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A new system of integrable nonlinear equations of hyperbolic type, obtained by a
two-dimensional reduction of the anti-self-dual Yang—Mills equations, is presented.
It represents a generalization of the Ernst—Weyl equation of General Relativity
related to colliding neutrino and gravitational waves, as well as of the fourth order
equation of Schwarzian type related to the KdV hierarchies, which was introduced
by Nijhoff, Hone, and Joshi recently. An auto-&dund transformation of the new
system is constructed, leading to a superposition principle remarkably similar to the
one connecting four solutions of the KdV equation. At the level of the Ernst—Weyl
equation, this Beklund transformation and the associated superposition principle
yield directly a generalization of the single and double Harrison transformations of
the Ernst equation, respectively. The very method of construction also allows for
revealing, in an essentially algorithmic fashion, other integrability features of the
main subsystems, such as their reduction to the Pairttevescendents. @001
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[. INTRODUCTION

The main relationship between the anti-self-dual Yang—Mills equatia®&DYM) and inte-
grable systems of partial differential equatidfDE9 stems from the fact that most well-known
integrable systems arise as reductions of the ASDYM equations, or higher-dimensional generali-
zations of them, by imposing appropriate symmetry conditfon&e adopt that saying a system of
equations is integrable means that the equations under consideration can be linearized directly, or
they can be expressed as consistency conditions for the solution of a linear overdetermined system
of PDEs of a certain typélLax pain.

Of particular interest are the two-dimensional reductions, which are constructed using specific
two-dimensional subgroups of the full group of conformal isometries of the four-dimensional
complex Minkowski space. A prime example of this kind of reduction is provided by the Ernst
equation of General Relativity, which forms the basis of stationary axisymmetric, cylindrical or
plane symmetric solutions of the Einstein equatibi’sA comprehensive review of two-
dimensional reductions of the ASDYM equations is presented in Ref. 8, where a general class of
a two-dimensional group of conformal transformations, not necessarily translations, is considered.
In all of the above reductions to the Ernst equation, at least one of the two conformal Killing
vectors(CKVs) has a nontrivial lift to the twistor space and the formulation is adapted to the Yang
matrix J.

In the present paper we consider, instead, a two-dimensional reduction of the ASDYM equa-
tions based on a pair of commuting CKVs which are left rotations and leave-henes through
the origin invariant. It leads to a quite general system of integrable equations of hyperbolic type in
two independent variables, which represents a generalization not only of the Ernst—Weyl equation
for coupled gravitational and neutrino waves in General Relativity, but of the fourth order equation
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of Schwarzian type introduced by Nijhoff, Hone, and J3shtently, which is related to the KdV
hierarchy.

More specifically, our reduction scheme usek(2,C) as the gauge group and connection
potentials that are matrices of unit rank. The general background, as well as the specific features,
of the reduction process are presented in Sec. Il. In the same section we present the end result of
the reduction. It consists of a system of equations which, written in an invariant form, reads as

follows:
P-R
d(P+R)—*d (P—-R)= T((P—R)*du—dﬂ), (13
pd*dU —dg/\dU=(P—R)dU/\*dU, (1b)
dx*dp=0, dxdB=0. (1o

The complex functiondJ, P, R depend on the real coordinatas v. The functionsp, B are
arbitrary real and complex solutions of the wave equation, respectively. The operé&oa
two-dimensional Hodge duality operator acting on one-forms as

*du=du, *dv=-—dv. (1d)

The above system of equations can also be considered as the compatibility or integrability
condition of a linear pair of equations parametrized by a complex parameter. This Lax pair of
equations is presented in Sec. lll, where it is shown that it can be derived algorithmically from the
Lax pair of the ASDYM equations. In the same section we derive an auth®ad transforma-
tion of system(1), using the above Lax pair and the standard Gauss decompositi®h (&,C).

The restrictions

p=3(v—u), dB=ndu+mdv, n,m complex parameters, (2

of the functionsp and B, reduce systenil) to a potential form of the fourth order equation of
Schwarzian type introduced recently by Nijheff al.® which was called a regular partial differ-
ential equatioRPDE) by the above authors. Its importance stems from the fact that it is directly
associated with the KdV hierarchies. The exact relation of the sy&tetn the RPDE, as well as
to the well-known Euler—Poisson—Darboux equation, is the object of Sec. IV. In the same section,
we present a new family of fourth order equations which contains the RPDE among its members.
Imposing appropriate conditions on the variabesR and B, on the other hand, turns the
system(1) into the Ernst—Weyl equation,

Re(E)(d(p* dE) — i dalldE) = p dECH* dE, 3)

for colliding neutrino waves accompanied by gravitational waeghe Ernst equation for col-
liding pure gravitational waves in a flat background is also obtained in this way, by applying
further restrictions or8. The Neugebauer—Kramer involution arises naturally from the conditions
imposed on systenil) and defines a map connecting the real components of two Ernst—Weyl
equations.

The relation of systen(l) to the Ernst and Ernst—Weyl equations is described in full detail in
Sec. V. Section VI, on the other hand, is devoted to another integrability feature of the Ernst—Weyl
and RPDE subsystems of the systéi)y) namely their reduction to Painleweanscendents. More
specifically, in Sec. VI we show how the relation between the Ernst—Weyl and the RPDE equa-
tions, established by their being members of the same sy&tgnfacilitates the construction of
group invariant solutions of the former based on the Painlexnescendents from similar kinds of
solutions of the latter equation.
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The final section of the paper consists of the Perspectives, where an overall evaluation of the
results obtained in the main body of the paper is presented, along with the description of various
avenues for expanding the above results.

II. REDUCTION OF THE ASDYM EQUATIONS

In this section we present the first main result of this paper. It consists of the new integrable
system given by32), which is derived by a specific two-dimensional reduction of the ASDYM
equations.

In order to make the presentation of our result self-contained, we first summarize in Sec. Il A
the general framework of the ASDYM equations. Then, in Sec. II B, we give the details of the
reduction scheme that leads to the new integrable system of equations mentioned above.

A. General considerations

Throughout this section we shall follow the notation and conventions of Refs. 8, 1M Let
=(CM denote the four-dimensional complex Minkowski spacetime @nal Lie group, called the
gauge group, ang the corresponding Lie algebra. In the finite-dimensional ¢asmn be taken
to be GL(N,C).

Let P(M,G) be a principal bundI€,U;} an open covering dfl ands; a local section defined
on eachU; . The Lie algebra valued one-forme g® T* P, called the connection one-form, and
the two-formQ e g@ Q2(P), called the curvature two-form, satisfy the Cartan structure equation,

Q=dpo+ w/N\w,

where @ is the exterior derivative oR. The g-valued one-form(gauge potential®; is defined
locally as the pull-backb;=s’ w of the connection one-forrw and theg-valued two-form F,
also called curvature two-form @¥ang—Mills) field strength, is defined by, Fs* Q. If s, s’ are
local sections ovet such thats’(p)=s(p)g(p), peU, ge G then the corresponding local
one-forms® and®’ are related by

®'=g '®g+g tdg, (4

where d is the exterior derivative dv. The potentialsb and®' are said to be related through a
gauge transformation and they are regarded as being equivalent. From the Cartan structure equa-
tion it follows that the curvature F can be expressed in terms of the gauge poterasl

F=d®+dND. (5
Under gauge transformationid) the local two-forms F and 'Fare related by
F =g 'Fg.
In double null coordinatex®=(w,z,W,7) the metric onCM is given by
ds?=2(dz dz— dw dW). (6)
In this coordinate system the gauge potenfiamay be written as
&=, dw+d,dz+ Dy, dW+ d3 dZ, (7

where the components agevalued functions.® is said to be anti-self-dual iff F is Hodge
anti-self-dual with respect to the metti6), i.e.,

F=—*F. ®

Choosing an orientation, conditidB) is equivalent to the ASDYM equations,
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;P = 3y ®,+[D,,®,]=0, (93
Pg— Iy Pz + [Pz, Py]=0, (9b)
9,03— =D ,— 9, P+ 05D+ [ D, , D3] - [D,,, P;]=0. (90
These equations are the integrability conditions of the overdetermined linear sfisigm
pair),lZ,l?:
O+ Py, —L(+D3))P =0, (109
(0, +P,— L(95+ D))V =0, (10b

whereW (x?;¢) is aG-valued function of the spacetime coordinates and the spectral parameter

B. The reduced equations

For a two-dimensional reduction of the ASDYM equations, one first chooses a two-
dimensional subgroupl of the full group of conformal isometries of the Minkowski space. Then,
one can reduce the number of the dependent variables by imposing algebraic constraints on the
components ofb, in a way which is consistent with the equations.

A general class of two-dimensional reductions is considered in Ref. 8 whergenerated by
two conformal Killing vectors:

X=ad,,+bd,+adg+bds, Y=cd,+dd,+Tds+dds, (11)

wherea, b, ¢, d andd, b, ©, d depend only onw, z and W, Z, respectively. Both of the
quadrupleg X,Y,dy,,d,} and{X,Y,d5,d} should be linearly independent and the reduced metric
on the orbits of H should be nondegenerate. These conditions assure a compatible reduction.
The most straightforward reduction of this form arises when the corresponding algébra

Abelian We assume that this is the case and we further limit the choices of the compon&nts of
andY by demanding thaX andY leave invariant thex-planes through the origitthe meaning of
this requirement will become clear lat@nd are not a combination of translations. It turns out that
these requirements are satisfied only by the commuting null CKVs,

X=wé,+Zd, Y=2zd,+Wdy. (12

The invariant spacetime coordinates on the orbits of the two-dimensional group of conformal
transformations generated by Y are arbitrary functions of the fractiongz, z/W. Without loss
of generality we choose the coordinates of the space of c8ditsbe
w z
7’ W

u= , (13

v=

and restrict ourselves to the ultrahyperbolic slice’df where the spacetime coordinates are real.
The metric induced oi% is conformal to two-dimensional Minkowski spacetime in null coordi-
nates, i.e.,

2
ds?’=——du dv. (14
v—u

The invariance conditions of the potentilwith respect to the algebra generatedyy are

EX(D = L:Y(D = 0, (15)
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where Ly denotes the Lie derivative aloriy Under these conditions, one can write the compo-
nents of the gauge potentidl in the form

1 1 1. 1.
(I)W=wA(U,U), (I)ZZEB(U,U), @WZ\T—VA(U,U), (DEZ,EB(U,U). (16)

We choose to work with the invariant gauge whé&randB become the Higgs fields of and Y,
respectively. This means thAtandB are contractions of the invariant gauge poterdiakith the

vector fieldsX andY, respectively, i.e.A=XJd, B=YJ®d. In this gauge one can p#=B
=0, whereupon the ASDYM equatiori8) become

vB,—UA,+[B,A]=0, (173
B,-A,=0. (17b
Equation(17b) implies the existence of a matrix functid&(u,v) such that
B=K,, A=K,, (18
and hence Eq(1739 becomes
(v—wK ,+[K,,K, ]=0. (19
The remaining gauge freedom &—g~*Ag and B—g 'Bg or, equivalently,K—g *Kg+c
whereg, ¢ constant matrices.

Alternatively, one can look atl7a as a sufficient condition of the existence of the matrix
function J such that

A=—-0J" 1, B=—ul1,. (20)
Then(17b) takes the following form:
(U ), — (w31, ,=0. (21)
Introducing the functiong, o by
p=3(v—u), o=3z(v+u), (22)
one can now write Eg(19) in an invariant form, namely
p dxdK — dKA\dK =0. (23)
In a similar fashion Eq(21) takes the coordinate free form,
d(pd *dd)=d(eJ 1 dd). (24)

From the way the coordinates ) were introduced one sees that a more general coordinate
system is obtained via the coordinate transformation

u—f(u), v—g(v), (25

i.e., by relabeling the null coordinates,{). Within this more general setting it follows that

p=3@)—f(w), o=3()+f(u), (26)
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and the functiong, o may be invariantly defined as conjugate solutions of the wave equation
dxdp=0.
Now, Eq.(17) imply that

ay(trA¥)=g,(trBX)=0, wherek=1,2,...N—1. (27)
Hence
trAk=my(v), trBX=n(u). (28

To reduce the number of the dependent variables we restrict to the caseNvh&randA,B are
matrix functions with

rankA=rankB=1. (29)
With these algebraic constrain®s, B may be written as

% m(v)—RQ Q)
R(m(v)-RQ) RQ/’

(30

(n(u)—PS S
P(n(uy—PS PS/’

whereP, Q, R, S are complex functions ofu(v). InsertingA andB given by(30) into the matrix
equation(17h), one finds that the upper right element gives

Q,U:S,U 1 (31)

which implies the existence of a functid such thatQ=U , andS=U ,. In virtue of these
relations, Eq(179 yields the following system of PDEs:

(9(v)=f(u)P ,=(R=P)(M(v)+(P=R)U ), (329
(9(v) = f(U)Ry=(R=P)(n(u) = (P=R)U ,), (32b)
(9(v)— fF(U)U y,=m(v)U ,—n(uU , +2(P—R)U U , . (320

This system will be denoted by
3 (u,v,U,P,R;m(v),n(u))=0 (33

in the following. We close this section by pointing out that the remaining equation of sy&®@m
namely Eq.(17D), is trivially satisfied wher(33) holds.

Ill. THE REDUCED LAX PAIR AND AN AUTO-BA CKLUND TRANSFORMATION

Linear (Lax pairg and nonlineanBacklund transformationsdeformation problems are in-
valuable techniques for generating solutions of integrable equations. As a matter of fact these
problems are so interrelated that one can in general derieklBad transformations from the
corresponding Lax paifsee, for example, Refs. 14, )15

Most of the well-known integrable equations in two independent variables, such as the KdV
and the sine-Gordon equations, admit a Lax pair of the form

dv=QW, (34

whereWV belongs inSL(2,R) and(} is asl(2,R)-valued one form. The associated equation arises
from the integrability condition & = Q0 and the particular way the independent and dependent
variables enter intd). Using the lwasawa decomposition 8£(2,R) for ¥, one may construct a
Backlund transformation associated with the given PDE.
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The systen® =0 also admits a Lax pair of the forig34). It can be derived algorithmically
from the Lax pair(10) of the ASDYM equations by applying the invariance conditiéns

These conditions imply tha¥ depends only on the invariant coordinatesv and the spectral
parameter. Taking into accountl16) and puttingA=B=0, we find that Eqs(10) reduce to

1 .
‘I’]usz\P, (36@
W —;Mf 36b

TS (36b

where we have sek=—¢"1. It is now easily verified that the integrability conditic# ,
=¥ ,, leads to% =0. This means that Eq$36) constitute a Lax pair for the systeb=0.

At this point it is worth noting that usin¢l8) and (26), the Lax pair(36) may be written in
an invariant form as

(o—A—p*)d¥=dK ¥, (379
where
(o—=N+p*)
— \N— D* -1
(o—=N—p*) (o= p2 (37b

We point out that the linear systef87), or equivalently(36), includes the Lax pair used by Hauser
and Ernst in solving the initial value problem for colliding plane gravitational wates.

We are now ready to construct ad&dund transformation of the systel= 0, using the Lax
pair (36). To this end, we generalize the technique employed in the case WhergL(2,R) by
considering the Gauss decompositionGif (2,C).8 It allows us to write the spectral potentid
in the form

Y=L"1T, (39

whereT is an upper triangular matrix ard is a lower triangular one of the form

1 0
L= o 1) (39
Substituting(38) into the Lax pair(36) we obtain the following linear system for the matrix
function T:
T, =L L+ ! LBL™ ! (409
o o f(u)—A\ '
T, T =L, ,L '+ LAL™L, 40b
,U ,U g(l))_)\ ( )
The lower left elements of the the above system lead to the following Riccati system for the
function U:
U (n(u)—(P=T)U ), (419

Ye=tm=x
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U —_
vog(v)—A

The integrability condition of(41) is satisfied if the systemt, =0 holds. In other words(41)

defines a Beklund map for the syster =0. Using such a map, one may construct an auto-

Backlund transformation for the system under consideration in a manner presented in Ref. 14.
More specifically, solving Eqg41) for the derivatives ofJ we obtain

(m(v)—(R-0)U ). (41b)

1 ( f(u)—\ )
U,=——| n(uy-——0 |, (423
P-U P-U
U’U:% m(u)—g(v):hﬁ,v). (42b)
R-U R-U

When Eqs(32a), (32b) and(42) are satisfied, the integrability conditiah ,,=U ,, implies that
U satisfies the following equation:

f(u)—A 3 g(v)—A

(F(W)=g()U ,=n(w)U ,—m©)0 ,+2| — —
U-—"P U—R

U.0,. (43)

If not stated otherwise, we will assume tha# R in what follows. The particular cade=R will
be considered separately in the next section.
Equation(43) takes the form

(f(w)-g(w)U ,=n(wl ,-mv)0,-2(P-RU U, (44)
by introducing
P=w- f(Nu)_)\, R=W- g(f)_)\, (45)
U—P U—R

where W=W(u,v) is an auxiliary function. Equatiori44) is none other than Eq.32¢ with
(U,P,R) replaced by U,P,R). It suffices to determin&V in such a way that the functions
(U,P,R), defined by(41) and (45), satisfy 3(u,v,U,P,R)=0 whenevers.(u,v,U,P,R)=0
holds. This requirement and the differential consequencéd®fresult in

w=u, (46)

up to a nonsignificant constant of integration. In conclusion, we have established the following.
Proposition 1: The algebro-differential system

U,u:f(u)—_)\(n(u)_(P_U)U,u)! (474
U,v:m(m(v)—(R—U)U,v), (470
(U-P)(U-P)=f(u)—\, (48)
(U-R)(U-R)=g(v)—\, (49
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(PI,R17U1)

(Py, Ry, Up) (Ps, R3,Us)

(P2, Ra,Us)

FIG. 1. Bianchi commuting diagram.

constitutes an auto-B&lund transformation for the systek= 0.
By purely algebraic procedures Proposition 1 leads to the following permutability theorem.
Permutability theorem: Let (U;,P;,R;), i=1,2, be a solution of the system (32432c),
generated by means of the &dund transformation (47(49) from a known solutiofU,Py,Ry)
via the Baklund parametersh; and \,, respectively. Then there exists a new solution
(U3,P3,R3) which is given by

(Ug—Up)(Uy—U)=N—\q, (508
(P3—Po)(P2—P1)=Ny— Ay, (50b)
(Rs—Ro)(Ra—Ry)=Ny— Ay, (500

where(U3,P3,R3) is constructed according tbig. 1.

IV. NEW AND OLD EQUATIONS RELATED TO THE SYSTEM 3,

Many physically interesting integrable equations arise from the sy&ten® by imposing
further algebraic constraints on the independent and the dependent variables. This is illustrated in
the following sections in terms of a new family of fourth order equations, which represents a
generalization of the RPDE introduced by Nijheffal® recently, the RPDE itself and the well-
known Euler—Poisson—Darboux equation. The Ernst—Weyl equation is also contained in the sys-
tem3 =0 and is presented thoroughly in the next section.

A. The generalized RPDE

The systen® =0 leads to a fourth order PDE for the functih solely in the following
manner. First, one may solve E@2¢ for the differenceP —R to obtain

Uy _D(U)  m)
U, U, U, )

P—R=A[U]:=% 2p (51

wherep is given by(26). Taking the partial derivative of both sides @f1) with respect tau and
using Eq.(32b), we arrive at an expression fé, involving the derivatives o) only. The latter
expression an@32g form a linear first order system fd®? which takes the following form:

A
P,u: - Z(n(u)_AU,u)+auA,

A
Po=—5-(m()+.AU,).
' 2p '

The compatibility conditiorP ,,,=P ,, leads to the equation
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2

A A A? A
Ayl 9, A+ 7u,v+m(u); +d,| A+ TU,u_”(U)_ =0. (52

p

This equation, when written out explicitly, reads as

p,U U,UU U,UU

U,UUUUZU,UUU<_7+ U,v + U'u)+U,UUv

n(u)z U,zv + p,U U,uv U,2Uv +U m(U)2 U,2U + p u U uv Uzuv
T T VIV R 7 VA N VIV
n(u?u, m(v)? U,

- 8—p3 U_'LI(p,UU,U_p,UU,U—’—ZpU,UU)—f— 8—p3 U_'U(p,UU,U_p,UU,U_ZpU,UU)

1 2
+—U (53

pu pm) n(un’(u) U3 m(v)m’(v) U%,
2P NEETEE - -

+ .
U, U, 4p° U, 4p° U,

This is a new integrable equation which generalizes the RPDE, as it will be clear from the
following section. It will be referred to as the generalized RAGIRPDB. In order to clarify its
relation to the syste =0, we first introduce a shorthand notation whereby (B8) is written in

the form

R(u,v,U;m(v),n(u))=0. (54)

In a manner to be explained shortly, one is led to similar equations for the fun&idRsstarting
from the systen® =0. More specifically, these functions satisfy the fourth order equations

R(u,v,P;m(v),n(u)—2p ,)=0, (55
and
R(u,v,Rym(v)+2p,,n(u))=0, (56)

respectively. Thus, it becomes clear that the systea0 represents an involution of a triad of
GRPDEs. The members of this triad differ only by specific changes in the parameter functions
m(v) andn(u).

Returning to the derivation of Eq$55), (56), let us first note that one may eliminate the
derivatives ofU from the systen® =0 by solving(328 and(32b) for U , andU ,, respectively.
Using compatibility conditions an(B2¢), one then ends up with the following system fr R:

m(v) b4 n(U)—2p,uP

2, Put 5P, (579

Puw= P.P,+

P-R

2 _m(v)+2p’UR _n(u)R

“R_p RuRo 2 w” 3, Re (57b

Ruo

It is now a matter of straightforward, but lengthy, calculations to decouple the above system and
arrive to Eqs.(55), (56) for P andR, respectively.
At this point, it is worth noting that Eqg57) may be combined to yield

(pSSU),v+(pSS,v),u+T,US,U+T,US,u:0! (58)
where

=0+ f3, (59a
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andS is a 2x2 matrix defined by

PtR -2
2PR —(P+R)

1

SSRop

. (59b)

The matrix equationi58) represents a complexified hyperbolic version of the stationary Loewner—
Konopelchenko—Rogerd KR) systeni® proposed by Schiéf as a 2<2 real matrix representa-

tion of the Ernst—Weyl equation in stationary, axisymmetric spacetimes. It should be pointed out
that LKR systems have proven to be a repository of mathematically and physically interesting
integrable equations in-21-dimensions, including a-21-dimensional Ernst-type equation, in-
troduced by Schief recentfy.

B. The RPDE
By choosing
f(uy=u, gw)=v (603
and
m(v)=m, n(u)=n, (60b)

wheren, m are complex parameters, E®3) becomes

1 +U,vv+U,uv> UUUU( lu+U,uu U,uv
' v

u—v ' U, U, UJ,*'U,U)_U'uuU

U
,UU U‘UU'U

U,UUUU = U,UUU(

+Uuu(n—22U—§’— 1 u,u,,_u?;v) va( mzzu_zu+ 1 U,uU_U?;U

l(u-v)c Uy u-ov Uy, Ug A (u-v)c U, u-v U, U
n? . 2 .

+—32(u—v) U_:L](U,U+U,v+2(v_u)u,uv)_WU_ZU(U,U‘FU,:JWLZ(U_U)U,UU)

+——1——U2<JL— 1), (61)

2(u—v) iU, U,

which is the RPDE introduced by Nijho#t al® recently. Its importance stems from the fact that
it is a generating equation for the whole hierarchy of the KdV equation. We presented several
aspects of the integrability of the RPDE in Ref. 23.

C. The EPD equation
By choosing

P=R, (62
and referring to Eqs(329), (32b), we find that
P=c, c¢ constant. (63)

Without loss of generality we set=0. This can be achieved by performing a gauge transforma-

tion onA, B by g= (,1c f), whereupon one obtains equivalent Higgs fields with R=0. Within
this setting, the syste =0 reduces to a single linear, second order PDEUor

U,uv: (n(u)U,v_m(U)U,u)a (64)

o
f(u)—g(v)
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which is known as th&uler—Poissor-Darboux(EPD) equation. From this point of view, the EPD
equation may be considered as a linearization of the sy3terf.

The substitutiony=U ~* transforms the Riccati equatioi4l) into the linear system,

n) u,

TSR e, (653
m(v) U,

o= pt - (65b)

CUg) =N go) N
It can be easily verified that the integrability conditibh,,=U ,, and the systeni65) lead to

1
lﬂ,uﬁm(n(u)lﬂ,v—m(v)lﬂ,u)- (66)

A comparison of this with Eq(64) shows that the syster(65) represents an auto-Bdund
transformation for the EPD equation. The linearity of the same systehiridicates that it is also
a Lax pair for the EPD equation.

RestrictingU(u,v),m(v),n(u) to be real functions of their arguments and choosing

n(u)=-3f'(u), mv)=-39'(v),

Eq. (64) becomes
Pu Py 1
20 % ZHU,F —EU =0, p=5(9()— (W), (67

This particular form of the EPD equation governs the collision of two plane gravitational waves
with collinear polarizatiort* in the context of Einstein’s General Relativity. The reduced Lax pair
(65) becomes the Lax pair used in Ref. 25 for solving the corresponding initial value problem.

V. REDUCTION TO THE ERNST-WEYL EQUATION

One of the most extensively studied problems in General Relativity is the collision of two
plane gravitational waves. The Ernst—Weyl equation describes the collision of neutrino waves
accompanied by gravitational wav€sThe latter equation, which reduces to the famous Ernst
equation when the neutrino fields vanish everywhere, arises naturally by applying appropriate
reality conditions to the systelh=0. Our reduction scheme unifies many aspects of the integra-
bility of the Ernst equation like the Hauser—Ernst Lax pair, Neugebauer—Kramer involution, and
the Harrison Beklund transformation and gives analogous generalizations for the Ernst—Weyl
equation.

A. The reality conditions

The systen® =0 may be written in the following invariant form:

d(P+R)—*d(P—R)=?((P—R)*du—dﬂ), (68a
pai+dU — dBOdU = (P— R)dU T+ dU, (68b)

where
p=3(g(v)—f(u)) and B=n(u)du+m(v)dv. (69)
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Here, we have used the Poincégema to express the one-fomiu)du+ m(v)dv as the exterior
derivative of a scalar complex functigh
Let us now impose the reality condition,

P=-R", (70)

on (68) with x denoting complex conjugation. Furthermore, in order to make contact with the
notation employed in General Relativiy/jet us introduce the complex potentidise by

E=F+ix=P, E=F+iow=U, (71

where =y —1 andF, F andy, o are the real and imaginary parts, respectivelyoE. In the
same fashion, we split the one-forng éhto real and imaginary part by setting

dB=ds+ida, (72

wherea, & are real solutions of the wave equation. Inserting these into(@&Rgp, the system
separates into a real and an imaginary part:

F 272
dF= —*dé— —dF (739
p p
and
277 F
dy=—*dw——da, (73b
P P

respectively. Equatiof68b) on the other hand becomes
pdx dE — dB/\dE = 2. FdE/\* dE. (74)
The integrability condition #F=0 of Eq. (733 yields
2F(dp—*ds)NdF=dp/\*d5, (75
which is satisfied for general real functiofsF of (u,v) if
dé=+*dp=—do. (76)
Consequently,
dg=*dp+ida. (77

Then, Eq.(73a can be integrated to give
P
FF = X (79

by setting the integration constant equal to zero. The integrability condition of(/Ep is
satisfied when Eqg74), (77) and(78) hold. In view of (77) and(78), Eq. (74) becomes

Re(E)(d(p*dE) —i da/\dE)=p dE/\* dE. (79)

Equivalently we may apply the reality conditidii0) to the system(57). This condition is
compatible with the system for general functiérof (u,v) when(77) holds. In this case, the
system(57) reduces to the following single second order PDE&or

Downloaded 26 Jan 2010 to 150.140.170.243. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 42, No. 12, December 2001 A new family of integrable nonlinear equations 5775

Re(E)(d(p* dE) +i* da/\dE) = p dEA*dE. (80)

Hence, the above considerations lead to the following.
Proposition 2: The conditions

P=-R* (819
and
mv)=-p,+ia,, nu)=p,+ia, (81b
reduce the system (68) and equivalently the system (57) to
Re(E)(d(p*dE)—i da/\dE)=p dE/A*dE, (82
Re(&)(d(p*dE) +ixdaNdl)= p dEA*dE, (83
respectively, where E anfl are related through the involution

277 F
*dow——da. (84)
p p

_P _
fF_za dX

« When &a=0, Eqg. (82) becomes the Ernst equation for colliding plane pure gravitational
waves in a flat background. The map given(B#) which connects two solution€E(E) of
the Ernst equation, is known as theugebauerKramer involution®’

* When ca# 0, Eq.(82) is the Ernst—Weyl equation for colliding plane neutrino waves accom-
panied by gravitational waves. The form of the functais specified by the initial profile of
the neutrino waves on the null hypersurfaces0, v =0. After solving Eq.(82) for E, the
neutrino fields and the metric components can be found by quadrature. It should be men-
tioned here that, in the present case, the spacetime metric is not of the block diagonal form
and the two Killing vectors characterizing the plane symmetry of the spacetime are not
surface-forming. The map given K4), connecting solutions of the two different Ernst—
Weyl equationg82) and(83), may be viewed as generalization of the Neugebaud¢ramer
involution

The considerations in Sec. |V indicate that the solutidBst] of the Ernst—Weyl equations
(82), (83) also satisfy

R(u,v,E;—p ,+ia,,p,tia,)=0 (853
and
R(u,v,&—p,+ia,,—pytia,)=0, (85h)

respectively. Thus, the solution space of the Ernst—Weyl equation is imbedded into the solution
space of Eq(53) for the specific choices ah(v),n(u) given by(81b).

B. Reduction of the auto-Ba “cklund transformation

Finding exact solutions of Einstein’s field equations is quite a difficult task. This is mainly due
to the nonlinearity of the field equations. Another reason is that the solutions should respect
various types of boundar§side conditions. In stationary axisymmetric spacetimes for example,
the corresponding metric should be asymptotically flat. For colliding wave solutions, on the other
hand, the metric must satisfy appropriate junction conditions across the wavefront surfaces. There-
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fore, solution generating techniques, such as the inverse scattering transformcikhch&arans-
formations, become invaluable methods in finding exact solutions or determining global properties
of the field equationgfor a survey of results see Ref.)28

In this section we show how the auto-&dund transformatior(47)—(49) of the systen,
=0 can be reduced to a Bdund transformation for the Ernst—Weyl equation. Moreover, we
establish the relation of this reduction to the well-known HarrisonkBand transformatiof? for
the Ernst equation.

To this end, let us first denote Y the solution space of the syst&ir=0 and byDgC D the
corresponding space of the Ernst—Weyl equation. Then, the auddiBa transformatiorB,
defined by(47)—(49), may be viewed as a symmetry transformatiorbinin order to construct the
reduced Beklund transformation for the Ernst—Weyl equation we req(eDg) CDg. This
requirement implies that the new functions should satisfy the sy&terfi and conditions(81).
Following the notation of the previous section, we shall denote in what follevisy € and U
by E.

Under the above conditions the autogRmind transformatiori47)—(49) takes the following
form:

- E-E

Ev= gy Pt a,—(E-E)Ey), (863
E =£(p —ia,—(&+E)E)), (86b)
VT gy —x Pl 0
(E-&)(E=8)=f(u)—x, (873
(E+&)E+E)=g(v)—N\. (870

One can now easily verify the following fact. Starting with a pair of potenti&l<) related as in

(84), then the systen(86), (87) delivers a new pair of potential€(€) which satisfy the same
relation.

In order to establish the connection of the abovekdand transformation to the one proposed
by Harrison, let us first note that in terms d&,£) the first of Eqs.(84) reads as

(E+E*)(E+E%)=2p. (88
Then, combining873, (87b) and (88) one finds that

2
=7 (89

E+E*

¢-E

where| | stands for the modulus of a complex number anig defined by

g(v)—A
7'_f(u)—)\ . (90
Introducing the functionx via
E+E*
a=—, (91
E-E

we can write Eq(89) as
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aa =y, (92
and Eqgs(87), (91) as
oY% T 93
—ﬁ +m ; (939
=2 E . E* 93h
T a—1 + a—1"" (93D

respectively. Finally, Eq486) take the following form:

*

E,u E,u a P,u_i ay
a,u=a(a—1)ﬁ+(a—v)ﬁ+ 5(7—1)7, (944

* @ E @ p,—ia
Ot,v:(a—l)E+'E*+;(a—7)E+'UE*+5(7—1)%- (94b)

The converse also holds. More specifically, let us suppose that a pair of potej&)s (
satisfying Eqs(82), (84) is given. Then, the members of the Ricatti syst@#) for the auxiliary
function «(u,v) are compatible and can be integrated to yield a solution which satisfies the

condition (92). Moreover, Eqs(93) deliver a new pair of potential£(£) which also satisfy the
generalized version of the Neugebauer—Kramer involution. The sy@8m(94) constitutes a
generalization of thesingle Harrison transformatiorior the Ernst equation, to which it reduces
when ca=0. We would like to point out that the above novel construction is purely algebraic and
yields explicit expressions for the new potentials. As far as we are aware only implicit expressions
for the new potentials occur in the literature. Let it also be noted that if one considers each
member of the pairk,&) separately, then the relatio82)—(94b) must be viewed as an auto- or
hetero-Baklund transformation, depending on whether equals 0 or not, respectively. This
follows from the fact thaE and¢& satisfy Eqs(82) and(83), respectively, which are identical or
different depending on whethead/anishes or not.

Returning to the considerations of the paragraph preceding the last one, we note that one has
to apply the transformatiof®2)—(94) twice in order to decouple the new potentials. This can be
achieved by using the superposition princigh®) in the form resulting by applying the reality
conditions. This form is given by

A
Ez=Ep+ E,—E,’ (9539
PR (95h)
3 0 £ _gl .
The potentialE; ,&;, 1=1,2, appearing in these relations are determined by

E-=7i_ai£ +_1—ai &
B DA
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(Ei, &)

(a1,71) w, ¥a)
(Eo, o) (E3,&3)
(a2,72) A,%)
(E2, &)

FIG. 2. Commuting diagram for the Harrison transformation.

Here, they,’s are defined by92) with \ replaced by\; and thea;’s are obtained from the system
(94) by replacingy by y;. Using these expressions, E@85) reads as

(v2— v (Eo+Eg)

E,=Eq+ ,
0 =y (- )+ (1-y) ey

(96a

Y2~ v1 (1—a1)(1—ay)
a—ay (1=y)(1—1v,)

Equations(96) represent the double Harrison transformation and are valid for both case$, d
and ca#0.

In the Bianchi commuting diagram given in Fig. 2 one can focus on the auxiliary functions
a;'s instead of the potentialsE(,&;). Then the superposition principle is expressed by the fol-
lowing relations among the’s:

1o A
—=—, 97
a1 g
where
1 aja(yr—v1) tagya(yi— 1)+ azyi(1—1v,)
Qp=— (99

a; Y1~ Yot ai(yo— 1)+ ax(l—1y1)

VI. REDUCTIONS TO THE PAINLEVE TRANSCENDENTS

Similarity reductions of the Ernst equation to Painlésenscendents have been of particular
interest for a long time. More recently ScHithas shown that the Ernst—Weyl equation for
stationary axially symmetric spacetimighe elliptic analog of Eq(82)] admits similarity reduc-
tions to Painlevell, V, and VI. His reduction procedure to Painleliéand V is based on solving
the system of ordinary differential equatiof@DES resulting from the application of the invari-
ance conditions. For the reduction to Painlévke however, the author resorts to a different
approach, based on a matrix formulation of the Ernst—Weyl equation, motivated by the Loewner
system. In this section, we present a reduction of the hyperbolic Ernst—Weyl eq(&2)doy a
method which exploits the relation of the latter equation to the RPDE and the straightforward
manner in which the symmetry group of the RPDE leads to Palilsiésanscendents.

As we have showf® the RPDE admits straightforward similarity reductions to Painléy¥/,
and VI in full form. This was done by considering the invariant solutions under the optimal system
of one-dimensional subalgebras of the Lie point symmetries of the RPDE. The link between the
RPDE and the Ernst—Weyl equation is the system0. Specifically, in Sec. IV, it was shown that
the RPDE may be given in involutive form by systéB8®) with the choices

Downloaded 26 Jan 2010 to 150.140.170.243. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 42, No. 12, December 2001 A new family of integrable nonlinear equations 5779

f(uy=u, g(v)=v, m(v)=m, n(u)=n. (99
Within the above setting, the Ernst—Weyl equation arises from the systef by requiring that
P=-R*", m=-3+ia;, n=-3+ia,, (100

wherea, ,a, are real constants.

On the basis of the above connection, we shall search for invariant solutions of the Ernst—
Weyl equation that follow from imposing conditiofs00) on corresponding invariant solutions of
the RPDE. As we shall immediately show, this can best be achieved by first prolonging the
symmetries of the RPDE to symmetries of the system0. For illustration purposes, we shall
restrict our presentation to invariant solutions that are related to the full PaMleve VI cases,
only. To make the presentation self-contained, we first summarize briefly the Lie point symmetries
of the RPDE.

The Lie point symmetry group of the RPDE consists of transformations leaving the dependent
variables unaffectetbase transformatiohsind transformations acting on the dependent variables
only (vertical transformations The base transformations act am ) € R? by

(uv)—(Nu+erv+e), NeR", ecR, (101
and the generators are given by the vector fields
dyt+d,, Ud,+uvd,. (102

The group of vertical transformations is the most general group of transformations acting locally
effectively on a one-dimensional complex manifold and is given by

aU+b a b |
U= 0Tdr o gl €SL2O. (103

The corresponding generators are the vector fields
dy, Udy, U?3y. (104
A. Reduction to Painleve = V
The group invariant solutions of the RPDE under the symmetry generator,
Ayt d,+2ulUdy, (109
have the form
U(u,v)=S(y)explu(u+v)), y=u—u. (106

The prolongation of the vector field 05 in the P andR directions which yields a symmetry of
the systen® =0 reads as

dy+d,+2pUdy—2u(Pdp+RaR). (107
This implies that the invariant form of the functiofsandR is
P(uv)=p(y)exp(—u(u+v)), R(uv)=r(y)exp(—u(u+tv)), (108
respectively. Inserting106), (108 into the systen® =0 we get the following system of ODEs:

(S'=uS)(p—r)>~—m(p—r)—y(p'+up)=0, (109a

Downloaded 26 Jan 2010 to 150.140.170.243. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



5780 J. Math. Phys., Vol. 42, No. 12, December 2001 Tongas, Tsoubelis, and Xenitidis

(S'+uS)(p—r)*=n(p—r)+y(r'—pur)=0, (109b
yS'+2(p—r)S'?—(m+n)S —2u?(p—r)S?— u(m—n+ uy)S=0. (1099

By a simple differentiation and elimination process applied to sy$i8), one ends up with
a fourth order ODE for the functio8, which can be integrated once leading to

y28(8/2_MZsZ)s///_yZSss//2+y(_ysl3+ssz+3lu2y82s/_MZSB)S/I_ys/4+M(m2_n2
+ uy)S2S' 2+ u[2(m?+n?) — u?y?]1SS + u3(M?—n?)S*— 1y (S'2— u?s?)2=0, (110

wherel is the constant of integration. For later use, we note that, using syd@9n the above
first integral can be written in the following remarkably simple form:

Zy(;p_—ra;z+(m—n)g—t:+l+l=0. (111
Setting
s 1+G
S<(yy)) — 1—633 ’ (112
Eqg. (110 becomes
2 m2
PV(G,y;?,—7,2,uI,—2/_L2 =0. (113

Here Py (G,y;a,B,7,6) =0, with «, B, v and § arbitrary complex parameters, stands for the full
PainleveV equation, i.e.,

o2 1G/+ G(G—1)2+ (G—1)2+ G+5G(G+1)
Ty Y G Yy %61

-G+

26 T G-1
(114

Having determinecs in the manner described above, one can return to sy&té8 to find the
following explicit expressions for the functions r:

_YG'+nGP—(I+2n+1-2uy)G+I+n+1

(115a

_YG = (I+m+1)G?+ (I +2m+1+2uy)G—m
ry)= 4.SG(1-G) :

(115h

At this point it is worth noting that using Eq§l112), (113 and (115, one can easily verify
that the functiondV, V defined by

p'(y) W(y)+1 r'(y) V(y)+1

py) “Wiy)—1' T(y) HV(y) -1’ (116
satisfy
(n+1)2  m?
Po| Wy —5—— 52u(l+1),-2u?| =0, (117a
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n?  (m+1)? )
Py V,y,?,—T,Z,u(|+l),—2,u =0, (117p

respectively. Thus, one may consider Eds5 as Baklund transformations among the Painleve
V equations(113), (117).

Restricting our considerations to solutions of the Ernst—Weyl equation, we need to take
conditions(100) into account. Under these conditions, EGEO8 imply that

p=—r"  u=u’, (1183
while (112) yields
[=I*. (118b

Hence, the corresponding similarity solutions of the Ernst—Weyl equéi®nare determined by
the potential

E=S(y)exp(u(u+v)), y=u-—vu, (119

whereS is given by Eq(112. In the latterG represents a solution of the Painleaguation(113),
with
—_1

n=-—3+ia;, m=—3+ia,, I=I*, u=u". (120

The analogous similarity solutions of the Ernst—Weyl equali®88 are specified by the
potential

E=p(y)exp(—u(u+v)), y=u-uv, (121

wherep is determined by the first of Eq$116). In the latter, W stands for a solution of the
Painleveequation(117a, with n, m, |, and u satisfying the condition§120) above.

B. Reduction to Painleve ~ VI

In a similar manner one may construct solutions of the Ernst—Weyl equation from the Pain-
leve VI transcendents, i.e., solutions of the ODE,

GII 1 1 1 G[2 ( 1 G,
“raletett ey T ey
G(G—1)(Gy) y . _y-l  yy-1
W(a+ﬁ@+7(e—1)2+5(e—y)z)_0‘ (122

where «, B, v, and & arbitrary complex parameters, which will be denoted by
Puvi(G,y;e,B,v,6)=0 in the following.

The solutions of the RPDE which are invariant under the symmetry generated by the vector
field

udy+tvd,+2uUdy, (123
have the form
U(u,v)=3S(y)(uv)*, y=ulv. (124

The prolongation of the vector field23) in the P, R directions leading to a symmetry of system
2 =0 reads as
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Udy+vd, +2uUdy+(1—2u)(Pdp+RaR). (125
This implies that the invariant form of the functioRsandR is
P(u,0)=p(y)(uv) #* 2 R(up)=r(y)(uv) #* 12 (126

respectively. Insertingl24), (126) into the systen®, =0 we obtain the following system of ODEs:
yYAuS—yS)(p—1)?+(m+(n— 3)(y—1))p—mr+(y—1)yp'=0, (1273

y A uS+yS)(p—1)2+(ny—(u— 3)(y—1)r—nyp+(y—1)yr'=0, (1270

(1-y)y?S'+2yY2(p—r)(u?S*—y?S'?) +y(m+ (n—1)y+1)S'+ u(m—ny+ u(y—1))S=0.
(1279

Through a lengthy but straightforward process of differentiation and elimination one ends up with
a fourth order ODE for the functio8. The latter may be integrated once leading to a third order
equation which is omitted because of its length. We note, however, that this first integral can be
written in the following simple form by using syste(h27):

2 2 2 2
- (y—l) (2u—1) 1+y
1-2 ry—2 r'+ 24r2— ——pr
p+r
+(m-n)(1- Z,u)p + = (m n)2=1, | constant. (128
Substituting

S'(y) _ry+G(y)
S(y) yy-G(y)

(129

into the omitted third order ODE foB, we find thatG satisfies the full Painlevequation,

m? | 1—4u?
272

n2
Py G,y;?,—

=0. (130

Once S is determined by solving the differential equatiofi®9), (130), one can find the
functionsp, r algebraically using systerf127). The explicit expressions for these functions are
given by

y2(y—1)°G'?>+TG*(G—-1)G' +A(y,m,n)G!
8u(u—1)y"*(y-G)(G-1)GS

p(y)= (131a

y2(y—1)°G'?+TyG(G—1)G’ +B;(y,m,n)G'
8u(2u—1)y*(y-G)(G-1)GS '

r(y)= (131b

where summation over the repeated inde0,...,4 isunderstood and the coefficiers, B; and
I" are given by

Ao(y,m,n)=—m?y?2,

Ay(y,m,n)=y[(m*=2I+(n—2u+1)%)y+2m?,

Downloaded 26 Jan 2010 to 150.140.170.243. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 42, No. 12, December 2001 A new family of integrable nonlinear equations 5783

Ay(y,mn)=—(n—2u+1)%y2—2(m?>=21+(n—2u+1)?)y+(1—2u)?>—m?,
As(y,mn)=2(n—2u+1)2y+m?+2n%— 21— (n+2u—1)?
Ayly,m,n)=—n(n—4u+2),
Bi(y,m,n)=y?A,_i(y"Ln,m), i=0,...,4,

r=2(2u—1)y(y—1).

As in the previous case, one may use HG29), (130 and(131) to verify that the functionsV,

V defined by
P'ly) 1-2uy+W(ly) r'(y) 1-2py+V(y) (132
p(y) 2y y=W(y)' r(y) 2y y=V(y)’
satisfy
(n+1)2 m?
PV|<W1erI_71'12/“L(l_1u')):01 (1333
n>  (m+1)>2
PVl Vvya?y_Txllzﬂ(l_,U«))zo- (133b

respectively. Hence, one may view E@$31) as defining Beklund transformations among the
PainleveV| equations(130) and(133.

Taking into account condition€l00), one is restricted to solutions of the Ernst—Weyl equa-
tion. Equationg126) imply that

p=—r" u=u" (134
while Eq. (128 gives
I=1*. (139
Hence the invariant solutions of the Ernst—Weyl equat®®) are of the form
E=S(y)(uv)*, y=ulv, (136
whereS is given by integrating129 and G satisfies(130 with
n=—31+ia;, m=-—3+ia,, I=I*, u=u"*. (137
Last, the similarity solutions of the Ernst—Weyl equati@3) have the form
E=p(y)(uv) #* 12 y=ulv, (139

wherep is given by integrating the first equation @32 andW satisfieg1339 with n, m, |, and
 given by (137).

VIl. PERSPECTIVES

We presented a two-dimensional reduction of the ASDYM equations which leads to a novel
system of integrable equations. This system incorporates the well-known Ernst—Weyl equation, as
well as a significant generalization of the fourth order hyperbolic equation proposed by Nijhoff
et al® recently as the generating PDE for the KdV hierarchy. We have also constructed a Lax pair
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and an auto-Beklund transformation for the above system and similarity solutions based on the
PainleveV and VI transcendents. Our reduction scheme unifies many aspects of integrability of
the Ernst equation, like the Ernst—Hauser deformation problem, the Neugebauer—Kramer involu-
tion, the single and double-Harrison &dund transformations, and gives analogous generaliza-
tions to the Ernst—Weyl equation. All these aspects follow algorithmically from the new system
and the associated Lax pair, by imposing purely algebraic and compatibility conditions. Moreover,
our reduction scheme allows for an easier construction of solutions to the Ernst—Weyl equation
related to Painlevéranscendents by Lie group techniques. Using the reduction scheme presented
in this paper and higher-dimensional gauge groups tBa2,C), one should obtain integrable
systems which incorporate the Ernst—Maxwell-Weyl equations, or even more general integrable
equations describing the interaction of the gravitational field with other sotftéés.
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