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ABSTRACT

A family of spherical potential-density pairs is presented. The densities are proportional
to r—* at large radii and diverge in the centre as r~7 with 0 <y <3. The models of Jaffe
and Hernquist are included as special cases. The gravitational potential is analytical for
all y. For specific values of y, most of the intrinsic and projected properties, such as
distribution function, surface density and projected velocity dispersion, can be expressed
in terms of elementary functions. A comparison to the de Vaucouleurs R!/“-profile
shows that the model with y =3/2 most closely resembles it in both surface density and
distribution function. This particular model is completely analytical, and thus it is the
best analytical approximation of the R!/4-model known so far.

Key words: celestial mechanics, stellar dynamics — galaxies: elliptical and lenticular, cD —
galaxies: kinematics and dynamics — galaxies: photometry — galaxies: structure.

1 INTRODUCTION Thus equation (1) represents mass models with central density

that hall then r~3 totically flat
The observed luminosity profiles of ellipticals and bulges c(:::)s)ps at ate shallower then 1= of even asymptoticaly Hia

are often well described by the empirical formula I o
exp(—constant x R#) (de Vaucouleurs 1948). While widely
used to derive global quantities for observed galaxies, such
as effective radius and effective surface brightness, this pro-
file is less useful for detailed modelling, mainly because it
cannot be deprojected to yield the spatial density or the grav-
itational potential analytically. Furthermore, its logarithmic
slope, d(InI)/d(In R), vanishes in the centre. This is certainly
not in contradiction with most (low-resolution) observations,
but recent high-resolution imaging indicates that the major-
ity of galaxies may have a constant logarithmic slope almost
all the way into the centre (e.g. Lauer et al. 1992; Crane &
Stiavelli 1993).

For these reasons, one is interested in simple models for
the spatial stellar density, which in projection resemble de Vau-
couleurs’ profile in the outer parts, but not necessarily in the
centre. Two such models are those introduced by Jaffe (1983)
and Hernquist (1990), which have central stellar densities pro-
portional to r~2 and r~!, resulting in central surface densities

Real galaxies and bulges are hardly spherical. How-
ever, the models that result from equation (1) by replac-
ing the radius r by an axisymmetric or triaxial radius
m= \/ x2+(y/q2)%+(z/q3)? are similar to the spherical models
in some important properties: e.g. surface brightness, cumula-
tive mass and differential energy distribution N(E). Also, the
typical behaviours of the dynamical quantities at small and
large radii are the same.

This paper is organized as follows. Section 2 investigates
the properties of the models and their changes with the pa-
rameter y. The surface densities and self-consistent distribution
functions for different values of y are compared to those of de
Vaucouleurs’ R¥4-model in Section 3. Finally, Section 4 sums
up and concludes.

2 CHARACTERISTICS OF THE MODELS

proportional to R™'andIn B_l, respectively. These two models In this section the intrinsic and projected properties for the

can be generalized to a family of density profiles with different family of models of equation (1) are analysed. More explicit

central slopes: equations for y =0 and 3/2 are given in Appendix A.
3—yM a

o) = E=0 (1

4 Y(r + a)d—r’
m et 2.1 Intrinsic properties

where a is a scaling radius and M the total mass. In the centre
these mass distributions are proportional to r~7, so that the
models by Jaffe and Hernquist correspond to y=2 and 1, The potential that corresponds to the density of equation (1)
respectively. The parameter y is restricted to the interval [0, 3). via Poisson’s equation is,

2.1.1 Potential and velocity moments

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System

220z 1snbny 0z uo 1senb Aq 906G /6/052/1/G9Z/8101E/SBIUW/WO0D dNno"ojwapeoe//:sdiy woli papeojumoq


http://adsabs.harvard.edu/abs/1993MNRAS.265..250D

0D;

5o

FT9O3WNRAS,”

Spherical potential-density pairs for galaxies 251

S GG B

r
r+a
For y <2 it has a finite central value of 2—y)"!GM/a.

The cumulative mass, half-mass radius and circular ve-
locity are

o) = oM X
a In

y=2.

ro\3
Mir)=M (r+a) ’ )
np=a (2679 — 1)—‘, @)
20 GM >
v(r) = Tra— ©)

The intrinsic velocity dispersion is connected to potential and
density by the Jeans equation (cf. Binney & Tremaine 1987,
hereafter BT). For the isotropic case the solution is given by

e O 1

2 — Y 4—y -
v2(r) =GM r'(r+a) T ra

(6)
which can be calculated analytically only if 4y is an integer.
At small radii, v? oc r*” for y>1 and v? oc ¥ for y <1. Thus
both v? and v? diverge in the centre for models with y > 2,
while they are finite for Jaffe’s model (y=2), which has an
isothermal cusp. For y <2, not only the circular velocity but
also the isotropic velocity dispersion declines to zero in the
centre, except for y =0, where v2(0) = GM /30a.

The density can be expressed in terms of the potential.
For this purpose it is useful to define y=r/(r+a) and the
dimensionless positive potential ¥ = — ®(GM/a)~!. Then

_ 1/2-y)
y=y(~1')={“ GomEE s ™
and

B-—yM (1— y)“'

p(@) = = "

®)
The dimensionless binding energy (defined by &=
—E(GM /a)™') of the circular orbit at radius r. is, for y#2,

_ 1 4—y 2—y 13—v
é”c—z_y 2(2_y)yc 5% ®

with y.=r./(r.+a). For y=0,1,2 3» 4, 3 or 2 5, equation (9) is of
order four or less and can be solved analytlcally for y.. This
in turn yields the angular momentum of the circular orbit as
an analytical function of energy:

Li(6) = GMa y:™ /(1 = yo). (10)

2.1.2 Distribution functions

The distribution function (hereafter DF) of the isotropic mo-
dels can be calculated using an Abel transform (cf. BT), which
gives

B—nNM

L=yl +2y+ @yl 4y
2(2n2GMa)’? |,

y4—y m

where y = y(¥) is given in equation (7). For y#2, f(&) can ge-
nerally be expressed in terms of hypergeometric series, which
reduce to elementary functions for integer or half-integer va-

lues of (2—y)7!, eg. for y=0,1,,7,%,3. At low binding

f&) = an

energies f(&) falls off as €%2. At high binding energies f(&)
diverges like

[P0 — &) y=0
(& — W) o Ezl;(o) _ é»]—(6—y)/2(2—v) ;)i ); <2 12)
&£6-1/20-2) 2<y<3,

but this is no difficulty since there is vanishingly little mass
at these energies (see below). The density of states at a given
energy can be calculated using a formula given by BT; the
result is
FO oyt

(&) = 161*V26Md / Y

& (l_y)4
For the isotropic models, the differential energy distribution
dM/dé& is given by N(&)=f(&)g(&) (BT). For low binding
energies it converges to 8a(3—7v)/5G, while at high binding
energies N(&) goes smoothly to zero like

[¥(0) — 4] y=0

Y ¥ _gav. (13)

0) — 81 0<y<2
N(& - ¥(0)) oc Ef;( ) =41 )b (14)
&Y 2<y<3,

which means that the isotropic models have no stars at rest in
the centre, in spite of the fact that f(&) diverges there.

The DFs of Osipkov—Merritt type (Osipkov 1979; Mer-
ritt 1985), fom(Q) with Q =&—L?/(2r}GMa), where r, is the
anisotropy radius, are given by

@ (B3-pM
fom(@) = f(Q)+r2W
/ (- vyy (3 -y v, (15)

where f(Q) is given in equation (11) and y = y(¥) of equation
(7). These DFs can be calculated in the same manner as the
isotropic DFs above.

2.2 Observables — projected properties
2.2.1 The surface density

The projected density Z(R) =2 |, ;0 p(r)r/V/r?—R2dr is express-
ible in terms of elementary functions for integer y, or in terms
of elliptic integrals for half-integer y. However, the asymptotic
behaviour can be inferred for the general case: at large radii,
T o« R73. In the centre, models with y>1 have  oc R, The
Hernquist model (y =1) has logarithmically diverging central
surface density. For models with y <1 the central surface den-
sity is finite with £(0) = [(2 — y)(1 — y)n]~'M/a?, and falls off
from this value as R'~. In Fig. 1 the surface density profiles
and their logarithmic slopes are plotted; they are computed
by numerical quadrature of a formula given in Appendix B.
The models with y <1 have surface density profiles that flatten
into the centre. Therefore, in spite of their intrinsically shallow
density cusps, in projection these models all appear to have a
core, and can hardly be distinguished from each other.

The cumulative surface density, which is defined by
S(R)=2mn foR Z(R)R dR, can be written as

~(3—))Ma / ® P17 R2 dr
R

S(R) = r +a)*

, (16)
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Figure 1. Surface density (a) and its logarithmic slope (b) for
the mass models of equation (1). Dashed-dotted lines: y=0,
0.25,0.5,0.75; the thin solid line: Hernquist’s model (y =1); dashed
lines: y =1.25,1.5,1.75; the thick solid line: Jaffe’s model (y=2); and
long dashed lines: y =2.25,2.5,2.75.

which again gives elementary functions for integer y and elliptic
integrals for half-integer y. The effective radius, defined by
S(R.)=M/2, must generally be computed numerically. The
ratio of effective to half-mass radius depends only slightly on
y. An approximation for y <5/2 is

;Ri ~0.7549 — 0.004 39y + 0.003 22y2
1/2

—0.00182y* + 0.0007. a7

This ratio of R./r1/2 =~ 3/4 seems to be relatively independent
of the mass model. It is also found for models that have
surface density profiles £ oc exp(—bR'/™) (Ciotti 1991). The
relationship R./a follows from equations (4) and (17).

2.2.2 Projected velocity dispersions

The projected velocity dispersion for isotropic models (cf. BT)
is

) _ (B—pGM?*@® [® 2 3
R = Sm | e R (18)

while for models containing only circular orbits it is
(3—y)GM?*R%a [ =% dr
aIR)  Jp a7 R

The integrals in equations (18) and (19) can be calculated
analytically only if 4y is an integer. However, it is possible
to infer the asymptotic behaviour at small and large radii for
all y. In the outer envelope both dispersions decrease as in
the Keplerian limit like R='/2. In the centre o2_ behaves like
R*7 for y > 1, like R*? for 1/2 <y <1, and like R? for
y < 1/2. The behaviour of the isotropic models at small radii

o2(R) = (19)
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Figure 2. Profiles of the projected velocity dispersions of (a) isotropic
and (b) circular models. The line styles are the same as in Fig. 1.

is 02; oc R*7 for y >3/2 and o}; c R for 1 <y <3/2,
the Hernquist model has o,; oc (InR)~!, and all models with
y <1 have a finite central projected velocity dispersion of
05;(0) =3(1—y)/[4(3—2y)(5—2y)IGM /a.

In Figs 2(a) and (b) the radial profiles of the projected ve-
locity dispersion for isotropic and circular models are plotted;
they are computed by numerically integrating formula given
in Appendix B. As for the surface brightness, the radial pro-
files of velocity dispersion are rather similar for models with
y <1 (see Fig. 2). Note that the projected isotropic velocity
dispersion profiles of the models with 1 <y <2 go to zero in
the very centre. This feature, however, will disappear under
realistic observing conditions (even with little seeing), which
can be demonstrated as follows. The dispersion is given as the
quotient of the two projected moments Zag,i and Z, the first of
which diverges in the centre as R*% for y>3/2 and goes to
a constant for y <3/2, whereas X diverges more strongly (see
above). Seeing will cut these singularities to finite values, which
then result in a finite measured central velocity dispersion.

2.2.3 Line-of-sight velocity profiles

The integration of the distribution function over the two ve-
locity components in the plane of the sky and subsequent
integration along the line of sight result in the distribution of
stars over line-of-sight velocities, which I will call the velocity
profile (hereafter VP). When observing a stellar system, the
VP is the function by which the stellar spectra are broadened,
yielding the galaxy spectrum. Due to higher resolution of the
data and improved deconvolution techniques, it is now pos-
sible to measure directly the VPs of elliptical galaxies (Franx
& Illingworth 1988; Bender 1990; Rix & White 1992; van der
Marel & Franx 1993). In the case of the VPs in spherical sys-
tems with general anisotropic DFs, f(&, L?), there is no way
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Figure 3. Line-of-sight velocity profiles of the isotropic models: devi-
ations of the profiles, normalized to unit area, from a Gaussian with
the same dispersion. Note that a Gaussian has a central amplitude
~0.4. The projected radii are given in units of a. The line styles are
the same as in Fig. 1. At R=0.05a the VP with the greatest deviation
at v=0 is that of the model with y =0.25, followed by y=0.5, 0 and
0.75.

to simplify the three-dimensional integral. However, for the
isotropic models, f(&), the VP can be calculated by a single
integration. For the models of equation (1) this results in

"I v\ P /i RE
L(R,0,) = 4nGM A f(‘-l‘(r)— 5) rram A 20)

where r, is the radius with 2‘P(r")=v;, which is given by

r,=ay@’/2)/[1 - y(v}/2)] with y from equation (7).

In Fig. 3 the deviations of the VPs of the isotropic DFs,
normalized to unit area, from a Gaussian with the same disper-
sion are plotted at the projected radii R/a=0.05,0.5,5. In the
outer parts, e.g. at R=5a, all models have VPs of a common
shape, which is less peaked than a Gaussian but has also less
prominent wings (at v/o =~ 3). This is the generic form of the
VPs in the envelope of an isotropic system with p oc#™# and
Keplerian potential at large radii (Gerhard 1993). At R=0.5a
the VPs hardly deviate from a Gaussian. Near the centre, at
R=0.05a, the models with y > 7/4 have VPs that are near-
Gaussian, while for y < 7/4 the VPs are more peaked. The
latter effect can be understood from the fact that, because of
the weaker density fall-off along the line of sight for smaller
y, the contribution to the VP of radii larger than R becomes
more significant for smaller y. Stars at those radii contribute
at smaller velocities to the VP, creating the peak. The model
with y =0, however, is an exception: its intrinsic central veloc-
ity dispersion does not go to zero (see above) and therefore its
central VP is less peaked than that of the models with y =0.25
or 0.5, as noted in the caption of Fig. 3.

-0.4
'?0—0.2
[}
E o
‘g 0.2

IIIIIlIII

Figure 4. Surface density residuals between the models and the R'/4-
profile in magnitudes. R, refers separately to the effective radius of
each model. The line styles are the same as in Fig. 1.

3 COMPARISON TO THE R!/*-MODEL

The surface brightness of many ellipticals and bulges is well
represented by the empirical formula

I(R) = I e 7SO/, e1)

where the effective radius, R., and I =1I(R.) are free para-
meters (de Vaucouleurs 1948). In this section, the properties
of the model with the surface density of equation (21) are
compared to those of the models defined in equation (1).

3.1 Surface density

At large radii the models of equation (1) have surface density
¥ oc R~3, while de Vaucouleurs’ formula falls off exponentially.
The central surface density of the R'/*-profile is finite and falls
off like RY* for very small radii. However, there is a range of
intermediate radii over which the models of equation (1) do
not differ much from a de Vaucouleurs profile. This can be
recognized in Fig. 4, where the residuals to de Vaucouleurs’
profile are plotted for various values of y from 0 to 2.75.
Models with y > 2 differ significantly from the R!/4-profile: they
go into the centre more steeply and are flatter in the envelope.
Models with y <2 have rather small residuals in a radial range
around R.. The model with y = 3/2 maximizes this range: over
nearly four decades in radius it agrees with the de Vaucouleurs
profile to within ~ 15 per cent. For y <1 the differences in the
residuals are quite small, i.e. these models describe the R'/4-
profile only slightly less well than does Hernquist’s model.

3.2 Energy distributions

The potential and isotropic distribution function for de Vau-
couleurs’ model are tabulated by Binney (1982). From these
the differential mass distribution N(E) can be computed.

In Fig. 5, f(E) and N(E) of the R*-model are plotted,
together with those of the models of equation (1) which have
finite W(0). The central potential depths of de Vaucouleurs’
model and of the model with y=3/2 are almost identical
in units of GM/R., which means that their intrinsic mass
distributions are rather similar. In turn, the effective radii
of the two models are comparable in units of GM /¥ (0) (cf.
Fig. 5), while they are smaller for y >3/2 and larger for y <3/2.
For this reason those two models compare well in Fig. 5.
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Figure 5. f(E) and N(E) of the models with y < 2 and the RY/*-profile.
Units are such that G=M = ¥(0) = 1. The line styles are the same as
in Fig. 1.

4 CONCLUSIONS

A family of spherical mass models has been investigated. The
densities are proportional to r~* at large radii and diverge
in the centre like p oc r™?, where 0 <y < 3. Therefore models
corresponding to different y mainly differ in their central parts,
out to a few scale radii, where the transition between r~? and
r~* occurs, but are very similar to each other in the envelope.
The typical behaviour of the scaling quantities, intrinsic and
projected, suggests a subdivision into three domains, 0<y <1,
1<y<2and 2<y<3, divided by the models with y=1
(Hernquist 1990) and y =2 (Jaffe 1983), respectively.

The models of the first domain, 0<y <1, are very similar
to each other in most properties. They have surface density
profiles that are finite in the centre, can hardly be distin-
guished from a model with a core (y =0), and resemble the de
Vaucouleurs profile almost as well as does Hernquist’s model.
Their projected isotropic velocity dispersion profiles are cen-
trally flat and have a maximum at r ~ 0.3 — 0.8 scale radii,
which becomes less prominent for smaller y. The dynamically
isotropic models have central line-of-sight velocity profiles that
are more peaked than a Gaussian, while at large radii they are
more flat-topped compared to a Gaussian. The latter property
is also found for y > 1, which is not surprising because the
mass models are similar at large radii.

Models with 1 <y <2 lie between the two well-known mo-
dels by Hernquist (1990) and Jaffe (1983). Their surface density
profiles have a central R'~7-cusp, but nevertheless closely re-
semble the RY“-profile over a large range in radius around
R.. The projected velocity dispersion profiles of the isotropic
models have a maximum close to the centre and dip to zero at
r=0. The latter effect is caused by the surface density (zeroth
moment) diverging more strongly than the second moment
(Z0?). The effects of seeing will cut these singularities to finite
values and lead to a non-zero observed central velocity dis-
persion. The central VPs of the isotropic models are slightly
more peaked than a Gaussian, but less so than for models of
the first domain.

The third domain, 2 <y < 3, comprises models that are
probably less useful because of some unrealistic properties,
such as infinite central potential, diverging central velocity
dispersions, and surface density profiles that do not resemble
the RYV*-profile. The central VPs of the isotropic models are
near-Gaussian.

The results on the typical scaling properties at small radii
or high binding energies are not restricted to the family of
models presented. They hold also for models with an intrinsic
cusp but different density profile in the outer parts, as long
as (i) the density falls off steeper than r—3 at large radii and
(ii) the mass-to-light ratio is constant in the centre (no black
hole). Exceptions are models with a core, since in these cases
the behaviour also depends on the way in which the density
falls off from its central value.

Of special interest is the model y=3/2 because (i) it is
analytical in all its properties, and (ii) it most closely resembles
the de Vaucouleurs model in both distribution function and
surface density, where it agrees to within 15 per cent (or 0.15
mag) in the range 0.001 <R/R. <8, corresponding to 12 mag
in surface density. It is thus the best analytical representation
of the RY*-profile known so far.
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APPENDIX A: PARTICULAR MODELS

As mentioned in Section 2, most of the model characteristics
can be given analytically for some values of y other than y =1
(Hernquist model) and y =2 (Jaffe model). This appendix deals
with y =0 and 3/2.

To simplify the expressions, the dimensionless quantities
x=r/a,s=R/a and &= — E/(GMa™!) are used.
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Al The model y=0

The density profile

3M  a
4n (r+a)f
is the only one among those of equation (1) that intrinsically
has a core. However, it is not an isothermal core, since the
derivative dp/dr does not vanish in the centre. For small radii
the potential (equation 2) becomes

p= (A1)

cp(r<<a)=—%(1—x2+2x3—3x4+4x5...). (A2)

The half-mass radius is ry/, ~3.8473a. Compared to Hénon’s
(1959) isochrone, which also has ®(0) = —GM /2a but contains
an isothermal core and has ry/; =~ 3.0603a, this model is less
centrally concentrated and the r~* density fall-off occurs at
larger radii. The dynamically isotropic model has velocity
dispersion
GM(1 + 67)
30(r +a)?’

with the maximum v(2/3a)/+/GM/a = 1/3/50 ~ 0.24495.

The circular orbit’s angular momentum is given as function of
energy in equation (10) with

2 4 4n 1 546 — 11
ye(6) = 3 + gcos(—3— + §arccos —16——>

The isotropic DF and the density of states are

. [ 268
— 3arsinh m), (AS5)

_ _ee?
g(&) = 872V GMd’ [,/l_zgw’; —

v (r)= (A3)

(A4)

M 3—48
1@ = 213 (GMa) 7 (‘/ﬁpzé’

1262
1—6&+16&>
W:)LW_ arccos(—v/ 1—2(5”)] . (A6)

The anisotropic DF of Osipkov—Merritt type (cf. Section 2) is

a? IM
fon@ =1 + 5 = Grrar

X (4@ — 3arsinh 4 / T% ) (A7)

with f(Q) of equation (AS).
Surface brightness and cumulative surface brightness are

M 1

X(R) = 471'(12 (32 1)3 [ —2—13¢° + 352(4+s2)X(S)] , (A8)
SR = Tsfl\i_l)z[s2 +25* = 38°X (9], (A9)
where

_ 212 —1
X(s)={(1 s*)~Y?arcosh s s<1 (A10)

(s* — 1)""2 arccos s s>1

is a continuous function with X (1) =1, the asymptotic expres-
sions of which at s — 0, 1, co are given by Hernquist (1990).
The effective radius is R.~2.9036a. The projected velocity
dispersions of the isotropic and the circular model are

o2 (R) = 3GM? [ 4 8, M7,
Y T TR (15 L 1573 15

+i’—§s6 - 7s4(2+s2)X(s)] , (Al1)
3IGM? 82 8 506, 593
2 - ° VL2204
%R = TR @ 1) [ 557750
+11258 6 _ 752(8420s +534)X(s)] (A12)

A2 The model y = 3/2

The model with mass density

M a

P B PR Gt

has a central cusp with a slope intermediate between those

of the models of Hernquist and Jaffe, and gives the best

representation of the R!/4-profile among those of equation (1).
The gravitational potential (equation 2) has a central

depth of —2GM /a, and the half-mass radius is r;, ~ 1.7024a.

The velocity dispersion of the isotropic model is

v2(r) = M — / 4x(x+1)3 In —+i

14 ?x+10x +4x] (A14)

(A13)

which in the centre goes to zero and has the maximum

v,(r 20.1577a) ~ 09576, /GM /a.

The circular orbit’s angular momentum is given as func-
tion of energy in equation (10) with

20 L, f4n 1 27
y(8) = 3 cos ( 3 + 3 arccos[ Es—(é"’—2)]) . (A15)

The DF of the isotropic model is

M Vé 9 99 _ 405,
1O = 36e6Ma” a-6) ["E_E'ﬂ 3¢
3705 3y 561 , 181 5 15 &’
TR VA VAR L 3
33+ 326 —86%) .
oo V : A
+ WY arcsin v/ &/2 (A16)

Equation 13 for the density of states can be rationalized, which

yields

VIS (1—g/2—)5P dr
[I—(1—&/2—t1)2]*°

this integral can be done analytically but it is relatively compli-

cated and much easier to compute numerically. The anisotropic
DF of Osipkov—Merritt type (cf. Section 2) is

2 3M\/_— Q3
fom(@) = f(Q) + 5 72 a2 GMa)” [( -0y — ] ,  (A18)

with f(Q) of equation (A16).

The surface density can be expressed in terms of incom-
plete elliptic integrals of the first and second kind:

M| -5
SR = — [h (A19)

s =32 [
V5(s+1)>2(s—1) 47V s+1

g(€) = 1287V GMa’ / (A17)
0
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oG- (z’\/ ?)J

The effective radius is R, ~ 1.2757a.
The projected velocity dispersions of the isotropic model
and of the model containing only circular orbits are

o2, (R) = GM 35 24s*—4452+17
pi PER) |2 8r(s2—1)2
3855 =205+ 155-2)
M s ) (A20)
2 (R)= M [ 245°—685*+65°°—6 35
ST FI®) | T t6n—1)? 4
3(8s°—285*+355°—20)
enT X0 (A21)

APPENDIX B: NUMERICAL INTEGRATIONS

For the numerical calculation of surface density, cumulative
surface density and projected velocity dispersions, the formula
given in Section 2 are not very useful because of infinite
integration intervals and singularities of the integrands. With
the substitution

t=1/r:_a(s+1)—s, s=R/a, (B1)

these problems disappear, and the quantities can easily be
computed using standard routines for numerical quadrature.
The integrals then become

Z(R) _ 3y

Ma=? "~ m(s+1)7/2—r

/ (s+)r(1—13)2 dt (B2)
2s+(1— s)t2
SR _ 23—y _
M (s+1)5/2—v/(s+t2)1 e
2s+(1—s)2 dt, (B3)
Z(R)o2,(R) 3—y ! -
GMa= ~ ri D)W /0 (s+27)"
X (1—t2)32/2s+(1—s)2 dt, (B4)
IR0 (R)  (3—y)s?
GMa= ~ 2m(s+1)13/2-2
Y s+ (1—12)5 dt (B5)

X
0 \ 25+ (1—s)t?

This paper has been produced uéing the Blackwell Scientific
Publications IATEX style file.
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