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SUMMARY

Java is becoming a viable platform for real-time computing. There are production and research real-time
Java VMs, as well as applications in both military and civil sector. Technological advances and increased
adoption of Real-time Java contrast significantly with the lack of benchmarks. Existing benchmarks are
either synthetic micro-benchmarks, or proprietary, making it difficult to independently verify and repeat
reported results. This paper presents the CDx benchmark, a family of open source implementations of
the same application that target different real-time virtual machines. CDx is, at its core, a real-time
benchmark with a single periodic task, which implements an idealized aircraft collision detection algorithm.
The benchmark can be configured to use different sets of real-time features and comes with a number of
workloads. It can be run on standard Java virtual machines, on real-time and Safety Critical Java virtual
machine, and a C version is provided to compare with native performance.

1. Introduction

Driven by the popularity of Java, the availability of development tools, and wide library support,

the Real-Time Specification for Java (RTSJ) [1] is on the rise. It is used in avionics [2], shipboard

computing, industrial control [3] and music synthesis [4]. Real-time Java programs have different

characteristics and requirements from traditional Java programs. While throughput remains important,

it is predictability that is critical for real-time applications. Therefore many of the engineering tradeoffs

that are an integral part of the design of a virtual machine have to be revisited to favor predictability

over throughput. In order for virtual machine developers to understand the impact of design decisions,

and for end users to select the technology that suits the requirements of a particular application,

comprehensive and meaningful benchmarks are needed.

There are many Java benchmarks, ranging from synthetic micro-benchmarks to complex

applications (e.g. SPECjvm, Dacapo [5], Java Grande, and SciMark). While these benchmarks can
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be used to evaluate the quality of real-time virtual machines, they are not representative of real-time

workloads. They aim to generate the highest sustainable load and they measure the mean performance

under this load, neither of which suits real-time systems. Real-time systems are designed such that

deadlines are not missed. The ability to meet deadlines depends on the worst-case computation times

of periodically scheduled tasks, which are not captured by mean performance metrics. Moreover,

programming styles for real-time systems are very different from non-realtime throughput targeted

systems. The usefulness of benchmarks for performance evaluation is that the benchmarks, being

realistic models of real applications, put the system of interest under a workload similar to those

real applications. They allow us to capture and evaluate performance characteristics caused by many

aspects of program execution, some of which we may not be aware of or be able to predict. For real-

time Java, we thus need benchmarks that actually model real-time systems, have deadlines, use RTSJ,

run on real-time OS kernels, use high precision timers, and measure workloads configured to never

miss a deadline. Unfortunately, it is notoriously difficult to find real-time applications in the wild. Most

real-time systems are proprietary and are tied to some hardware/OS platform. Real-time Java being a

relatively young technology does not help.

This paper presents the CDx benchmark, a relatively small-sized (33KLOC), open source,

application benchmark that can be targeted to different real-time platforms.† At its core, CDx has a

periodic thread that detects potential aircraft collisions, based on simulated radar frames. Other optional

threads are used to generate simulated aircraft traffic, and create computational noise. The benchmark

can thus be used to measure the time between releases of the periodic task as well as the time it takes

to compute the collisions. This gives an indication of the quality of the virtual machine and the degree

of predictability that can be expected from it. CDx is configurable, it can be used with a standard Java

virtual machine, an RTSJ virtual machine with scoped memory or with real-time garbage collection and

a Safety Critical Java virtual machine. Finally a C implementation is provided to allow for performance

comparison with native compiled code.

Another potential use of CDx is linked to verification [18]. The increasing complexity of real-time

systems is building up demand for automated verification tools. To develop these for Java, test cases are

necessary. Similarly to benchmarking, plain Java programs are not enough, because they do not use the

real-time API and are too complex for worst-case execution time (WCET) analysis. The real-time API

introduces new behaviors and new error modes. In particular, these are the memory assignment errors

in systems with scoped memory, but also incorrect sizing of scopes must be caught by these tools.

CDx can be easily used as test case for verification challenge problems. The RTSJ version can be a test

for the detection of memory assignment errors. Any version can be used to test maximum allocation

per release and the GC/RTGC version to test the RTGC overheads analysis. Bounds on WCET found

by tools can then be verified against values measured with the benchmark. The plain Java version

also makes it easier to get started with some types of analysis, gradually adding more and more RTSJ

semantics to the verification, as current Java verification tools generally do not support RTSJ.

Earlier versions and modifications of the collision detector were used in [19, 20, 9, 21]. This work

presents a first open-source version of the benchmark with improved instrumentation, several bug fixes,

unification of a plain Java and RTSJ code, and a description of the application logic.

†The source code can be downloaded from http://www.ovmj.net/cdx/.
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2. Benchmarking Real-time Java Applications

Understanding the performance characteristics of a rich programming platform such as a Java virtual

machine is a complex task, and even more when real-time constraints are added. It is thus highly

unlikely that a single benchmark will ever provide all the information that is needed by developers. To

start with, Java benchmarks are used for different purposes, including:

• understanding the performance of a particular feature or algorithm in the virtual machine, for

instance, the cost of different implementation of locking or garbage collection,

• comparing the quality of virtual machines, for the purpose of selecting a vendor,

• evaluating the suitability of Java for a particular application and a particular deployment

platform.

At the end of the day, a given benchmark is only meaningful if its workload is representative of

applications that are relevant to end-users. This section establishes a list of features that should be

covered by a real-time Java benchmark. It is not necessary for any benchmark to address all of these

issues, different benchmarks addressing different subsets of the points listed here can be used to give a

comprehensive picture of the quality of a real-time Java virtual machine.

• Object-oriented features: To be representative of idiomatic Java programs, object-oriented

features of the language should be exercised. These include: inheritance, interfaces, virtual and

interface dispatch.

• Memory management: Allocation and de-allocation of heap memory is a key feature of Java.

This feature should be exercised with objects of different size classes. A real-time benchmark

should allow developers to contrast the RTSJ’s scoped memory management API with plain

Java garbage collection, real-time garbage collection, and possibly traditional hand-coded object

pooling.

• Code size and complexity: The size and complexity of the source code has an impact on

performance in many different ways. Benchmarks should cover the range of program sizes

and complexities, from micro-benchmarks that can easily be optimized by an ahead-of-time

compiler, to more complex programs which are not as easy to optimize (e.g. for which the

compiler can not de-virtualize all calls).

• Multi-threading and synchronization: A real-time benchmark should exercise the scheduler

with multiple threads running at different priorities and with different release times.

Synchronization and priority avoidance are key features of the RTSJ, benchmarks should

exercise these features in a meaningful way with a mixture of contended and un-contended

locking operations.

• Other features: A number of other important features in the language should be exercised, these

include but are not restricted to: floating point operations, array accesses, exception handling, and

reflection.

• RTSJ API coverage: A real-time Java benchmark should exercise the RTSJ APIs beyond the

creation of threads and memory management. Some important features that should be exercised

include: timers, asynchronous signals, and raw memory.

• Predictability measurements: Accuracy of release times and predictability of completion

times are critical in real-time systems. A benchmark should have support for measuring
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the predictability of the virtual machine. This should be performed at different levels of

computational load and with interference from unrelated low-priority tasks.

• Start-up jitter measurements: Some applications require low latency start-up times. A real-

time benchmark should be set up so that it is possible to obtain a simple measurement of virtual

machine start-up time.

• Throughput measurements: Predictability must also be correlated with throughput, as it is easy

to trade one for the other. A benchmark should support some form of throughput measurement.

• Self-checking: The benchmark should include self-tests for correctness to ensure that results are

only reported for correct runs of the benchmark.

• Open source: Free availability of source code for a benchmark, while not essential, is an enabler

for wider adoption.

• Portability: A desirable feature is to be able to compare results across languages, operating

systems, and hardware platforms.

• Documentation: The behavior, goals, and measurements performed by the benchmark should be

clearly documented, so that end-users can understand which parts of the platform are exercised

and the meaning of a particular result.

The importance of documentation should not be under-appreciated. Any result obtained from a

benchmark can only be understood in the context of the operation performed by that benchmark. For

instance, it is well known, though not properly documented, that the SPECjvm98 Jess benchmark is

dominated by the cost of exception handling, and that SPECjbb spends most of its time acquiring and

releasing uncontended fine-grained locks. If either of these operations is slow in one particular virtual

machine, the performance results for that benchmark will appear to seriously lag behind competitors.

The purpose of this paper is thus to ensure that users of CDx understand what is being measured and

what meaning to ascribe to results obtained by running it.

2.1. Qualitative Comparison of Benchmarks

We are aware of three other benchmarks that have been used to evaluate real-time and embedded

Java programs. This section provides a qualitative comparison of these benchmarks based on publicly

available documentation. Table I summarizes our impressions.

SPECjbbRT. SPECjbbRT [17] is based on the industry standard SPECjbb benchmark. The basic

benchmark is written in an idiomatic object-oriented style and uses inheritance, interfaces and virtual

dispatch liberally. Some standard Java collection classes are also used. The memory management

policy is purely garbage-collected (both plain and real-time) with high-allocation rates that cause

the GC to run regularly. The code base is medium sized, several thousand lines, of reasonable

complexity. The benchmark can be configured to run with multiple threads and it employs standard

Java synchronized statements to protect shared objects at a rather fine-grained level (there are roughly

125 synchronized blocks in the benchmark which are called often). The RTSJ API coverage is minimal,

the main change from the original benchmark is the addition of real-time threads. The benchmark does

not measure the predictability of releases, but rather the jitter in completion times. This is mostly

useful to estimate execution time hazard introduced by the GC and JIT. The benchmark is thus more

suitable for evaluation of VMs for soft real-time Java systems than for hard real-time RTSJ applications.

Throughput measurement can be obtained with the number of transactions completed. There is no
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Features SPECjbbRT JBEmbedded Suramadu CDx

Object-oriented Yes No No Yes
Memory management GC/RTGC – Scopes/GC/RTGC Scopes/GC/RTGC/Man
Code size Medium Small Small Small
Multi-threading Yes No Yes Yes
Synchronization Sync – Sync/WF WF
Other – – Int/FP FP/Array
RTSJ coverage Small – High Small
Predictability Completion – Release/Completion Release/Completion
Throughput Yes Yes Yes Yes
Self-checking No No No No
Open source No Yes Yes Yes
Portability RTSJ Java RTSJ RTSJ/Java/C
Documentation Yes Yes Yes Yes

Table I. Qualitative comparison.

meaningful self-checking, we have experimented with removing all synchronization from the original

SPECjbb and have never seen a failing run on a 8-core desktop. Also, the benchmark is not open-

source. To this day, it has neither been adopted as a SPEC benchmark by the SPEC Corporation, nor

otherwise been made available. Portability is limited to Java and environments that support GC and

have sufficient memory. Some documentation is available. CDx complements SPECjbbRT in that it

also exercises scoped memory and supports manual memory allocation (the C version), it is available

for multiple platforms, it models a real-time application, it allows to measure predictability of releases

and to detect deadline misses, it exercises floating point unit and arrays, and it is publicly available and

open-source. On the other hand, SPECjbbRT has larger code base and exercises synchronization and

Java collection classes to a larger degree.

JavaBenchEmbedded. This benchmark suite is made up of a series of micro-benchmarks and kernels

that can be deployed on small embedded devices. The benchmarks do not use object-oriented features,

there is no inheritance, no interfaces, and minimal use of virtual dispatching. The micro-benchmarks

attempt to measure latencies of individual byte-code instructions, which only makes sense on non-

compiling VMs. On a compiling VM, compiler optimizations can arbitrarily distort the results, and

thus the measured values do not represent durations of individual instructions. The benchmarks do not

allocate substantial amounts of memory and thus do not exercise the memory management subsystem.

The code base is small and of limited complexity. The benchmark suite is single threaded. The RTSJ

APIs are not invoked. Measurements are limited to throughput. Portability is limited to Java. The

benchmark is open source and some documentation is available.

Suramadu. The open-source Suramadu benchmark suite [16] includes benchmarks that focus on low-

level measurement of jitter, throughput, and latency of various RTSJ operations. The original suite

also probably included one computational kernel throughput benchmark, but the core part of the

code is missing in the open-source release. The micro-benchmarks test individual features of the

RTSJ for performance and predictability. The benchmarks do not rely on object-oriented features

or libraries. The benchmarks test allocation in scoped memory or garbage collected memory. The

suite measures context switch latency, class loading costs, asynchronous event latency, cost overrun,
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interrupt latency, JNI overhead, priority inheritance latency, synchronization latency, wait free queues,

floating point, integer, and shift operations. The code size is small and the complexity is minimal.

The benchmark is not self-checking. The suite is open source. Its portability is limited to RTSJ.

Documentation is available. The strongest weakness of the suite is that it only contains simple synthetic

micro-benchmarks. Particularly the throughput micro-benchmarks are of little use, as they repeatedly

measure an arbitrary hard-coded sequence of Math operations (one for floating point, one for integer

operations, and one for shifting). The isolated execution of these sequences cannot reveal throughput

performance of real applications, which include a mix of different types of instructions and indeed

different sequences. Moreover, the instruction sequences heavily use constants, leaving most work to

the compiler in the compiling VMs. Representative throughput performance measurements can only

be obtained by application benchmarks, such as CDx. Suramadu exercises the memory management

using a simple sequence of allocation requests. CDx includes a realistic allocation sequence in the

application logic and a synthetic, yet more configurable, allocation sequence in its noise generators. The

Suramadu micro-benchmarks that measure RTSJ related latencies in synthetic workloads can provide

useful results for worst-case execution time estimates. Suramadu allows to measure predictability of

releases and completions again using a trivial synthetic workload. CDx can measure these using more

complex application workload, allowing to take into account additional aspects of the VM, such as

garbage collection pauses. The advantage of CDx is also that it has a plain Java and C version.

CDx. This is an application level benchmark. It has been written in an object-oriented style using

inheritance, interfaces, virtual dispatching and some collection classes from the standard library.

Different versions of the benchmark allocate memory in scopes, on the heap, and even with malloc/free.

The total code size is medium sized with a reasonable complexity, the part that exercises real-time

capabilities of Java is relatively small (about 5 thousands LOC). The benchmark is multi-threaded and

uses wait-free queues for communication. The benchmark uses arrays and floating point operations

extensively. It is set-up to allow measurement of both release time and completion time of the main

periodic thread. Additional computational noise can be configured in non-realtime threads. Additional

allocation noise can be configured in the real-time threads. Throughput can be calculated from the

measured completion times, i.e. as a sum or average. The output of the application logic of the

benchmark is deterministic, it is thus possible to make the benchmark self-checking, though this

remains to be done. The benchmark is open source and has been ported to plain Java, RTSJ, SCJ

and C code. It has been run on Linux, OS/X and RTEMS.

Overall, CDx covers a combination of features that was missing in previous work. While micro-

benchmarks are well suited to stress test individual features in isolation, they do not provide a

workload that it representative of real-world application and can magnify differences that do not

show up in deployed systems. CDx complements them by providing a larger, application, benchmark.

SPECjbbRT is comparable in size, and exercises threading and synchronization but is mostly a

throughput benchmark. Finally, it is the only benchmark that allows comparison across both different

variants of Java (Java, RTSJ, RTSJ+RTGC, SCJ), different operating systems (Linux, RTEMS...) and

even different programming languages (C / Java).
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3. CDx Benchmark Algorithmic Description

The collision detector application was designed by Titzer and Vitek as a software engineering project.

CDx is based on an implementation of this project done by Hagelberg and Pizlo at Purdue in 2001. The

benchmark was modified many times over the years. Its key components are an air traffic simulator

(ATS), which generates radar frames based on user-defined air traffic configurations, and a collision

detector (CD), which detects potential aircraft collisions. The program was designed so that collision

detection and air traffic simulation could be performed independently. Indeed, in the original design the

CD was a real-time thread while ATS was a plain Java thread and communication between the two was

performed by a non-blocking queue. In that design we relied on the simulator to create computational

noise and to occasionally trigger garbage collection. The version of the benchmark presented here can

also use an external program to create computational noise and pre-generate all the radar frames needed

for a run of the CDx.

3.1. Air Traffic Simulator

The ATS generates radar frames with aircraft positions, based on a user-defined configuration. A radar

frame is a list of aircraft and their current positions. An aircraft is identified by its call sign (a string). A

position is a three dimensional floating point vector in the Cartesian coordinate system. The simulation

runs for tmax seconds. Radar frames are generated periodically, providing a user-defined number of

radar frames per second (fps) and number of frames in total (frames). Thus, tmax is frames/fps. The set

of aircraft does not change during the simulation (i.e. none of the aircraft lands, takes-off, crashes, or

otherwise enters or leaves the covered area). With respect to detected collisions, the semantics can be

optimistically explained such that the pilots always avoid the collision in the end. The ATS is configured

by a textual file, where each line describes a single aircraft. Each line contains the call sign of the

aircraft and three columns with expressions giving the aircraft coordinates x, y, z as functions of time.

The expressions thus use “t” as a variable and then common mathematical operations: arithmetics with

brackets, trigonometric functions, logarithms, absolute value, etc. Coordinates can also be constants,

i.e. aircraft can fly at constant altitude.

3.2. Collision Detector

The CD detects a collision whenever the distance between any two aircraft is smaller than a pre-defined

proximity radius. The distance is measured from a single point representing an aircraft location. As

aircraft location is only known at times when the radar frames are generated, it has to be approximated

for the times in between. The approximated trajectory is the shortest path between the known locations.

Another simplification is that constant speed of aircraft is assumed between the two consecutive radar

frames. For these assumptions to be realistic, the frequency of the radar frames should be high (we

typically run the benchmark at 100 HZ). To allow such high frequency, the detection has to be fast. This

is achieved by splitting it into two steps. First, the set of all aircraft is reduced into multiple smaller

sets of aircraft that have to be checked for collision (reduction). This step allows CD to quickly rule

out collisions of aircraft that are very far from each other. Second, for each of the identified sets, every

two aircraft are checked for collisions (collision checking). This step would functionally be sufficient,

as it could be run on the set of all aircraft seen by the radar, but the computation would take too long.

Copyright c© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 0000; 00:0–0

Prepared using cpeauth.cls



7

Notation
Position in previous frame ~i = (xi, yi) Proximity radius (constant) r

Position in current frame ~f = (xf , yf ) Size of grid element (constant) s
Lower-left end of grid element ~e = (xe, ye)

Input ~i = (xi, yi), ~f = (xf , yf ), ~e = (xe, ye), s, r

Output TRUE if line segment (~i, ~f) might have an intersection with square (xl, yl, xh, yh),
(xl, yl, xh, yh) = (xe − r/2, ye − r/2, xe + s+ r/2, ye + s+ r/2), FALSE if impossible.

Step 1. Assume xf 6= xi and yf 6= yi. We transform the coordinates such that the line segment is a line from
(0, 0) to (1, 1):

xt
7→ x−xi

xf−xi
yt 7→

y − yi
yf − yi

By this transformation we get

~it = (xt
i, y

t
i) = (0, 0) ~f t = (xt

f , y
t
f ) = (1, 1)

xt
l =

xe − r/2− xi

xf − xi

xt
h =

xe + s+ r/2− xi

xf − xi

yt
l =

ye − r/2− yi
yf − yi

yt
h =

ye + s+ r/2− yi
yf − yi

Step 2. Now the problem is reduced to the detection of intersection of rectangle (xt
l , y

t
l , x

t
h, y

t
h) with line segment

(0,0,1,1). Assume xt
l ≤ xt

h, yt
l ≤ yt

h, if any of the following conditions hold, there is no intersection:

max(xt
l , x

t
h) < 0, min(xt

l , x
t
h) > 1, (1)

max(yt
l , y

t
h) < 0, min(yt

l , y
t
h) > 1 (2)

Step 3. Otherwise, assuming at least one corner of the rectangle is within the square, the rectangle intersects the
line segment iff it intersects line y = x. There is such an intersection, if any of the following holds:

1. LL corner is above the line and HR is below the line: xt
l ≤ yt

l ∧ yt
h ≤ xt

h (Figure 2(a))
2. LL corner is below the line and HR is high enough: yt

l ≤ xt
l ∧ yt

h ≥ xt
l (Figure 2(b))

3. HR corner is above the line and LL is low enough: xt
h ≤ yt

h ∧ yt
l ≤ xt

h (Figure 2(c))

Note that all relative positions of the rectangle corners and the line are covered:

HR below HR above

LL above 1 3
LL below 2 2,3

Note that if no corner of the rectangle is within the square, we may report an intersection with the line segment
even if there is in fact only intersection with line y = x. This is later detected by the checker.
It remains to be shown how to handle the case when xf = xi or yf = yi. We perform Step 1 only for coordinates
that allow it. Then, we modify Step 2. For xf = xi, we replace conditions 1 by 3. For yf = yi, we replace
conditions 2 by 4:

xi < xe − r/2, xi > xe + s+ r/2, (3)

yi < ye − r/2, yi > ye + s+ r/2 (4)

If all the conditions hold, we know there is intersection (TRUE). We do not perform Step 3: if any condition does
not hold, there is no intersection (FALSE).

Figure 1. Reducer algorithm.
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Figure 2. Rectangle positions for reducer algorithm.

Both the reduction and the checking operate on motions. A motion is a pair of 3-d vectors describing

the initial position,~i, and the final position, ~f , of an aircraft (~i is from the previous frame, ~f is from

the current frame). The frame also contains the call sign of the aircraft, which identifies the aircraft. A

motion vector ~m is then defined as ~m = ~f −~i.

Reduction. Reduction is already collision detection, but of much less precise form than the one

performed during collision checking. The 3-d detection space is reduced to 2-d and the conditions

for detecting a collision are relaxed. These two simplifications are designed such that all collisions are

still detected, but some of the collisions detected may not be really collisions in the 3-d space (false

positives). The advantage is reduced complexity. The reduced 2-d space is created from the original

3-d space simply by ignoring the altitude (the z coordinate). The 2-d space is divided into a grid; a

collision is detected whenever two aircraft span the same grid element. For each grid element with a

collision, the reducer then outputs the set of aircraft that spanned the element. Each of these sets is then

checked by collision checker to filter out false positives. The reducer maintains a mapping from a grid

element to a set of motions that span the element. The reducer proceeds as follows. Starting with an

empty mapping, it keeps adding motions to the map:

void mapGridElementToMotion(gridElement, motion, mapping) {
if (motion.spansElement(gridElement) && !mapping(gridElement).contains(motion)) {

mapping.put(gridElement, motion);
foreach( e in gridElement.adjacent()) mapGridElementToMotion(e, motion, mapping);

}
}

The code above could be improved to avoid checking of some grid elements and redundant checking

of some of grid boundaries using algorithms common in the ray tracing domain or simply with the

Bresenham’s line drawing algorithm [7]. It should be easy to plug an implementation of a better

algorithm into the benchmark. The key test in the procedure is spansElement. It checks whether a

particular motion spans a given grid element, which is extended by half of the proximity radius at each

side. The test is implemented as a geometric test for intersection of a line segment and a square. To

keep the memory requirements reasonable, and in particular independent on the dimensions of the 2-d
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Notation
Position of aircraft n in previous frame ~in Position of aircraft n at time t ~pn(t)

Position of aircraft n in current frame ~fn Euclidean distance of points d( ~p1, ~p2)

Proximity radius (constant) r Dot product of vectors ~a,~b ~a ·~b

Input ~i1, ~i2, r
Output TRUE if ∃t, d ( ~p1(t), ~p2(t)) <= r, FALSE otherwise.

Step 1. We are first looking for time t, such that d ( ~p1(t), ~p2(t)) = r. By the properties of dot product and distance

d ( ~p1(t), ~p2(t)) =
√

( ~p1(t)− ~p2(t)) · ( ~p1(t)− ~p2(t)) (5)

To express the distance of the two points in (5), we define ~v1 = ~f1 − ~i1, ~v2 = ~f2 − ~i2. It follows that

~p1(t) = ~i1 + t ~v1 ~p2(t) = ~i2 + t ~v2

are the positions of the aircraft between the two radar frames for 0 ≤ t ≤ 1. Then, ~p1 − ~p2 =
(

~i1 − ~i2
)

+

t (~v1 − ~v2). From the properties of dot product (we write ~p• instead of ~p•(t)):

( ~p1 − ~p2) · ( ~p1 − ~p2) = t2 (~v1 − ~v2) · (~v1 − ~v2) + 2t
(

~i1 − ~i2
)

· (~v1 − ~v2) +
(

~i1 − ~i2
)

·
(

~i1 − ~i2
)

By combining with (5) we get an equation for variable t.

Step 2. If the equation is not quadratic, ((~v1 − ~v2) · (~v1 − ~v2) = 0), we have that ~v1 = ~v2. This corresponds
to the situation when the aircraft are moving in parallel and at the same speed. This means that their distance is

constant. We thus return TRUE if d
(

~i1, ~i2
)

≤ r, FALSE otherwise.

Otherwise we have a quadratic equation. If the equation has no solution, aircraft are far and we return FALSE. If
the equation has only one solution (t0), the aircraft are moving in parallel at different speeds (one of them may not
be moving at all). The minimum distance they could have (for any t, not only 0 ≤ t ≤ 1) must be r. Otherwise,
there would have been two solutions. This means that the points got to the distance r for 0 ≤ t ≤ 1 (within
the line segments) iff 0 ≤ t0 ≤ 1. So we return TRUE if 0 ≤ t0 ≤ 1, FALSE otherwise. If the equation has
two solutions (t1 < t2), the aircraft may or may not be moving in parallel. In both cases, however, there is an

intersection at time
(t1+t2)

2
. For t < t1 and t > t2, the aircraft are farther from each other than r. For t1 < t < t2,

the aircraft are closer than r (in a collision). So, we can rule out a collision (return FALSE) if max(t1, t2) < 0
or min(t1, t2) > 1 (the aircraft would collide only outside the studied segments). Otherwise, we know there is a
collision and we return TRUE. Note, that based on t1 and t2, we can also calculate the location of the collision.

Figure 3. Collision detector algorithm.

detection space, the mapping of grid elements to aircraft that span it is implemented using a hash table,

rather than a two-dimensional array. The reducer algorithm is described Figure 1.

Collision Checking. Collision checking is a full 3-d collision detection. The checker detects collisions

of all pairs of aircraft belonging to each set identified by the reducer. The algorithm is based on

checking the distance of two points (centers of the aircraft) traveling in time. If these points ever

get closer than the proximity radius, a collision is detected. The test assumes that the speed of each of

the aircraft is constant between two consecutive radar frames and that the aircraft trajectories are line

segments. The calculations involved in the algorithm are described in Figure 3.
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3.3. Interaction between the ATS and the CD

The ATS, which is a non-realtime task, needs to transfer the generated frames to the CD, which is a

real-time task. This is done through a frame buffer of fixed size, implemented as a wait-free queue.

The simulator copies frames to the buffer, where the detector can read them. The CD is a periodic task.

When released, it reads the next frame from the buffer. If a frame is available, it runs the detection

algorithm, otherwise it does nothing. Three modes of interaction between the ATS and the CD are

supported: pre-simulation, concurrent simulation, and synchronous simulation. With pre-simulation,

the simulator first generates all frames and stores them in the buffer, which is set large enough to hold

them all. This simplifies the analysis by avoiding any dependencies of the detector on the simulator.

In concurrent simulation, the simulator runs concurrently with the detector, adding some background

noise to the system and reducing memory requirements of the frame buffer. The speed of the simulator

has to be configured carefully: if the simulator is too fast, frames may not fit into the buffer and

be dropped. If it is too slow, frames will not be ready when required by detector. The speed of the

simulator is controlled by command line arguments. In synchronous simulation, the detector waits for

the simulator to generate a frame, as well as the simulator waits for the detector to finish processing

the previous frame. This mode is intended only for debugging. The ATS can also store the generated

air traffic into a binary file for later use. The benchmark can then run with a simplified version of the

simulator that only reads data from this binary file, storing them into the buffer before CD starts. As

a step towards benchmarking on embedded systems with further reduced resources, the binary dump

of the air traffic can also be converted into Java source code. Thus, we can generate a simulator for a

particular workload and use it on systems where file I/O is not available, or for program analysis with

tools that would be confused with the I/O (such as a model checker). The binary dump of the air traffic

can also be converted into a CSV file for further analysis with statistical software.

4. Benchmark Implementation

The CDx benchmark is configurable to support different runtime environments and programming

languages. The benchmark comes in three major versions, listed in the table below. CDj is the Java

version, it can be linked against the RTSJ APIs or against a placebo library to allow for execution on a

standard Java virtual machine, CDs is a version of the benchmark written against the upcoming Safety

Critical Java specification, and CDc is an idiomatic ANSI-C version of the benchmark.

CDj For both Java and RTSJ.

CDs For the Safety Critical Java version.

CDc For the ANSI C equivalent.

The benchmark can be run with pre-generated data, or can simulate frames online. Online simulation

is only available in CDj and can be done (i) concurrently, in a low-priority thread, (ii) synchronously

with the main detector thread, or (iii) before the main detector thread is started. There is a version of

CDj for each of these configurations. CDs and CDc only support pre-generated data, CDc reads the

data from a binary file, while CDs uses compiled-in data. The data can be generated and stored by

CDj , either to a binary file or to a Java source file.
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PDSK All frames are pre-simulated offline and stored on disk.

PBIN All frames are pre-simulated offline and linked into the binary.

PMEM All frames are pre-simulated online and stored into memory.

SSYN Frames are simulated on-line, synchronously with main detector thread.

SCON Frames are simulated on-line, concurrently with main detector thread.

The memory management options for CDj are scoped memory or garbage collection, be it plain

Java garbage collection or real-time garbage collection. CDs can only use scoped memory as it is

the only option supported by Safety Critical Java. CDc uses malloc() and free() for manual memory

management.

SCP Scoped memory is used for all dynamically allocated data.

GC/RTGC Standard/real-time garbage collection is used to reclaim memory.

MAN Manual memory management using malloc() and free().

Lastly, computational noise can be configured in the CDj benchmark by adding a plain Java thread

that runs an unrelated program for the purpose of stressing the virtual machine. Also, simple synthetic

allocation noise can be added to the main detector thread of CDj . The algorithm of this noise generator

is described in the next section.

CNG Computational “noise” is generated by a non-realtime thread.

ANG Allocation “noise” is generated in the main detector thread.

The plain Java version of CDx is obtained through wrapper functions that provide plain Java

implementations of the requested RTSJ functionality. While the dependency of the benchmark code

on the RTSJ library can be removed by the wrappers and the benchmark indeed run by a plain Java

virtual machine, the impact of RTSJ memory semantics on the architecture could not be abstracted out.

The use of scopes and immortal memory by itself requires additional threads in the application. Also,

memory assignment rules sometimes lead to the need of copying arguments passed between memory

areas (i.e. heap to scope, inner scope to outer scope). Even more, we also structured the code to make

it is easier for programmers to keep track of which objects live in which memory areas. Thus, the

architecture is representative of an RTSJ application. The plain Java version of the benchmark can be

both compiled and run with standard Java. The RTSJ Java libraries and an RTSJ VM are only needed

to build and run the RTSJ version of the benchmark with immortal memory, scopes or GC/RTGC. The

RTSJ code has been tested with Sun’s Java Real-Time System (RTS), IBM’s WebSphere Real-Time

(WRT), Fiji VM, and Ovm. The Safety Critical Java version has been run with Ovm.

4.1. Noise Generators

The CD component of CDx is by itself quite efficient in memory usage. To allow scaling the GC work

generated by the detector better, we added an optional synthetic allocation noise generator which can

run within the main collision detector thread. The generator has an array of references (root array),

which is initialized to null references at start-up. The array implements a write-only cyclic buffer.

Pointers to newly allocated objects are stored to the array, overwriting the oldest ones. During each

release of the detector, a constant number of objects is allocated:
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for (i=0; i< objectsPerRelease; i++)
rootArray[rootPointer++ % rootArray.length] = new byte[size];

This simple algorithm allows the tester to tune the allocation rate by tuning size, and the amount of

reclaimed objects by tuning the size of the root array. On the other hand, the re-use of objects of

constant size can be very easy for a garbage collector, adding relatively small amount of GC work per

computation – the computation time could easily be the bottleneck with such a noise generator. We

thus add an option to vary the object size: there is a minimum and maximum object size and a step by

which the object size is increased after each allocation:

int sizeIncrement = 0, maxSizeIncrement = maxSize − minSize;
for (i=0; i<objectsPerRelease; i++) {

rootArray[(rootPointer++) % rootArray.length] = new byte[minSize + sizeIncrement % maxSizeIncrement];
sizeIncrement += allocSizeStep;

}

In order to provide a more realistic source of allocation noise and/or some background computational

noise, we support the execution of an external benchmark in low-priority threads. The external

benchmark is run using Java reflection, thus it needs not be available at build time and the code base is

completely independent. For our experiments, we used SPECjvm98 javac benchmark for its non-trivial

memory use that includes fragmentation. Indeed, although the allocation noise of this background

benchmark is far more realistic than that of the noise generator, it is still not representative of a real-

time system.

4.2. Using Scoped Memory Areas

In the SCP configuration of CDj , the ATS runs in the heap, the frame buffer is allocated in immortal

memory, and the CD is allocated in scoped memory. The SCP configuration of CDs uses the same

memory areas except for ATS, which it does not have. We use two scoped areas, the first is for persistent

detector data (stored locations of aircraft) which we call the persistent scope, and the second is a nested

scope used as a scratch pad for each iteration of the algorithm, which we call the transient scope.

The persistent scope is entered once before the first detector release and left when the benchmark

exits. The transient scope is re-entered for every frame. To assist in keeping track of where objects

are allocated, we reflect their allocation context in the package structure of the code following the

approach described in [9]. Thus, there are packages named heap, immortal, immortal.persistentScope,

and immortal.persistentScope.transientScope. It is correct to pass references to sub-packages, but data

have to be copied when they have to be passed to parent packages. There are two exceptions to the rule

for placement of classes into packages: entry threads and parameter copying. Each of the non-heap

areas is entered through its singleton entry thread object. An entry thread is sometimes a multi-area

object, which means that some methods, such as the constructor, execute in a different area from the

other. Still, we always place an entry thread into the package of the scope that is being entered. In order

to copy parameters to a memory area, we again use a multi-area object, because code that does the

allocation of the target buffer for the copy needs to run in the target memory area, while the code that

does the actual copy has to run in the source memory area. An example is storing a transient motion

vector into persistent state. This is handled by immortal.persistentScope.StateTable.put() method which

runs in the transient detector scope, but the StateTable lives in the persistent scope.
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Table II. Complexity of simulator and detector.

WMC DIT NOC CBO
Med Max Sum Med Max Sum Med Max Sum Med Max Sum

All code 5 95 2109 2 5 564 0 28 128 5 77 2004
No libraries 5 46 1140 2 5 379 0 28 77 5 77 1258
Detect. only 4 27 217 1 5 69 0 2 11 4 23 243

Simul. only 5 46 914 3 5 305 0 28 66 6 77 1002
Libraries only 6 95 969 2 4 185 0 8 51 5 48 746

RFC LCOM LOC
Med Max Sum Med Max Sum Med Max Sum

All code 11 117 4294 1 4465 12969 53 6023 50848
No libraries 10 94 2566 1 979 5392 57 6023 33761
Detect. only 7 53 498 0 351 563 46 652 5281

Simul. only 11 94 2003 3 979 4818 59 6023 27595
Libraries only 12 117 1728 0 4465 7577 49 4151 17087

Table III. Complexity of detector with pre-simulated radar frames.

WMC DIT NOC CBO
Med Max Sum Med Max Sum Med Max Sum Med Max Sum

All code 4 95 676 1 5 121 0 2 18 4 39 475
Detect. only 4 27 217 1 5 69 0 2 11 4 23 241

Libraries only 14 95 417 1 4 43 0 2 7 6 39 213

RFC LCOM LOC
Med Max Sum Med Max Sum Med Max Sum

All code 10 117 1338 1 4465 7417 72 4151 15769
Detect. only 7 53 498 0 351 563 46 652 5281

Libraries only 16 117 694 28 4465 6646 25 4151 8819

Table IV. Source lines of code of CDx.

With simulator All code 37875 Pre-simulated All code 20127
No libraries 17741 Detect. only 2761

Detect. only 2761 Libraries only 16578
Simul. only 14633
Libraries only 20134

4.3. Code Metrics

Complexity metrics can provide an objective and compact characterization of the source code of a

benchmark. In our case, we are interested in more than just the code size. We also want to know

whether the benchmark uses object-oriented features in a sophisticated or trivial way. For this, we

measure the complexity of the benchmark code with the Chidamber and Kemerer object-oriented

programming (CK) metrics [10], with the ckjm tool [11], which has also been used to evaluate the

DaCapo benchmarks [5]. We apply the CK metrics to the classes that the application loads. Each

metric is defined for a class. Weighted methods per class (WMC) is the number of methods in a class.

Depth of inheritance tree (DIT) is the number of ancestor classes of a class. Number of children (NOC)

is the number of direct subclasses of a class. Coupling between object classes (CBO) is the number
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of classes coupled to a class. Two classes are coupled if one of them uses the methods or fields of the

other class. This includes inheritance, method arguments, method types, and exceptions. Response for

a class (RFC) the number of methods that can be called, recursively, from any method of the class. The

tool uses an approximation, where it only counts the number of methods of the class plus the number

of directly called external methods. Lack of cohesion (LCOM) quantifies the number of methods of a

class that do not share instance variables. The resulting number is calculated as |P | − |Q|, where P is

the set of all method pairs that do not share any variable, and Q is the set of all pairs that do. Finally,

lines of code (LOC) is the normalized number of lines of code of a class. While not a Chidamber and

Kemerer metric, it has a straightforward interpretation. The ckjm tool counts the number of lines of

normalized source code that could be generated from a byte-code representation of the class: it sums

up the number of methods, number of fields, and number of byte-code instructions of methods.

The results are shown in Table II for CDx configurations with both full simulator and detector

(SSYN,SCON), and in Table III for configurations that use pre-simulated radar frames (PDSK or PBIN

excluding the frames themselves). We summarize each metric using median, maximum, and total. The

median and maximum seem more natural to most metrics and were used in [10], while the total has been

used in [5] and is natural for LOC and WMC. The libraries used by the program are mostly collection

classes from java.util. The source code includes implementation of these classes taken from GNU

Classpath, so that one can reduce the impact of class libraries on performance when comparing different

virtual machines. The tables show the complexity of these selected collection classes separately from

the complexity of the rest of the program. In Table IV we also provide the raw source lines of code

(SLOC) summarized over all source input files from a particular version. This metric is influenced

by the particular formatting of the source code we use. We use the same tool and metrics as in the

DaCapo benchmarks [5], which allows us to compare CDx to non-realtime application benchmarks:

SPECjvm98, DaCapo version beta-2006-08, and pseudojbb. With standard libraries excluded, the CDx

version with simulator (Table II) is more complex than SPECjvm98 benchmarks and pseudojbb (only

javac has higher RFC and jack has higher LCOM). It is more complex than luindex and lusearch

benchmarks from DaCapo, and sometimes it beats another of DaCapo benchmarks in some metric of

complexity. But it is significantly simpler than eclipse, the most complex DaCapo benchmark.

4.4. Workload Characterization

The CDx workload is highly configurable. We describe two pre-configured workloads, named NOI

and COL. Other workloads are used when necessary. The basic parameters of the two workloads are

summarized in Figure 5. The air traffic configuration of NOI and COL workloads was selected to be

intuitive and stress the system enough – have enough collisions (COL) or enough artificial noise (NOI).

It is by no means a realistic air traffic. All aircraft fly at the same altitude at all times. The y coordinate

of each aircraft is constant, but different aircraft sometimes have it set differently (Figure 4(b)), such

that they could never collide with each other. Only the x coordinate changes in time (Figure 4(a)). The

NOI workload (the lower part of the figure) has 20 aircraft, first ten of them flying at y = 120 ‡, the

other ten flying at y = 130. The x coordinates are set such that the aircraft never collide – the aircraft fly

‡We omit units for lengths and speeds as they do not have realistic physical meaning.
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(a) X of all aircraft in first 30s (b) Y of all aircraft at any time (c) Instantaneous aircraft speed

Figure 4. Aircraft coordinates and speed in COL (top) and NOI (bottom) workloads.

COL NOI
VM RTSJ,GC/RTGC RTSJ,GC/RTGC

Period 10ms 4ms

Collisions YES NO

Detector Noise NO YES

Backgr. Noise NO YES

No. of Aircraft 40 20

Duration 100s 80s

Figure 5. Sample workloads summary.
Figure 6. Collisions in COL workload. The
upper graph shows 3D collisions, the lower is

the number of 2D collisions.

Figure 7. Computation time relative to number
of collisions.

Figure 8. Allocation rate.
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in parallel far enough from each other. The COL workload has 40 aircraft, 20 of which fly at y = 100

and the other 20 at y = 120. The x coordinates are set such that there are regularly massive collisions,

as visible graphically in Figure 4(a). In the NOI workload, all aircraft fly at the same speed, which is

however not constant in time. The speed is shown in Figure 4(c) (the lower part). The COL workload

has two groups of aircraft, 40 of them fly at the same speed as the aircraft in the NOI workload, the

other 40 at the speed shown in the upper part of the figure. The structure of COL workload collisions

and their occurrence in time is shown in Figure 6. The upper part of the figure are numbers of detected

collisions by the collision checker (numbers of pairs of colliding aircraft in 3-d). The lower part is the

number of grid elements of the 2-d grid that were occupied by two and more planes, as identified by

the reducer. The peaks of collisions well align with the x coordinates of the trajectories in Figure 4(a)

(upper part).

We conducted some experiments to investigate how the computation time and allocation rates are

related to collisions. The computation time of the detector depends on the amount of work the reducer

and the collision checker have to do, which in turn depends on the number of collisions in the workload.

Figure 7 shows the relation between computation time (max and mean) and the number of collisions.

The dependency is largely linear. As the case with no collisions is more frequent than with nonzero

collisions, interference from the OS or hardware is more likely, and thus the measured maximum is

higher. Figure 8 shows memory allocation per detector invocation throughout the execution of the

benchmark. The peaks in allocation correspond to presence of collisions in the workload.

5. Metrics and Measurements

This section describes in detail what kind of data can be obtained by running CDx and gives examples

of the benchmark use on a number of configurations.

5.1. Properties of CDx

Measurements in CDx focus on the periodic real-time task that performs the detection. The task has

period T given by the number of frames produced per second: T = 1/FPS (e.g., 10ms). The deadline

for the task is its period, D = T . The important performance metrics for such a task (Figure 9)

are release jitter Jj , computation time Cj , and response time Rj (j is the invocation index). The

release jitter is influenced mainly by the system timer implementation, scheduling overheads, and

incrementality of the VM runtime, mostly the garbage collector. A particular problem that has to be

taken care of is phase shift. The phase shift is present in systems with tick schedulers [12], where tasks

can only be re-scheduled at specified periodic intervals when the system timer ticks. With the single

task in our case and with a period T being a multiple of the system timer period, the phase shift would

be zero for the start time tr0 at a system timer tick, up to the timer period for unlucky time tr0. As the

system timer can run at periods around 500 µs or even more, with a naive (random) choice of tr0 the

phase shift dominates the release jitter in the benchmark, rendering the other overheads in release jitter

unmeasurable. The benchmark thus sets tr0 to start at absolute time rounded-up to a single benchmark

period T , making the phase shift more deterministic. Typically, T is also a multiple of the system timer

period, and thus this also reduces the phase shift to scheduling overhead and overhead of the set-up

code. This trick indeed depends on more technical subtleties, as there can be multiple timers (OS,VM)
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Figure 9. Metrics and measurements.

and multiple clocks in the system. We have successfully tested it empirically with Ovm, RTS, and WRT

on Real-Time Linux. The computation time is mainly influenced by the implementation and workload

configuration. Indeed it also depends on the (non-realtime) performance of the complete system. The

response time is in our case just the sum of release jitter and computation time of each detector release.

5.2. Measurement Technique

Figure 9 shows measurement points for each release j that allow the tester to calculate metrics Jj , Cj ,

and Rj . These measurement points record ideal release time trj , actual start time of detector thread tsj ,

and completion time tcj . The ideal release time is calculated from the system start time tr0, trj = tr0+jT .

The benchmark records absolute times at all these points, which allows the tester to map anomalies to

other activities identified by absolute times, such as various GC events. All timestamps are stored in

a pre-allocated (immortal) memory buffer and are dumped after the measurement is over. Calculating

Cj is simple: Cj = tcj − tsj . Once we have Jj , Rj = Jj + Cj . Calculating Jj is however more

subtle. The problem is that we want to measure real-time performance at steady state, allowing missed

deadlines during a fixed number of initial releases (warm-up). This might not be needed on a real-time

OS with ahead-of-time compilation, but we want to be able to run on Real-Time Linux with RT JVMs

with JIT, in particular in WRT and RTS. We have found experimentally that these cannot meet the

deadlines reliably from the beginning in this benchmark in a configuration sufficiently challenging at

steady-state. The problem with the missed deadlines during initialization is that we have to map the

steady state release times to start times: with missed deadlines at initialization, we have release times

trk, start times tsj , and completion times tcj . We thus need to find a mapping k ↔ j to calculate Jj and

Rj . This mapping is influenced by missed deadlines, which can be either reported via the RTSJ API

(waitForNextPeriod returns false) or unreported by the VM. Let’s assume that we have verified that the

benchmark warms-up well within Tk0 seconds. Now, if there was any reported deadline miss after

this time, we reject the data and do not need the mapping. Otherwise, we find (the smallest) j0 that

minimizes the offset of a measured task start from the ideal release |tsj0 − trk0
|. The mapping k ↔ j is

then given by k − k0 = j − j0 and for j ≤ j0, we have

Jj = tsj − trj−j0+k0
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Figure 10. Sample response time plot: histogram, boxplot, and run-sequence plot.

[ms] Min Avg StdDev Max

Response 0.980 1.489 0.193 2.294

Computation 0.969 1.460 0.192 2.250

Jitter 0.006 0.029 0.008 0.532

Figure 11. Sample results table.

Configuration CDrgjb

OS Ubuntu RT Linux 2.6

VM Sun RTS 2.1

CPU 1x Intel Pentium 4 3.8Ghz

Heap Size 300M

Reserved Mem. 50M

Figure 12. Platform settings. Figure 13. Relative frequency his-
togram of release jitter.

and we can compute Rj . If ∃jm, jm ≥ j0 ∧ Rjm ≥ T , there is an unreported deadline miss and we

reject the data. Note, however, that the test does not allow the tester to reliably find out how many

deadlines were missed or when the misses took place, because the mapping k ↔ j does not have clear

semantics in the presence of missed deadlines. On the other hand, if there is no such jm, there was no

deadline miss, the mapping is sound and we accept the data with the measured Rj , Cj , and Jj .

5.3. Experimental Result Format

Once the metrics are calculated and results shown to have no missed deadlines, some summarization

and presentation of the data is needed. This has to include results from multiple executions of the

benchmark, as to account for random effects at various levels in the measured system. A sample data

presentation is provided in Figures 10 and 11 (CDj COL workload, PDSK GC/RTGC, SUN RTS,

Linux, x86). Recall that PDSK states that all frames are pre-simulated offline and stored to disk.
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Figure 11 shows minimum, mean, standard deviation, and maximum of the response time, computation

time, and jitter. The values are taken from 50 executions of the benchmark, skipping a safe amount of

initial measurements to allow the system to stabilize. Based on manual inspection of the measured

data, we decided that the system stabilized well within the first 20 seconds of execution, and thus we

dropped the initial 2000 measured values. Figure 10 shows a histogram, boxplot, and run-sequence

plot for the response time. The histogram and the boxplot use the same values from all of the 50

executions. In the boxplot, the red and green dots are extremes. We use the default boxplot definition

from R statistical software: the central bold line marks the median, the hinges mark the quartiles and

the whiskers are each up to 1.5x the inter-quartile-range from the closer quartile. The run-sequence plot

only shows values from a single execution of the benchmark. The horizontal axis of the run-sequence

plot is experiment time in seconds (it starts at 20, as the initial 20 seconds were assumed to be the

warm-up). The same plot could indeed be created also for computation time and the jitter. Figure 13

then shows a relative frequency histogram of the release jitter. Four outliers of about 530 µs were

excluded from the plot. The sample results were measured on a platform characterized in Figure 12.

5.4. Stress Tests

The noise generators included in the benchmark lend themselves well to stress testing virtual machines.

Stress tests are needed to evaluate scalability as well as discovering breaking points of the measured

system. The natural parameter to vary is the number of allocated objects: one can measure the system

for a varying number of allocated objects per release. The noise generator that uses variable object size

stresses both the garbage collector (if present) and the memory manager. The noise generator with the

constant object size then usually stresses the memory manager more than the garbage collector, because

the memory for the objects can easily be re-used, as the noise generators maintain a constant number

of objects reachable from their structures. A sample result of a stress test is shown in Figure 14. The

test used the noise generator with fixed allocation size, which was set to 64 bytes. To allow the system

to run successfully with different stress levels, we have used a custom workload with a 10 ms period,

19 aircraft, no actual collisions, and no background noise. For every bullet shown in the figure, we

have executed the benchmark 3 times, processing 10,000 frames in each execution. The figure shows

clear linear dependency of the minimum and the median response time on the number of allocated

objects in the noise generator, which is the expected behavior. For larger number of allocated objects,

the maximum response time has occasional peaks of about 2ms, which suggests infrequent but present

slow-paths in the memory allocator. The test was run with Sun RTS’s RTGC, which was configured to

behave like Henriksson’s GC [13]. Therefore, the collector has only been running when the application

was idle, and thus couldn’t have been the direct cause of the peaks. The two vertical grey lines in

the plot show two significant breaking points discovered by the experiment. The first one denotes the

largest number of allocated objects for which all executed experiments finished successfully without

missing a deadline. For even larger numbers of allocated objects, some of the experiments have failed.

The second grey line then denotes the smallest number of allocated objects for which all experiments

have failed (we have run tests for up to 40,000 allocated objects, which are not shown in the plot). In

this particular experiment, the failures were all due to running out of memory: the benchmark allocated

more memory than the collector was able to reclaim during the idle time. Note that with the increasing

number of allocated objects, the idle time was decreasing as well as the amount of allocation increasing,

both contributing to greater challenge for the collector. This experiment is useful to understand the
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Figure 14. Sample stress test: response time for an increasing amount of allocation noise on RTS.

impact of allocation on the real-time collector. It demonstrates that after 15K objects the worst case

time starts to experience outliers due to GC and after 25K objects the garbage collector starts to fail.

5.5. Start-up Time

In many real-time applications start-up behavior is important. CDx can be set up to measure the

start-up behavior of virtual machines. In this experiment we contrast the behavior of ahead-of-time

compiler with that of just-in-time compiler (JIT). We typically ignore, or drop, the completion of the

initial frames from our measurements. However, to understand the impact of a JIT, which may induce

pauses in the early stages of the computation, we analyze those initial measurements more carefully. In

particular, we will look at the worst case completion time (more detail on this test is in [14]). Fig. 15

illustrates the evolution of the worst observed time as we remove initial iterations of the benchmark.

By this we mean that position 0 on the X-axis shows the worst observed case for all 10,000 iterations

of the algorithm. This measure is dominated by the cost of just-in-time compilation. At offset 100, for

example, the graph shows the worst-case observed between iterations 101 and 10,000. Finally, the far

right of the graph shows the worst-case times when the first 400 iterations are ignored. At that point

the worst-case time is dominated by GC. It is interesting to observe that the costs of JIT compilation

are highest in Hotspot Server and they take longer to stabilize. Hotspot Client is less aggressive and

reaches fixpoint in around 60 iterations of the benchmark. WebSphere tries to compile code quickly,

but the data shows that some compilation is still happening until around 200 iterations. Unsurprisingly,

Fiji VM has no start up jitters as it is an ahead-of-time compiler.
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Figure 15. Start-up costs. The Y-axis is the worst-case observed execution time, while the X-axis shows iterations
dropped from the 10,000 performed for each VM. The initial iterations are dominated by the just-in-time compiler.

If roughly 300 or more iterations are dropped, the worst-case is dominated by garbage collection.

5.6. Evaluating an Embedded Configuration

In this section we illustrate that CDx can indeed be used on embedded platforms. For this example run

we selected the LEON3 – a SPARC-based architecture that is used both by the NASA and the European

Space Agency [15] – and the RTEMS real-time operating system. Our experiments were run on a GR-

XC3S-1500 LEON development board. The board’s Xilinx Spartan3-1500 field programmable gate

array was flashed with a LEON3 configuration running at 40MHz. The development board has an

8MB flash PROM and 64MB of PC133 SDRAM split into two 32MB banks. The version of RTEMS

is 4.9.3. The experiment compares the performance of CDs, the Safety Critical Java version of CDx,

running on the Ovm virtual machine with scoped memory, to CDc, the ANSI-C version of the same

benchmark. We configured the benchmark to run the real-time periodic task every 120 milliseconds.

The benchmark tracks 6 airplanes and executes the algorithm for 10,000 iterations. The computation

took roughly 20 minutes to complete on the LEON3 platform. The raw runtime performance of CDc

compared to CDs is presented in Figure 16. As we can see, in most cases the execution time of one

iteration in CDc is around 53 milliseconds, while for CDs it is around 78 milliseconds. The median

execution time for CDc is 50% smaller than the median for CDs. For real-time developers, the key

metric of performance is the worst observed time. In our benchmarks, SCJ is 50% slower than C in the

worst-case. No deadlines were missed in any executions. A more detailed view of the performance of

CDc and CDs for a subset of the iterations is presented in Figure 17. The graph clearly indicates that

there is a strong correlation of execution times between CDc and CDs, and that indeed the workload is

highly deterministic.
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Figure 16. Histograms of iteration execution times for CDc and CDs on RTEMS/LEON3. SCJ’s worst observed
case is 50% slower than C, and the median is also 50% slower.
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Figure 17. A detailed runtime comparison of CDc and CDs for 200 iterations on LEON3. SCJ and C execution
times are closely correlated.

5.7. Comparing Virtual Machines

Our last example use of CDx is a comparison of the predictability of different virtual machines. In

this experiment we compare WebSphere SRT, Hotspot Client, Hotspot Server, and Fiji VM using

CDj , PDSK GC/RTGC running on a multicore. CDj was configured to use up to 60 planes with a

10 milliseconds period and 10,000 iterations. All VMs were given maximum heap sizes of 35MB

to execute CDj and were run with default options. The goal of the experiment is to have a rough
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Figure 18. Histograms of iteration execution times for CDj on Linux/x86.

idea of the difference in predictability between VMs. The histogram of Fig. 18 show the frequency

of execution times for each VM with the first 1,000 iterations of the algorithm dropped to avoid bias

due to the just-in-time compiler. The data demonstrates that average case performance is better for

Hotspot. Specifically, Hotspot Server is 37% faster than, e.g., Fiji VM. The worst observed case is more

important for real-time developers. There Hotspot performs between 185% and 200% worse than, e.g.,

Fiji, these difference are caused by garbage collection pauses. Fiji VM has the tightest distribution (i.e.

least deviation from peaks to valleys) of any virtual machine for this benchmark.

6. Conclusion

Publicly available real-time Java benchmarks are needed for repeatable and trusted comparisons of

real-time Java products and for decisions in their design. The only available (freely or commercially)

benchmarks to this end are micro-benchmarks measuring various real-time latencies in isolation under

a purely synthetic workload. Application benchmarks, which could measure real-time aspects in more
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realistic settings, are only used internally by companies and universities, making results non-repeatable,

unverifiable, and hard to interpret. We present CDx, an open-source real-time Java benchmark family

that models a real-time aircraft collision detection application. For comparing the quality of RTSJ

implementations, it utilizes RTSJ scopes and immortal memory features. For comparing the quality

of real-time garbage collectors, it supports a mode with heap only allocations and RTSJ timers and

threads. For the ease of development and educational purposes, it also runs in a plain Java VM. To our

knowledge, CDx is the only application-level real-time Java benchmark publicly available. It is also

the most complex freely available RTSJ code actually using scopes and immortal memory.
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