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A family of integrable nonlinear equations
of hyperbolic type
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A new system of integrable nonlinear equations of hyperbolic type, obtained by a
two-dimensional reduction of the anti-self-dual Yang–Mills equations, is presented.
It represents a generalization of the Ernst–Weyl equation of General Relativity
related to colliding neutrino and gravitational waves, as well as of the fourth order
equation of Schwarzian type related to the KdV hierarchies, which was introduced
by Nijhoff, Hone, and Joshi recently. An auto-Ba¨cklund transformation of the new
system is constructed, leading to a superposition principle remarkably similar to the
one connecting four solutions of the KdV equation. At the level of the Ernst–Weyl
equation, this Ba¨cklund transformation and the associated superposition principle
yield directly a generalization of the single and double Harrison transformations of
the Ernst equation, respectively. The very method of construction also allows for
revealing, in an essentially algorithmic fashion, other integrability features of the
main subsystems, such as their reduction to the Painleve´ transcendents. ©2001
American Institute of Physics.@DOI: 10.1063/1.1416488#

I. INTRODUCTION

The main relationship between the anti-self-dual Yang–Mills equations~ASDYM! and inte-
grable systems of partial differential equations~PDEs! stems from the fact that most well-know
integrable systems arise as reductions of the ASDYM equations, or higher-dimensional ge
zations of them, by imposing appropriate symmetry conditions.1 We adopt that saying a system o
equations is integrable means that the equations under consideration can be linearized dire
they can be expressed as consistency conditions for the solution of a linear overdetermined
of PDEs of a certain type~Lax pair!.

Of particular interest are the two-dimensional reductions, which are constructed using s
two-dimensional subgroups of the full group of conformal isometries of the four-dimens
complex Minkowski space. A prime example of this kind of reduction is provided by the E
equation of General Relativity, which forms the basis of stationary axisymmetric, cylindric
plane symmetric solutions of the Einstein equations.2–8 A comprehensive review of two
dimensional reductions of the ASDYM equations is presented in Ref. 8, where a general c
a two-dimensional group of conformal transformations, not necessarily translations, is cons
In all of the above reductions to the Ernst equation, at least one of the two conformal K
vectors~CKVs! has a nontrivial lift to the twistor space and the formulation is adapted to the Y
matrix J.

In the present paper we consider, instead, a two-dimensional reduction of the ASDYM
tions based on a pair of commuting CKVs which are left rotations and leave thea-planes through
the origin invariant. It leads to a quite general system of integrable equations of hyperbolic t
two independent variables, which represents a generalization not only of the Ernst–Weyl eq
for coupled gravitational and neutrino waves in General Relativity, but of the fourth order equ
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of Schwarzian type introduced by Nijhoff, Hone, and Joshi9 recently, which is related to the KdV
hierarchy.

More specifically, our reduction scheme usesGL (2,C) as the gauge group and connecti
potentials that are matrices of unit rank. The general background, as well as the specific fe
of the reduction process are presented in Sec. II. In the same section we present the end
the reduction. It consists of a system of equations which, written in an invariant form, rea
follows:

d ~P1R!2* d ~P2R!5
P2R

r
„~P2R!* dU2db…, ~1a!

rd* dU2db`dU5~P2R!dU`* dU, ~1b!

d* dr50, d* db50. ~1c!

The complex functionsU, P, R depend on the real coordinatesu, v. The functionsr, b are
arbitrary real and complex solutions of the wave equation, respectively. The operator* is a
two-dimensional Hodge duality operator acting on one-forms as

* du5du, * dv52dv. ~1d!

The above system of equations can also be considered as the compatibility or integr
condition of a linear pair of equations parametrized by a complex parameter. This Lax p
equations is presented in Sec. III, where it is shown that it can be derived algorithmically fro
Lax pair of the ASDYM equations. In the same section we derive an auto-Ba¨cklund transforma-
tion of system~1!, using the above Lax pair and the standard Gauss decomposition ofGL (2,C).

The restrictions

r5 1
2 ~v2u!, db5n du1m dv, n,m complex parameters, ~2!

of the functionsr and b, reduce system~1! to a potential form of the fourth order equation
Schwarzian type introduced recently by Nijhoffet al.,9 which was called a regular partial differ
ential equation~RPDE! by the above authors. Its importance stems from the fact that it is dire
associated with the KdV hierarchies. The exact relation of the system~1! to the RPDE, as well as
to the well-known Euler–Poisson–Darboux equation, is the object of Sec. IV. In the same se
we present a new family of fourth order equations which contains the RPDE among its mem

Imposing appropriate conditions on the variablesP, R and b, on the other hand, turns th
system~1! into the Ernst–Weyl equation,

Re~E!„d~r* dE!2 i da∧dE…5r dE∧* dE, ~3!

for colliding neutrino waves accompanied by gravitational waves.10 The Ernst equation for col-
liding pure gravitational waves in a flat background is also obtained in this way, by app
further restrictions onb. The Neugebauer–Kramer involution arises naturally from the condit
imposed on system~1! and defines a map connecting the real components of two Ernst–
equations.

The relation of system~1! to the Ernst and Ernst–Weyl equations is described in full deta
Sec. V. Section VI, on the other hand, is devoted to another integrability feature of the Ernst–
and RPDE subsystems of the system~1!, namely their reduction to Painleve´ transcendents. More
specifically, in Sec. VI we show how the relation between the Ernst–Weyl and the RPDE
tions, established by their being members of the same system~1!, facilitates the construction o
group invariant solutions of the former based on the Painleve´ transcendents from similar kinds o
solutions of the latter equation.
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The final section of the paper consists of the Perspectives, where an overall evaluation
results obtained in the main body of the paper is presented, along with the description of v
avenues for expanding the above results.

II. REDUCTION OF THE ASDYM EQUATIONS

In this section we present the first main result of this paper. It consists of the new integ
system given by~32!, which is derived by a specific two-dimensional reduction of the ASDY
equations.

In order to make the presentation of our result self-contained, we first summarize in Se
the general framework of the ASDYM equations. Then, in Sec. II B, we give the details o
reduction scheme that leads to the new integrable system of equations mentioned above.

A. General considerations

Throughout this section we shall follow the notation and conventions of Refs. 8, 11. LM
5CM denote the four-dimensional complex Minkowski spacetime andG a Lie group, called the
gauge group, andg the corresponding Lie algebra. In the finite-dimensional caseG can be taken
to beGL (N,C).

Let P(M ,G) be a principal bundle,$Ui% an open covering ofM andsi a local section defined
on eachUi . The Lie algebra valued one-formvPg^ T* P, called the connection one-form, an
the two-formVPg^ V2(P), called the curvature two-form, satisfy the Cartan structure equa

V5dPv1v`v,

where dP is the exterior derivative onP. Theg-valued one-form~gauge potential! F i is defined
locally as the pull-backF i5si* v of the connection one-formv and theg-valued two-form Fi ,
also called curvature two-form or~Yang–Mills! field strength, is defined by Fi5si* V. If s, s8 are
local sections overU such thats8(p)5s(p)g(p), pPU, gPG then the corresponding loca
one-formsF andF8 are related by

F85g21Fg1g21 dg, ~4!

where d is the exterior derivative onM . The potentialsF andF8 are said to be related through
gauge transformation and they are regarded as being equivalent. From the Cartan structur
tion it follows that the curvature F can be expressed in terms of the gauge potentialF as

F5dF1F`F. ~5!

Under gauge transformations~4! the local two-forms F and F8 are related by

F85g21Fg.

In double null coordinatesxa5(w,z,w̃,z̃) the metric onCM is given by

ds252~dz dz̃2dw dw̃!. ~6!

In this coordinate system the gauge potentialF may be written as

F5Fw dw1Fz dz1F w̃ dw̃1F z̃ dz̃, ~7!

where the components areg-valued functions.F is said to be anti-self-dual iff F is Hodg
anti-self-dual with respect to the metric~6!, i.e.,

F52* F. ~8!

Choosing an orientation, condition~8! is equivalent to the ASDYM equations,
6 Jan 2010 to 150.140.170.243. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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]zFw2]wFz1@Fz ,Fw#50, ~9a!

] z̃F w̃2] w̃F z̃1@F z̃ ,F w̃#50, ~9b!

]zF z̃2] z̃Fz2]wF w̃1] w̃Fw1@Fz ,F z̃#2@Fw ,F w̃#50. ~9c!

These equations are the integrability conditions of the overdetermined linear system~Lax
pair!,12,13

„]w1Fw2z~] z̃1F z̃!…C50, ~10a!

„]z1Fz2z~] w̃1F w̃!…C50, ~10b!

whereC(xa;z) is aG-valued function of the spacetime coordinates and the spectral paramez.

B. The reduced equations

For a two-dimensional reduction of the ASDYM equations, one first chooses a
dimensional subgroupH of the full group of conformal isometries of the Minkowski space. Th
one can reduce the number of the dependent variables by imposing algebraic constraints
components ofF, in a way which is consistent with the equations.

A general class of two-dimensional reductions is considered in Ref. 8 whereH is generated by
two conformal Killing vectors:

X5a]w1b]z1ã] w̃1b̃] z̃ , Y5c]w1d]z1 c̃] w̃1d̃] z̃ , ~11!

where a, b, c, d and ã, b̃, c̃, d̃ depend only onw, z and w̃, z̃, respectively. Both of the
quadruples$X,Y,]w ,]z% and$X,Y,] w̃ ,] z̃% should be linearly independent and the reduced me
on the orbits of H should be nondegenerate. These conditions assure a compatible reduct

The most straightforward reduction of this form arises when the corresponding algebrh is
Abelian. We assume that this is the case and we further limit the choices of the componentX
andY by demanding thatX andY leave invariant thea-planes through the origin~the meaning of
this requirement will become clear later! and are not a combination of translations. It turns out t
these requirements are satisfied only by the commuting null CKVs,

X5w]w1 z̃] z̃ , Y5z]z1w̃] w̃ . ~12!

The invariant spacetime coordinates on the orbits of the two-dimensional group of conf
transformations generated byX, Y are arbitrary functions of the fractionsw/ z̃ , z/w̃. Without loss
of generality we choose the coordinates of the space of orbitsS to be

u5
w

z̃
, v5

z

w̃
, ~13!

and restrict ourselves to the ultrahyperbolic slice ofCM where the spacetime coordinates are re
The metric induced onS is conformal to two-dimensional Minkowski spacetime in null coor
nates, i.e.,

ds25
2

v2u
du dv. ~14!

The invariance conditions of the potentialF with respect to the algebra generated byX, Y are

LXF5LYF50, ~15!
6 Jan 2010 to 150.140.170.243. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



o-

rix

nate

5766 J. Math. Phys., Vol. 42, No. 12, December 2001 Tongas, Tsoubelis, and Xenitidis

Downloaded 2
whereLX denotes the Lie derivative alongX. Under these conditions, one can write the comp
nents of the gauge potentialF in the form

Fw5
1

w
A~u,v !, Fz5

1

z
B~u,v !, F w̃5

1

w̃
Ã~u,v !, F z̃5

1

z̃
B̃~u,v !. ~16!

We choose to work with the invariant gauge whereÃ andB̃ become the Higgs fields ofX andY,
respectively. This means thatÃ andB̃ are contractions of the invariant gauge potentialF with the
vector fieldsX and Y, respectively, i.e.,Ã5X4F, B̃5Y4F. In this gauge one can putA5B
50, whereupon the ASDYM equations~9! become

vB̃,v2uÃ,u1@B̃,Ã#50, ~17a!

B̃,v2Ã,u50. ~17b!

Equation~17b! implies the existence of a matrix functionK(u,v) such that

B̃5K ,u , Ã5K ,v , ~18!

and hence Eq.~17a! becomes

~v2u!K ,u v1@K ,u ,K ,v#50. ~19!

The remaining gauge freedom isÃ→g21Ãg and B̃→g21B̃g or, equivalently,K→g21Kg1c
whereg, c constant matrices.

Alternatively, one can look at~17a! as a sufficient condition of the existence of the mat
function J such that

Ã52vJ21J,v , B̃52uJ21J,u . ~20!

Then ~17b! takes the following form:

~uJ21J,u! ,v2~vJ21J,v! ,u50. ~21!

Introducing the functionsr, s by

r5 1
2 ~v2u!, s5 1

2 ~v1u!, ~22!

one can now write Eq.~19! in an invariant form, namely

r d* dK2dK`dK50. ~23!

In a similar fashion Eq.~21! takes the coordinate free form,

d~rJ21* dJ!5d~sJ21 dJ!. ~24!

From the way the coordinates (u,v) were introduced one sees that a more general coordi
system is obtained via the coordinate transformation

u→ f ~u!, v→g~v !, ~25!

i.e., by relabeling the null coordinates (u,v). Within this more general setting it follows that

r5 1
2 „g~v !2 f ~u!…, s5 1

2 „g~v !1 f ~u!…, ~26!
6 Jan 2010 to 150.140.170.243. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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and the functionsr, s may be invariantly defined as conjugate solutions of the wave equa
d* dr50.

Now, Eq. ~17! imply that

]u~ tr Ãk!5]v~ tr B̃k!50, where k51, 2,...,N21. ~27!

Hence

tr Ãk5mk~v !, tr B̃k5nk~u!. ~28!

To reduce the number of the dependent variables we restrict to the case whereN52 andÃ,B̃ are
matrix functions with

rankÃ5rankB̃51. ~29!

With these algebraic constraints,Ã, B̃ may be written as

Ã5S m~v !2RQ Q

R~m~v !2RQ! RQD , B̃5S n~u!2PS S

P~n~u!2PS! PSD , ~30!

whereP, Q, R, S are complex functions of (u,v). InsertingÃ andB̃ given by~30! into the matrix
equation~17b!, one finds that the upper right element gives

Q,u5S,v , ~31!

which implies the existence of a functionU such thatQ5U ,v and S5U ,u . In virtue of these
relations, Eq.~17a! yields the following system of PDEs:

„g~v !2 f ~u!…P,v5~R2P!„m~v !1~P2R!U ,v…, ~32a!

„g~v !2 f ~u!…R,u5~R2P!„n~u!2~P2R!U ,u…, ~32b!

„g~v !2 f ~u!…U ,uv5m~v !U ,u2n~u!U ,v12~P2R!U ,uU ,v . ~32c!

This system will be denoted by

S„u,v,U,P,R;m~v !,n~u!…50 ~33!

in the following. We close this section by pointing out that the remaining equation of system~17!,
namely Eq.~17b!, is trivially satisfied when~33! holds.

III. THE REDUCED LAX PAIR AND AN AUTO-BA¨ CKLUND TRANSFORMATION

Linear ~Lax pairs! and nonlinear~Bäcklund transformations! deformation problems are in
valuable techniques for generating solutions of integrable equations. As a matter of fact
problems are so interrelated that one can in general derive Ba¨cklund transformations from the
corresponding Lax pair~see, for example, Refs. 14, 15!.

Most of the well-known integrable equations in two independent variables, such as the
and the sine-Gordon equations, admit a Lax pair of the form

dC5VC, ~34!

whereC belongs inSL(2,R) andV is a sl(2,R)-valued one form. The associated equation ari
from the integrability condition dV5V∧V and the particular way the independent and depend
variables enter intoV. Using the Iwasawa decomposition ofSL(2,R) for C, one may construct a
Bäcklund transformation associated with the given PDE.15
6 Jan 2010 to 150.140.170.243. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The systemS50 also admits a Lax pair of the form~34!. It can be derived algorithmically
from the Lax pair~10! of the ASDYM equations by applying the invariance conditions16

LXC5LYC50. ~35!

These conditions imply thatC depends only on the invariant coordinatesu, v and the spectra
parameterz. Taking into account~16! and puttingA5B50, we find that Eqs.~10! reduce to

C ,u5
1

f ~u!2l
B̃C, ~36a!

C ,v5
1

g~v !2l
ÃC, ~36b!

where we have setl52z21. It is now easily verified that the integrability conditionC ,uv
5C ,vu leads toS50. This means that Eqs.~36! constitute a Lax pair for the systemS50.

At this point it is worth noting that using~18! and ~26!, the Lax pair~36! may be written in
an invariant form as

~s2l2r* !dC5dK C, ~37a!

where

~s2l2r* !215
~s2l1r* !

~s2l!22r2 . ~37b!

We point out that the linear system~37!, or equivalently~36!, includes the Lax pair used by Haus
and Ernst in solving the initial value problem for colliding plane gravitational waves.17

We are now ready to construct a Ba¨cklund transformation of the systemS50, using the Lax
pair ~36!. To this end, we generalize the technique employed in the case whereCPSL(2,R) by
considering the Gauss decomposition ofGL (2,C).18 It allows us to write the spectral potentialC
in the form

C5L21T, ~38!

whereT is an upper triangular matrix andL is a lower triangular one of the form

L5S 1 0

2Ũ 1D . ~39!

Substituting~38! into the Lax pair~36! we obtain the following linear system for the matr
function T:

T,uT215L ,uL211
1

f ~u!2l
LB̃L21, ~40a!

T,vT215L ,vL211
1

g~v !2l
LÃL21. ~40b!

The lower left elements of the the above system lead to the following Riccati system fo
function Ũ:

Ũ ,u5
P2Ũ

f ~u!2l
„n~u!2~P2Ũ !U ,u…, ~41a!
6 Jan 2010 to 150.140.170.243. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Ũ ,v5
R2Ũ

g~v !2l
„m~v !2~R2Ũ !U ,v…. ~41b!

The integrability condition of~41! is satisfied if the systemS50 holds. In other words,~41!
defines a Ba¨cklund map for the systemS50. Using such a map, one may construct an au
Bäcklund transformation for the system under consideration in a manner presented in Ref.

More specifically, solving Eqs.~41! for the derivatives ofU we obtain

U ,u5
1

P2Ũ
S n~u!2

f ~u!2l

P2Ũ
Ũ ,uD , ~42a!

U ,v5
1

R2Ũ
S m~v !2

g~v !2l

R2Ũ
Ũ ,vD . ~42b!

When Eqs.~32a!, ~32b! and~42! are satisfied, the integrability conditionU ,uv5U ,vu implies that
Ũ satisfies the following equation:

„f ~u!2g~v !…Ũ ,uv5n~u!Ũ ,v2m~v !Ũ ,u12S f ~u!2l

Ũ2P
2

g~v !2l

Ũ2R
D Ũ ,uŨ ,v . ~43!

If not stated otherwise, we will assume thatPÞR in what follows. The particular caseP5R will
be considered separately in the next section.

Equation~43! takes the form

„f ~u!2g~v !…Ũ ,uv5n~u!Ũ ,v2m~v !Ũ ,u22~ P̃2R̃!Ũ ,uŨ ,v , ~44!

by introducing

P̃5W2
f ~u!2l

Ũ2P
, R̃5W2

g~v !2l

Ũ2R
, ~45!

where W5W(u,v) is an auxiliary function. Equation~44! is none other than Eq.~32c! with
(U,P,R) replaced by (Ũ,P̃,R̃). It suffices to determineW in such a way that the function
(Ũ,P̃,R̃), defined by~41! and ~45!, satisfy S(u,v,Ũ,P̃,R̃)50 wheneverS(u,v,U,P,R)50
holds. This requirement and the differential consequences of~45! result in

W5U, ~46!

up to a nonsignificant constant of integration. In conclusion, we have established the follow
Proposition 1: The algebro-differential system,

Ũ ,u5
P2Ũ

f ~u!2l
„n~u!2~P2Ũ !U ,u…, ~47a!

Ũ ,v5
R2Ũ

g~v !2l
„m~v !2~R2Ũ !U ,v…, ~47b!

~Ũ2P!~U2 P̃!5 f ~u!2l, ~48!

~Ũ2R!~U2R̃!5g~v !2l, ~49!
6 Jan 2010 to 150.140.170.243. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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constitutes an auto-Ba¨cklund transformation for the systemS50.
By purely algebraic procedures Proposition 1 leads to the following permutability theor
Permutability theorem: Let (Ui ,Pi ,Ri), i 51,2, be a solution of the system (32a)–(32c),

generated by means of the Ba¨cklund transformation (47)–(49) from a known solution(U0 ,P0 ,R0)
via the Bäcklund parametersl1 and l2 , respectively. Then there exists a new soluti
(U3 ,P3 ,R3) which is given by

~U32U0!~U22U1!5l22l1 , ~50a!

~P32P0!~P22P1!5l22l1 , ~50b!

~R32R0!~R22R1!5l22l1 , ~50c!

where(U3 ,P3 ,R3) is constructed according toFig. 1.

IV. NEW AND OLD EQUATIONS RELATED TO THE SYSTEM S

Many physically interesting integrable equations arise from the systemS50 by imposing
further algebraic constraints on the independent and the dependent variables. This is illustr
the following sections in terms of a new family of fourth order equations, which represe
generalization of the RPDE introduced by Nijhoffet al.9 recently, the RPDE itself and the wel
known Euler–Poisson–Darboux equation. The Ernst–Weyl equation is also contained in th
tem S50 and is presented thoroughly in the next section.

A. The generalized RPDE

The systemS50 leads to a fourth order PDE for the functionU solely in the following
manner. First, one may solve Eq.~32c! for the differenceP2R to obtain

P2R5A@U#ª
1

2 S 2r
U ,uv

U ,uU ,v
1

n~u!

U ,u
2

m~v !

U ,v
D , ~51!

wherer is given by~26!. Taking the partial derivative of both sides of~51! with respect tou and
using Eq.~32b!, we arrive at an expression forP,u involving the derivatives ofU only. The latter
expression and~32a! form a linear first order system forP which takes the following form:

P,u52
A
2r

~n~u!2AU ,u!1]uA,

P,v52
A
2r

~m~v !1AU ,v!.

The compatibility conditionP,uv5P,vu leads to the equation

FIG. 1. Bianchi commuting diagram.
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]uS ]vA1
A 2

r
U ,v1m~v !

A
r D1]vS ]uA1

A 2

r
U ,u2n~u!

A
r D50. ~52!

This equation, when written out explicitly, reads as

U ,uuvv5U ,uuvS 2
r ,v

r
1

U ,vv

U ,v
1

U ,uv

U ,u
D1U ,uvvS 2

r ,u

r
1

U ,uu

U ,u
1

U ,uv

U ,v
D2U ,uuU ,vv

U ,uv

U ,uU ,v

1U ,uuS n~u!2

4r2

U ,v
2

U ,u
2 1

r ,v

r

U ,uv

U ,u
2

U ,uv
2

U ,u
2 D 1U ,vvS m~v !2

4r2

U ,u
2

U ,v
2 1

r ,u

r

U ,uv

U ,v
2

U ,uv
2

U ,v
2 D

2
n~u!2

8r3

U ,v

U ,u
~r ,vU ,u2r ,uU ,v12rU ,uv!1

m~v !2

8r3

U ,u

U ,v
~r ,vU ,u2r ,uU ,v22rU ,uv!

1
1

2r
U ,uv

2 S r ,u

U ,u
1

r ,v

U ,v
D2

n~u!n8~u!

4r2

U ,v
2

U ,u
2

m~v !m8~v !

4r2

U ,u
2

U ,v
. ~53!

This is a new integrable equation which generalizes the RPDE, as it will be clear from
following section. It will be referred to as the generalized RPDE~GRPDE!. In order to clarify its
relation to the systemS50, we first introduce a shorthand notation whereby Eq.~53! is written in
the form

R„u,v,U;m~v !,n~u!…50. ~54!

In a manner to be explained shortly, one is led to similar equations for the functionsP, R, starting
from the systemS50. More specifically, these functions satisfy the fourth order equations

R„u,v,P;m~v !,n~u!22r ,u…50, ~55!

and

R„u,v,R;m~v !12r ,v ,n~u!…50, ~56!

respectively. Thus, it becomes clear that the systemS50 represents an involution of a triad o
GRPDEs. The members of this triad differ only by specific changes in the parameter fun
m(v) andn(u).

Returning to the derivation of Eqs.~55!, ~56!, let us first note that one may eliminate th
derivatives ofU from the systemS50 by solving~32a! and~32b! for U ,v andU ,u , respectively.
Using compatibility conditions and~32c!, one then ends up with the following system forP, R:

P,uv5
2

P2R
P,uP,v1

m~v !

2r
P,u1

n~u!22r ,u

2r
P,v , ~57a!

R,uv5
2

R2P
R,uR,v2

m~v !12r ,v

2r
R,u2

n~u!

2r
R,v . ~57b!

It is now a matter of straightforward, but lengthy, calculations to decouple the above syste
arrive to Eqs.~55!, ~56! for P andR, respectively.

At this point, it is worth noting that Eqs.~57! may be combined to yield19

~rSS,u! ,v1~rSS,v! ,u1t ,uS,v1t ,vS,u50, ~58!

where

tªs1b, ~59a!
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andS is a 232 matrix defined by

S5
1

R2P S P1R 22

2PR 2~P1R!
D . ~59b!

The matrix equation~58! represents a complexified hyperbolic version of the stationary Loewn
Konopelchenko–Rogers~LKR! system20 proposed by Schief21 as a 232 real matrix representa
tion of the Ernst–Weyl equation in stationary, axisymmetric spacetimes. It should be pointe
that LKR systems have proven to be a repository of mathematically and physically intere
integrable equations in 211-dimensions, including a 211-dimensional Ernst-type equation, in
troduced by Schief recently.22

B. The RPDE

By choosing

f ~u!5u, g~v !5v ~60a!

and

m~v !5m, n~u!5n, ~60b!

wheren, m are complex parameters, Eq.~53! becomes

U ,uuvv5U ,uuvS 1

u2v
1

U ,vv

U ,v
1

U ,uv

U ,u
D1U ,uvvS 1

v2u
1

U ,uu

U ,u
1

U ,uv

U ,v
D2U ,uuU ,vv

U ,uv

U ,uU ,v

1U ,uuS n2

~u2v !2

U ,v
2

U ,u
2 2

1

u2v
U ,uv

U ,u
2

U ,uv
2

U ,u
2 D 1U ,vvS m2

~u2v !2

U ,u
2

U ,v
2 1

1

u2v
U ,uv

U ,v
2

U ,uv
2

U ,v
2 D

1
n2

2~u2v !3

U ,v

U ,u
~U ,u1U ,v12~v2u!U ,uv!2

m2

2~u2v !3

U ,u

U ,v
„U ,u1U ,v12~u2v !U ,uv…

1
1

2~u2v !
U ,uv

2 S 1

U ,u
2

1

U ,v
D , ~61!

which is the RPDE introduced by Nijhoffet al.9 recently. Its importance stems from the fact th
it is a generating equation for the whole hierarchy of the KdV equation. We presented s
aspects of the integrability of the RPDE in Ref. 23.

C. The EPD equation

By choosing

P5R, ~62!

and referring to Eqs.~32a!, ~32b!, we find that

P5c, c constant. ~63!

Without loss of generality we setc50. This can be achieved by performing a gauge transfor
tion on Ã, B̃ by g5(2c 1

1 0), whereupon one obtains equivalent Higgs fields withP5R50. Within
this setting, the systemS50 reduces to a single linear, second order PDE forU,

U ,uv5
1

f ~u!2g~v !
„n~u!U ,v2m~v !U ,u…, ~64!
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which is known as theEuler–Poisson–Darboux~EPD! equation. From this point of view, the EPD
equation may be considered as a linearization of the systemS50.

The substitutionc5Ũ21 transforms the Riccati equations~41! into the linear system,

c ,u5
n~u!

f ~u!2l
c1

U ,u

f ~u!2l
, ~65a!

c ,v5
m~v !

g~v !2l
c1

U ,v

g~v !2l
. ~65b!

It can be easily verified that the integrability conditionU ,uv5U ,vu and the system~65! lead to

c ,uv5
1

f ~u!2g~v !
„n~u!c ,v2m~v !c ,u…. ~66!

A comparison of this with Eq.~64! shows that the system~65! represents an auto-Ba¨cklund
transformation for the EPD equation. The linearity of the same system inc indicates that it is also
a Lax pair for the EPD equation.

RestrictingU(u,v),m(v),n(u) to be real functions of their arguments and choosing

n~u!52 1
2 f 8~u!, m~v !52 1

2 g8~v !,

Eq. ~64! becomes

2U ,uv1
r ,u

r
U ,v1

r ,v

r
U ,u50, r5

1

2
„g~v !2 f ~u!…. ~67!

This particular form of the EPD equation governs the collision of two plane gravitational w
with collinear polarization24 in the context of Einstein’s General Relativity. The reduced Lax p
~65! becomes the Lax pair used in Ref. 25 for solving the corresponding initial value probl

V. REDUCTION TO THE ERNST–WEYL EQUATION

One of the most extensively studied problems in General Relativity is the collision of
plane gravitational waves. The Ernst–Weyl equation describes the collision of neutrino w
accompanied by gravitational waves.10 The latter equation, which reduces to the famous Er
equation when the neutrino fields vanish everywhere, arises naturally by applying appro
reality conditions to the systemS50. Our reduction scheme unifies many aspects of the inte
bility of the Ernst equation like the Hauser–Ernst Lax pair, Neugebauer–Kramer involution
the Harrison Ba¨cklund transformation and gives analogous generalizations for the Ernst–
equation.

A. The reality conditions

The systemS50 may be written in the following invariant form:

d~P1R!2* d~P2R!5
P2R

r
„~P2R!* dU2db…, ~68a!

rd* dU2db∧dU5~P2R!dU∧* dU, ~68b!

where

r5 1
2 „g~v !2 f ~u!… and db5n~u!du1m~v !dv. ~69!
6 Jan 2010 to 150.140.170.243. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



the

5774 J. Math. Phys., Vol. 42, No. 12, December 2001 Tongas, Tsoubelis, and Xenitidis

Downloaded 2
Here, we have used the Poincare´ lemma to express the one-formn(u)du1m(v)dv as the exterior
derivative of a scalar complex functionb.

Let us now impose the reality condition,

P52R!, ~70!

on ~68! with ! denoting complex conjugation. Furthermore, in order to make contact with
notation employed in General Relativity,26 let us introduce the complex potentialsE,E by

E5F1 ix5P, E5F1 iv5U, ~71!

where i5A21 andF, F andx, v are the real and imaginary parts, respectively, ofE, E. In the
same fashion, we split the one-form db into real and imaginary part by setting

db5dd1 ida, ~72!

wherea, d are real solutions of the wave equation. Inserting these into Eq.~68a!, the system
separates into a real and an imaginary part:

dF5
F
r * dd2

2F2

r
dF ~73a!

and

dx5
2F2

r * dv2
F
r

da, ~73b!

respectively. Equation~68b! on the other hand becomes

rd* dE2db`dE52FdE`* dE. ~74!

The integrability condition d2F50 of Eq. ~73a! yields

2F~dr2* dd!`dF5dr`* dd, ~75!

which is satisfied for general real functionsF,F of (u,v) if

dd5* dr52ds. ~76!

Consequently,

db5* dr1 ida. ~77!

Then, Eq.~73a! can be integrated to give

F F 5
r

2
, ~78!

by setting the integration constant equal to zero. The integrability condition of Eq.~73b! is
satisfied when Eqs.~74!, ~77! and ~78! hold. In view of ~77! and ~78!, Eq. ~74! becomes

Re~E!„d~r* dE!2 i da`dE…5r dE`* dE. ~79!

Equivalently we may apply the reality condition~70! to the system~57!. This condition is
compatible with the system for general functionE of (u,v) when ~77! holds. In this case, the
system~57! reduces to the following single second order PDE forE:
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Re~E!„d~r* dE!1 i* da`dE…5r dE`* dE. ~80!

Hence, the above considerations lead to the following.
Proposition 2: The conditions

P52R! ~81a!

and

m~v !52r ,v1 i a,v , n~u!5r ,u1 i a,u ~81b!

reduce the system (68) and equivalently the system (57) to

Re~E!„d~r* dE!2 i da`dE…5r dE`* dE, ~82!

Re~E!„d~r* dE!1 i* da`dE…5r dE`* dE, ~83!

respectively, where E andE are related through the involution

FF5
r

2
, dx5

2F2

r * dv2
F
r

da. ~84!

• When da50, Eq. ~82! becomes the Ernst equation for colliding plane pure gravitatio
waves in a flat background. The map given by~84! which connects two solutions (E,E) of
the Ernst equation, is known as theNeugebauer–Kramer involution.27

• When daÞ0, Eq.~82! is the Ernst–Weyl equation for colliding plane neutrino waves acco
panied by gravitational waves. The form of the functiona is specified by the initial profile of
the neutrino waves on the null hypersurfacesu50, v50. After solving Eq.~82! for E, the
neutrino fields and the metric components can be found by quadrature. It should be
tioned here that, in the present case, the spacetime metric is not of the block diagona
and the two Killing vectors characterizing the plane symmetry of the spacetime ar
surface-forming. The map given by~84!, connecting solutions of the two different Ernst
Weyl equations~82! and~83!, may be viewed as ageneralization of the Neugebauer–Kramer
involution.

The considerations in Sec. IV indicate that the solutions (E,E) of the Ernst–Weyl equations
~82!, ~83! also satisfy

R~u,v,E;2r ,v1 i a,v ,r ,u1 i a,u!50 ~85a!

and

R~u,v,E;2r ,v1 i a,v ,2r ,u1 i a,u!50, ~85b!

respectively. Thus, the solution space of the Ernst–Weyl equation is imbedded into the so
space of Eq.~53! for the specific choices ofm(v),n(u) given by ~81b!.

B. Reduction of the auto-Ba ¨cklund transformation

Finding exact solutions of Einstein’s field equations is quite a difficult task. This is mainly
to the nonlinearity of the field equations. Another reason is that the solutions should re
various types of boundary~side! conditions. In stationary axisymmetric spacetimes for exam
the corresponding metric should be asymptotically flat. For colliding wave solutions, on the
hand, the metric must satisfy appropriate junction conditions across the wavefront surfaces.
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fore, solution generating techniques, such as the inverse scattering transform and Ba¨cklund trans-
formations, become invaluable methods in finding exact solutions or determining global prop
of the field equations~for a survey of results see Ref. 28!.

In this section we show how the auto-Ba¨cklund transformation~47!–~49! of the systemS
50 can be reduced to a Ba¨cklund transformation for the Ernst–Weyl equation. Moreover,
establish the relation of this reduction to the well-known Harrison Ba¨cklund transformation29 for
the Ernst equation.

To this end, let us first denote byD the solution space of the systemS50 and byDE,D the
corresponding space of the Ernst–Weyl equation. Then, the auto-Ba¨cklund transformationB,
defined by~47!–~49!, may be viewed as a symmetry transformation inD. In order to construct the
reduced Ba¨cklund transformation for the Ernst–Weyl equation we requireB(DE),DE . This
requirement implies that the new functions should satisfy the systemS50 and conditions~81!.
Following the notation of the previous section, we shall denote in what followsP̃ by Ẽ and Ũ

by Ẽ.
Under the above conditions the auto-Ba¨cklund transformation~47!–~49! takes the following

form:

Ẽ,u5
E2Ẽ

f ~u!2l
„r ,u1 i a,u2~E2Ẽ!E,u…, ~86a!

Ẽ,v5
E!1Ẽ

g~v !2l
„r ,v2 i a,v2~E!1Ẽ!E,v…, ~86b!

~Ẽ2E!~E2 Ẽ!5 f ~u!2l, ~87a!

~Ẽ1E!!~E1 Ẽ!!5g~v !2l. ~87b!

One can now easily verify the following fact. Starting with a pair of potentials (E,E) related as in
~84!, then the system~86!, ~87! delivers a new pair of potentials (Ẽ,Ẽ) which satisfy the same
relation.

In order to establish the connection of the above Ba¨cklund transformation to the one propose
by Harrison, let us first note that in terms of (E,E) the first of Eqs.~84! reads as

~E1E!!~E1E!!52r. ~88!

Then, combining~87a!, ~87b! and ~88! one finds that

U Ẽ1E!

Ẽ2E
U2

5g, ~89!

whereu u stands for the modulus of a complex number andg is defined by

gª
g~v !2l

f ~u!2l
. ~90!

Introducing the functiona via

aª
Ẽ1E!

Ẽ2E
, ~91!

we can write Eq.~89! as
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a a!5g, ~92!

and Eqs.~87!, ~91! as

Ẽ5
g2a

g21
E1

12a

g21
E !, ~93a!

Ẽ5
a

a21
E1

1

a21
E!, ~93b!

respectively. Finally, Eqs.~86! take the following form:

a ,u5a~a21!
E,u

E1E! 1~a2g!
E,u

!

E1E! 1
a

2
~g21!

r ,u2 i a,u

r
, ~94a!

a ,v5~a21!
E,v

!

E1E! 1
a

g
~a2g!

E,v

E1E! 1
a

2g
~g21!

r ,v2 i a,v

r
. ~94b!

The converse also holds. More specifically, let us suppose that a pair of potentialsE,E)
satisfying Eqs.~82!, ~84! is given. Then, the members of the Ricatti system~94! for the auxiliary
function a(u,v) are compatible and can be integrated to yield a solution which satisfies
condition~92!. Moreover, Eqs.~93! deliver a new pair of potentials (Ẽ,Ẽ) which also satisfy the
generalized version of the Neugebauer–Kramer involution. The system~92!–~94! constitutes a
generalization of thesingle Harrison transformationfor the Ernst equation, to which it reduce
when da50. We would like to point out that the above novel construction is purely algebraic
yieldsexplicit expressions for the new potentials. As far as we are aware only implicit expres
for the new potentials occur in the literature. Let it also be noted that if one considers
member of the pair (E,E) separately, then the relations~92!–~94b! must be viewed as an auto- o
hetero-Ba¨cklund transformation, depending on whether da equals 0 or not, respectively. Thi
follows from the fact thatE andE satisfy Eqs.~82! and~83!, respectively, which are identical o
different depending on whether da vanishes or not.

Returning to the considerations of the paragraph preceding the last one, we note that o
to apply the transformation~92!–~94! twice in order to decouple the new potentials. This can
achieved by using the superposition principle~50! in the form resulting by applying the realit
conditions. This form is given by

E35E01
l22l1

E22E1
, ~95a!

E35E01
l22l1

E22E1
. ~95b!

The potentialsEi ,Ei , i 51,2, appearing in these relations are determined by

Ei5
g i2a i

g i21
E01

12a i

g i21
E 0

!,

Ei5
a i

a i21
E01

1

a i21
E0

! .
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Here, theg i ’s are defined by~92! with l replaced byl i and thea i ’s are obtained from the system
~94! by replacingg by g i . Using these expressions, Eqs.~95! reads as

E35E01
~g22g1!~E01E0

!!

g12g22~12g2!a11~12g1!a2
, ~96a!

E35E02
g22g1

a22a1

~12a1!~12a2!

~12g1!~12g2!
~E01E 0

!!. ~96b!

Equations~96! represent the double Harrison transformation and are valid for both cases, da50
and daÞ0.

In the Bianchi commuting diagram given in Fig. 2 one can focus on the auxiliary func
a i ’s instead of the potentials (Ei ,Ei). Then the superposition principle is expressed by the
lowing relations among thea’s:

a12

a21
5

a2

a1
, ~97!

where

a125
1

a1

a1a2~g22g1!1a1g2~g121!1a2g1~12g2!

g12g21a1~g221!1a2~12g1!
. ~98!

VI. REDUCTIONS TO THE PAINLEVÉ TRANSCENDENTS

Similarity reductions of the Ernst equation to Painleve´ transcendents have been of particu
interest for a long time. More recently Schief21 has shown that the Ernst–Weyl equation f
stationary axially symmetric spacetimes@the elliptic analog of Eq.~82!# admits similarity reduc-
tions to Painleve´ III, V, and VI. His reduction procedure to Painleve´ III and V is based on solving
the system of ordinary differential equations~ODEs! resulting from the application of the invari
ance conditions. For the reduction to Painleve´ VI, however, the author resorts to a differe
approach, based on a matrix formulation of the Ernst–Weyl equation, motivated by the Lo
system. In this section, we present a reduction of the hyperbolic Ernst–Weyl equation~82! by a
method which exploits the relation of the latter equation to the RPDE and the straightfo
manner in which the symmetry group of the RPDE leads to Painleve´’s transcendents.

As we have shown,23 the RPDE admits straightforward similarity reductions to Painleve´ III, V,
and VI in full form. This was done by considering the invariant solutions under the optimal sy
of one-dimensional subalgebras of the Lie point symmetries of the RPDE. The link betwee
RPDE and the Ernst–Weyl equation is the systemS50. Specifically, in Sec. IV, it was shown tha
the RPDE may be given in involutive form by system~32! with the choices

FIG. 2. Commuting diagram for the Harrison transformation.
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f ~u!5u, g~v !5v, m~v !5m, n~u!5n. ~99!

Within the above setting, the Ernst–Weyl equation arises from the systemS50 by requiring that

P52R!, m52 1
2 1 ia1 , n52 1

2 1 ia2 , ~100!

wherea1 ,a2 are real constants.
On the basis of the above connection, we shall search for invariant solutions of the E

Weyl equation that follow from imposing conditions~100! on corresponding invariant solutions o
the RPDE. As we shall immediately show, this can best be achieved by first prolongin
symmetries of the RPDE to symmetries of the systemS50. For illustration purposes, we sha
restrict our presentation to invariant solutions that are related to the full Painleve´ V and VI cases,
only. To make the presentation self-contained, we first summarize briefly the Lie point symm
of the RPDE.

The Lie point symmetry group of the RPDE consists of transformations leaving the depe
variables unaffected~base transformations! and transformations acting on the dependent variab
only ~vertical transformations!. The base transformations act on (u,v)PR2 by

~u,v !→~lu1e,lv1e!, lPR1, ePR, ~101!

and the generators are given by the vector fields

]u1]v , u]u1v]v . ~102!

The group of vertical transformations is the most general group of transformations acting l
effectively on a one-dimensional complex manifold and is given by

U→ aU1b

cU1d
, S a b

c dD PSL~2,C!. ~103!

The corresponding generators are the vector fields

]U , U]U , U2]U . ~104!

A. Reduction to Painleve ´ V

The group invariant solutions of the RPDE under the symmetry generator,

]u1]v12mU]U , ~105!

have the form

U~u,v !5S~y!exp„m~u1v !…, y5u2v. ~106!

The prolongation of the vector field~105! in the P andR directions which yields a symmetry o
the systemS50 reads as

]u1]v12mU]U22m~P]P1R]R!. ~107!

This implies that the invariant form of the functionsP andR is

P~u,v !5p~y!exp„2m~u1v !…, R~u,v !5r ~y!exp„2m~u1v !…, ~108!

respectively. Inserting~106!, ~108! into the systemS50 we get the following system of ODEs

~S82mS!~p2r !22m~p2r !2y~p81mp!50, ~109a!
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~S81mS!~p2r !22n~p2r !1y~r 82mr !50, ~109b!

yS912~p2r !S822~m1n!S822m2~p2r !S22m~m2n1my!S50. ~109c!

By a simple differentiation and elimination process applied to system~109!, one ends up with
a fourth order ODE for the functionS, which can be integrated once leading to

y2S~S822m2S2!S-2y2SS8S921y~2yS831SS8213m2yS2S82m2S3!S92yS841m~m22n2

1my!S2S821m2@2~m21n2!2m2y2#S3S81m3~m22n2!S42 ly~S822m2S2!250, ~110!

wherel is the constant of integration. For later use, we note that, using system~109!, the above
first integral can be written in the following remarkably simple form:

2y
~pr !8

~p2r !2 1~m2n!
p1r

p2r
111 l 50. ~111!

Setting

S8~y!

S~y!
5m

11G~y!

12G~y!
, ~112!

Eq. ~110! becomes

PVS G,y;
n2

2
,2

m2

2
,2m l ,22m2D50. ~113!

HerePV(G,y;a,b,g,d)50, with a, b, g andd arbitrary complex parameters, stands for the f
PainlevéV equation, i.e.,

2G91S 1

2G
1

1

G21DG822
1

y
G81a

G~G21!2

y2 1b
~G21!2

y2G
1g

G

y
1d

G~G11!

G21
50.

~114!

Having determinedS in the manner described above, one can return to system~109! to find the
following explicit expressions for the functionsp, r :

p~y!5
yG81nG22~ l 12n1122my!G1 l 1n11

4m S~12G!
, ~115a!

r ~y!5
yG82~ l 1m11!G21~ l 12m1112my!G2m

4m S G~12G!
. ~115b!

At this point it is worth noting that using Eqs.~112!, ~113! and ~115!, one can easily verify
that the functionsW, V defined by

p8~y!

p~y!
5m

W~y!11

W~y!21
,

r 8~y!

r ~y!
5m

V~y!11

V~y!21
, ~116!

satisfy

PVS W,y;
~n11!2

2
,2

m2

2
,2m~ l 11!,22m2D50, ~117a!
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PVS V,y;
n2

2
,2

~m11!2

2
,2m~ l 11!,22m2D50, ~117b!

respectively. Thus, one may consider Eqs.~115! as Bäcklund transformations among the Painle´
V equations~113!, ~117!.

Restricting our considerations to solutions of the Ernst–Weyl equation, we need to
conditions~100! into account. Under these conditions, Eqs.~108! imply that

p52r !, m5m!, ~118a!

while ~111! yields

l 5 l !. ~118b!

Hence, the corresponding similarity solutions of the Ernst–Weyl equation~82! are determined by
the potential

E5S~y!exp„m~u1v !…, y5u2v, ~119!

whereS is given by Eq.~112!. In the latter,G represents a solution of the Painleve´ equation~113!,
with

n52 1
2 1 ia1 , m52 1

2 1 ia2 , l 5 l !, m5m!. ~120!

The analogous similarity solutions of the Ernst–Weyl equation~83! are specified by the
potential

E5p~y!exp„2m~u1v !…, y5u2v, ~121!

where p is determined by the first of Eqs.~116!. In the latter,W stands for a solution of the
Painlevéequation~117a!, with n, m, l , andm satisfying the conditions~120! above.

B. Reduction to Painleve ´ VI

In a similar manner one may construct solutions of the Ernst–Weyl equation from the
levé VI transcendents, i.e., solutions of the ODE,

2G91
1

2 S 1

G
1

1

G21
1

1

G2yDG822S 1

y
1

1

y21
1

1

G2yDG8

1
G~G21!~G2y!

y2~y21!2 S a1b
y

G2 1g
y21

~G21!2 1d
y~y21!

~G2y!2D50, ~122!

where a, b, g, and d arbitrary complex parameters, which will be denoted
PVI(G,y;a,b,g,d)50 in the following.

The solutions of the RPDE which are invariant under the symmetry generated by the
field

u]u1v]v12mU]U , ~123!

have the form

U~u,v !5S~y!~uv !m, y5u/v. ~124!

The prolongation of the vector field~123! in the P, R directions leading to a symmetry of syste
S50 reads as
6 Jan 2010 to 150.140.170.243. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



:

with
der
an be

re

5782 J. Math. Phys., Vol. 42, No. 12, December 2001 Tongas, Tsoubelis, and Xenitidis

Downloaded 2
u]u1v]v12mU]U1~122m!~P]P1R]R!. ~125!

This implies that the invariant form of the functionsP andR is

P~u,v !5p~y!~uv !2m1 1/2, R~u,v !5r ~y!~uv !2m1 1/2, ~126!

respectively. Inserting~124!, ~126! into the systemS50 we obtain the following system of ODEs

y1/2~mS2yS8!~p2r !21„m1~m2 1
2!~y21!…p2mr1~y21!yp850, ~127a!

y1/2~mS1yS8!~p2r !21„ny2~m2 1
2!~y21!…r 2nyp1~y21!yr850, ~127b!

~12y!y2S912y1/2~p2r !~m2S22y2S82!1y„m1~n21!y11…S81m„m2ny1m~y21!…S50.
~127c!

Through a lengthy but straightforward process of differentiation and elimination one ends up
a fourth order ODE for the functionS. The latter may be integrated once leading to a third or
equation which is omitted because of its length. We note, however, that this first integral c
written in the following simple form by using system~127!:

~122m!
y221

~p2r !2 ~pr !822y
~y21!2

~p2r !2 p8r 81
~2m21!2

2~p2r !2 S p21r 22
11y2

y
pr D

1~m2n!~122m!
p1r

p2r
1

1

2
~m2n!25 l , l constant. ~128!

Substituting

S8~y!

S~y!
5

m

y

y1G~y!

y2G~y!
~129!

into the omitted third order ODE forS, we find thatG satisfies the full Painleve´ equation,

PVIS G,y;
n2

2
,2

m2

2
,l ,

124m2

2 D50. ~130!

Once S is determined by solving the differential equations~129!, ~130!, one can find the
functionsp, r algebraically using system~127!. The explicit expressions for these functions a
given by

p~y!5
y2~y21!2G821GG2~G21!G81Ai~y,m,n!Gi

8 m ~2m21! y1/2~y2G! ~G21! G S
, ~131a!

r ~y!5
y2~y21!2G821GyG~G21!G81Bi~y,m,n!Gi

8 m ~2m21! y1/2~y2G! ~G21! G S
, ~131b!

where summation over the repeated indexi 50,...,4 isunderstood and the coefficientsAi , Bi and
G are given by

A0~y,m,n!52m2y2,

A1~y,m,n!5y@~m222l 1~n22m11!2!y12m2#,
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A2~y,m,n!52~n22m11!2y222„m222l 1~n22m11!2
…y1~122m!22m2,

A3~y,m,n!52~n22m11!2y1m212n222l 2~n12m21!2,

A4~y,m,n!52n~n24m12!,

Bi~y,m,n!5y2A42 i~y21,n,m!, i 50,...,4,

G52~2m21!y~y21!.

As in the previous case, one may use Eqs.~129!, ~130! and~131! to verify that the functionsW,
V defined by

p8~y!

p~y!
5

122m

2y

y1W~y!

y2W~y!
,

r 8~y!

r ~y!
5

122m

2y

y1V~y!

y2V~y!
, ~132!

satisfy

PVIS W,y;
~n11!2

2
,2

m2

2
,l ,2m~12m! D50, ~133a!

PVIS V,y;
n2

2
,2

~m11!2

2
,l ,2m~12m! D50, ~133b!

respectively. Hence, one may view Eqs.~131! as defining Ba¨cklund transformations among th
PainlevéVI equations~130! and ~133!.

Taking into account conditions~100!, one is restricted to solutions of the Ernst–Weyl equ
tion. Equations~126! imply that

p52r !, m5m!, ~134!

while Eq. ~128! gives

l 5 l !. ~135!

Hence the invariant solutions of the Ernst–Weyl equation~82! are of the form

E5S~y!~uv !m, y5u/v, ~136!

whereS is given by integrating~129! andG satisfies~130! with

n52 1
2 1 ia1 , m52 1

2 1 ia2 , l 5 l !, m5m!. ~137!

Last, the similarity solutions of the Ernst–Weyl equation~83! have the form

E5p~y!~uv !2m1 1/2, y5u/v, ~138!

wherep is given by integrating the first equation of~132! andW satisfies~133a! with n, m, l , and
m given by ~137!.

VII. PERSPECTIVES

We presented a two-dimensional reduction of the ASDYM equations which leads to a
system of integrable equations. This system incorporates the well-known Ernst–Weyl equat
well as a significant generalization of the fourth order hyperbolic equation proposed by N
et al.9 recently as the generating PDE for the KdV hierarchy. We have also constructed a La
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and an auto-Ba¨cklund transformation for the above system and similarity solutions based o
PainlevéV and VI transcendents. Our reduction scheme unifies many aspects of integrabi
the Ernst equation, like the Ernst–Hauser deformation problem, the Neugebauer–Kramer
tion, the single and double-Harrison Ba¨cklund transformations, and gives analogous general
tions to the Ernst–Weyl equation. All these aspects follow algorithmically from the new sy
and the associated Lax pair, by imposing purely algebraic and compatibility conditions. More
our reduction scheme allows for an easier construction of solutions to the Ernst–Weyl eq
related to Painleve´ transcendents by Lie group techniques. Using the reduction scheme pres
in this paper and higher-dimensional gauge groups thanGL (2,C), one should obtain integrabl
systems which incorporate the Ernst–Maxwell–Weyl equations, or even more general inte
equations describing the interaction of the gravitational field with other sources.30,31
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