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This paper details nonlinear Model-based Predictive Control (MPC) algorithms for MIMO processes modelled by means
of neural networks of a feedforward structure. Two general MPC techniques are considered: the one with Nonlinear
Optimisation (MPC-NO) and the one with Nonlinear Prediction and Linearisation (MPC-NPL). In the first case a nonlinear
optimisation problem is solved in real time on-line. In order to reduce the computational burden, in the second case a
neural model of the process is used on-line to determine local linearisation and a nonlinear free trajectory. Single-point
and multi-point linearisation methods are discussed. The MPC-NPL structure is far more reliable and less computationally
demanding in comparison with the MPC-NO one because it solves a quadratic programming problem, which can be done
efficiently within a foreseeable time frame. At the same time, closed-loop performance of both algorithm classes is similar.
Finally, a hybrid MPC algorithm with Nonlinear Prediction, Linearisation and Nonlinear optimisation (MPC-NPL-NO) is
discussed.
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1. Introduction

Model predictive control is the only advanced control
technique (i.e., more advanced than the well known PID
approach) which has been very successful in practical ap-
plications. MPC has influenced not only the directions
of development of industrial control systems but also re-
search in this field (Brdyś and Tatjewski, 2005; Henson,
1998; Maciejowski, 2002; Morari and Lee, 1999; Qin
and Badgwell, 2003; Rossiter, 2003; Tatjewski 2007).The
most important advantage of MPC algorithms is the fact
that they have the unique ability to take into account
constraints imposed on process inputs (manipulated vari-
ables) and outputs (controlled variables) or state variables,
which usually determine the quality, economic efficiency
and safety of production. Furthermore, the MPC tech-
nique is very efficient in multivariable process control.

For prediction purposes a dynamic model of the
process is used. The choice of the model (a linear model
or a nonlinear model; if a nonlinear model—a fundamen-
tal model or a black-box model, if a black-box model—its
structure) is crucial. This decision affects not only the
possible control accuracy but also the computational load

and reliability of the whole control policy. When possible,
MPC algorithms based on linear models have been applied
in practice. In such cases the resulting optimisation prob-
lem is a quadratic programming one (Maciejowski, 2002;
Morari and Lee 1999; Qin and Badgwell, 2003; Rossiter,
2003; Tatjewski, 2007). Unfortunately, when the process
exhibits severe nonlinearity, such an approach is likely to
result in poor closed-loop control performance, and even
instability. In general, a nonlinear model used for predic-
tion purposes leads to a non-quadratic, non-convex and
even multi-modal optimisation problem. For such prob-
lems there are no sufficiently fast and reliable optimisa-
tion algorithms, i.e., those which would be able to deter-
mine the global optimal solution at each sampling instant
and within a predefined time limit as required in on-line
control. Gradient-based optimisation techniques may ter-
minate in local minima while global ones substantially
increase the computational burden, yet they still give no
guarantee that the global solution is found (Mahfouf and
Linkens, 1998).

In order to overcome the problems inevitable in MPC
with nonlinear optimisation, a few alternatives have been
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suggested. For example, affine nonlinear models of a
neural structure result in a quadratic programming prob-
lem (Liu et al., 1998). The computational burden can be
significantly reduced when only the first control move is
optimised, the remaining ones being obtained using linear
MPC (Zheng, 1997). Yet another option is to use a com-
bination of a neural steady-state model and a simplified
nonlinear second order quadratic dynamic model (Piche et
al., 2000). Although the resulting optimisation task is not
convex, the model is relatively simple and the approach is
reported to be successful in many industrial applications.
For some models, an appropriate structure exploitation
(Bloemen et al., 2001) or a change of coordinates (Srini-
was and Arkun, 1997) leads to convexity. An interesting
idea is to approximate the nonlinear constrained MPC al-
gorithm by means of a neural network which is trained
off-line. During on-line control the manipulated variables
are calculated without any optimisation and the neural net-
work replaces the whole MPC algorithm (Åkesson and
ToivonenS, 2006; Cavagnari et al., 1999; Parisini et al.,
1998). Unfortunately, neural network training is difficult,
and hence the approximate MPC approach has limited ap-
plicability. A neural network of a specialised structure can
also be used, the purpose of which is to solve on-line the
MPC optimisation problem (Wang and Wan, 2001). Feed-
back linearisation is another effective approach to nonlin-
ear MPC (Bacic et al., 2002). It is also possible to lin-
earise a model of the process around a trajectory (Kouvar-
itakis et al., 1999; Grimble and Ordys, 2001).

Bearing in mind all the aforementioned computa-
tional difficulties typical of nonlinear MPC, a straight-
forward idea is to use linearisation-based MPC tech-
niques, in which only a quadratic programming prob-
lem is solved on-line. When compared with MPC algo-
rithms with full nonlinear optimisation, they are subop-
timal, but in most practical applications the accuracy is
sufficient (Babuška et al., 1999; Henson, 1998; Kavsek et
al., 1997; Ławryńczuk, 2003, Ławryńczuk and Tatjewski,
2006; 2003; 2002; Morari and Lee, 1999; Tatjewski and
Ławryńczuk, 2006; Tatjewski, 2007). Moreover, one can
imagine a combination of the MPC algorithm with lineari-
sation, which determines the initial solution, and the MPC
with nonlinear optimisation, which refines the solution.
Such an approach has the advantages of both structures,
i.e., computational efficiency and accuracy.

In light of practical implementation, the main issue to
address is the choice of the process model structure, since
it affects the performance and accuracy of the control al-
gorithm. Fundamental (first-principle) models, although
potentially very precise, are usually not suitable for on-
line control since they are very complicated and may lead
to numerical problems, e.g., ill-conditioning. As far as
empirical models are concerned, feedforward neural net-
work models deserve attention because they have the fol-
lowing advantages:

(a) they constitute universal approximators (Hornik et
al., 1989), and hence are able to approximate pre-
cisely nonlinear behaviours of technological dy-
namic processes (Hussain, 1999; Nørgaard et al.,
2000; Piche et al., 2000),

(b) efficient identification (training) algorithms and
structure optimisation techniques have been devel-
oped (Haykin, 1999; Osowski, 1996),

(c) they have a relatively small number of parameters
(unlike fuzzy models, they do not suffer from the
“curse of dimensionality”) and simple structures,

(d) they can be easily incorporated into MPC algo-
rithms and efficiently used on-line (Hussain, 1999;
Ławryńczuk, 2003; Ławryńczuk and Tatjewski,
2006; 2003; 2002; 2001; Nørgaard et al., 2000; Tat-
jewski, 2007; Tatjewski and Ławryńczuk, 2006; Tra-
janoski and Wach, 1998; Yu and Gomm, 2003).

The outline of the paper is as follows: First, Sec-
tion 2 states the MPC optimisation problem. In Section 3
the structure of the neural model is defined. Section 4
details the MPC algorithm with Nonlinear Optimisation
(MPC-NO), while Section 5 describes suboptimal MPC
techniques with Nonlinear Prediction and Linearisation
(MPC-NPL). Two linearisation methods are then consid-
ered. Section 6 deals with a hybrid MPC algorithm with
Nonlinear Prediction, Linearisation and Nonlinear optimi-
sation (MPC-NPL-NO). Simulation results of these algo-
rithms applied to two nonlinear processes (an SISO poly-
merisation reactor and an MIMO distillation column) are
presented in Section 7. The paper is summarised in Sec-
tion 8.

2. Model Predictive Control

Although a number of different MPC algorithms have
been developed over the years, the main idea (i.e., the ex-
plicit application of a process model, the receding horizon
and optimisation of a cost function) is always the same
(Brdyś and Tatjewski, 2005; Maciejowski, 2002; Rossiter,
2003; Tatjewski 2007). At each consecutive sampling in-
stant k a set of future controls or corresponding incre-
ments

u(k) =

⎡
⎢⎢⎣

u(k|k)
...

u(k + Nu − 1|k)

⎤
⎥⎥⎦ ,

Δu(k) =

⎡
⎢⎢⎣

Δu(k|k)
...

Δu(k + Nu − 1|k)

⎤
⎥⎥⎦ (1)

is determined, where Nu is the control horizon. It is as-
sumed that u(k+p|k) = u(k+Nu−1|k) for p ≥ Nu. The
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decision variables of the MPC algorithm, u(k) or Δu(k),
are calculated so as to minimise the differences between
the predicted values of the outputs (or states) and the ref-
erence trajectory over the prediction horizon. Only the
first element of the determined sequence is applied to the
process, so that the control law is

u(k) = u(k|k) or u(k) = Δu(k|k) + u(k − 1). (2)

At the next sampling instant, k+1, the measurement of the
process output (or state) variables is updated, the predic-
tion is shifted one step forward and the whole procedure
is repeated.

2.1. Model Predictive Control Optimisation Problem.
In the MPC dynamic optimisation problem, the predicted
values of the control errors over the prediction horizon N
and future control moves over the control horizon, Nu, are
minimised,

min
u(k)

{
J(k) =

N∑
p=1

∥∥yref(k + p|k) − ŷ(k + p|k)
∥∥2

Mp

+
Nu−1∑
p=0

‖Δu(k + p|k)‖2
Λp

}
,

subject to

umin ≤ u(k+p|k) ≤ umax, p = 0, . . . , Nu−1,

−Δumax ≤Δu(k+p|k) ≤Δumax, p = 0, . . . , Nu−1,

ymin ≤ ŷ(k+p|k) ≤ ymax, p = 1, . . . , N,

(3)

where Mp ≥ 0 and Λp > 0 are diagonal weighting ma-
trices with dimensions ny ×ny and nu ×nu, respectively,
ŷ(k+p|k) denotes the prediction of the outputs for the fu-
ture sampling instant k + p calculated at the current sam-
pling instant k using a dynamic model of the process. The
reference trajectory, yref(k +p|k), is typically assumed to
be constant over the prediction horizon and equal to the
desired set-point, i.e.,

yref(k + p|k) = ysp(k), p = 1, . . . , N. (4)

If the process exhibits a significant time-delay, it is rea-
sonable to summarise the predicted control errors in the
first part of the cost-function J(k) commencing with p =
N1 > 1.

If the output constraints have to be taken into ac-
count, the controller may be affected by the infeasibil-
ity problem. In order to cope with such a situation, the
well-known approach is to soften the output constraints
by using slack variables (Maciejowski, 2002). Using a

quadratic penalty for constraint violations, the MPC opti-
misation problem (3) becomes

min
u(k), εmin, εmax

{
J(k) =

∥∥yref(k)−ŷ(k)
∥∥2

M
+
∥∥Δu(k)

∥∥2

Λ

+ρmin

∥∥εmin

∥∥2+ρmax

∥∥εmax

∥∥2
}

subject to

umin ≤ u(k) ≤ umax,

−Δumax ≤ Δu(k) ≤ Δumax,

ymin − εmin ≤ ŷ(k) ≤ ymax + εmax,

εmin ≥ 0, εmax ≥ 0,

(5)

where

umin =

⎡
⎢⎢⎣

umin

...

umin

⎤
⎥⎥⎦ , umax =

⎡
⎢⎢⎣

umax

...

umax

⎤
⎥⎥⎦ ,

Δumax =

⎡
⎢⎢⎣

Δumax

...

Δumax

⎤
⎥⎥⎦ (6)

are vectors of length nuNu, and

yref(k) =

⎡
⎢⎢⎣

yref(k + 1|k)
...

yref(k + N |k)

⎤
⎥⎥⎦ ,

ŷ(k) =

⎡
⎢⎢⎣

ŷ(k + 1|k)
...

ŷ(k + N |k)

⎤
⎥⎥⎦ ,

ymin =

⎡
⎢⎢⎣

ymin

...

ymin

⎤
⎥⎥⎦ , ymax =

⎡
⎢⎢⎣

ymax

...

ymax

⎤
⎥⎥⎦ (7)

are vectors of length nyN . Diagonal weighting matrices
M and Λ, of dimensionality nyN × nyN and nuNu ×
nuNu, respectively, are

M =

⎡
⎢⎢⎣

Mp

. . .

Mp

⎤
⎥⎥⎦ , Λ =

⎡
⎢⎢⎣

Λp

. . .

Λp

⎤
⎥⎥⎦ .

(8)
In the MPC optimisation problem (5), εmin and εmax are
vectors of length nyN containing slack variables, and
ρmin, ρmax are positive weights.
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3. Structure of the Neural Model

The model of the Multi-Input Multi-Output (MIMO)
process under consideration is comprised of ny Multi-
Input Single-Output (MISO) models, where ny is the
number of outputs. Let each consecutive MISO model be
described by the following nonlinear discrete-time equa-
tion:

ym(k) = gm(u1(k − τm,1), . . . , u1(k − nm,1
b ), . . . ,

unu(k − τm,nu), . . . unu(k − nm,nu

b ),
ym(k − 1), . . . , ym(k − nm

a )), (9)

where

gm : R
nm

a +
nu�

n=1
(nm,n

b
−τm,n+1) −→ R ∈ C1,

m = 1, . . . , ny, τm,n ≤ nm,n
nb

, nu is the number of inputs.
As the model of the process, ny feedforward neural net-
works with one nonlinear hidden layer and linear output
(Haykin, 1999; Osowski, 1996) are used. The structure of
the neural model of the m-th output is depicted in Fig. 1.

Fig. 1. Structure of the neural model of the m-th output.

The output of the model can be expressed as

ym(k) = wm
2 (0) +

Km∑
i=1

wm
2 (i)vm

i (k)

= w2(0) +
Km∑
i=1

wm
2 (i)ϕ

(
zm

i (k)
)
, (10)

where zm
i (k) and vm

i (k) are the sum of inputs and the out-
put of the i-th hidden node, respectively, ϕ : R −→ R is
the nonlinear transfer function (e.g., hyperbolic tangent),
Km is the number of nonlinear hidden nodes. Recalling
the input arguments of the general nonlinear model (9),
we have

zm
i (k)
= wm

1 (i, 0)

+
nu∑

n=1

Im,n
u∑
j=1

wm
1 (i, Rm,n+j)un(k−τm,n + 1−j)

+
nm

a∑
j=1

wm
1 (i, Sm+j)ym(k−j). (11)

The weights of the m-th network are denoted by wm
1 (i, j),

i = 1, . . . , Km, j = 0, . . . , nm
a +

∑nu

n=1(n
m,n
b − τm,n +

1), and wm
2 (i), i = 0, . . . , Km, for the first and second

layers, respectively. The number of the network’s input
nodes depending on input signals un, n = 1, . . . , nu is
Im,n
u = nm,n

b
− τm,n + 1. The total number of weights is

(nm
a +

∑nu

n=1(n
m,n
b − τm,n +1)+1)Km +Km +1. The

auxiliary coefficients are

Rm,n =

⎧
⎨
⎩

0 if n = 1,
n−1∑
i=1

Im,i
u if n = 2, . . . , nu,

(12a)

Sm =
nu∑
i=1

Im,i
u . (12b)

The control algorithms described in this paper use
input-output neural models of processes although a state-
space representation may be necessary in some cases
(Dutka and Ordys, 2004; Grimble and Ordys, 2001). It is
assumed that sufficiently large data sets can be collected
which are next used in the off-line training of the neural
model. When necessary, on-line model adaptation should
be used.

4. MPC Algorithm with Nonlinear
Optimisation (MPC–NO)

4.1. MPC-NO Optimisation Problem. In the MPC-
NO algorithm, the nonlinear neural model is used for pre-
diction purposes. At each sampling instant, future values
of control signals, u(k), are determined as the solution
to a nonlinear optimisation problem. The structure of the
MPC-NO algorithm is depicted in Fig. 2. From (5), the
MPC-NO optimisation problem is

min
u(k), εmin,εmax

{
J(k) = ‖yref(k) − ŷ(k)‖2

M

+ ‖JNOu(k) + uNO(k)‖2
Λ

+ ρmin‖εmin‖2 + ρmax‖εmax‖2
}

subject to

umin ≤ u(k) ≤ umax

−Δumax ≤ JNOu(k) + uNO(k) ≤ Δumax

ymin − εmin ≤ ŷ(k) ≤ ymax + εmax

εmin ≥ 0, εmax ≥ 0

(13)

where JNO is an nuNu × nuNu matrix, uNO(k) is
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an nuNu-dimensional vector,

JNO =

⎡
⎢⎢⎢⎢⎢⎢⎣

Inu×nu 0nu×nu 0nu×nu . . . 0nu×nu

−Inu×nu Inu×nu 0nu×nu . . . 0nu×nu

0nu×nu −Inu×nu Inu×nu . . . 0nu×nu

...
...

...
. . .

...

0nu×nu 0nu×nu 0nu×nu . . . Inu×nu

⎤
⎥⎥⎥⎥⎥⎥⎦
,

uNO(k) =

⎡
⎢⎢⎢⎢⎣

−u(k − 1)
0
...

0

⎤
⎥⎥⎥⎥⎦

. (14)

Here Inu×nu and 0nu×nu are nu × nu identity and zero
matrices, respectively.

Fig. 2. Structure of the MPC algorithm with Nonlinear
Optimisation (MPC-NO). Here d(k) stands for
the unmeasured disturbance.

As regards the computational burden of the MPC-NO
optimisation problem (13), a fundamental issue is a proper
choice of the initial point, u0(k), which would result in
fast convergence of the nonlinear optimisation subroutine.
To use a constant vector is not an effective approach, since
it is independent of the current operating point. It is much
better to use the values of the manipulated variables cal-
culated and applied to the plant at the previous sampling
instant, i.e., u0(k) = [u(k − 1) . . . u(k − 1)]T . Alterna-
tively, one may use the last nu(Nu−1) control values cal-
culated at the previous sampling instant and not applied to
the process, i.e.,

u0(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

u0(k|k)
...

u0(k + Nu − 3|k)
u0(k + Nu − 2|k)
u0(k + Nu − 1|k)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

u(k|k − 1)
...

u(k + Nu − 3|k − 1)
u(k + Nu − 2|k − 1)
u(k + Nu − 2|k − 1)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (15)

The initial values of the slack variables εmin, εmax are set
to zero.

4.2. Calculation of Gradients. In general, one can
imagine two methods of using the neural model given by
(10) and (11) in the MPC-NO scheme with nonlinear op-
timisation. In the first approach, the gradients of the cost
function J(k) are approximated numerically and the non-
linear optimisation problem (13) is solved on-line (Hus-
sain, 1999; Trajanoski and Wach, 1998; Yu and Gomm,
2003). In the second approach, the structure of the neural
model is exploited (Ławryńczuk, 2003; Ławryńczuk and
Tatjewski, 2001; Nørgaard et al., 2000; Tatjewski, 2007;
Tatjewski and Ławryńczuk, 2006). The latter approach is
recommended in this paper.

Differentiating the cost function J(k) with respect to
the future control sequence, u(k), results in

dJ(k)
du(k)

= 2
(

dŷ(k)
du(k)

)T

M(ŷ(k) − yref(k))

+ 2(JNO)T Λ(JNOu(k) + uNO(k)). (16)

The nyN × nuNu matrix of the partial derivatives of the
predicted outputs with respect to future controls is

dŷ(k)
du(k)

=

⎡
⎢⎢⎢⎢⎢⎣

dŷ(k + 1|k)
du(k|k)

· · · dŷ(k + 1|k)
du(k + Nu − 1|k)

...
. . .

...
dŷ(k + N |k)

du(k|k)
· · · dŷ(k + N |k)

du(k + Nu − 1|k)

⎤
⎥⎥⎥⎥⎥⎦

,

(17)
where

dŷ(k + p|k)
du(k + r|k)

=

⎡
⎢⎢⎢⎢⎢⎣

dŷ1(k + p|k)
du1(k + r|k)

· · · dŷ1(k + p|k)
dunu(k + r|k)

...
. . .

...
dŷny(k + p|k)
du1(k + r|k)

· · · dŷny(k + p|k)
dunu(k + r|k)

⎤
⎥⎥⎥⎥⎥⎦

,(18)

are ny × nu submatrices for all p = 1, . . . , N , r =
0, . . . , Nu − 1. The predictions ŷm(k + p|k) for m =
1, . . . , ny , p = 1, . . . , N are calculated from the gen-
eral prediction equation (Maciejowski, 2002; Tatjewski,
2007),

ŷm(k + p|k) = ym(k + p|k) + dm(k), (19)

where the quantities ym(k + p|k) are calculated from
the neural model given by (10) and (11) applied to the
sampling instant k + p at the current sampling instant k.
The above formulation uses the “DMC type” disturbance
model, in which the unmeasured disturbance dm(k) is as-
sumed to be constant over the prediction horizon. Its value
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is estimated from the equation

dm(k) = ym(k) − ym(k|k − 1)

= ym(k) −
(

wm
2 (0) +

Km∑
i=1

wm
2 (i)ϕ(zm

i (k))

)
,

(20)

where

ym(k+p|k) = wm
2 (0)+

Km∑
i=1

wm
2 (i)ϕ(zm

i (k+p|k)). (21)

As regards the prediction of the m-th output over the
horizon N for the sampling instant k + p computed at the
current sampling instant k, the quantities zm

i (k+p|k) and,
consequently, ym(k +p|k) depend on some control signal
values applied to the plant at previous sampling instants,
future control signals (i.e., decision variables of the con-
trol algorithm), measured values of the plant output signal
and future output predictions. From (11) one has

zm
i (k + p|k)

= wm
1 (i, 0) +

nu∑
n=1

Im,n
uf (p)∑
j=1

wm
1 (i, Rm,n + j)

× un(k − τm,n + 1 − j + p|k)

+
nu∑

n=1

Im,n
u∑

j=Im,n
uf (p)+1

wm
1 (i, Rm,n + j)

× un(k − τm,n + 1 − j + p)

+
Im

yp(p)∑
j=1

wm
1 (i, Sm + j)ŷm(k − j + p|k)

+
nm

a∑
j=Im

yp(p)+1

wm
1 (i, Sm + j)ym(k−j+p), (22)

where Im,n
uf (p) = max{min{p − τm,n + 1, Im,n

u }, 0} is
the number of the m-th network’s input nodes depending
on future control signals of the n-th input and Im

yp(p) =
min{p−1, nm

a } is the number of the m-th network’s input
nodes depending on output predictions. Because typically
Nu < N (hence un(k + p|k) = un(k + Nu − 1|k) for
p ≥ Nu), it can be noticed that

zm
i (k + p|k)

= wm
1 (i, 0) +

nu∑
n=1

Im,n
Nu

(p)∑
j=1

wm
1 (i, Rm,n + j)

× un(k + Nu − 1|k)

+
nu∑

n=1

Im,n
uf (p)∑

j=Im,n
Nu

(p)+1

wm
1 (i, Rm,n + j)

× un(k − τm,n + 1 − j + p|k)

+
nu∑

n=1

Im,n
u∑

j=Im,n
uf (p)+1

wm
1 (i, Rm,n + j)

× un(k − τm,n + 1 − j + p)

+
Im

yp(p)∑
j=1

wm
1 (i, Sm + j)ŷm(k − j + p|k)

+
nm

a∑
j=Im

yp(p)+1

wm
1 (i, Sm + j)ym(k − j + p), (23)

where Im,n
Nu

(p) = min{max{p−τm,n−Nu+1, 0}, Im,n
u }

is the number of the m-th network’s input nodes depend-
ing on the quantity un(k + Nu − 1|k).

Taking into account (19) and (21), the entries of the
matrix dŷ(k)/du(k), i.e., the partial derivatives of the
predicted output signal with respect to future controls are
determined from

dŷm(k + p|k)
dun(k + r|k)

=
Km∑
i=1

wm
2 (i)

dϕ(zm
i (k + p|k))

dzm
i (k + p|k)

dzm
i (k + p|k)

dun(k + r|k)
. (24)

Obviously,

dzm
i (k + p|k)

dun(k + r|k)
=

dŷm(k + p|k)
dun(k + r|k)

= 0,

r ≥ p − τm,n + 1. (25)

If the hyperbolic tangent is used as the nonlinear transfer
function ϕ in the hidden layer of the neural model, one
has

dϕ(zm
i (k + p|k))

dzm
i (k + p|k)

= 1 − tanh2(zm
i (k + p|k)).

It can be noticed that decision variables of the algorithm
affect only the first, second and fourth sums in (23). What
is more, only some of the output predictions are influenced
by future controls. Hence

dzm
i (k + p|k)

dun(k + r|k)

=
Im,n

Nu
(p)∑

j=1

wm
1 (i, Rm,n + j)

dun(k + Nu − 1|k)
dun(k + r|k)

+
Im,n

uf (p)∑
j=Im,n

Nu
(p)+1

wm
1 (i, Rm,n + j)

× dun(k − τm,n + 1 − j + p|k)
dun(k + r|k)

+
Im

ypf (p)∑
j=1

wm
1 (i, Sm + j)

dŷm(k − j + p|k)
dun(k + r|k)

, (26)
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where Iypf(p) = max{min{p − τm,n, nm
a }, 0} is the

number of the m-th network’s input nodes depending on
output predictions which are affected by future controls of
the n-th input.

The discussed method of computing the gradients of
the predicted output trajectory with respect to the future
controls is used not only for obtaining the gradients of the
cost function J(k) but also for finding gradients of output
constraints. Sequential Quadratic Programming (SQP)
(Bazaraa et al., 1993) is used for solving the nonlinear
MPC-NO optimisation problem (13). Although an ana-
lytical Hessian matrix can be used in the SQP algorithm
implementation, it requires much more computational ef-
fort than computing the gradients. That is why in the pre-
sented solution the optimisation routine is provided with
analytical gradients while the Hessian is approximated, as
is done in most SQP implementations.

5. MPC Algorithms with Nonlinear
Prediction and Linearisation (MPC-NPL)

5.1. MPC-NPL Optimisation Problem. The idea of
the MPC-NPL algorithm consists in taking advantage of
on-line linearisation and nonlinear free trajectory predic-
tion. More specifically, at each sampling instant k, taking
into account the current state of the plant, the model of the
process is linearised on-line and a nonlinear free trajec-
tory is determined. Analogously to MPC algorithms with
linear models, e.g., DMC (Cutler and Ramaker, 1979) or
GPC (Clarke et al., 1987), it is assumed that the output
prediction can be expressed as the sum of a forced trajec-
tory, which depends only on the future, i.e., on the input
moves Δu(k), and a free trajectory y0(k), which depends
only on the past. One has

ŷ(k) = G(k)Δu(k) + y0(k), (27)

where

G(k) =

⎡
⎢⎢⎢⎢⎣

S1(k) 0ny×nu . . . 0ny×nu

S2(k) S1(k) . . . 0ny×nu

...
...

. . .
...

SN (k) SN−1(k) . . . SN−Nu+1(k)

⎤
⎥⎥⎥⎥⎦

(28)
is a dynamic nyN × nuNu matrix which is composed of
step-response coefficients of the linearised model of the
process. For the discussed MIMO process having nu in-
puts and ny outputs, the step-response submatrices are

Sj(k) =

⎡
⎢⎢⎣

s1,1
j (k) . . . s1,nu

j (k)
...

. . .
...

s
ny,1
j (k) . . . s

ny,nu

j (k)

⎤
⎥⎥⎦ , (29)

and the free trajectory vector is

y0(k) =

⎡
⎢⎢⎣

y0(k + 1|k)
...

y0(k + N |k)

⎤
⎥⎥⎦ . (30)

Of course, the plant is nonlinear and the superposition
principle (27) cannot be exactly satisfied at each sampling
instant as is the case in linear MPC techniques. In other
words, the suboptimal prediction obtained from (27) is
different from that determined by means of a nonlinear
model, as is done in the MPC-NO algorithm. Neverthe-
less, taking into account (27), the nonlinear optimisation
problem (13) solved in the MPC-NO algorithm becomes
the following quadratic programming one:

min
Δu(k), εmin, εmax

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

J(k)
= ‖yref(k) − G(k)Δu(k)
− y0(k)‖2

M + ‖Δu(k)‖2
Λ

+ ρmin‖εmin‖2 + ρmax‖εmax‖2

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

subject to

umin ≤ JNPLΔu(k)+uNPL(k) ≤ umax,

−Δumax ≤ Δu(k) ≤ Δumax,

ymin−εmin ≤ G(k)Δu(k)+y0(k) ≤ ymax+εmax,

εmin ≥ 0, εmax ≥ 0

(31)

where JNPL is an nuNu × nuNu matrix and uNPL(k) is
an nuNu dimensional vector,

JNPL

=

⎡
⎢⎢⎢⎢⎣

Inu×nu 0nu×nu 0nu×nu . . . 0nu×nu

Inu×nu Inu×nu 0nu×nu . . . 0nu×nu

...
...

...
. . .

...

Inu×nu Inu×nu Inu×nu . . . Inu×nu

⎤
⎥⎥⎥⎥⎦

,

uNPL(k) =

⎡
⎢⎢⎣

u(k − 1)
...

u(k − 1)

⎤
⎥⎥⎦ . (32)

The structure of the MPC-NPL algorithm is depicted
in Fig. 3. At each sampling instant k the following steps
are repeated:

1. Linearisation of the nonlinear neural model: obtain
the dynamic matrix G(k).

2. Compute the nonlinear free trajectory y0(k) using
the nonlinear neural model.
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Fig. 3. Structure of the MPC algorithm with Nonlinear
Prediction and Linearisation (MPC-NPL). Here
d(k) constitutes the unmeasured disturbance.

3. Solve the quadratic programming problem (31) to de-
termine Δu(k).

4. Apply u(k) = Δu(k|k) + u(k − 1).

5. Set k := k + 1, go to Step 1.

5.2. On-Line Linearisation of the Neural Model.

5.2.1. Single-Point Linearisation. Defining ny lin-
earisation points as vectors of length nm

a +
∑nu

n=1(n
m,n
b −

τm,n+1) composed of past input and output values corre-
sponding to the arguments of the nonlinear model (9) used
for the sampling instant k + 1,

xm(k)

=
[
u1(k − τm,1 + 1) . . . u1(k − nm,1

b + 1) . . .(33)

unu(k − τm,nu + 1) . . . unu(k − nm,nu

b + 1)

ym(k) . . . ym(k − nm
a + 1)

]T
,

where m = 1, . . . , ny, and using a Taylor series expansion
at these points, the linearised model has the form

ym(k)

= gm

(
xm(k)

)
+

nu∑
n=1

nb∑
l=1

bm,n
l

(
xm(k)

)
(un(k − l)

− un(k − l + 1))

−
na∑
l=1

am
l

(
xm(k)

)(
ym(k − l) − ym(k − l + 1)

)
,

(34)

where

am
l (x(k)) = − dgm(x(k))

dym(k − l)
,

bm,n
l (x(k)) =

dgm(x(k))
dun(k − l)

. (35)

If τm,n = 1, then for linearisation purposes one may set
un(k) = un(k − 1) or un(k) = un(k|k − 1).

Taking into account the structure of the neural model
and the corresponding equations (10) and (11), the coeffi-
cients of the linearised model are calculated from

am
l (x(k))

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−
Km∑
i=1

wm
2 (i)

dϕ(zm
i (xm(k)))

dzm
i (xm(k))

wm
1 (i, Sm + l)

if l = 1, . . . , nm
a ,

0 if l = nm
a + 1, . . . , na

(36)

for all m = 1, . . . , ny , l = 1, . . . , na, and

bm,n
l (x(k))

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if l = 1, . . . , τm,n − 1,

K∑
i=1

wm
2 (i)

dϕ(zm
i (xm(k)))

dzm
i (xm(k))

×wm
1 (i, Rm,n + l − τm,n + 1)

if l = τm,n, . . . , nm,n
b ,

0 if l = nm,n
b + 1, . . . , nb

(37)

for all m = 1, . . . , ny , n = 1, . . . , nu, l = 1, . . . , nb,
where

na = max
m=1,...,ny

(nm
a ),

nb = max
m=1,...,ny

(
max

n=1,...,nu

(nm,n
a )

)
. (38)

If the hyperbolic tangent is used as the nonlinear transfer
function ϕ in the hidden layer of the neural model, one
has

dϕ(zm
i (xm(k)))

dzm
i (xm(k))

= 1 − tanh2(zm
i (xm(k))).

Let am
l (k) = am

l (xm(k)), bm,n
l (k) = bm,n

l (xm(k)). Re-
defining the variables ym(k) := ym(k) − gm(xm(k)),
ym(k − i) := ym(k − i)− ym(k − i + 1), l = 1, . . . , na,
un(k− i) := un(k− i)−un(k− i+1), l = 1, . . . , nb, the
linear approximation of the nonlinear model (9), obtained
at a time instant k, can be expressed as

A(k, z−1)y(k) = B(k, z−1)u(k), (39)

where z−1 denotes the operator of a unit time delay, and A
and B are given by Eqns. (40) and (41). The step-response
coefficients comprising the dynamic matrix (28) are calcu-
lated from

sm,n
j (k) =

min(j,nb)∑
i=1

bm,n
i (k)−

min(j−1,na)∑
i=1

am
i (k)sm,n

j−i (k)

(42)
for all m = 1, . . . , ny , n = 1, . . . , nu, j = 1, . . . , N .
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A(k, z−1) =

⎡
⎢⎢⎣

1 + a1
1(k)z−1 + · · · + a1

na
(k)z−na . . . 0

...
. . .

...

0 . . . 1 + a
ny

1 (k)z−1 + · · · + a
ny
na(k)z−na

⎤
⎥⎥⎦ , (40)

B(k, z−1) =

⎡
⎢⎢⎣

b1,1
1 (k)z−1 + · · · + b1,1

nb
(k)z−nb . . . b1,nu

1 (k)z−1 + · · · + b1,nu
nb

(k)z−nb

...
. . .

...

b
ny,1
1 (k)z−1 + · · · + b

ny,1
nb (k)z−nb . . . b

ny,nu

1 (k)z−1 + · · · + b
ny,nu
nb (k)z−nb

⎤
⎥⎥⎦ . (41)

G(k) =

⎡
⎢⎢⎢⎢⎣

S1(k, k + 1) 0ny×nu . . . 0ny×nu

S2(k, k + 2) S1(k, k + 2) . . . 0ny×nu

...
...

. . .
...

SN (k, k + N) SN−1(k, k + N) . . . SN−Nu+1(k, k + N)

⎤
⎥⎥⎥⎥⎦

. (43)

5.2.2. Multi-Point Linearisation. In the single-point
linearisation method, the linearisation is performed once
for a given sampling instant k, and the same local lin-
earised model is then used for the entire prediction horizon
to determine the step-response. Although such a model
can be very accurate for the current time instant k, its ac-
curacy may deteriorate at the end of the prediction hori-
zon. Conceptually, it would be better to perform lineari-
sation N times for k + 1, k + 2, . . . , k + N and obtain N
independent local models. Next, these local linear models
could be used for determining step-response coefficients.
Let Sp(k, k+p) denote the step-response submatrix calcu-
lated at the current sampling instant k using the linearised
model for the sampling instant k+p. The dynamic matrix,
similarly to (28), is then given by Eqn. (43) For k + p,
p = 1, . . . , N the linearisation point is

xm(k, k + p)

=
[
u1(k−τm,1+p) . . . u1(k−nm,1

b +p) . . . (44)

unu(k−τm,nu +p) . . . unu(k−nm,nu

b +p)

ym(k+p−1) . . . ym(k−nm
a +p)

]T
.

For k +1, the linearisation point is the same as in the
single-point linearisation method (33). As p increases, the
model is linearised taking into account the optimal input
and output trajectories obtained at the previous sampling
instant, i.e., Δu(k − 1) and ŷ(k − 1). More specifically,
for linearisation purposes, un(k + p) = un(k + p|k − 1)
for p ≥ 0 and ym(k + p) = ŷ(k + p|k − 1) for p ≥ 1.

5.2.3. On-Line Calculation of the Nonlinear Free
Trajectory. The nonlinear free trajectory y0

m(k + p|k),
for m = 1, . . . , ny , p = 1, . . . , N , is calculated recur-
sively from the general prediction equation (19), where
the output of the model is given by (21). Analogously

to the MPC-NO algorithm, the “DMC-type” disturbance
model (20) is also used. One has

y0
m(k + p|k) = wm

2 (0) +
Km∑
i=1

wm
2 (i)ϕ

(
zm,0

i (k + p|k)
)

+ dm(k). (45)

The quantities zm,0
i (k + p|k) are determined from (22)

assuming no changes in control signals from a sampling
instant k and replacing the output predictions by the corre-
sponding values of the free trajectory, i.e., un(k+p|k) :=
un(k − 1) for p ≥ 0, ŷm(k + p|k) := y0

m(k + p|k) for
p ≥ 1. One has

zm,0
i (k + p|k) = wm

1 (i, 0)

+
nu∑

n=1

Im,n
uf (p)∑
j=1

wm
1 (i, Rm,n+j)un(k−1) (46)

+
nu∑

n=1

Im,n
u∑

j=Im,n
uf (p)+1

wm
1 (i, Rm,n + j)

× un(k − τm,n + 1 − j + p)

+
Im

yp(p)∑
j=1

wm
1 (i, Sm + j)y0

m(k − j + p|k)

+
nm

a∑
j=Im

yp(p)+1

wm
1 (i, Sm + j)ym(k − j + p).

6. Hybrid MPC Algorithm with Nonlinear
Prediction, Linearisation and Nonlinear
Optimisation (MPC-NPL-NO)

As was emphasised in Section 4, the computational bur-
den of the MPC-NO algorithm depends on the initial
point, u0(k), of the nonlinear optimisation problem (13).
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Because a gradient-based optimisation method of the SQP
type is used, the algorithm may terminate in local min-
ima. On the other hand, the suboptimal MPC-NPL al-
gorithm solves only the quadratic optimisation problem
(31), and hence the global solution to this task is always
found. The idea of the hybrid MPC algorithm with Non-
linear Prediction, Linearisation and Nonlinear Optimisa-
tion (MPC-NPL-NO) is to find an initial point by means
of the MPC-NPL algorithm and next solve the MPC-NO
problem to refine the solution.

It is obvious that the second phase of the hybrid algo-
rithm is necessary only if the superposition principle (27)
is far from satisfaction. In other words, the MPC-NO non-
linear optimisation problem (13) is solved if for a given
solution to the MPC-NPL optimisation problem (5.1),
ΔuNPL(k), the difference between the nonlinear predic-
tion ŷnl(k) computed by means of the neural model and
the linearised one is significant, i.e.,

∥∥ŷnl(k) − G(k)ΔuNPL(k) − y0(k)
∥∥2

> ε, (47)

where ε > 0 is adjusted by the user.
Thanks to the efficiency of the MPC-NPL algorithm,

the initial solution determined in the first phase of the hy-
brid algorithm is usually close to the global minimum of
the cost function J(k) minimised in the second phase.
When compared with the MPC-NO technique, the MPC-
NPL-NO algorithm reduces the computational burden.
Secondly, by finding a feasible initial point it is practi-
cally very unlikely that the MPC-NO algorithm will yield
a local solution.

Naturally, the hybrid algorithm is suitable for signif-
icantly nonlinear processes, for which the performance of
the MPC-NPL technique is not sufficient. One can also
imagine that the second phase is executed at each sam-
pling instant because full, nonlinear output constraints
have to taken into account, which cannot be done in the
quadratic programming problem solved in the MPC-NPL
algorithm.

7. Simulation Results

7.1. Polymerisation Reactor Control System. The
control process under consideration is a polymerization
reaction taking place in a jacketed continuous stirred
tank reactor depicted in Fig. 4 (Maner et al., 1996).
The reaction is the free-radical polymerization of methyl
methacrylate with azo-bis-isobutyronitrile as an initiator
and toluene as a solvent. The output NAMW (Number
Average Molecular Weight) is controlled by manipulating
the inlet initiator flow rate FI . The monomer flow rate F
is the disturbance whose value is assumed constant. The
polymerisation reactor is frequently used as a benchmark
process for comparing nonlinear control strategies.

Four models of the process are used. The fundamen-
tal model (Maner et al., 1996) is used as the real process

Fig. 4. Polymerisation reactor control system structure.

during simulations. An identification procedure is carried
out. As a result, two local linear models for a low and
a high NAMW level and a neural one are obtained. All
three empirical models have the same input arguments de-
termined by τ = 2, na = nb = 2. The empirical models
used in MPC algorithms are:

(a) a linear model for a low NAMW level (NAMW =
20000)

y(k) = blow
2 u(k−2)−alow

1 y(k−1)−alow
2 y(k−2),

(48)

(b) a linear model for a high NAMW level ( NAMW =
40000)

y(k) = bhigh
2 u(k−2)−ahigh

1 y(k−1)−ahigh
2 y(k−2),

(49)

(c) a neural model containing six neurons in the hidden
layer,

y(k) = g(u(k − 2), y(k − 1), y(k − 2)), (50)

where u = FI , y = NAMW .

The compared MPC strategies are:

(a) the linear MPC algorithm with the linear model for
the low NAMW level,

(b) the linear MPC algorithm with the linear model for
the high NAMW level,

(c) the nonlinear MPC-NO algorithm with the neural
model,

(d) the nonlinear suboptimal MPC-NPL algorithm with
the neural model,

(e) the nonlinear hybrid MPC-NPL-NO algorithm with
the neural model.

The horizons are N = 10, Nu = 3, the weighting
matrices Mp = 1 and Λp = 0.5. The manipulated vari-
able is constrained, FI min = 0.003, FI max = 0.06, the
sampling time is 1.8 min.
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Fig. 5. Simulation results of the polymerisation reactor and the MPC algorithm and the linear model
valid for a low NAMW level: the set-point point changes from NAMW = 20000.
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Fig. 6. Simulation results of the polymerisation reactor with the MPC algorithm with the linear model
valid for a high NAMW level: the set-point point changes from NAMW = 40000.
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Fig. 7. Simulation results of the polymerisation reactor with the MPC-NPL (dashed line) and MPC-NO (solid
line) algorithms with the neural network model: the set-point point changes from NAMW = 20000.
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Fig. 8. Simulation results of the polymerisation reactor with the MPC-NPL (dashed line) and MPC-NO (solid line)
algorithms with the neural network model: the set-point point changes from NAMW = 40000.

The first linear model is valid for the the low
NAMW level, and the resulting control algorithm works
well for the smallest set-point change but exhibits unac-
ceptable oscillatory behaviour for medium and big set-
point changes, as is shown in Fig. 5. Analogously, the
second linear model captures the process properties for
the high NAMW level, and the closed-loop response
is fast enough for the smallest set-point change but very
slow for bigger ones, as shown in Fig. 6. Simulation
results of the MPC-NPL (using the single-point lineari-
sation method) and MPC-NO algorithms with the same
neural network model and for the set-point changes from
NAMW = 20000 are depicted in Fig. 7, and those for the
set-point changes from NAMW = 40000 are depicted in
Fig. 8. In each case the closed-loop performance obtained
in the suboptimal MPC-NPL algorithm is very close to
that obtained in the computationally prohibitive MPC-NO
approach. In the case of the polymerisation reactor, the
single-point linearisation method gives very good results.
The improvement resulting from using the multi-point lin-
earisation is not significant, and thus it is not shown. The
hybrid algorithm gives the same results as the MPC-NO
algorithm.

7.2. Methanol-Water Distillation Column Control
System. The plant under consideration is a methanol-
water distillation column the structure of which is shown
in Fig. 9 (Ławryńczuk, 2003). The distillation column is
used to purify the input stream so that the top product is
methanol while the bottom product contains only small
quantities of alcohol. The composition of the top prod-
uct is denoted by xb, and the composition of the bottom
product by xb.

The plant has two manipulated variables: R – the re-
flux stream flow rate, and V – the vapour stream flow rate.

Two fast single-loop PID controllers (denoted by LC) are
used to stabilise the levels in the reflux tank and the bot-
tom product tank. Two additional PID controllers (de-
noted by FC) are also used to control the actual streams
of R and V . All the PID controllers comprise the basic
control layer. In order to stabilise the compositions xd

and xb of top and bottom products, a supervisory MPC
algorithm is used. It treats the column as a two-input (R,
V ) two-output (xd, xb) process. The sampling time of this
algorithm is 1 min. At the nominal operating point we
have xd0 = 0.95, xb0 = 0.05, R0 = 33.3634 kmol/h,
V0 = 83.3636 kmol/h. The compositions are expressed
in molar fractions.

Three models of the process are used. Analogously
to the polymerisation reactor case, the fundamental model
(Ławryńczuk, 2003) is used as the real process during
simulations. An identification procedure is carried out.

Fig. 9. Distillation column control system structure.
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As a result, a linear model for the nominal operating point
and a neural one are obtained. The empirical models
have the same input arguments determined by τm,n = 1,
nm

a = nm,n
b = 2, m = 1, 2, n = 1, 2. The empirical

models used in MPC algorithms are
(a) a linear model for the nominal operating point,

y1(k) = b1,1
1 u1(k−1)+b1,1

2 u1(k−2)

+ b1,2
1 u2(k − 1)+b1,2

2 u2(k−2) (51)

− a1
1y1(k−1)−a1

2y1(k−2),

y2(k) = b2,1
1 u1(k−1)+b2,1

2 u1(k−2)

+ b2,2
1 u2(k−1) + b2,2

2 u2(k−2) (52)

− a2
1y1(k−1) − a2

2y1(k−2),

(b) a neural model comprised of two neural networks,
each of which contains seven neurons in the hidden
layer,

y1(k) = g1

(
u1(k − 1), u1(k − 2), u2(k − 1),

u2(k − 2), y1(k − 1), y1(k − 2)
)
, (53)

y2(k) = g2

(
u1(k − 1), u1(k − 2), u2(k − 1),

u2(k − 2), y1(k − 1), y1(k − 2)
)
, (54)

where u1 = R, u2 = V , y1 = xd, y2 = xb.

The compared MPC strategies are:

(a) the linear MPC algorithm with the linear model for
the nominal operating point,

(b) the nonlinear MPC-NO algorithm with the neural
model,

(c) the nonlinear suboptimal MPC-NPL algorithm with
the neural model,

(d) the nonlinear hybrid MPC-NPL-NO algorithm with
the neural model.

The horizons are N = 10, Nu = 3, the weight-
ing matrices Mp=diag(5, 0.5) and Λp = diag(1.5, 1.5).
The following constraints are imposed on the manipulated
variables: Rmin = R0 − 20 kmol/h, Rmax = R0 + 20
kmol/h, Vmin = V0 − 20 kmol/h, Vmax = V0 + 20
kmol/h.

Simulation results of the MPC algorithm with the lin-
ear model are depicted in Fig. 10. Simulation results of the
MPC-NPL (using the single-point linearisation method)
and MPC-NO algorithms with the same neural network
model are shown in Fig. 11. A few observations can be
made. Both of the nonlinear algorithms with the neural
network model work faster than the linear one, and the in-
teractions between the top and bottom parts of the process

are reduced. The differences between linear and non-
linear algorithms are clearly visible not only in the out-
put, but also in input profiles, i.e., the manipulated vari-
ables change much faster in nonlinear algorithms. The
performances of the MPC-NO and MPC-NPL algorithms
are practically identical. Furthermore, as was in the case
of the polymerisation reactor, the single-point linearisa-
tion method gives good results. Unlike the polymerisa-
tion reactor for which the linear MPC results in a poor
performance (unstable or slow behaviour), this technique
works satisfactorily for the distillation column, although
the process is significantly nonlinear. This is because the
set-points (compositions) change only moderately. Nev-
ertheless, if the production scale is big, the advantages
of nonlinear MPC over linear one are evident. Espe-
cially, nonlinear MPC is worth applying to the distillation
process when on-line economic optimisation is used to ad-
just the operating point to the changes in the composition
and flow rate of the feedstream (Tatjewski, 2007).

8. Conclusions

Because the nature of many industrial processes is nonlin-
ear, the application of MPC algorithms with linear models
may give poor closed-loop performance, e.g., instability.
Nonlinear MPC algorithms with neural network models
presented in this paper exhibit superior control in com-
parison with linear MPC techniques. Feedforward neural
networks are used as process models. Having excellent
approximation abilities, in comparison with popular fuzzy
models they do not suffer from the “curse of dimension-
ality”, which is troublesome in multivariable cases. Fur-
thermore, unlike many fundamental models (e.g., distilla-
tion columns), feedforward neural models have a simple,
regular structure. Hence, they can be easily incorporated
into the described MPC algorithms and efficiently used
on-line.

The emphasis is put on reliability, computational ef-
ficiency and closed-loop accuracy of the MPC algorithms
considered. The MPC-NO algorithm, although potentially
very accurate, has limited applicability, since nonlinear
optimisation is used on-line. On the contrary, the MPC-
NPL algorithm uses on-line only a quadratic program-
ming procedure, and thus the necessity for full nonlin-
ear optimisation is avoided. The hybrid algorithm com-
bines advantages of both classes. As far as closed-loop
accuracy is concerned, in the case of the presented ex-
amples the suboptimal MPC-NPL algorithm practically
gives performance comparable to that obtained in the
MPC-NO scheme. When the process is significantly non-
linear and linearisation-based algorithms are not suffi-
cient or the nonlinear output constraints have to be sat-
isfied, the hybrid algorithm is recommended. Although
for the processes considered the single-point linearisa-
tion method gives good results, future research will em-
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Fig. 10. Simulation results of the distillation column with the MPC algorithm with the linear model

brace the investigation of different linearisation methods
and the application of the discussed algorithms to various
processes.

The stability of the presented MPC algorithms with
neural models can be practically achieved by proper tun-
ing of the weighting matrices Mp and Λp in the cost func-
tion J(k). Furthermore, all discussed algorithm classes
can be combined with the stabilising dual-mode approach
(Ławryńczuk and Tatjewski, 2004; Ławryńczuk, 2003)
developed by Michalska and Mayne (1993). In this ap-
proach merely feasibility, rather than optimality, is suffi-
cient to guarantee stability.
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