessibility would seem to be contradictory characteristics
of a fitness landscape. Indeed, reciprocal sign epistasis has been shown to yield a strong
influence on a landscape’s ruggedness and was regarded as an impediment to evolutionary
accessibility when first introduced [2,32,55]. Nevertheless, recent studies suggest that
fitness landscape models most closely aligned with empirical observations show that
sign epistasis (and thus ruggedness) can co-exist with accessibility [63,82]. In addition to
demonstrating that ruggedness and accessibility are not mutually exclusive, our model
is compatible with three additional empirical observations. First, GRNs result in high
dimensional genotype–phenotype maps [63]. Second, selection acts on the superposition of
mutations and the background GRN rather than a few pairs of mutations [60]. Third, and
perhaps most importantly, a GRN may experience a series of neutral mutations and then
evolve into a nearby phenotype [3,8,83,84]. The accessibility induced in fitness landscapes
of GRNs via neutral evolution agrees with the phenomenon of punctuated equilibrium/
epochal evolution [23,85,86].

Our derived equivalence classes for GRNs provide a novel, mesoscopic, and optimally
descriptive skeleton of a fitness landscape. Neither the genotypic space nor the phenotypic
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space alone fully characterize a fitness landscape; however, models with even a relatively
simple genotype–phenotype map are computationally intensive because they must retain
all plausible genotypes [70,73–75]. Intuitively, the complexity of a genotype–phenotype
map can be reduced by combining similar phenotypes into high-level descriptors [87]. The
equivalence classes of GRNs, on the other hand, serve as an intermediate level between the
genotypic and phenotypic space, which provides an optimal coarse-graining that encodes
all necessary information to predict the evolutionary trajectory on the fitness landscape.

We argue that our proposed algorithm for coarse-graining GRN fitness landscapes is
more efficient than brute-force approaches. First, because we consolidate an equivalence
class into a single representative GRN, our method is less costly in memory and requires
fewer computations when finding mutational neighbors. Second, suppose all plausible
GRNs were organized into layers by the number of non-self-loop edges (see Section 3.3),
every layer would still super-exponentially contain many GRNs. Our algorithm instead
finds the equivalence classes in each layer iteratively. To construct the (k + 1)-th layer, we
only have to exhaust the representative GRNs in the k-th layer–along with any plausible
additional non-self-loop edge(s)–this amount will be significantly fewer than the number of
GRNs in the (k + 1)-th layer. Lastly, existing heuristics for graph automorphisms [88,89] can
be used to produce the phenotype-preserving automorphisms of the representative GRNs,
which is the only prerequisite when joining together different GRN–edge pairs. Because
the set of automorphisms becomes more limited as the complexity of GRNs increases, we
expect only a minor overhead in the joining procedure as compared to the exhaustive,
brute-force approach.

Despite our model being constrained to the pathway framework of GRNs [77,78] and
a few naive assumptions described in Section 2, we believe our methodology to be flexible
and, in what follows, we outline some potential directions to extend the framework. First,
when GRNs are modeled through more complex computation, e.g., with different logic
gates connecting multiple expression activators/suppressors/products, those GRNs that
only consist of naive interactions are never excluded. Thus, the current model represents
a subset of the complete landscape built by more complex gene regulation. The derived
connectivity and accessibility among the naive GRNs still hold, and we expect these
topographical features to manifest for complex GRNs if mutations between the simple and
complex expressions are permitted. Second, hypergraphs [90] could be used to describe
the expression behavior of genes where multiple activators/products appear. Third, stable
motif identification [91] and target control [92] for Boolean network models could be used
to explore the phenotypes of mutational neighbors of a focal complex GRN. Lastly, our
methodologies are likely applicable to other classes of genotype–phenotype maps [93,94].
In particular, once the mapping and the genotype network are determined, one can simply
follow the proposed iterative procedure (Figure 6) to obtain a genotype partition coarser
than the equivalence classes.

More broadly, this work showcases the potential of combining biological computation
across different scales along the hierarchy of living systems. Computing biological function-
ality on the organism level with genotype–phenotype mapping provides a blueprint of the
overall fitness landscape, where evolutionary processes occur/compute on the population
level. Furthermore, several intriguing perspectives arise from the proposed mesoscopic
backbone if we consider evolution to be a random walk on the fitness landscape. The
process of evolution not only manifests genotypes with higher fitness values but also
reveals genotypes whose mutational neighbors are more fit [19,23,78]; in other words, the
prevalence of different genotypes would reflect the connection counts between equivalence
classes of GRNs. In addition, these “connection counts” could become associated with
an analogous theory of computation in evolution that addresses questions such as how
likely a genotype in an equivalence class is to evolve into a specified phenotype, as well as
how likely it is to “reset” to another genotype in the same equivalence class and recover its
position in the fitness landscape.
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Appendix A. Central and Peripheral GRNs Where No Regulation Presents

Here, we show the connectivity of “central” and “peripheral” GRNs mentioned in
Section 3.1 under the extreme scenario where no gene regulation appears, in particular,
when |Ω+

y | = |Γ|. We observe that, since |Ω+
y | = |Γ|, each node ω ∈ Ω+

y is incident to one
and only one incoming edge, and thus, each central GRN g̃ ∈ G̃y corresponds to a bijective
mapping from Ω+

y to edge labels Γ.
First, we show that if two central GRNs g̃1, g̃2 ∈ G̃y correspond to different mappings

between Ω+
y and Γ, there is no mutational trajectory connecting them among Gy. Start

with assuming that such a mutational trajectory does exist. Due to the different associated
mappings of g̃1 and g̃2, there is an ω ∈ Ω̂ with distinct labels of the incident edge γ1 and
γ2 in g̃1 and g̃2, respectively. Because mutating g̃1 into g̃2 requires rewiring both γ1 and
γ2, there must exist a GRN g where either none or both the edges γ1 and γ2 point to ω.
Nevertheless, g contradicts our observation following the constraint |Ω+

y | = |Γ| so g /∈ Gy.
As a result, under this extreme scenario, Gy fragment into multiple connected components
when only mutations among themselves are considered.

Next, for any phenotype y′ for which |Ω+
y ∪Ω+

y′ | ≤ |Γ|+ 1, we show that there is

a mutational trajectory among Gy connecting an arbitrary central GRN g̃ ∈ G̃y and a
peripheral GRN ĝ ∈ Gy at the boundary of Gy and Gy′ . Specifically, take ω ∈ Ω+

y \Ω+
y′

and its incident edge pointing from ω0 ∈ Ω0. For each ω′ ∈ Ω+
y \Ω+

y′ where ω′ 6= ω, one

can sequentially rewire the incident edge of ω′ to form a chain of Ω+
y \Ω+

y′ initiated by ω0,

which leads to a resultant GRN ĝ. Moreover, since |Ω+
y | = |Γ|, we have |Ω+

y′ \Ω+
y | = 1.

Recall from Section 3.1, this ĝ is indeed a peripheral GRN between Gy and Gy′ .

Appendix B. Phenotype-Preserving Automorphisms of the Genotype Network of GRNs

In this section, we demonstrate (a) why GRNs mapped by automorphisms of the
genotype network G are equivalent, (b) four graphical operations that generate phenotype-
preserving automorphisms of G, and (c) the correctness of our iterative procedure to obtain
a coarser partition than the equivalence classes of GRNs.

Proposition A1. Given an automorphism σ of the genotype network G and a mega-node function
fG that depends on the adjacency matrix A of G, for any GRNs g1, g2 ∈ G where g2 = σ(g1),
fG(g2) = fG(g1).

Proof. Take f ′G = fG ◦ σ. Since for any g1, g2 ∈ V(G), (σ(g1), σ(g2)) ∈ E(G) if and
only if (g1, g2) ∈ E(G), the adjacency matrix A remains unchanged after permuting the
mega-nodes through σ. As a result, we have f ′G = fG, and fG(g2) = f ′G(g1) = fG(g1).

Let π and π′ be a permutation of the loci Γ and the dummy proteins Ω′, respectively.
It is not hard to see that π and π′ also generate a permutation of the GRNs G. For g ∈ G, we
abuse the notation π(g) to be the GRN mapped through the locus permutation π, where
an edge with eg(γ) = (u, v) is transformed into eπ(g)(π(γ)) = (u, v). Similarly, in the GRN
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π′(g) mapped through the dummy protein permutation π′, an edge with eg(γ) = (u, v) is
transformed into eg(γ) = (π(u), π(v)).

Furthermore, we have two more types of graphical operations on GRNs:

Definition A1. For a locus γ and two stimuli ω, ω′ ∈ Ω0, ργ,ω,ω′ : G → G transforms a GRN g
into g′ such that edge γ becomes

eg′(γ) = (u, ω′) if eg(γ) = (u, ω) ,
eg′(γ) = (u, ω) if eg(γ) = (u, ω′) ,
unchanged otherwise.

Definition A2. For a locus γ and two nodes ω and ω′, $γ,ω,ω′ : G → G transforms a GRN g into
g′ such that the edge γ becomes

eg′(γ) = (ω′, ω′) if eg(γ) = (ω, ω) ,
eg′(γ) = (ω, ω) if eg(γ) = (ω′, ω′) ,
unchanged otherwise.

Note both ργ,ω,ω′ and $γ,ω,ω′ are permutations of G as well, where pairs of GRNs are
mutually mapped from one to the other.

These four graphical operations introduced above are, more importantly, automor-
phisms of the genotype network G that also preserve the phenotype of GRNs:

Theorem A1. The transformations π, π′, ργ,ω,ω′ , and $γ,ω,ω′ are phenotype-preserving automor-
phisms of G.

Proof. For g1, g2 ∈ G, let ∆ =
{

γ ∈ Γ | eg1(γ) 6= eg2(γ)
}

. Since π′ is a permutation of
dummy proteins, it preserves ∆. Additionally, because ργ,ω,ω′ and $γ,ω,ω′ can be viewed
as permutations of the source–target pair of a single edge γ, they also preserve ∆. The
permutation π of Γ, on the other hand, does not preserve ∆ but maintains its size |∆|. Since
(g1, g2) ∈ E(G) if and only if |∆| = 1, the four transformations are automorphisms of G.

Furthermore, since π, π′ and $γ,ω,ω′ simply change the labels of edges, labels of the
intermediate nodes, and the location of a self-loop, they maintain any path from a stimulus
ω0 ∈ Ω0 to a fitness-relevant protein ω̂ ∈ Ω̂. ργ,ω,ω′ may alter the path betweenω0 and
ω̂, but the reachability from Ω0 to ω̂ remains. Therefore, the four transformations also
preserve the phenotype of GRNs.

Finally, we turn to the computationally acquired partition that can be shown to be
coarser than the equivalence classes of GRNs. Recall from Section 3.2 that our iterative
procedure starts from a partition Θ̂0 where GRNs with the same phenotype are grouped
together. Given the partition Θ̂i, the next partition Θ̂i+1 is obtained by further dividing
groups into Θ̂i (if needed) such that for each group θ ∈ Θ̂i and θ′ ∈ Θ̂i+1, any two GRNs in
θ′ have the same number of neighbors among θ in the genotype network G. The procedure
terminates when a stationary partition Θ̂ is reached. We then have:

Theorem A2. Every equivalence class θ ∈ Θ is included in a group θ̂ ∈ Θ̂, θ ⊂ θ̂.

Proof. Recall that GRNs in an equivalence class have the same phenotype, so for each
θ ∈ Θ, there is some θ0 ∈ Θ0 where θ ⊂ θ0. Suppose that θ ⊂ θi for each θ ∈ Θ and
some θi ∈ Θi. Since Θ forms an equitable partition, every g ∈ θ has the same number
of neighbors in each θ′ ∈ Θ and thus also in each θi ∈ Θi. Consequently, no two GRNs
in θ will be separated into two different groups in Θi+1, and the theorem is proved by
induction.
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Appendix C. Combining Mutational Neighbors into Equivalence Classes

In this section, we tackle the two questions raised in Section 3.3:

(A) For an equivalence class θ ∈ Θk and its representative GRN g ∈ θ, under what
condition will g′1, g′2 ∈ M+(g) belong to the same equivalence class in layer Θk+1?

(B) For two distinct equivalence classes θ1, θ2 ∈ Θk and their representative GRNs
g1 ∈ θ1 and g2 ∈ θ2, under what condition will g′1 ∈ M+(g1) and g′2 ∈ M+(g2)
belong to the same equivalence class in layer Θk+1?

Furthermore, recall that for ease of demonstration, we constrain the GRNs g, g1, g2, g′1
and g′2 where only one stimulus node is incident to out-going edges.

Definition A3. A phenotype-preserving isomorphism π from g′1 to g′2 after self-loop removal
is a permutation of loci Γ and dummy protein Ω′ such that for any locus γ and non-self-loop
source–target pair (u, v), eg′2

(π(γ)) = (π(u), π(v)) if and only if eg′1
(γ) = (u, v).

Starting with the question (A), we write eg′1
(γ1) = (u1, v1) and eg′2

(γ2) = (u2, v2),
where γ1 and γ2 are the non-self-loop edge newly rewired to generate g′1 and g′2 from g,
respectively. A few observations appear when we assume g′1 and g′2 belong to the same
equivalence class:

Lemma A1. Suppose a phenotype-preserving isomorphism π from g′1 to g′2 after self-loop re-
moval. There are two integers q < p such that πp(γ1) = γ1, (πp(u1), πp(v1)) = (u1, v1), and
πq(γ1) = γ2, (πq(u1), πq(v1)) = (u2, v2).

Proof. Since π is a permutation of finite sets, it must have a finite period, i.e., an integer p
such that πp(γ1) = γ1 and (πp(u1), πp(v1)) = (u1, v1).

If π(γ1) = γ2 and (π(u1), π(v1)) = (u2, v2), then we have q = 1. Otherwise, it
must map to a non-self-loop edge in g because γ2 is the only additional non-self-loop
edge in g2, i.e., eg(π(γ1)) = (π(u1), π(v1)). Assume there is no integer q < p such that
πq(γ1) = γ2 and (πq(u1), πq(v1)) = (u2, v2). Then, πp−1(γ1) is a non-self-loop edge in g
with eg(πp−1(γ1)) = (πp−1(u1), πp−1(v1)). However, since γ1 is not a non-self-loop edge
in g2, the fact that πp(γ1) = γ1 and (πp(u1), πp(v1)) = (u1, v1) contradicts π being an
isomorphism from g1 to g2 after self-loop removal. Therefore, there is an integer q < p such
that πq(γ1) = γ2 and (πq(u1), πq(v1)) = (u2, v2).

Lemma A2. Suppose a phenotype-preserving isomorphism π from g′1 to g′2 after self-loop removal.
For integers p and q in Lemma A1, eg′2

(πk(γ1)) = (πk(u1), πk(v1)) for k = 1, 2, . . . , q, and
eg′2

(πk(γ1)) 6= (πk(u1), πk(v1)) for k = q + 1, q + 2, . . . , p.

Proof. Since π is an isomorphism and γ2 = πq(γ1) is the only additional non-self-loop
edge in g2, we have π(γ1), π2(γ1), . . . , πq−1(γ1) to be non-self-loop edges in g. Thus,
eg′2

(πk(γ1)) = (πk(u1), πk(v1)) for k = 1, 2, . . . , q. On the other hand, since γ2 = πq(γ1) is
not a non-self-loop edge in g1, the isomorphism π guaranteed that the source–target pairs
(πq+1(u1), πq+1(v1)), (πq+2(u1), πq+2(v1)), . . . , (πp(u1), πp(v1)) do not match to edges in
g2, in particular, eg′2

(πk(γ1)) 6= (πk(u1), πk(v1)) for k = q + 1, q + 2, . . . , p.

Lemma A3. Suppose a phenotype-preserving isomorphism π from g′1 to g′2 after self-loop removal.
Given integer q in Lemma A1, for a locus γ and non-self-loop source–target pair (u, v) where there
is no 0 ≤ k ≤ q− 1 such that (γ, u, v) = (πk(γ), πk(u1), πk(v1)), eg(π(γ)) = (π(u), π(v)) if
and only if eg(γ) = (u, v).

Proof. For (γ, u, v) /∈
{
(πk(γ), πk(u1), πk(v1))

}p−1

k=0
, since (γ1, u1, v1) and (γ2, u2, v2) are

already excluded, and by Definition A3, we have eg(π(γ)) = (π(u), π(v)) if and only
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if eg(γ) = (u, v). Furthermore, for k = q, q + 1, . . . , p − 1, because the only additional
non-self-loop edge in g′2 follows πq(γ1) = γ2 and (πq(u1), πq(v1)) = (u2, v2), accord-
ing to Lemma A2, we know that eg(πk(γ1)) 6= (πk(u1), πk(v1)) and eg(πk+1(γ1)) 6=
(πk+1(u1), πk+1(v1)). As a result, the statement in Lemma A3 is true for any locus γ and

non-self-loop source–target pair (u, v) where (γ, u, v) /∈
{
(πk(γ), πk(u1), πk(v1))

}q−1

k=0
.

The following theorem resolves the necessary and sufficient condition in question (A):

Theorem A3. Let g′1, g′2 ∈ M+(g) with the additional non-self-loop edge eg′1
(γ1) = (u1, v1) and

eg′2
(γ2) = (u2, v2), respectively. g′1 and g′2 belong to the same equivalence class if and only if there

exist two integers q < p and a phenotype-preserving automorphism σ of a subgraph ḡ of g such that

i. (σq(γ1), σq(u1), σq) = (γ2, u2, v2);
ii. (σp(γ1), σp(u1), σp(v1)) = (γ1, u1, v1);

iii.
{

σk(γ1)
}q−1

k=1
= Γ′(g) \ Γ′(ḡ) and eg

(
σk(γ1)

)
=
(

σk(u1), σk(v1)
)

for k = 1, 2, . . . , q− 1;

iv. eg

(
σk(γ1)

)
6=
(

σk(u1), σk(v1)
)

for k = q, q + 1, . . . , p.

Proof. For one direction, suppose a phenotype-preserving isomorphism π from g′1 to
g′2 after self-loop removal. According to Lemmas A1–A3, we see that π is a phenotype-

preserving automorphism of a subgraph ḡ of g where Γ′(g) \ Γ′(ḡ) =
{

πk(γ1)
}q−1

k=1
. Taking

σ = π satisfies all four conditions.
For the other direction, we show that such a phenotype-preserving automorphism

σ is also a phenotype-preserving isomorphism from g′1 to g′2 after self-loop removal.
First, regarding any locus γ and non-self-loop target pair (u, v) such that (γ, u, v) /∈{(

σk(γ1), σk(u1), σk(v1)
)}p

k=1
, we have eg′2

(σ(γ)) = (σ(u), σ(v)) if and only if eg′1
(γ) =

(u, v) because σ is an automorphism of ḡ and γ1, γ2, and Γ′(g) \ Γ′(ḡ) are already ex-
cluded. Second, for k = 0, 1, . . . , q − 1, the conditions i.–iii. ensure that eg′1

(
σk(γ)

)
=(

σk(u), σk(v)
)

and eg′2

(
σk+1(γ)

)
=
(

σk+1(u), σk+1(v)
)

. Lastly, for k = q, q + 1, . . . , p− 1,

the conditions i., ii., and iv. indicate eg′1

(
σk(γ)

)
6=
(

σk(u), σk(v)
)

and eg′2

(
σk+1(γ)

)
6=(

σk+1(u), σk+1(v)
)

.

Next, the necessary and sufficient condition of question (B) is described in the
theorem below:

Theorem A4. Let g1 and g2 be of two different equivalence classes, and let g′1 ∈ M+(g1) and
g′2 ∈ M+(g2) with the additional non-self-loop edge eg′1

(γ1) = (u1, v1) and eg′2
(γ2) = (u2, v2),

respectively. g′1 and g′2 belong to the same equivalence class if and only if there exist GRNs g̃1 and
g′′ such that

i. g̃1 and g1 belong to the same equivalence class;
ii. g̃1, g2 ∈ M+(g′′);
iii. g′2 ∈ M+(g̃1).

Proof. For one direction, suppose a phenotype-preserving isomorphism π from g′1 to g′2
after self-loop removal. Take g̃1 = π(g1), i.e., eg̃1(π(γ)) = (π(u), π(v)) for each γ ∈ Γ′(g1)
with eg1(γ) = (u, v), so π also becomes a phenotype-preserving isomorphism from g1
to g̃1. Moreover, due to the isomorphism π, we note g′2 ∈ M+(g̃1) with the additional
non-self-loop edge eg′2

(π(γ1)) = (π(u1), π(v1)). Let g′′ be a GRN obtained by rewiring
edges π(γ1) and γ2 from g′2 to two arbitrary self-loops. We have g̃1, g2 ∈ M+(g′′) with
the additional non-self-loop edge eg̃1(γ2) = (u2, v2) and eg2(π(γ1)) = (π(u1), π(v1)),
respectively. Observe that the GRNs g̃1 and g′′ satisfy the conditions i.–iii.
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For the other direction, suppose there exist GRNs g̃1 and g′′ where the conditions
i.–iii. hold. Let π be the phenotype-preserving isomorphism from g1 to g̃1 after self-loop re-
moval such that the additional non-self-loop edge of g2 ∈ M+(g′′) complies eg2(π(γ1)) =
(π(u1), π(v1)). Since g̃1, g2 ∈ M+(g′′), g′2 ∈ M+(g2), and g′2 ∈ M+, we also have the
addition non-self-loop edge in g′2 ∈ M+ to follow eg′2

(π(γ1)) = (π(u1), π(v1)). Therefore,
π is also a phenotype-preserving isomorphism from g′1 to g′2 after self-loop removal.

Appendix D. Size of an Equivalence Class of GRNs

Here, given the representative GRN g of an equivalence class θ, we calculate the
number of GRNs in θ in Equation (2). Observe that |θ| is proportional to (a) the number of
GRNs to which there is a phenotype-preserving isomorphism from g, (b) the number of
ways to arbitrarily allocate self-loops on g, and (c) the number of ways to arbitrarily rewire
source nodes of edges among the stimuli Ω0.

First, for part (a), if we temporally ignore labels on the edges, the set of permutations
over dummy proteins Ω′ is partitioned into groups of isomorphisms from g to different
GRNs. In addition, the size of each group is exactly the number of automorphisms of g since
the composition of an automorphism of g and an isomorphism from g to g′ also generates
an isomorphism from g to g′. Thus, there are in total |Π′ |

|Σ′(g)| different GRNs isomorphic to
g, where Π′ is the set of permutations over Ω′, and Σ′(g) is the set of automorphisms of g
that only permutes Ω′.

Second, for part (b), every possible allocation distributes |Γ| − |Γ′(g)| self-loops over
|Ω \Ω0| nodes. Suppose that the labels of self-loops Γ \ Γ′(g) are given, we have

nl(|Γ \ Γ′(g)|) = |Ω \Ω0||Γ\Γ
′(g)| .

Third, we write ks(g) as the number of incident edges to stimuli Ω0 in g. Any pos-
sibility in part (c) chooses a source node among Ω0 for each of the ks(g) incident edges.
Providing that the labels of incident edges of the stimuli are already known, we have

ms(g) = |Ω0|ks(g) .

Combined, the size of the equivalence class θ becomes

|θ| = |Γ|!
|Γ \ Γ′(g)|! ks(g)!

|Π′|
|Σ′(g)|nl(|Γ \ Γ′(g)|)ms(g)

=
|Γ|!

|Γ \ Γ′(g)|! ks(g)!
|Π′|
|Σ′(g)| |Ω \Ω0||Γ\Γ

′(g)||Ω0|ks(g)

where the first fraction represents first selecting combinations of |Γ \ Γ′(g)| and ks(g) labels for
self-loops and edges incident to stimuli and then permuting the remaining labels, which also
contributes to different phenotype-preserving isomorphisms from g but was previously omitted.
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