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Abstract. During the last half-decade, a number of research efforts have centered
around developing software for generating automatically tuned matrix multiplication
kernels. These include the PHiPAC project and the ATLAS project. The software end-
products of both projects employ brute force to search a parameter space for blockings
that accommodate multiple levels of memory hierarchy. We take a different approach:
using a simple model of hierarchical memories we employ mathematics to determine a
locally-optimal strategy for blocking matrices. The theoretical results show that, de-
pending on the shape of the matrices involved, different strategies are locally-optimal.
Rather than determining a blocking strategy at library generation time, the theoret-
ical results show that, ideally, one should pursue a heuristic that allows the blocking
strategy to be determined dynamically at run-time as a function of the shapes of the
operands. When the resulting family of algorithms is combined with a highly optimized
inner-kernel for a small matrix multiplication, the approach yields performance that is
superior to that of methods that automatically tune such kernels. Preliminary results,
for the Intel Pentium (R) III processor, support the theoretical insights.

1 Introduction

Research in the development of linear algebra libraries has recently shifted to the
automatic generation and optimization of the matrix multiplication kernels. The
underlying idea is that many linear algebra operations can be implemented in
terms of matrix multiplication [2,10,6] and thus it is this operation that should
be highly optimized on different platforms. Since the coding effort required to
achieve this is considerable, especially when multiple layers of cache are involved,
the general consensus is that this process should be automated.

In this paper, we develop a theoretical framework that (1) suggests a formula
for the block sizes that should be used at each level of the memory hierarchy,
and (2) restricts the possible loop orderings to a specific family of algorithms
for matrix multiplication. We show how to use these results to build highly
optimized matrix multiplication implementations that utilize the caches in a
locally-optimal fashion. The results could be equally well used to limit the search
space that must be examined by packages that automatically tune such kernels.
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The current pursuit of highly optimized matrix kernels constructed by coding
in a high-level programming language started with the implementation of the
FORTRAN implementation of Basic Linear Algebra Subprograms (BLAS) [4]
for the IBM POWER2 (TM) [1]. Subsequently, the PHiPAC project [3] demon-
strated that high-performance matrix multiplication kernels can be written in C
and that code generators could be used to automatically generate many different
blockings, allowing automatic tuning. Next, the ATLAS project [11] extended
these ideas by reducing the kernel that is called once matrices are massaged to
be in the L1 cache into one specific case: C = AT B+βC for small matrices A, B,
and C and by reducing the space searched for optimal blockings. Furthermore
it marketed the methodology allowing it to gain wide-spread acceptance and ig-
niting the current trend in the linear algebra community towards automatically
tuned libraries. Finally, there has been a considerable recent interest in recursive
algorithms and recursive data structures. The idea here is that by recursively
partitioning the operands, blocks that fit in the different levels of the caches
will automatically be encountered [8]. By storing matrices recursively, blocks
that are encountered during the execution of the recursive algorithms will be in
contiguous memory [7,9].

Other work closely related to this topic is discussed in other papers presented
as part of this session of the conference.

2 Notation and Terminology

2.1 Special Cases of Matrix Multiplication

The general form of a matrix multiply is C ← αAB + βC where C is m× n, A
is m× k, and B is k × n. We will use the following terminology when referring
to a matrix multiply when two dimensions are large and one is small:

Condition Shape

Matrix-panel multiply n is small C = A B + C (1)

Panel-matrix multiply m is small C
=

A
B +

C (2)

Panel-panel multiply k is small C = A
B

+ C (3)

The following observation will become key to understanding concepts en-

countered in the rest of the paper: Partition X =
(
X1 · · · XNX

)
=




X̂1
...

X̂MX




for X ∈ {A, B, C}, where Cj is m×nj , Ĉi is mi×n, Ap is m× kp, Âi is mi× k,
Bj is k × nj , and B̂p is kp × n. Then C ← AB + C can be achieved by
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multiple
matrix-panel
multiplies:

Cj ← ABj + Cj

for j = 1, . . . , NC
C1C2C3 += A B1B1B1

multiple
panel-matrix
multiplies:

Ĉi ← ÂiB + Ĉi

for i = 1, . . . , MC

Ĉ1

Ĉ2

Ĉ3

+=
Â1

Â2

Â3

B

multiple
panel-panel
multiplies

C ←∑NA

p ApB̂p + C C += A1A2A3

B̂1

B̂2

B̂3

2.2 A Cost Model for Hierarchical Memories

The memory hierarchy of a modern microprocessor is often viewed as a pyramid:
At the top of the pyramid, there are the processor registers, with extremely fast
access. At the bottom, there are disks and even slower media. As one goes down
the pyramid, while the financial cost of memory decreases, the amount of memory
increases along with the time required to access that that memory.

We will model the above-mentioned hierarchy naively as follows: (1) The
memory hierarchy consists of H levels, indexed 0, . . . , H−1. Level 0 corresponds
to the registers. We will often denote the ith level by Li. Notice that on a typical
current architecture L1 and L2 correspond the level 1 and level 2 data caches
and L3 corresponds to RAM. (2) Level h of the memory hierarchy can store Sh

floating-point numbers. Generally S0 ≤ S1 ≤ · · · ≤ SH−1. (3) Loading a floating-
point number stored in level h + 1 to level h costs time ρh. We will assume that
ρ0 < ρ1 < · · · < ρH−1. (4) Storing a floating-point number from level h to level
h + 1 costs time σh. We will assume that σ0 < σ1 < · · · < σH−1. (5) If mh × nh

matrix C, mh×kh matrix A, and kh×nh matrix B are all stored in level h of the
memory hierarchy then forming C ← AB + C costs time 2mhnhkhγh. (Notice
that γh will depend on mh, nh, and kh).

3 Building-Blocks for Matrix Multiplication

Consider the matrix multiplication C ← AB + C where mh+1 × nh+1 matrix
C, mh+1 × kh+1 matrix A, and kh+1 × nh+1 matrix B are all stored in Lh+1.
Let us assume that somehow an efficient matrix multiplication kernel exists for
matrices stored in Lh. In this section, we develop three distinct approaches for
matrix multiplication kernels for matrices stored in Lh+1.

Partition

C =




C11 · · · C1N

...
...

CM1 · · · CMN


 , A =




A11 · · · A1K

...
...

AM1 · · · AMK


 , and B =




B11 · · · B1N

...
...

BK1 · · · BKN




(4)
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Algorithm 1
for j = 1, . . . , N

for i = 1, . . . , M
Load Cij from Lh+1 to Lh. mhnhρh

for p = 1, . . . , K
Load Aip from Lh+1 to Lh. mhkhρh

Load Bpj from Lh+1 to Lh. khnhρh

Update Cij ← AipBpj + Cij 2mhnhkhγh

endfor
Store Cij from Lh to Lh+1 mhnhσh

endfor
endfor

Fig. 1. Multiple panel-panel multiply based blocked matrix multiplication.

where Cij is mh × nh, Aip is mh × kh, and Bpj is kh × nh. The objective of the
game will be to determine optimal mh, nh, and kh.

3.1 Multiple Panel-Panel Multiplies in Lh

Noting that Cij ←
∑K

p=1 AipBpj + Cij , let us consider the algorithm in Fig. 1
for computing the matrix multiplication. In that figure the costs of the various
operations are shown to the right. The order of the outer-most loops is irrelevant
to the analysis.

The cost for updating C is given by

mh+1nh+1(ρh + σh) + mh+1nh+1kh+1
ρh

nh
+ mh+1nh+1kh+1

ρh

mh
+ 2mh+1nh+1kh+1γh

Since it equals 2mh+1nh+1kh+1, solving for γh+1, the effective cost per floating-
point operation at level Lh+1, yields γPP

h+1 = ρh+σh

2kh+1
+ ρh

2nh
+ ρh

2mh
+ γh. The

question now is how to find the mh, nh, and kh that minimize γh+1 under the
constraint that Cij , Aik and Bkj all fit in Lh, i.e., mhnh + mhkh + nhkh ≤ Sh.
The smaller kh, the more space in Lh can be dedicated to Cij and thus the
smaller the fractions ρh/mh and ρh/nh can be made. A good strategy is thus to
let essentially all of Lh be dedicated to Cij , i.e., mhnh ≈ Sh. The minimum is
then attained when mh ≈ nh ≈

√
Sh.

Notice that it suffices to have mh+1 = mh or nh+1 = nh for the above cost
of γh+1 to be minimized. Thus, the above already holds for the special cases
depicted in (1) and (2), i.e., when N = 1 and M = 1 in (4), respectively.

The innermost loop in Alg. 1 implements multiple panel-panel multiplies
since kh is assumed to be small relative to mh and nh. Hence the name of this
section.

3.2 Multiple Matrix-Panel Multiplies in Lh

Moving the loops over l and i to the outside we obtain the algorithm in
Fig. 2 (left). Performing an analysis similar to that given in Section 3.1 the
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Algorithm 2
for p = 1, . . . , K

for i = 1, . . . , M
Load Aip from Lh+1 to Lh.
for j = 1, . . . , N

Load Cij from Lh+1 to Lh.
Load Bpj from Lh+1 to Lh.
Update Cij ← AipBpj + Cij

Store Cij from Lh to Lh+1

endfor
endfor

endfor

Algorithm 3
for j = 1, . . . , N

for p = 1, . . . , K
Load Bpj from Lh+1 to Lh.
for i = 1, . . . , M

Load Cij from Lh+1 to Lh.
Load Aip from Lh+1 to Lh.
Update Cij ← AipBpj + Cij

Store Cij from Lh to Lh+1

endfor
endfor

endfor

Fig. 2. Multiple matrix-panel (left) and panel-matrix (right) multiply based blocked
matrix multiplication.

effective cost of a floating-point operation is now given by γMP
h+1 = ρh

2nh+1
+

ρh+σh

2kh
+ ρh

2mh
+ γh.

Again, the question is how to find the mh, nh, and kh that minimize γh+1
under the constraint that Cij , Aik and Bkj all fit in Lh, i.e., mhnh + mhkh +
nhkh ≤ Sh. Note that the smaller nh, the more space in Lh can be dedicated
to Ail and thus the smaller the fractions (ρh + σh)/2kh and ρh/2mh can be
made. A good strategy is thus to let essentially all of Lh be dedicated to Ail,
i.e., mhkh ≈ Sh. The minimum is then attained when mh ≈ kh ≈

√
Sh.

Notice that it suffices to have mh+1 = mh or kh+1 = kh for the above cost
of γh+1 to be minimized. In other words, the above holds for the special cases
depicted in (2) and (3), i.e., when M = 1 and K = 1 in (4), respectively.

The innermost loop in Alg. 2 implements multiple matrix-panel multiplies
since nh is small relative to mh and kh. Thus the name of this section.

3.3 Multiple Panel-Matrix Multiplies in Lh

Finally, moving the loops over p and j to the outside we obtain the algorithm
given in Fig. 2 (right). This time, the effective cost of a floating-point operation
is given by γPM

h+1 = ρh

2mh+1
+ ρh+σh

2kh
+ ρh

2nh
+ γh.

Again, the question is how to find the mh, nh, and kh that minimize γh+1
under the constraint that Cij , Aik and Bkj all fit in Lh, i.e., mhnh + mhkh +
nhkh ≤ Sh. Note that the smaller mh, the more space in Lh can be dedicated
to Bpj and thus the smaller the fractions (ρh + σh)/2kh and ρh/2nh can be
made. A good strategy in this case is to dedicate essentially all of Lh to Bpj ,
i.e., nhkh ≈ Sh. The minimum is then attained when nh ≈ kh ≈

√
Sh.

Notice that it suffices to have nh+1 = nh and/or kh+1 = kh for the above
cost of γh+1 to be achieved. In other words, the above holds for the special cases
depicted in (1) and (3), i.e., when N = 1 and K = 1 in (4), respectively.
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3.4 Summary

The conclusions to draw from Sections 2.1 and 3.1–3.3 are: (1) There are three
shapes of matrix multiplication that one expects to encounter at each level of the
memory hierarchy: panel-panel, matrix-panel, and panel-matrix multiplication.
(2) If one such shape is encountered at Lh+1, a locally-optimal approach to
utilizing Lh will perform multiple instances with one of the other two shapes.
(3) Given that multiple instances of a given shape are to be performed, the
strategy is to move a submatrix of one of the three operands into Lh (we will
call this the resident matrix in Lh), filling most of that layer, and to amortize the
cost of this data movement by streaming submatrices from the other operands
from Lh+1 to Lh.

Interestingly enough, the shapes discussed are exactly those that we encoun-
tered when studying a class of matrix multiplication algorithms on distributed
memory architectures [5]. This is not surprising, since distributed memory is just
another layer in the memory hierarchy.

4 A Family of Algorithms

We now turn the observations made above into a practical implementation.
High-performance implementations of matrix multiplication typically start

with an “inner-kernel”. This kernel carefully orchestrates the movement of data
in and out of the registers and the computation under the assumption that
one or more of the operands are in the L1 cache. For our implementation on
the Intel Pentium (R) III processor, the inner-kernel performs the operation
C = AT B + βC where 64× 8 matrix A is kept in the L1 cache. Matrices B and
C have a large number of columns, which we view as multiple-panels, with each
panel of width one. Thus, our inner-kernel performs a multiple matrix-panel
multiply (MMP) with a transposed resident matrix A. The technical reasons
why this particular shape was selected go beyond the scope of this paper.

While it may appear that we thus only have one of the three kernels for
operation in the L1 cache, notice that for the submatrices with which we compute
at that level one can instead compute CT = BT A + CT , reversing the role of A
and B. This simple observation allows us to claim that we also have an inner-
kernel that performs a multiple panel-matrix multiply (MPM).

Let us introduce a naming convention for a family of algorithms that perform
the discussed algorithms at different levels of the memory hierarchy:

<kernel at L3>-<kernel at L2>-<kernel at L1>.

For example MPP-MPM-MMP will indicate that the L3-kernel uses multiple
panel-panel multiplies, calls the L2-kernel that uses multiple matrix-panel mul-
tiplies, which in turn calls the L1-kernel that uses multiple panel-matrix multi-
plies. Given the constraint that only two of the possible three kernel algorithms
are implemented at L1, the tree of algorithms in Fig. 3 can be constructed.
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Fig. 3. Possible algorithms for matrices in memory level L3 given all L2-kernels.
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Fig. 4. Left: Performance for fixed dimensions m = n = k = 1000 as a function of
the size of the resident matrix in the L2 cache. Right: Performance as a function of m
when n = k = 1000.

5 Performance

In this section, we report performance attained by the different algorithms. Per-
formance is reported by the rate of computations attained, in millions of floating-
point operations per second (MFLOP/sec) using 64-bit arithmetic. For the usual
matrix dimensions m, n, and k, we use the operation count 2mnk for the matrix
multiplication. We tested performance of the operation C = C − AB (α = −1
and β = 1) since this is the case most frequently encountered when matrix
multiplication is used in libraries such as LAPACK.

We report performance on an Intel Pentium (R) III (650 MHz) processor with
a 16 Kbyte L1 data cache and a 256 Kbyte L2 cache running RedHat Linux 6.2.
The inner-kernel, which perform the operation C ← AT B + βC with 64 × 8
matrix A and 64 × k matrix B, was hand-coded using Intel Streaming SIMD
Extensions (TM) (SSE). In order to keep the graphs readable, we only report
performance for four of the eight possible algorithms. For reference, we report
performance of the matrix multiply from ATLAS R3.2 ,which does not use Intel
SSE instructions, for this architecture.

Our first experiment is intended to demonstrate that the block size selected
for the matrix that remains resident in the L2 cache has a clear effect on the
overall performance of the matrix multiplication routine. In Fig. 4(a) we report
performance attained as a function of the fraction of the L2 cache filled with
the resident matrix when a matrix multiplication with k = m = n = 1000 is
executed. This experiment tests our theory that reuse of data in the L2 cache
impacts overall performance as well as our theory that the resident matrix should
occupy “most” of the L2 cache. Note that performance improves as a larger
fraction of the L2 cache is filled with the resident matrix. Once the resident
matrix fills more than half of the L2 cache, performance starts to deminish.
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This is consistent with the theory which tells us that some of the cache must be
used for the matrices that are being streamed from main memory. Once more
than 3/4 of the L2 cache is filled with the resident matrix, performance drops
significantly. This is consistent with the scenario wherein parts of the other
matrices start evicting parts of the resident matrix from the L2 cache. Based
on the above experiment, we fix the block size for the resident matrix in the
L2 cache to 128 × 128, which fills exactly half of this cache, for the remaining
experiments.

In Fig. 4(b) we show performance as a function of m when n and k are fixed
to be large. There is more information in this graph than we can discuss in
this paper. Notice for example that performance of the algorithm that performs
multiple panel-matrix multiplies in the L3 cache and multiple matrix-panel mul-
tiplies in the L2 cache, MPM MMP MPM, increases as m increases to a multiple of
128. This is consistent with the theory.

For additional and more up-to-date performance graphs, and related discus-
sion, we refer the reader to the ITXGEMM web page mentioned in the conclu-
sion.

6 Conclusion

In this paper, theoretical insight was used to motivate a family of algorithms
for matrix multiplication on hierarchical memory architectures. The approach
attempts to amortize the cost of moving data between memory layers in a fashion
that is locally-optimal. Preliminary experimental results on the Intel Pentium
(R) III processor appear to support the theoretical results.

Many questions regarding this subject are not addressed in this paper, some
due to space limitations. For example, the techniques can be, and have been,
trivially extended to the other cases of matrix multiplication: C ← αAT B +βC,
C ← αABT +βC, and C ← αAT BT +βC by transposing matrices at appropriate
stages in the algorithm. Also, while we claim that given different matrix dimen-
sions, m, n, and k, a different algorithm may be best, we do not address how to
choose from the different algorithms. We have developed simple heuristics that
yield very satisfactory results. Experiments that support the theory, performed
on a number of different architectures, are needed to draw definitive conclusions.
The theory should be extended to include a model of cache-replacement poli-
cies. How performance is affected by the hand-coded inner-kernel needs to be
quantified. We hope to address these issues in a future paper.

Clearly, our techniques can be used to reduce the set of block sizes to be
searched at each level of the memory hierarchy. Thus, our techniques could be
combined with techniques for automatically generating the inner-kernel and/or
an automated search for the optimal block sizes.

More information: http://www.cs.utexas.edu/users/flame/ITXGEMM/.

Acknowledgments: We thank Dr. Fred Gustavson for valuable feedback re-
garding this project.
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