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Summary. The Dirichlet problem for the equations of plane elasticity is 
approximated by a mixed finite element method using a new family of 
composite finite elements having properties analogous to those possessed 
by the Raviart-Thomas mixed finite elements for a scalar, second-order 
elliptic equation. Estimates of optimal order and minimal regularity are 
derived for the errors in the displacement vector and the stress tensor in 
L2(f2), and optimal order negative norm estimates are obtained in H=(g2) ' for 
a range of s depending on the index of the finite element space. An optimal 
order estimate in L~176 for the displacement error is given. Also, a quasiop- 
timal estimate is derived in an appropriate space. All estimates are valid 
uniformly with respect to the compressibility and apply in the incom- 
pressible case. The formulation of the elements is presented in detail. 

Subject Classifications: AMS(MOS): 65N30, CR: G 1.8. 

1. Introduction 

An isotropic, homogeneous, linearly elastic material in a state of plane strain 
can be described by the system of partial differential equations 

(t.1 a) ~ = 2 p s  tr ~(~)]6 in f2, 

{t.1 b) d iv ~ = f  in O, 

where f2 is a bounded domain in 1t 2, u: f 2 ~ R  2 is the displacement vector, 
7 :Q~112•  is the stress tensor, and s is the strain tensor given by el;(~) 
.... �89 Both tensors are symmetric. The vector f denotes the 
torces applied to the body and the real numbers # > 0 and 2 > 0 (}he possibility 
that 2 = + 0% corresponding to an incompressible material, will also be consid- 

* This work was performed while Professor Arnold was a NATO Postdoctoral Fellow 



2 D.N. Arnold et al. 

ered below) are the Lam6 constants specifying the material properties. The 
trace operator applied to a tensor ~ is given by 

tr(~)='q 1 +'c22 =~ :=6, 

where =6=(6 0 is the 2 • 2 identity matrix, and the colon denotes the scalar 
product 2 

i,j=l 

Finally, ~ v  denotes the differential operator 

aG12 aft21 {_~er22~ diver= [ 0erxl 4 - - ,  
~ = \ ~ x  ~ y  ~ x  Oy 1' 

Below we shall also use the elementary differential operators 

Or1 ~vz 
d i v v = ~ - x  + ~TY' 

cuJ1 ~o = (~y~, ~Ox~~ 

aV --(~Vl~ 
~y ~x ) 

cu r ly=  ~v 2 _3v2 , 

\ ay ~x / 

airy q~ = curl cw1 ~o, 

A q~ = div grad ~b, 

Av=(Av 1, av2). 

For simplicity we shall restrict ourselves to the homogeneous Dirichlet 
problem. That  is, we supplement (1.1a, b) by 

(1.1c) u = 0  on 3(2. 

The boundary OQ is assumed to be smooth. The precise requirements can be 
easily obtained by close inspection of the arguments below. 

For any space X set X = X  x X, X={=z---(zu) , <_i,j<_z~X 2 x 2: z l  2 ='g21}- Fur- 
ther, let 

y= L_2((2) = L2(O) x L2 ((2), 

H=H(d v; d.iv  y}. 

The norm on =/-/is given by [I.glIB = ][~[[~+ [[~va[]~. Set 

a(~, ~)= ~ [ 2 ~  ~ : J - 4 g ( ~ + 2 i  t r y ) t r  (j)] dx. 
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To derive a weak form of the Dirichlet problem (1.1) we solve (1.1a) for ~(u) 
and test the resulting equation against j e l l  and integrate the term ~(u):j by 
parts. Also, testing (1.1b) against v e g  we find that (9, u)e/-/x V satisfies the 
system 

(1.2a) a(~, j) + (d~vj, u) =0 j s H ,  

(1.2b) (div a, v)= (f, f), f e e  

It is this formulation of the Dirichlet problem that we shall consider. Notice 
that 0.2) makes sense for #E(0, o0) and 2e[0, o0]. The case 2=o0, which 
corresponds to an incompressible material, requires a further condition, which 
will be discussed below in Sect. 2. 

The object of this paper is to approximate the solution of (1.2) by a mixed 
finite element procedure. It is well known [2] that subspaces ,/-/h x V h of H x V 
must be chosen carefully in order that the analogous finite-dimensional saddle 
point problem, i.e., to find {__ah, uh}s__/4 h x ~ such that 

(1.3a) a (~h , r )+(~v j ,  uh)=O, 5eHh ' 

(1.3b) (~v %, v)= (f, v), veK,  

is not only solvable but has as solution a good approximation to the solution 
of (1.2). Johnson and Mercier [8] have introduced two composite, first-degree 
stress elements, one triangular and the other quadrilateral, that satisfy the 
Brezzi conditions when combined with a linear or bilinear element for the 
displacement. For each of their elements, there exists a projection 
Fib: ~1(0) - -*  H h having the property that 

(1.4) (~v ~ _  Hh~), v)=0, VeK. 

Raviart and Thomas [10] also constructed a projection 1-I h for their mixed 
elements for scalar, second order elliptic problems satisfying the analogue of 
(1.4). In addition their elements possess a second important property, the 
analogue of which is shared by our elements as well. Namely, we shall have 

(1.5) div H h c K 

and hence, letting Ph: V-- ,~  denote the L2(f2)-projection, 

(1.6) (div ~, v -  Phv) = 0, ~ ~ _~/-/h. 

A direct consequence of (1.4) and (1.5) is that the projections FIh and Ph are 
related by the equation 

(1.7) d iv U h = Ph div: H ~ (f2) ~ K;  

i.e., the following diagram commutes: 
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Hi(O) , V 
div ~ 

div 

Note that, since d i v H l ( O ) = y  and PhV=~  it follows that ~ v  =Hh=~; con- 

sequently, ~ v / / h  = Ph d~v is onto ~ .  
The properties analogous to (1.4)-(1.7) for the Raviart-Thomas spaces, in 

combination with their approximation properties, allowed a simple conver- 
gence analysis [10, 15] and were further exploited by Falk and Osborn [7] to 
give L 2 estimates for each variable and by Douglas and Roberts to demon- 
strate both global [4, 5] and interior estimates in L 2 (f2) and H +(f2), as well as 
superconvergence estimates. The Johnson-Mercier elements [8] do not satisfy 
(1.5)-(1.7), so much of that program is not feasible. 

We shall introduce a family of elements satisfying (1.4) and (1.5) (and hence 
also (1.6) and (1.7)). The spaces will be associated with an index k>2  (the 
degree of the piecewise polynomial stress approximants - the displacements 
will be approximated by piecewise polynomials of degree k - l )  and a tri- 
angulation ~ of f2. Let 0 be a fixed positive number. For each of a sequence of 
positive numbers h clustering at zero let ~ be a triangulation satisfying 

(1.8a) each K s ~  is either a triangle or else a curvilinear triangle with one 
curved edge lying along OQ; 

(1.8b) ~ K=~];  
KEJa 

two distinct intersecting elements of ~ meet in a common edge or (1.8c) 
vertex; 

(1.8d) each Ks~-~h is star-shaped with respect to each point in the disc of 
diameter 0diam(K) centered at the centroid of the three vertices of K; 

(1.8e) diam (K) =< h, KE~-~h. 

(Note that, unmodified, the word triangle refers to a closed nondegenerate 
straight-edged triangle, i.e., the closed convex hull of three noncollinear points.) 
Property (1.8d) is a regularity hypothesis and reduces to the familiar minimal 
angle condition for triangles with three straight edges. Note that we do not 
assume quasiuniformity. We shall construct spaces 

H h x K = .//h(k, 3~h) x K(k ,  ~-~h) c H x 1/ 

which satisfy (1.4) and (1.5) and also the following approximation properties 
(ll" IIs denotes the norm in ns(o)"): 

(l.9a) II~-//h~ll0 < Q IlNI,h', 1 <r<k+ 1, 

(1.9 b) lieu ~ -  Hn~)IL _+< Q IldivgllY +~ , O<r,s<k, 

(1.9c) ilu-Phull_+< Q Ilult,h '+', O__<r, s<k. 
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Note that (1.9b) is redundant, as it follows from (1.9c) and (1.7). The space 
will consist of piecewise polynomial vectors of degree k - 1 ,  without continuity 
constraints across the edges of the triangles K~Jhh. In order to form the space 
__H h first subdivide each triangle K~-~h by adding the centroid of its vertices as 
vertex, and consider the collection of composite triangles that result, Let us 
consider one such composite, say, 

K=T~uT2uT 3. 
Then, 

Hhlr~= PA~). 

(Here and in the sequel Pk is used to denote the space of polynomial functions 
on R z of degree at most k. For any set Sc IR  2, Pk(S) is the space of their 
restrictions to S.) Moreover, any element in H]~ must have continuous normal 
components across the three internal edges, and we shall show that we can 
require (1.5); i.e., the divergence of an element in H h is a polynomial vector on 
each K, not just on the microtriangles. The degrees of freedom for ~ H  h on K 
will be the following: 

(1.10a) S (~n).~ds, ~EPk(e ), for each edge e of ~T, 
e 

(1.10b) S~:pdx, P~(P~k ~ (K)) + airy (22 222 22 Pk- 4(K)), 
T 

where the 2~ are the barycentric coordinate functions of K. We shall show that 
we can select Hh[ T such that 

(1.11a) Hh[~=p_k(K), 

(I.11 b) dim (H h[K) = dim (Pk (K)) + 3 = -~ k 2 + 9 k + 6. 

Note that Hh[ ~ has dimension exactly three greater than the minimum 
required for the approximation property (1.9a) to hold, whatever the choice of 
k. For k=  2, dim (Hh[K)= 21, and the degrees of freedom are the eighteen arising 
from the requirement (l.10a) that H h ~ _/4 (cf. [8]) and the moments of the three 
functions ~11, ~12=~.21, and ~z2 over K. For computational purposes point 
values could be used in place of moments. 

We shall prove the following error bounds: 

[Qllu]l~h ~+~ for 2<_r<_k and 0_<s_<k-2, 
(1.12a) ][U--Uh[ [ ~<=~Ql[u[]~+lh r+k-1 for l<_r<_k and s=k-1 ,  

(Q[[UUr+2 hr+k for 0_<r_<k and s=k, 

(1.12b) Ila--gh][_ <=Ql[u[l,+~h,+~ for l_<r_<k+l and 0 < s _ < k - 1 ,  

(1.12c) I ld iv~-g~) l l_~__<Qlld ivf l l ,h  ~+~ for O<r, s<k. 

The constant Q in these estimates is independent of the compressibility of the 
material. This is a distinct advantage of the method. Specifically, let 
0<#o<#~ < oo and assume that the first Lam6 constant P~[Po,P~]. The letter 
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Q will denote a generic constant which may depend only on f2, #o, #1, 0, and 
k; but, in particular, it is independent of h and 2. 

Note that each L2(I2) estimate is optimal, both with respect to the rate of 
convergence and to the regularity demanded of the solution. In fact, the same 
is true for the negative norm estimates for ~--~h and its divergence. For the 
displacement, additional regularity is required in order to obtain the maximal 
rate of convergence. Note that the rate of convergence for ~--~h is limited to 
O(h2k), instead of O(h 2k§ that occurs for the difference of =a and its L 2- 
projection into ~h. This limitation reflects the fact that the displacement and 
the divergence of the stress are being approximated by piecewise polynomials 
of degree k - 1 .  In contrast, Douglas and Roberts [5] were able to obtain 
O(h 2k+2) rates for both the original dependent variable and its associated 
velocity field when the Raviart-Thomas space of index k is employed for the 
scalar elliptic problem; however, it should be remembered that the space for 
the vector field includes some polynomials of degree k + 1 and the scalar part 
contains all polynomials of degree k. 

In addition to the L2-based estimates, we shall show under the further 
restriction of the triangulation ~ that, for some p > 0, 

(1.13) ph<=diam(K)<=h, K~Jhh, 

it follows that 

(1.14) Ilu-UhNo, oo ~Q {llull,. oo + Ilull,+ 1} h r for l < r < k + l .  

This L~176 shows that the maximal rate of convergence occurs if the 
solution is slightly more regular than required for approximation alone. A 
corresponding estimate has been found by Scholz [11] and Douglas-Roberts 
[5] for the scalar variable in the second order elliptic problem. Scholz [12, 13] 
has recently obtained an estimate not requiring the additional regularity for 
the Dirichlet problem. 

The organization of the remainder of the paper is as follows. In the next 
section we establish regularity for the continuous problem uniformly in 2 and 
comment on the incompressible case. Then, assuming (1.4)-(1.9), we establish 
the L 2 and H - '  estimates stated in (1.12). Then the L ~176 estimate (1.14) is 
obtained as a trivial consequence of the duality argument employed to bound 
u - u  h. In the remainder of the paper we construct the spaces =/-/h and ~ and 
the projection operator H h and verify the required properties (1.4), (1.5), (1.9a), 
and (1.9c). Finally, we indicate a composite quadrilateral element; this is done 
more for completeness than for actual applicability. 

The authors would like to thank Professor Franco Brezzi for a number of helpful suggestions 
related to this research. 

2. The Differential Problem 

If (1.1 a) is substituted into (1.1 b), we recover the Lam6 equation 

(2.1) #A u + (2 + p) grad div y =f .  
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Together with the homogeneous Dirichlet boundary condition (1.1c) this is a 
strictly coercive, strongly elliptic boundary value problem. Hence well-known 
regularity theory applies. Less obvious is that the regularity estimates hold 
uniformly for 2e[0, oo). We prove this result here. An analogous result for the 
Neumann problem is proved in [16]. 

Theorem 2.1. Let #o<#1 be real numbers, and let s > - 1  be an integer. Suppose 
that #e [#o ,# l ] ,  2el0, oo), and f e H  S(f2) (where here n- l (O)=Ol( f2) ' ) .  Then 
there exists a unique solution (a, u)EHx_V to (1.2). Moreover, aeH'+l(f2) and 
ueH~+Z(O)c~/2P, and there exists a constant Q depending only on g2, #o, #1, and 
s such that 

(2.2) 11~11~+2+ II~ll~+l~QIIfll~. 

Proof The standard theory of elliptic partial differential equations ensures the 
existence and uniqueness of the solution and furnishes the estimate (2.2) uni- 
formly for #el#o,  #1] and 2 in any compact subinterval of [0, oo). We com- 
plete the proof by showing that a constant Q can be found so that (2.2) holds 
for ,t in a certain unbounded interval of [0, oo). We shall rely on the regularity 
theory for the generalized Stokes problem. According to this theory [14, Prop. 

2.2], there exists QoeN such that, if "~(f2)={peL2(O)l~pdx=O} and if 

(u, p)~O 1 (f2) x L"~(f2) solves the Stokes equations 

(2.3 a) ktd u + grad p = f  in f2, 

(2.3 b) div u = g in O, 

for some f, g e/P(f2) x H s + 1 (f2), then (u, p) s/-P + 2 (t2) x H ~ + 1 (f2) and 

(2.4) Ilu II s+ 2 + JtPlls+ 1 < Qo(JJ f11, + IJgtJs+ ~). 

The constant Qo depends only on f2, #o, #1, and s. Now, suppose 2 > 2 Q o - # o  
and set 

(2.5) p = (2 + #) div u. 

Then from (2.1) and (2.5) we have (2.3) with g=( ,1+#) - lp .  Hence, (2.4) yields 
the bound 

2 + #  (Hflls+2+- ~ HpII~+I)-~ IIpHs+l Ilu IIs+ 2 + - 2 -  II div u Jl~+ 1 --< Qo _ 1 

_-<Qo Ilfll~, 

as Q0/(2+#)< 1/2. Since ff=2#e(u)+2(divu)~,  this completes the proof of (2.2). 
We also remark on the incompressible case, 2 = + oo. The weak formulation 

(i2) remains valid in this case, the form a(~,j) now being given by 
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In this case, however, ~ is not uniquely determined by the equations (1.2a, b): 
we can add any constant multiple of 6 to _o-. We therefore impose the condition 

(1.2c) ~ tr (~) d x  = O. 
12 

Note that, for 2 <  + m, (1.2c) follows from (1.2a) with the choice j=__ft. Hence, 
in the compressible case this additional condition does not alter the problem 

(1.2). When 2 =  + ~ ,  it is easily checked that, if the pair (u,p)~0~(Q)x L'~(f2) 
solves the Stokes equations (2.3) with g =0, then the pair (2p~ (u)+ p__b, u)eH x V 

solves (1.2). And, conversely, if (if, _u)eH x V solves (1.2), then (u, tr(ff)/2)e01(12) 
A 

x jL2"((2) solves (2.3) with g=0.  Hence, existence, uniqueness, and regularity of 
(1.2) in the incompressible case follow from the analogous results for the 
Stokes system. We conclude that Theorem 2.1 is valid for 2e[0, ~ ] .  

In analogy with (1.2c) it is natural to impose on the discrete solution the 
condition 

(1.3 c) ~ tr (fib) d x  = O. 
I2 

As in the continuous case this condition is redundant if 2 < + oe : since _-/-/h will 
contain =6, it follows from (1.3 a). 

We now turn to the error analysis of the method given by (1.3) for the 
problem (1.2). 

3. The Error Analysis 

Let 

~I = U --  Uh, y = Ph U --  Uh. 
~ 

Then, subtracting (1.3) from (1.2) gives the error equations 

(3.1 a) a(~, ~) + (div 5, ~)= 0, j e l l  h, 

(3.1b) (div ~, v)= O, _v E_Vh �9 

It follows from (1.4) that r can be shifted to ~ in (3.1b); then (1.5) implies that 

(3.2) ~ v ~  =0. 

Thus, 
div ~ = div (e - Fin a=), 

and (1.12c) follows from (1.9b). 
To derive error estimates for the stress we require two lemmas. In them we 

use the notation ~o for the deviatoric of a tensor 5, defined by 

j o = j  - �89  6. 
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The norm II'H-s denotes the norm in [H-~(O)]"= [H5(O)']" for s a nonnegative 
integer. 

Lemma 3.1. Let s be a nonnegative integer. Then, there exists a constant Q 
depending only on s and f2 such that 

(3.3) IIjII _s < Q [ l l j~  II div jI[ s_a] 

.for all j e l l  such that ~ t r ( j )dx=0 .  
12 

Proof. Clearly it suffices to bound IItr(J)ll_5 by the right hand side of (3.3). 
Now there exists a nonzero function ~oeH~(O) such that 

/I tr (J)ll -s  II ~o IIs = j tr (j) ~o dx. 

Since ~ t r ( j )dx=0 ,  we can assume j~odx=O. Therefore, there exists 

vs01(O)c~/P + 1(O) such that divv=~o and HVlls+ I_-<Q [Iq~lls (cf. Lemma 5.4.2 of 
[1] and its proof). Thus, 

(20) -~ [[tr(j)H 5 Ilvns+l <�89 ~ tr(j) div vdx  

- �89 ~ tr (j)6: ~(F)dx= ~ ( j_ jo ) :  ~(F) dx 
f2 f~ 

= _ ~ [ jo :  ~(~)dx + d_iv~. ~] dx  
f2 

--< [ l l jDl l -s+ l l~vJI l_5_ 1] Ilvl/s+ 1' 

Lemma 3.2. Let s be a nonnegative integer. Then, for j e l l ,  

(3.4a) I1~/) II o 2 < 2# a(2, j), 

a(J, p)" 
(3.4b) []j~ ~<2# sup 

O*e~.m Ilpl15 
Proof. There exists a peHS(~) such that 

iijDil_51l~ll~ = j ~ . :  pdx= j jo: pO dx" 
I2 f2 

Since tr (pO) = 0, 

moreover, 

Thus, 
a(j, g ~ 

IIJOll-~ ~ 2 ~  ~ ,  

proving (3.4b). The same argument applies to prove (3.4a). Take p= jO  and 
note that 
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iijOll 2 ~ = 2#a(jO jo) 

= ~ (J: J - �89  dx 
fl  

J - 2(~ +,~) 

-=2~a(j,j) .  

We are now prepared to bound ~ = a - - f h  in LE(f2). By (1.2c) and (1.3c), 
t r (~)dx=0,  and hence by the lemmas 

(3.5) iIJIt~_-< e ra(~, r It~v~ii2-1]. 
We have 

(3.6) II~v~ll_ 1 __< Q Itellrh', l<r<_k-t-1, 

by (1.12c), while 

(3.7) a(~,~)=a(r l < r < k + l ,  

by (3.1a), (3.2) and (1.9a). Combining (3.5)-(3.7) gives the estimate 

(3.8) Ilf-fhllo<Ollall,h',  l < r < k + l .  

Next, note that (1.6) allows us to replace i /by 7 in (3.1 a) to obtain the relation 
~ 

(3.9) a(r j ) + ( ~ v j ,  y)=0,  JeHh. 

We should like to estimate 7 in H-'(f2)=/-/s(f2) '. Let O<s<k and let 0e/ / ' (0) .  
Then, there exists ~ ,  ~ )eH x V such that 

(3.10a) a~ ,  j ) + ( d i v j ,  f ) = 0 ,  j e l l ,  

(3.lOb) (~vz ,  v) = - (~, v), veV, 

(3.10c) I t r ( z )dx=0 .  

Moreover, by Theorem 2.1, ~e H s + 1 (f2), ~ s/-P + 1 (f2) c~ 01 (f2), and 

IIzL+~+ [I~II~+2--<Q t1~11~ �9 

It follows from (1.4) and (3.9) that 

~, 0)= -(r, ~vz)= -~, ~v n~z) 
=a(~, l-lhg)=a(~, Z)+ a(~, IIh~ -- Z). 

Since 
a(,r ~)= - (~v~,  ~)= - (~v r ~ -Ph r 

by (3.10a) and (3.1b), 

1~, ~)1 < Q II~v ~11 o Ili0 I1,+ 2 hmin(s+ 2,k) -b Q II~ll o II.Zlls+ x hS+ ~, 
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so that 
[ lf i_s~Q {H~l]o h'§ + ]larval[ o h m~"(~+ 2, k)} 

for O<_s<_k. Then, it follows from (1.12c) and (3.8) that 

(3.11) I[fi_~_<_QHull~h ~+~ for 2<_r_<k+2 and 

This inequality can be combined with (1.9c) to see that 

(3.12) 

O < s < k - 2 .  

]IU--UhI[_~ Ilull,+ah ~+k-a 
Ilull,+zh ~§ 

for 2<_r<-k and O<-s<-k-2,  

for l<-r<-k and s = k - 1 ,  

for O<_r<_k and s=k ,  

where the estimate for 11211-k+2 has been used in the last two of the bounds in 
(3.12). Thus, (1.12a) has been established. 

We turn now to obtain the bound (1.12b) for a - a  in H-S(f2) for l < s < k  
-1. Let ~eH~(Q). Then, by (3.9) and (1.4), 

a(~, ~) = a(~=, ~ - IIh f ) -  (div H h ~, 2) 

= a(~, f - 1-1 h f )  - (~v ?, 2) 

_-< Q {ll~{Io h~+/lyll-s+l} II~lls, 
and, by Lemma 3.2, 

a(~, q~) 
114~ = " 

By (3.8) and (3.11), 

~ Q {ll~ll0 hS + 11211-~+ ,}. 

II~~ r§ for l < r < k + l  and l < s < k - 1 .  

In light of Lemma 3.1 and the bounds (1.12c) for dive, (1.12b) has been 
verified. This completes the derivation of the bounds given in (1.12). 

In order to demonstrate the L ~ bound of (1.14), let us impose the additional 
constraint (1.13) on the triangulation ~'~h. Then, for any element v in ~ ,  the 
inverse inequality 

IlvlLo,~o_-__Qh -~ ILvllo 
holds. Since, from (3.11), 

then 
][2}[o__< Q Hullr+, hr+ 1 for 1 < r < k + l ,  

Ilu-uhll o, ~ I1~-Phutlo, o0+ Ilyll o, ~ 
~ Q  {LlUlIr,~ + Ilul[r+ 1} hr 

for 1 =< r__< k + 1, where any reasonable form of the Bramble-Hilbert lemma has 
been applied to obtain the L ~176 approximation property of ph. 

The mixed method proposed here can also be analyzed using the abstract 
framework of Brezzi [2]. That method does not yield estimates so sharp as 
0.12), but it does provide a quasioptimal estimate on H x E Such an estimate 
is useful for various purposes; e.g., for studying the effects of strong mesh 
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refinement. We therefore briefly sketch the application of the theory of [2] to 
our method. 

First, we incorporate the conditions (1.2c) and (1.3c) of Sect. 2 into the 
variational formulations by replacing H in (1.2) and =/-/h in (1.3) by 0 and Oh, 
respectively, where the circumflex denotes the intersection with 
{j e L 2 (f2) l ~ tr (j) dx = 0}. The resulting variational problems are equivalent with 

f2 

the original continuous and discrete problems. That the first of Brezzi's con- 
ditions is verified follows immediately from Lemmas 3.1 and 3.2. It is easy to 
verify Brezzi's second condition by making use of the one-sided bounded 
invertibility of d iv:/~1 __, V, (1.7), (1.9a), and the fact that 6 ~ H  h. Consequently, 

we have the quasioptimal error estimate 

ll~-~hll~+ [lU--Uhll_v<Q inf (ll_o--jll~+ Ilu-vll0, 
~e Ih, 
r~v~ 

with Q depending only on ~2, m, #o, #1, and k. The infimum may be taken over 
~h rather than Oh since =a~ 0 and so these infima are in fact equal. 

4. The Reference Composite Triangle 

Let K be the triangle with vertices a 1 =(0, 1), a2=(0, 0), and a3=(1, 0). Let a 4 
_ _  1 1 - (3 ,  3) be its centroid, and divide K into the three triangles T 1, T 2, and T 3, 
where T i has as its vertices a 4 and {al, a 2, a3}\{al}. Let 

v k - I = ~ _ I ( K ) ,  

the vectors with components being polynomials of degree k -  1 on K. Let 

M k = {j~PR(TI), i= 1, 2, 3: j n  is continuous across 

the interior edges T/~ Tj, i#j};  

here n denotes a normal to T/c~ T~. Let  

(4.1) L, Vk= {j~Mk: ~ v j ~  vk-1}. 

We shall seek H k, the restriction of H h to K, as a subspace of W k. Note that 
the divergence of each of our elements is a vector polynomial on K, not just 
on each T i. Let 

N~= {q~ CJ(K): q~]T,~P,,(Ti), i=1,  2, 3}. 

Since the gradient of any function ~p in N~ +2 has continuous tangential 
derivatives across Tic~ T), i#:j, it follows that a~y(~o)~M k. Also, if =z~=/-/ is such 
that d i v j = 0 ,  then there exists ~o~H2(K) such that =v=airy(q0; moreover, if 
J 6N-R x, then q~N~ +2 and it is determined up to an additive linear function. 

Note  that, for k>=2, 

dim Mk=> dim N k , - 3 . 2 ( k + l ) = 9 k 2 + ~ - k + 3 ,  
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which we shall use to prove the following sequence to be exact (i.e., that the 
image of each map is the kernel of the following map): 

c 

o-~ P~ -~ N~ +~ ~'~ M ~ ~-~ N ~ I  __ = "  _> ~ ---9.0. 

Now, d i m P l=3  and dim N_k]l=3k2+3k.  It is known [3] that dimN~+2=-~k 2 
+ 9 k + 6 .  Thus, 

dim d iv Mk> (9kZ +~-k  + 3 ) - (~k  2 +9k  +6 )+  3 

= 3ka + 3k=dim N *-1 

so that, 

dimMk=~k2 + !~-k + 3 

and the sequence is exact. 
In particular, ~ v  M k= Nk 11, so that 

d i v  

dim Wk=dimPk_ l +dimN/'(M k -~ Nk_-~ 1) 

=(k2 + k)+ dim N~ + 2 -  3 

= - ~ k 2 + ~ k + 3 .  

Next, we shall define a map 

L: __wa ~ F ,  N x [I  P-k(e), 
eeSK 

where e varies over the external edges of K and 

N = dim8 (P a_ 1) = dim .Pk- 1 -- dim JV(~)= k 2 + k -  3, 

since the null space o f~  is the set of vectors of the form (a+cy, b - c x )  for 
(a, b, c ) e ~  3. Let L = (L 1, L2) be defined by 

(4.2 a) L~ ( j )= {y j : p  dx: p e Basis (f (.Pa- ,))}, 
K 

(4.2b) L2(J)= {jnr e an edge of 8K}. 

The map L will define some (all if k is two or three) of the degrees of freedom 
H k, at least when (4.2b) is interpreted to correspond to the specification of the 
moments 

(4.2c) {SJne. ~_ds: O_ePk(e ), e an edge of 0K}; 
e 

cf. (1.10). 

Lemma 4.1. The map L: ,vvk ~ NN X I-I P k(e) is onto. 
eeOK 

Proof It suffices to show that 

dim X ( L ) = d i m  w k - ( N  + 6k +6) -3-~2-3-v 
- - 2  ' ~  2 , ~ .  
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Let SeJV(L). Then, divse_P ~_ 1, and for any peek_ 1, 

I  vz.edx=-S : (e)dx+ I 
K K OK 

so that d~ivs=0. Hence, there exists (peN~ +2, unique up to an additive linear 
function, such that j = a~y (qq. Now, 

0 
sn = a~y ((o) n = Os curl q~ = 0 

on each edge of OK. Thus, curl ~0 is constant on each edge; as ~oe CI(K), curlq~ 

is constant on 0K. By choosing the exactly linear part of the arbitrary linear 

function properly, we can assume that Oxx and ~ y  vanish on OK. Thus, q~ is 

constant on OK, and we can then impose the condition that (p=0 on OK; i.e., 

The composite triangle elements N~ +2 are the generalized Clough-Tocher 
elements of Douglas, Dupont, Percell, and Scott [3, 9], and a useful set of 
degrees of freedom is known for N~ +2. The function and its gradient can be 
specified at each (external) vertex of K, and k - 1  values of the function and k 
values of its normal derivative can be given at points on the interior of each 
edge. These degrees of freedom can be completed to form a unisolvent set. 
Hence, 

dimlV~+2=dimN~+Z-3{3+(k-1)+ k} =~k3 2 -~k.3 

Since ~ + 2  contains no nontrivial linear functions, the airy operator maps this 
space one-to-one onto X(L) ,  and the lemma has been demonstrated. 

We are now able to indicate the choice of H k. We require that H k be a 
minimal subspace of .W k such that 

(4.3a) L(Hk)=R N x [ I  .Pk(e) 
eeOK 

(4.3 b) Pk(K) c H  k . 

The dimension of H a can be determined as follows. Let ze./V(L)nPk(K ). Then, 
as above, j=a~y(~0), where rgePk+2(K ) and q~=OqffOn=O on OK. Thus, if the 

barycentric coordinates of K are denoted by (21, 22, 23), the function 2z 222232 
divides r Clearly, if k = 2  or 3, r must vanish, and Lick(a) is one-to-one. In 
general, 

X (Lle,~K)) = a~y (22 22 22 Pk- 4(K)), 

so that 
k 2 5 

dimJff(Llfktm)=~---~ k+3,  k>__2. 
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Thus, 
dim H k = dim (F.. N x 1-[ P-k(e)) + dim ~/'(Lle~tr~) 

eet~K 

=-~k2+9k+6  

=dimPk(K)+ 3; 

i.e., H k is the span of the tensor polynomials of degree k on K and exactly 
three additional functions, which must be composite, for each k>2.  Moreover, 
the degrees of freedom given by (1.10) indeed form a unisolvent set for H k. 

It is clear that there is a certain degree of arbitrariness in the way Pk(K) is 
augmented to obtain H k. We shall outline what seems to us to be a natural 
way to select three necessarily composite basis elements to complete a defini- 
tion of H ~. We shall add a further requirement for =H~; however, the space will 
not be uniquely determined. Let us ask that =/_/k be invariant under affine 
transformations of K onto itself; i.e., if F: K ~ K ,  F ( x ) = B x + b ,  is an affine 
map of K onto itself, let [8] 

(F,~)(x) = Bz=(F- ~(x)) B r, x e K ,  

define the associated covariant transformation of tensor-valued functions. Then 
the additional constraint takes the form 

(4.4) F,(Hk)= .H * 

for all affine F mapping K onto itself. Since the restriction of H h to triangles 
other than the reference one will be defined from H k using an affine map, this 
additional condition is necessary if the resulting space is to be independent of 
the choice of the affine map from the reference element. 

Note that the degrees of freedom defined by (1.10a) can be replaced by the 
specification of the values of the normal vector zn at the end points of each 
edge and at k - 1  equally spaced interior points on each edge. Let us choose a 
tensor j ' e  W k such that, if n 3 = ( - 1 ,  0) is the normal to the edge a~ a2, 

(4.5a) f n 3 = ( 0 , 1  ) at (0,0+),  

(4.5b) all other degrees of freedom of z' vanish. 

Since z ' n 3 - n l = ( 0  , 1 ) - ( 0 , - 1 ) = - 1  at (0 ,0+)  and .z'nl-n3=(0,0)-(--1,0)=0 
at (0+,  0), =z' is discontinuous at a z and cannot belong to PR(K). The tensor ,z' 
is not uniquely determined, as will be discussed below. 

Let F ~ indicate the affine map such that F~ a2, aa))=(a3, az, aO, and let 
F 1 be the one such that Fl((ax, a2, a3))=(a2, a3, al). Let 

(4.6) H k = P.k(K) + Span [ff, F,  a f ,  (/7,1) 2 ,z']. 

From a dimensional count it is clear that L(P.k(K)) is equal to the 3- 
codimensional subspace of R N • I-I -Pk(e) determined by the condition of con- 

e~OK 

tinuity of zn i . n  j at a k for {i,j, k} = {1, 2, 3}. It follows that the space defined in 
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(4.6) does indeed satisfy (4.3) for any choice of j ' e W  k with the degrees of 
freedom specified in (4.5). The further condition (4.4) is satisfied if and only if 

(4.7) F~ j' eH= k. 

~ 0 t Now consider the tensor z * = r ' + F , j .  One easily verifies that j * n i . n  J is 
continuous at a k for {i,j, k}= {i, 2, 3}. Hence, there exists a unique polynomial 
tensor JoePk(K) with the same degrees of freedom. This tensor can be calculat- 
ed. For  example, if k = 2, then 

( 0 - l + 3 ( x + y ) - 2 ( x + y )  z) 
"v~ - l + 3 ( x + y ) - 2 ( x + y )  2 0 " 

Now, zoePk(K)cH k and the degrees of freedom (1.10) are unisolvent on H k, so 
(4.7) holds if and only if 

j + F ,  j ==%. (4.8) , 0 , 

To summarize: the minimal dimensional subspaces of W k satisfying (4.3) and 
(4.4) are exactly those spaces (4.6) corresponding to j '  with degrees of freedom 
(4.5) and satisfying (4.8). 

Three questions thus naturally arise: first, does there exist such a f e w k ;  
second, what is the dimension of the affine space of all such j ' ;  and, third, how 
can f be constructed in a form suitable for practical computation. The answer 
to the first question is affirmative: if j e W  k is any element with the degrees of 
freedom specified in (4.5), then 

J ' =  (J +J0 - F,~ J)/2 

has the same degrees of freedom and also satisfies (4.8). On the other hand, j '  
is not unique. It is determined up to the addition of any pe W k which has all 
degrees of freedom vanishing and satisfies the homogeneou~ equation. 

(4.9) p + F , ~  

The space of all such p is a nontrivial linear subspace of airy(N~ +2) with the 

nonboundary degrees of freedom chosen to ensure (4.9) as well as orthogo- 
nality to a~y ()L~ Z~ 22 Pk_4(K)). In the case k = 2 this space has dimension one; 
it is spanned by p=a~y(q~) where q~ is the quartic Clough-Tocher element 

[3, 9] with boundary degrees of freedom zero, value zero at a4, and gradient 
( - 1 ,  1) at a 4. We do not know of a criterion for preferring one particular 
choice of j '  over another. 

To construct the general solution z' that is, to determine its coefficients 
with respect to a basis for Nkl,_ one can use standard computer linear algebra 
subroutines. In the case k=2,  a particular solution calculated in this way is 
given in Table 1 ( 2 f  is presented as it has integer coefficients while j '  does 
not). The coefficients of the function p referred to in the above paragraph are 
displayed in Table 2 (p/162 is displayed for convenience). Thus, the space H 2 is 
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given in (4.6), where j' is specified in Table 1 up to an additive multiple of the 
function specified in Table 2. The coefficients of the elements of a complete 
nodal basis can then be easily calculated. 

Table 1. The coefficients of the basis element 2ff 

Triangle Component 1 x y x 2 x y y2 

1 (1, 1) 2 2 - 2 4  - 4  2 48 
(1,2) 0 0 - 2  0 8 - 1  
(2,2) 0 0 6 0 - 8  - 8  

2 (1, 1) 0 - 2  0 2 2 0 
(1,2) - 1  4 2 - 3  - 4  - 1  
(2,2) 0 0 2 0 - 2  - 2  

3 (1, 1) 0 - 6  0 8 8 0 
(1,2) - 2  8 6 - 3  - 1 6  - 4  
(2,2) - 2  24 - 2  - 4 8  - 2  4 

Table 2. The coefficients of an element having vanishing degrees of freedom 

Triangle Component 1 x y x 2 x y y2 

1 (1, 1) 0 - 1 3 1 2 - 10 
(1,2) 0 0 1 0 - 2  - 1  
(2, 2) 0 0 0 0 0 1 

2 (1,1) - 1  1 3 0 - 2  - 2  
(1,2) 0 1 - 1  - 1  0 1 
(2,2) 1 - 3  - 1  2 2 0 

3 (1, 1) 0 0 0 - 1 0 0 
(1, 2) 0 - 1 0 1 2 0 
(2,2) 0 - 3  1 10 - 2  - 1  

5. The Finite Element Spaces 

Fix the index k>2,  and consider again a triangulation ~ satisfying (1.8). With 
each K~Jhh we associate an affine invertible m a p F = F  K taking the vertices 
(0, 1), (0, 0), and (1, 0) of the reference triangle onto the vertices of K, with (0, 0) 
being mapped onto a vertex lying in O. Let / ( = F - 1  (K). Thus, /( is a curvi- 
linear triangle with vertices (0, 1), (0,0), and (1,0) and two edges along the 
coordinate axes and with at most one curved edge. Its shape depends on K. 
However, by (1.8d) there exists a positive constant C depending only on 0 such 
that/s  is star-shaped with respect to a disc of radius C. Through the addition 
of (1/3, 1/3) as vertex /(  is partitioned into three triangles, one possibly 
curvilinear, in the obvious way. 

In the last section we constructed the space of piecewise polynomial tensors 
//k on the (straight-edged) referenced triangle. Let H( /r  be the space 
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of tensor functions on /(  which are polynomial on each of its three micro- 
triangles and which coincide with an element H k on the intersection of /~  with 
the reference triangle. (Thus, if K is a straight-edged,//(/~)= Hk.) 

We now define the restrictions of V h and ~//h to K by 

Y(K)= ,Pk_ I(K), K E G ,  

H ( K ) =  {F,~: ~ H(/()}. 

Note that, when K has a curved edge, the polynomials in V(K) and the 
piecewise polynomials in H(K) are exactly the same as would result for a 
straight-edged triangle with the same vertices. Finally, set 

(5.i a) Vh=Yh(k , ~-~h)= {vsV: VIK~Y(K), K e ~ } ,  

(5.1b) ~h = ~Hh(k, G ) =  {~eH: ZIK~H(K), KEG}.  

Note that (1.5) holds as a result of (4.1), (5.1), and the properties of the 
transformation F, [83. 

6. The Projection H a 

It remains to construct the projection operator M h and to verify the conditions 
(1.4), (1.9a), and (1.9c). The approximation property (1.9c) follows from a 
standard argument based on the Bramble-Hilbert lemma since the constant in 
that lemma depends only on the shape of the elements K ~ G  through the 
parameter 0 of (1.8d) [6]. 

To construct the operator 17 h it suffices to construct for each Ke~-~h an 
operator 

F/(K): i/1 (K) ~ H(K) 

with the following properties for ~ H I ( K ) :  

(6.1a) (~-FI(K)~)n is orthogonal to Pk(e) on all edges e of the 
triangulation interior to f2, 

(6.1 b) ~ v  (~-1-1(K)~) is orthogonal to -Pk-I(K), 

(6.1 c) IIz--H(K)~ItL2(K)<Qhrlt~IlyrtK), l < r < k + l .  

For, then we can define Hh5 for 5eHl(f2) by 

(nhZ)lK= n(g)(~tK), K~hh. 

By (6.1a) and (5.1b), H h ~ H  h (see [8]). The property (1.4) is an immediate 
consequence of (6.1b), and (1.9a) follows directly from (6.10. 

The definition of FI(K) will be different depending on whether K has a 
curved edge or not. In either case we def ine / (  and F : / ~ K  as in Sect. 5 and 
define first //(/~): H1 (/~) ~/_/(/~) by certain orthogonalities. Let ~e H1 (/~) be 
arbitrary and set p = ~ - F / ( / ( ) ~ .  
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If K is straight-edged we define H(/()z  by 

(6.2a) pn is orthogonal to Pk(e) on each of the edges o f / ( ,  

(6.2b) p is orthogonal to ~(Pk_l(g))+airy(~,~ 22 22 Pk_4(g)) on K. 

We have seen in Sect. 4 that H(/() is well-defined. Note that for ~6-Pk-I(K), 

~rdivp'Odx=--~Ke:~e(O)dx+ I pn'~ds=O 
~ ~ ~ ~ ~ ~ 

by (6.2a) and (6.2b); i.e., 

(6.3) div p is orthogonal to P,_ ~ (/(). 

For K e W  h with a curved edge we shall impose the condition (6.2a) only on 
the interior edges. This will allow us to impose (6.3) directly. The remaining 
orthogonalities will be against the space 

Y(/()= {a~H(/(): ~ n = 0  on the straight edges o f / (  and ~ v a = 0 } .  

Note that the piecewise polynomials in Y( /0  do not depend on the element K. 
One easily sees that 

k 2 k 2 
dim Y(/() = dim H ( K ) -  2 dim P~(N)-  dim -Pk-~ = ~---  ~ + �9 

For ~ H I ( / ( )  we define H ( / ( ) j e H ( / ( )  by the following orthogonalities of p =~ 
-r/(g)~: 

(6.4a) pn is orthogonal to Pk(e) on the two straight edges e o f / ( ,  

(6.4b) ~ v p  is orthogonal to ,Pk-1(/(), 

(6.4C) p is orthogonal to Y(/(). 

These conditions uniquely determine H(/()z. Indeed we have imposed 
dimH(K) linear conditions and if p~H(/( )  satisfies (6.4), then p e Y ( g )  by 
(6.4a, b), so that p = 0  by (6.4c). 

We now defir~e FI(K) via the affine transformation F: /~  ~ K: 

FI(K)~=F,(H(g)~), Z = F,~EH~(K). 

Then (6.1a) follows from (6.2a) and (6.4a), and (6.1b) follows from (6.3) and 
(6.4b). Finally (6.1c) is established by a straightforward argument using the 
Bramble-Hilbert lemma. 

7. The Composite Quadrilateral 

Let Q be a convex quadrilateral with vertices (al, a2, a3, a,), and triangulate it 
into the four triangles T1 . . . . .  T 4 by means of the diagonals. Let 
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yk-  1 (Q) = fk-1 (Q), 

Mk(Q)= {~EPk(T/), i =  1 . . . . .  4: Jn  is continuous across 

the interior edges T ~  Tj, i +j},  

=Wk(Q) = { ~ M k :  d i v j e g k -  1}, 

N?  = {qge C~(Q): q~[T ~P,,(T/), i =  1 . . . . .  4}. 

The object again is to define the restriction Hk(k, Q) of H h to Q as a subspace 
of W k. The argument parallels that  of Sect. 4. 

First, it is clear that 

d i m M k > d i m N k l - 8 ( k  + l)=6kZ + lOk +4. 
In fact, 

(7.1) dim M k = 6k z + 10k + 5, 

as there is a redundancy in the 8 (k+1)  constraints used to insure that j n  be 
continuous across interior edges. To see this, it suffices to consider a quadrila- 
teral as shown in the figure below. 

Let ~ = (z~j) on T k. Then, the continuity of j n  leads to the relations (where n 
=(n l ,  n2), n l + 0 ,  is the normal to TlnT2) 

(7.2a) z ~ 2 = z ~ 2 ,  27~2 = T242 on T~c~T4, 

(7.2b) 2 _ 3 ~2-27,2, ~2=27~ on T2~T~, 

(7.2c) n, z l l  + n  2 27~z =na  2721 +n2  zlz2, 

1 1 27~2+nz272z2 on Tic'T2, /'/1 2712 "-~n2 2722 ~ / ' / 1  

(7.2d) 3 a 27~1 + n2 274 /'/1 2711 "{-/'/2 2712 ~--- 1"11 12' 

3 3 "g42 -']-/'/2 ~242 o n  Z 3 c~ Z 4. Y/1 2712 "+- n2 z'22 ~-- ?/1 

If n2=0,  then (7.2a)-(7.2c)imply that z12=272z=27~2=27~2, at the origin, which 
implies that the second equat ion of (7.2d) holds at the origin. In fact, it is 
easily seen that this latter implication is valid also when n2#0 .  Thus, (7.2) 
represents at most  8 ( k + l ) - i  independent  linear relations among the coef- 
ficients of  the 27~j, and so dim M k >  6k2+ 10k + 5; that equality holds will result 
from showing that  the sequence 

• 

• 

Fig. 
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0-.P1 ,Nf+ ,iv 

is exact. Since [3] dimN~+2=2k2+6k+8 and dim N_ksl=4k2+4k, the exact- 
ness follows as before and requires (7.1) to hold. 

Next, 

~ k - 1  d i m W k = d i m P k _ t + d i m X ( M ~  d~v  .N-~I )=3k2+7k+5"  

Let us define degrees of freedom by the map 

L: wa--*IRNx I-I &(e), N=dim=e(Pk_t)=k2+k-3, 
e=OQ 

for k > 2, where 

(7.3 a) L, (j) = {fj :pdx: pe Basis (~(P k_ 1))}, 
Q 

(7.3b) L2(J)= {JG: e an edge of (?Q}. 

That L is onto can be demonstrated using the proof of Lemma 4.1 with the 
generalized Clough-Tocher element being replaced by the generalized Fraeijs 
de Veubeke-Sander element [3]. 

Here we want to choose H(k, Q) to be a minimal subspace of =W k such that 
L(Hk)=L(W k) and Hk=Pk(Q). Its dimension can be computed in a similar 
fashion as for the composite triangle case. It is easy to see that, if 
z~ker(L)c~ffk(Q), then r=a~y(qO, q)=2 2 2 2 2 . . . .  2223, '~4~t,  for s o m e  I~EPk_6(Q). Thus, 
(7.3a) and (7.3b) provide a complete set of degrees of freedom for k<6;  it is 
necessary to supplement these relation by 

(7.3c) L3(j)={S~:pdx:peBasis(airy22= ~. 22).a24Pk_6(Q) } 2  2 2 
(2 

for k > 6. In particular, 

dim ker (Lle~(Q)) = �89 4) (k-  5), 
Hence, 

k>4. 

[ 27= dimPz(Q)+9, k=2,  

dim H k = ]  41 = dim P3 (Q)+ 11, k = 3, 

(~kZ+9k+15=dimPk(Q)+12, k>4. 

As for the triangular element, such a space =/-/(k, Q) can be computed. Again it 
is not uniquely determined, and this nonuniqueness is greater than before. 

From (7.3) it is clear how to define the projection operator II(Q) satisfying 
the properties analogous to (6.1). It is then obvious how to define the space V h 
and =//h and the projection operator /-/h, and it is easy to verify the hypotheses 
of Sect. 1. The practicality of this quadrilateral element is unclear to the 
authors. 
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