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Abstract We calculate the local groups of germs associated with the higher dimensional
R. Thompson groups nV . For a given n ∈ N ∪ {ω}, these groups of germs are free abelian
groups of rank r , for r ≤ n (there are some groups of germs associated with nV with rank
precisely k for each index 1 ≤ k ≤ n). By Rubin’s theorem, any conjectured isomorphism
between higher dimensional R. Thompson groups induces an isomorphism between associ-
ated groups of germs. Thus, if m �= n the groups mV and nV cannot be isomorphic. This
answers a question of Brin.

Keywords Higher Dimensional R. Thompson Groups nV · Germs · Rubin’s Theorem
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1 Introduction

In the paper [1], Brin introduces a family nV of groups, where n ∈ {1, 2, . . .} ∪ {ω}. These
groups are homeomorphism groups of the Cantor set. However, for each index n, it is usual
to consider nV as a group of homeomorphisms of Cn which is of course homeomorphic to C ;
by definition the elements of nV essentially respect the local product structure on Cn . Thus,
these groups typically are thought of as “higher dimensional” analogues of R. Thompson’s
group V = 1V . One current question in the theory of the groups is whether there are indices
m �= n with mV ∼= nV . In the seminal article [1], Brin shows that the group 2V is not
isomorphic to V . He also asks in [4] whether mV and nV can be isomorphic if m �= n. In this
paper, we answer that question.
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While the theory of the groups nV is only in its early development, it is already known
that these groups have interesting properties. They are simple (see [2]), for n ≤ ω the group
nV is finitely presented (see [5]), and each group nV contains copies of every finite group
(since it contains a copy of V , which itself has this property). Because of these properties,
it is non-trivial to detect whether these groups are pairwise isomorphic through the use of
standard algebraic machinery.

Brin shows that V = 1V and 2V are not isomorphic by taking advantage of dynamical
properties of the actions of these groups on the Cantor set. This is enabled by a theorem of
Rubin which applies to these groups; any potential pairwise isomorphism would preserve the
orbit structure of the actions of corresponding group elements on the Cantor set. To prove
contradiction, Brin finds an element in 2V which acts with non-trivial entropy and shows
that no element of V acts in such a fashion.

The main difficulty in proving the generalized non-isomorphism result lay in finding the
appropriate invariant of topological conjugacy to distinguish the groups in the family nV .
While coming to understand that the groups in nV do not appear to be generally separable
by calculations of topological entropy, the authors gathered the appropriate information for
the calculation of the local groups of germs. The second author then discovered that the local
groups of germs actually captured precisely the information we needed to separate the groups
in nV .

Given an index n and a point x ∈ Cn , we calculate the local group of germs G(nV,x) of
nV at x . We obtain the following result.

Theorem 1 Let n ∈ {1, 2, . . .} ∪ {ω} and x ∈ Cn. Suppose that |x | is the number of coordi-
nates of x which are rational. The group of germs G(nV,x) of nV at x is isomorphic to Z |x |,
the free abelian group of rank |x |.

Rubin’s theorem now applies so we obtain the generalized non-isomorphism result.

Theorem 2 Let m, n ∈ {1, 2, . . .} ∪ {ω}, with m �= n, then mV is not isomorphic to nV .

2 Background requirements

Throughout this section, we will provide the background and set the stage for that proof.

2.1 Rubin’s theorem

Brin indicates in [1] that the groups V and 2V act on C and C2 in such a way that Rubin’s
Theorem [6] applies; any isomorphism φ : V → 2V induces a unique homeomorphism
ψ : C → C2, so that for v ∈ V, φ(v) = ψ ◦ v ◦ψ−1. Brin does not prove this fact fully, but
gives the reader sufficient explanation to verify the result for themselves.

Brin’s argument in [1] does not directly demonstrate that Rubin’s Theorem applies to any
possible isomorphism between mV and nV with m or n ≥ 3. However, with a small amount
of work Brin’s argument can be generalized to show that Rubin’s theorem still applies. We
will assume below that the reader has seen that this is the case.

2.2 A group of germs

As mentioned, our key invariant will be the group of germs at a fixed point, for which we now
recall the definition. Suppose X is a topological space, and H is a subgroup of the full group
of homeomorphisms of X . For any x ∈ X , define the set Fix(H,x) = {h ∈ H | h(x) = x}.
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We place an equivalence relation on Fix(H,x). We say that f, g ∈ Fix(H,x) are equivalent
if there is a neighborhood U of x so that f |U = g|U . In this case we write f ∼x g and
we denote the equivalence class (the germ) of any element h ∈ Fix(H,x) by [h]x . We further
denote the set of germs that result by G(H,x).

The following is standard. It is also given explicitly as a portion of Lemma 3.4 in [3].

Lemma 1 Given a topological space X, a point x ∈ X, and a group of homeomorphisms
H of X, the set G(H,x) forms a group under the operation [ f ]x ∗ [g]x = [ f g]x .

2.3 Cn, n-rectangles, and the groups nV

There is a well-known correspondence between finite binary strings, and subsets of the
Cantor set C . We interpret a string as inductive choices of halves. For instance, the string
“011” means take the left half of the Cantor set (throwing out the right half), then take the
right half of what remains, and finally pass to the right half of that. The diagram below
illustrates this notation.

If we pass to the limit and consider infinite binary strings, we obtain the standard bijection
from 2N , the space of all infinite strings in the alphabet {0, 1}, to the Cantor set. That is, we
abuse notation by having an element s of the Cantor set correspond to a map s : N → {0, 1}.
In this notation, we would denote s(0) by s0, so that we can write s as an infinite string
s = s0s1 . . .. In this case, we can define a prefix of s of length r as the finite substring
s0 · · · sr−1. We will call an infinite binary string w an infinite tail of s if s = Pw for some
finite prefix P of s.

Elements s, t ∈ 2N are near to each other when they have long common prefixes. This
induces the standard topology of the Cantor set. In this description, a point z of the Cantor set
will be rational if and only if it corresponds to an infinite string of the form Pw = Pww . . .,
where P is a prefix string and w is some non-empty finite string.

We will now fix n as a positive integer. Let us first define a special class of subsets of Cn .
R is an n-rectangle in Cn if there is a collection of finite binary strings P0, P1, . . . , Pn−1 so
that

R =
{

z ∈ Cn | z = (x0, x1, x2, . . . , xn−1) and xi = Pi zi where zi ∈ 2N
}
.

In this case, by an abuse of notation, we will say R = (P0, P1, . . . , Pn−1).
We now define a special class of maps, n-rectangle maps, as follows. Suppose D =

(P0, P1, . . . , Pn−1) and R = (Q0, Q1, . . . , Qn−1) are n-rectangles. We define the n-rectan-
gle map τ(D,R) : D → R by the rule z �→ z′ where the i’th coordinate Pi zi of z determines
the i’th coordinate Qi zi of z′. We will also refer to these as prefix maps.

We note that a prefix map τ(D,R) (as above) scales dimension i in accord with the length
of Pi and the length of Qi . For instance, if Pi = 1 and Qi = 011, then in dimension i , the
map will take a half of the Cantor set and map it affinely over an eighth of the Cantor set.
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24 Geom Dedicata (2010) 146:21–26

In particular, any such map will have a scaling factor of 2n for n ∈ Z . (In terms of metric
scaling, viewing the Cantor set as the standard deleted-middle-thirds subset of the interval,
the scaling factors would of course be 3n . We will use the 2n point of view in the remainder
of this note.)

We can now define a pattern to be a partition of Cn into a finite collection of pairwise
disjoint n-rectangles. An element f of nV now corresponds to a homeomorphism from Cn

to Cn for which there is an integer k, a domain pattern D, and a range pattern R, each pattern
with k rectangles, so that f can be realized as the union of k disjoint n-rectangle maps, each
carrying an n-rectangle of D to an n-rectangle of R. It should be noted that two different pairs
of partitions can correspond to the same map. The diagram below demonstrates a typical such
map in 2V .

In the case of ωV , the ω-rectangles are only allowed to restrict the domain in finitely
many dimensions. That is, R = (P0, P1, P2, . . .) is an ω rectangle if and only if only finitely
many of the Pi are non-empty strings. Thus, ωV can be thought of as a direct union of the
nV groups for finite n.

2.4 Rubin’s Theorem and some groups of germs

In order to state Theorem 3 below, we need to give a further definition. If X is a topological
space and F is a subgroup of the group of homeomorphisms of X , then we will say that F
is locally dense if and only if for any x ∈ X and open neighborhood U of x the set

{
f (x)| f ∈ F, f |(X−U ) = 1|(X−U )

}

has closure containing an open set.
The following is the statement of Rubin’s Theorem, as given by Brin as Theorem 2 in

[1]. It is a modification of Rubin’s statement Theorem 3.1 in [6], which statement appears to
contain a minor technical error.

Theorem 3 (Rubin) Let X and Y be locally compact, Hausdorff topological spaces without
isolated points, let H(X) and H(Y ) be the automorphism groups of X and Y, respectively,
and let G ⊆ H(X) and H ⊆ H(Y ) be subgroups. If G and H are isomorphic and are both
locally dense, then for each isomorphism φ : G → H there is a unique homeomorphism
ψ : X → Y so that for each g ∈ G, we have φ(g) = ψgψ−1.

If we combine Rubin’s Theorem with our previous work on the group of germs, we get a
lemma which appears to be a very mild extension of Lemma 3.4 from [3].

Lemma 2 Suppose X and Y are locally compact, Hausdorff topological spaces without iso-
lated points, and that G and H are respectively subgroups of the homeomorphism groups of
X and Y , so that G and H are both locally dense. Suppose further that φ : G → H is an
isomorphism, and that ψ is the homeomorphism induced by Rubin’s Theorem. If x ∈ X and
y ∈ Y so that ψ(x) = y, then ψ induces an isomorphism ψ : G(G,x) → G(H,y).
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Proof This is a straightforward exercise in calculation.
For [v]x ∈ G(G,x), define ψ([v]x ) = [ψvψ−1]y .
We first show thatψ is well defined. Let f ∼x g with f, g ∈ Fix(G,x), so that f |U = g|U

with U an open neighborhood of x . Then N = ψ(U ) is an open neighborhood of y = ψ(x)
since ψ is a homeomorphism. For z ∈ N , ψ−1(z) ∈ U , so ψ fψ−1(z) = ψgψ−1(z). Thus
[ψ fψ−1]y = [ψgψ−1]y .

Now we show that ψ is a homomorphism. We have

ψ([ f ]x [g]x ) = ψ([ f g]x ) = [ψ f gψ−1]y = [ψ fψ−1ψgψ−1]y

= [ψ fψ−1]y[ψgψ−1]y = ψ([ f ]x )ψ([g]x ).

Finally, we show that ψ is a bijection. Since ψ−1 conjugates H to G, we also have an
induced map ψ−1. Now, direct calculation as above shows that ψ−1 ◦ ψ and ψ ◦ ψ−1 are
the identity maps on G(G,x) and G(H,y) respectively. ��

3 Conclusion

Below, we give our proofs using notation for m < n < ω. The result for n = ω is immediate
from the arguments below when one considers ωV as a direct limit of the nV in the natural
fashion.

We now prove Theorem 1. Namely, the group of germs of nV at x ∈ Cn is isomorphic
with the free abelian group with rank equal to the number of rational coordinates of x .

Proof Assume x = (x1, . . . , xn) ∈ Cn and let |x | = k denote the cardinality of the set {i : xi

rational}. Assume without meaningful loss of generality that x0, . . . , xk−1 are the rational
coordinates. Let us write xi = Aiwi for each index i with 0 ≤ i ≤ k − 1, where Ai is the
shortest prefix so that xi can be written in this fashion, and where wi is the shortest word so
that an infinite tail of xi is of the form wi . Suppose f ∈ nV with f (x)= x , and let j be the
minimal integer so that f admits a decomposition as a union of j disjoint n-rectangle maps,
{ fi : Di → Ri | 1 ≤ i ≤ j}, with f = f1 ∪ f2 . . . ∪ f j .

Assume further that a is the index so that x∈Da . By our earlier assumptions, x∈Ra

as well. We can now restrict our attention to τ(Da ,Ra). By definition there are finite
strings P(a,i) and Q(a,i) so that Ra = (P(a,0), P(a,1), . . . , P(a,n−1)) and Da = (Q(a,0),

Q(a,1), . . . , Q(a,n−1)).
Since x is fixed by f , we must have that for each index m ≥ k, P(a,m) = Q(a,m). Also,

we see that for each index m < k, P(a,m) = Am(wm)
sm cm and Q(a,m) = Am(wm)

tm cm for
some non-negative integers sm and tm , and some prefix cm of wm . Define for f , the tuple
(s0 − t0, s1 − t1, . . . , sk−1 − tk−1) ∈ Zk . We will call this association σ̂x : Fix(nV,x) → Zk .

If g, h ∈ Fix(nV,x), with [g]x = [h]x , then σ̂x (g) = σ̂x (h), as otherwise the scaling of
the two maps in some dimension could not be the same in some small neighborhood of x .

The map σ̂x induces a set map σx : G(nV,x) → Zk . The reader may now confirm that the
map σx is in fact an isomorphism of groups. ��

We now prove Theorem 2, that if m �= n then mV �∼= nV .

Proof Suppose m and n are valid indices, with m < n, and suppose φ : nV → mV is an
isomorphism, with ψ : Cn → Cm the homeomorphism induced by Rubin’s Theorem. Let x
be a point in Cn with all n coordinates rational, and let y = ψ(x). The map ψ induces an
isomorphism ψ : G(nV,x) → G(mV,y). But observe, the rank of G(nV,x) is n, while the rank
of G(mV,y) must be less than or equal to m. Thus, no such isomorphism ψ can exist. ��
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Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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