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A FAMILY OF OPTIMAL FOURTH ORDER METHODS FOR MULTIPLE ROOTS OF

NON-LINEAR EQUATIONS

FIZA ZAFAR, ALICIA CORDERO, AND JUAN R. TORREGROSA

Abstract. Newton-Raphson method has always remained as the widely used method for finding simple as well
as multiple roots of nonlinear equations. In the past years, many new methods have been introduced for finding
multiple zeroes that involve the use of weight function in the second step, thereby, increasing the order of convergence
and giving a flexibility to generate a family of methods satisfying some underlying conditions. However, in almost
all the schemes developed over the past, the usual way is to use Newton type method at the first step. In this

paper, we present a new two-step optimal fourth-order family of methods for multiple roots (m > 1). The proposed
iterative family has the flexibility of choice at both steps. The development of the scheme is based on using weight

functions. The first step can not only recapture Newton’s method for multiple roots as special case but is also
capable of defining new choices of first step. We compare our methods with the existing methods of same order with
a real life application as well as standard test problems. From the numerical results, we find that our methods can
be considered as a better alternate for the exiting methods of same order. %Finally, dynamical study and stability
analysis is also given to explain the dynamical behavior of the new methods around the multiple roots.

1. Introduction

Construction of stable and optimal iterative methods for multiple roots having prior knowledge of multiplicity
(m > 1) is one of the most important and challenging tasks in computational mathematics. Some optimal and
non-optimal fourth-order methods have been developed in the recent past proposed by Neta and Johnson [12] in
(2008), Li et al. [9] in (2009), Neta [11], Sharma and Sharma [14] and Li et al. [8] in (2010), Zhou et al. [19]
in (2011), Sharifi et al. [13] in (2012), Soleymani et al. [15], Soleymani and Babajee [16], Liu and Zhou [10] and
Zhou et al. [20] in (2013), Thukral [17] in (2014), Behl et al. [1] and Hueso et al. [5] in (2015). However, it is
indeed the need of time to design iterative methods for multiple roots not only in a general, optimal and efficient
context but also in terms of deep analysis of their stable regions of convergent of initial estimations. Most recently,
Behl et al. [2] in (2016), Lee et al. [7] (2017) and Behl et al. [3] (2018) have constructed and analyzed such
families of methods. Moreover, most of these schemes are either the modification or extension of Newton’s method
or Newton-like methods by involving additional functional evaluations and increasing the amount of substeps of the
original methods.

We, in this work, propose an iterative family that has the flexibility of choice at both steps. The development of
the scheme is based on using weight functions. The first step can not only recapture Newton’s method for multiple
roots as special case but is also capable of defining new choices of first substep and hence different iterative schemes
in terms of both substeps. We compare our methods with the existing ones of the same order for standard test
problems. From the numerical results, we find that our methods can be considered as a better alternative for the
exiting methods of the same order. Finally, dynamical study and stability analysis is also given to explain the
dynamical behavior of the new methods around the multiple roots.

The contents of the paper is organized as follows: in Section 2, we define a new two-point fourth-order scheme
and analyze its convergence analysis. Some special cases are given in the Section 3. In Section 4, comparison of the
proposed methods with the existing ones is given.

2. Construction of Optimal Fourth-Order Scheme

Let α be a multiple zero with integer multiplicity m > 1, of f : C → C an analytic function in the neighborhood
of α. Then, for a given initial guess x0, we define the following iterative scheme in order to find a approximate zero
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of f :

yn = xn − h(xn)
f(xn)

f ′(xn)
,

xn+1 = xn −Qf (vn)
f(xn)

f ′(xn)
,(2.1)

where, the weight functions h : C → C and Qf : C → C are analytic functions in the neighborhoods of α and 0,

respectively with vn =

[

f
′

(yn)

f ′ (xn)

]
1

m−1

.

We, now, investigate the convergence analysis of the proposed family (2.1) and the find the conditions on weight
functions h(xn) and Qf (vn) in the next theorem.

Theorem 1. Let f : C → C be analytic function in the neighborhood of the required multiple zero α of multiplicity
m ∈ N − {1}. In addition, we also consider that Q : C → C and h : C → C are an analytic functions in the
neighborhood of origin and multiple zero α, respectively. Then, for an initial guess x0 sufficiently close to α the
family of iteration functions (2.1) has fourth-order convergence when the following conditions hold:

h (α) = m,h
′

(α) = 0, h
′′

(α) = 0,

Qf (0) = m,Q
′

f (0) = m,Q
′′

f (0) =
4m2

m− 1
(2.2)

and
∣

∣

∣
h

′′′

(α)
∣

∣

∣
<∞,

∣

∣

∣

∣

Q
′′′

f (0)

∣

∣

∣

∣

<∞.

Proof. Let α be a multiple zero of f(x) and en = xn − α be the error at nth iterate. Expanding f(xn) and f
′(xn)

about x = α by using the Taylor’s series expansion, we have

(2.3) f(xn) =
f (m)(α)

m!
emn

[

1 + c1en + c2e
2
n + c3e

3
n + c4e

4
n +O(e5n)

]

,

and

(2.4) f
′

(xn) =
f (m)(α)

m!
em−1
n

[

1 + (m+ 1) c1en + (m+ 2) c2e
2
n + (m+ 3) c3e

3
n + (m+ 4) c4e

4
n +O(e5n)

]

,

where ck = m!
(m+k)!

f(m+k)(α)
f(m)(α)

, k = 1, 2, 3, . . . , respectively.

By using expressions (2.3) and (2.4), we have

(2.5)
f(xn)

f ′(xn)
=

1

m
en − c1

m2
e2n +

A1

m3
e3n +

A2

m4
e4n +O(e5n),

where A1 = (1 +m)c21 − 2mc2, A2 = −(1 +m)2c31 +m(4 + 3m)c1c2 − 3m2c3.
Expanding the Taylor series of h(xn) about α up to second-order term, we obtain

(2.6) h(xn) = h (α) + enh
′

(α) +
1

2
e2nh

′′

(α) +O(e3n).

Thus, by using the expressions (2.5) and (2.6) in the first substep leads to:

(2.7) yn − α =

(

1− h (α)

m

)

en +
(c1h (α)−mh

′

(α))

m2
e2n +B1e

3
n +O(e4n),

where B1 = 1
2m3

[

m(4c2h (α)−mh
′′

(α))− 2c21h (α) (m+ 1) + 2mc1h
′

(α)
]

.

With the help of Taylor series expansion, we further get and

(2.8) f ′(yn) =
f (m)(α)

m!
em−1
n







m
(

1− h(α)
m

)m−1

m!
+D1en +D2e

2
n +O(e3n)






,

where

D1 = 1
m!(h(α)−m)2

(

1− h(α)
m

)m [

c1

(

h2 (α) (m+ 1)− h (α)m(m+ 3) +m2(m+ 1)
)

− h
′

(α) (m− 1)m2
]

,
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D2 = 1
2mm!(h(α)−m)3

(

1− h(α)
m

)m [

c1

(

(h
′′

(α) (h (α)−m) +
(

h
′

(α)
)2

(m− 2))((m− 1)m3 − 2h
′

(α)m2(m3 +m) +

h2 (α) (m+ 1)− h (α)
(

m2 + 4m− 1
)

)

+c21h (α)m
(

2h (α) (m+1)+2m (m+ 1)−h (α)m(m+7)
)

+2c2

(

h4 (α) (m+2)−4h3 (α)m(m+2)+2h2 (α)m2(2m+

7)− 2h (α)m3(m+ 5) +m4(m+ 2)
)

.

By using the expressions (2.3)-(2.5), and (2.8), we further have

(2.9) vn =

(

1− h (α)

m

)

+

(

c1h (α) (mh (α) + h (α)− 2m)− h
′

(α) (m− 1)m2
)

(m− 1)m3
en + E1e

2
n +O(e3n),

where

E1 = 1
2m5(m−1)2

[

− 4c1h (α)m
2 (m− 1)

(

h (α) (m + 1) − m
)

− c21h (α) (m + 1)
(

6m2(m − 1) + h (α)m(8 − 3m −

3m2) + h2 (α) (m2 −m− 2)
)

+c2m(m− 1)
]

h
′′

(α)m3 (m− 1) + 2h (α) (6m2 + h2 (α) (m+ 2)− 3mh (α) (2 +m))
]]

.

It is clear from (2.9) that vn − η = O(en), where η = 1 − h(α)
m . Therefore, we can expand the weight function

Qf (vn) about the point η with the help of Taylor’s series expansion upto third-order terms, we have

(2.10) Qf (vn) = Qf (η) +Q
′

f (η) vn +
1

2!
Q

′′

f (η) v2n +
1

3!
Q

′′′

f (η) v3n +O(e4n).

Now, use the expressions (2.3)–(2.10) in the second substep, we further obtain:

en+1 = −
[

1− 1

6m4
6m3

(

Qf (η) +Q
′

f (η)
)

− 6m2h (α)Q
′

f (η)

+3m (h (α)−m)
2
Q

′′

f (η) + (m− h (α))
3
Q

′′′

f (η)
]

en

+

3
∑

i=1

Γie
i+1
n +O(e5n),

(2.11)

where Γi is dependent on h (α) , h (α) , h (α) , Qf (η) , Q
′

f (η) , Q
′′

f (η) , Q
′′′

f (η) and c1, c2, . . . c6.

It is apparent from the above error expression (2.11) that we will obtain at least quadratic convergence if we choose
h (α) = m and Qf (η) = m. So, by inserting this value h (α) = m, Γ1 = 0 and η = 0. Furthermore

(2.12)

(

h
′

(α)Q
′

f (0)−
(

m−Q
′

f (0)
)

c1

)

m2
= 0

which the selection

(2.13) h
′

(α) = 0, Q
′

f (0) = m.

reduces Γ2 = 0 and

(2.14)
h

′′

(α)m2 + ( 4m2

m−1 −Q
′′

f (0))

2m3
= 0.

Thus,

(2.15) h
′′

(α) = 0, Q
′′

f (0) =
4m2

m− 1
,

Γ3 = 0 and (2.11) gives us the following error equation:

(2.16) en+1 =
1

6(m− 1)2m4
(ξ1c

3
1 − ξ2c1c2 + 6ξ3)e

4
n +O(e5n),

where ξ1 = 24m3+3m4−m2(Q
′′′

f (0)− 3)−Q
′′′

f (0)+2m
(

Q
′′′

f (0) + 3
)

, ξ2 = 6m3(m− 1), ξ3 = m3(m− 1)2h
′′′

(α) .

The above asymptotic error constant in (2.16) reveals that the proposed scheme (2.1) reaches at fourth-order
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convergence by using only three functional evaluations (using f(xn) f
′(xn) and f

′

(yn)) per iteration. This completes
the proof. �

Remark 1. Proposed family (2.1) has an advantage of making selection at both steps. It is also clear that the first
step recaptures Newton’s method as special case and it is capable of obtaining first step different from the traditional
choice of Newton’s method.

3. Some special cases of our scheme

From Theorem 1, we can obtain several new multiple root finding two-point methods by using different cases for
h(xn) and Qf (vn) in the proposed scheme (2.1). Some particular cases of the proposed scheme are given as follows:

(1) By choosing h(xn) = m and Qf (vn) = m +mvn + 2m2

m−1v
2
n + Q3v

3
n, we obtain the following new two-point

new fourth-order iterative method:

yn = xn −m
f(xn)

f ′(xn)
,m > 1,

xn+1 = xn − ψ1
f(xn)

f ′(xn)
,(3.1)

where ψ1 = m+mvn + 2m2

m−1v
2
n +Q3v

3
n for Q3 = 32.6.

(2) For h(xn) = m and Qf (vn) =
m((m−1)(1−a1vn)−(m+1)vn)
(m−1)(1−a1vn+a1v2

n
)−2mvn

, the proposed scheme (2.1) reads as:

yn = xn −m
f(xn)

f ′(xn)
, n ≥ 0,

xn+1 = xn − ψ2
f(zn)

f ′(zn)
,(3.2)

where, ψ2 = m((m−1)(1−a1vn)−(m+1)vn)
(m−1)(1−a1vn+a1v2

n
)−2mvn

for a1 = 0.94.

(3) For h(xn) =
m+mwn

1+wn+a2w3
n

, we have

yn = xn − m+mwn

1 + wn + a2w3
n

f(xn)

f ′(xn)
,

xn+1 = xn − ψ1
f(xn)

f ′(xn)
.(3.3)

where, wn = f (xn) and we take a2 = −18.6.

(4) For h(xn) =
m+w3

n

1+a3w3
n

, we have

yn = xn − m+ w2
n

1 + a3w3
n

f(xn)

f ′(xn)
,

xn+1 = xn − ψ1
f(xn)

f ′(xn)
.(3.4)

where, wn = f (xn) and we take a3 = −16.3.
(5) By considering h(xn) = m+ a4f(xn)

m, we have the following particular case:

yn = xn − [m+ a4f(xn)
m]
f(xn)

f ′(xn)
,

xn+1 = xn − ψ1
f(xn)

f ′(xn)
,(3.5)

for a4 = 50.
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4. Numerical results and applications

In this section, we investigate the performance and convergence behavior of our proposed fourth order methods
namely (3.1)-(3.5) denoted by NM1, NM2, NM3,NM4 and NM5 respectively by carrying out some test functions
involving two standard nonlinear functions and one real life problem. We compare the methods with the recent
optimal fourth order methods given by Lee et al. [7] (2017) denoted by LKM.

For numerical tests, all computations have been performed in computer algebra software Maple 16 using 1000
significant digits of minimum number of precision. Tables 1–5 show the numerical errors of approximating real root
|xn − xn−1| and the absolute residual error of the respective function for the first three iterations , where E(−i)
denotes E × 10−i in all the tables. The initial approximation x0 for each test function, computational order of

convergence, rc ≈ log|f(xn+1)/f(xn)|
log|f(xn)/f(xn−1)|

and asymptotic error constant ac =
|xn+1−xn|
|xn−xn−1|4

, are also included in these tables.

The appearance of zeros in the tables represents that the exact zero has been approximated accurately up to 1000
significant digits. Now, we consider the following standard test problems:

Example 1. Let us consider the following standard non-linear test function:

(4.1) f1(x) =

[

sin

(

1

x

)

− x3 + 1

]3

.

The above function has a multiple zero at α = 1.20253919024135112296187908278 of multiplicity m = 3 with initial
guess x0 = 1.25.

Example 2. Assume another non-linear test problem which is given below:

(4.2) f2(x) = (x− 1)
(

x ln(x)−
√
x+ x4

)2
.

The function f3 has multiplicity m = 3, multiple zero at α = 1 and initial guess x0 = 1.1.

Example 3. Continuous Stirred Tank Reactor (CSTR)
Consider the isothermal continuous stirred tank reactor (CSTR). Components A & R are fed to the reactor at

rates of Q and q-Q respectively. The following reaction scheme develops in the reactor:

A+R → B

B +R → C

C +R → D

D +R → E.

The problem was analysed by Douglas [4] in order to design simple feedback control systems. In the analysis, he
gave the following equation for the transfer function of the reactor:

KC
2.98 (x+ 2.25)

(s+ 1.45) (s+ 2.85)
2
(s+ 4.35)

= −1,

where KC is the gain of the proportional controller. The control system is stable for values of KC that yields roots
of the transfer function having negative real part. If we choose KC = 0 we get the poles of the open-loop transfer
function as roots of the nonlinear equation:

(4.3) f3 (x) = x4 + 11.50x3 + 47.49x2 + 86.0325x+ 51.23266875 = 0

given as:

x = −1.45,−2.85,−2.85,−4.35.

So, we see that there is one multiple roots with multiplicity 2. We take m = 2 and x0 = −3.

Table 1: Comparison of multiple root finding methods for f1 (x)
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f1(x) =
(

sin
(

1
x

)

− x3 + 1
)3
, x0 = 1.25

Methods n |xn − xn−1| |f (xn)| rc ac
LKM 1 4.745384266(-2) 3.749911402(-14)

2 6.967096919(-6) 6.184240718(-60) 3.966126232 1.373935383
3 3.820695713(-21) 4.575159589(-243) 3.999998725 1.621567542

NM1 1 4.745890969(-2) 7.606120898(-16)
2 1.900060722(-6) 3.226081940(-74) 4.410031791 3.745384886(-1)
3 6.626315657(-26) 1.031678958(-307) 4.000088731 5.083960864(-3)

NM4 1 4.746080422(-2) 1.875993439(-23)
2 5.530835722(-9) 1.179732013(-104) 3.895632250 1.090059958(-3)
3 4.738506100(-36) 1.844915398(-429) 4.000000186 5.063821720(-3)

NM5 1 4.746080809(-2) 5.109598493(-25)
2 1.664086562(-9) 6.492241143(-111) 3.833089962 3.279709665(-4)
3 3.883099658(-38) 1.692082630(-454) 4.000000052 5.063780615(-3)

Table 2: Comparison of multiple root finding methods for f2 (x)

f2 (x) = (x− 1)
(

x ln(x)−√
x+ x4

)2
, x0 = 1.1

Methods n |xn − xn−1| |f (xn)| rc ac
LKM 1 9.973228391(-2) 3.888577634(-10)

2 2677160895(-4) 2.352566232(-40) 3.853170778 2.706022566
3 2.264847390(-14) 3.175439431(-161) 3.999892196 4.409009687

NM1 1 9.983089756(-2) 9.796949329(-11)
2 1.691024370(-4) 2.880566614(-47) 4.327807202 1.702511144
3 1.124650632(-16) 1.859782372(-193) 4.001739973 1.375365624(-1)

NM4 1 9.979306935(-2) 1.795411740(-10)
2 2.069306440(-4) 3.353782987(-46) 4.368837238 2.086523533
3 2.549000828(-16) 3.417356322(-189) 4.002164322 1.390179047(-1)

NM5 1 9.979300583(-2) 1.797065853(-10)
2 2.069941600(-4) 3.366337536(-46) 4.368901372 2.0871692921
3 2.552177510(-16) 3.468814483(-189) 4.002165039 1.390203910(-1)

Table 3: Comparison of multiple root finding methods for f3 (x)
f3 (x) = x4 + 11.50x3 + 47.49x2 + 86.0325x+ 51.23266875, x0 = −3.0
Methods n |xn − xn−1| |f (xn)| rc ac
LKM 1 1.521916174(-1) 1.008561681(-5)

2 2.191856237(-3) 1.197664817(-13) 2.160003501 4.085536881
3 2.388130175(-7) 7.327948015(-58) 5.578713509 1.034688766(4)

NM1 1 1.500116811(-1) 2.865442731(-10)
2 1.168116988(-5) 9.489712144(-44) 4.075138694 2.306672973(-2)
3 2.125772928(-22) 1.141014571(-177) 4.000006184 1.141751293(-2)

NM4 1 1502676260(-1) 1.504078150(-7)
2 2.676260156(-4) 7.279363956(-33) 4.606463395 5.248879797(-1)
3 5.887583365(-17) 3.950506405(-134) 4.000186954 1.147687774(-2)

NM5 1 1.432777532(-1) 9.492439797(-5)
2 6.722245222(-3) 4.948225872(-18) 4.927870715 1.595141817(1)
3 1.535023789(-9) 8.435094413(-75) 4.273783471 7.517227707(-1)
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