
  

  

Abstract— The paper presents a family of architectures for 
FFT implementation based on the decomposition of the perfect 
shuffle permutation, which can be designed with variable 
number of processing elements. This provides designers with a 
trade-off choice of speed vs. complexity (cost and area.). A 
detailed case study is provided on the implementation of 1024-
point FFT with 2 processing elements using 45nm process 
technology, including area, timing, power and place-and-route 
results.    

I. INTRODUCTION 
The Fast Fourier Transform (FFT) is a conventional 

method for an accelerated computation of the Discrete 
Fourier Transform (DFT) [1], which has been used in many 
applications such as spectrum estimation, fast convolution 
and correlation, signal modulation, etc. Even though FFT 
algorithmically improves computational efficiency, 
additional hardware-based accelerators are used to further 
accelerate the processing through parallel processing 
techniques. A variety of architectures have been proposed to 
increase the speed, reduce the power consumption, etc. [18]. 

A single memory architecture consists of a scalar 
processor connected to a single N-word memory via a 
bidirectional bus. While this architecture is simple, its 
performance suffers from inefficient memory bandwidth 
[18]. A cache memory architecture adds a cache memory 
between the processor and the memory to increase the 
effective memory bandwidth. Baas, in [2], presented a cache 
FFT algorithm which increases energy efficiency and 
effectively lowers the power consumption.  

Dual memory architecture, implemented in [3], [22], [23], 
uses two memories connected to a digital array signal 
processor. The programmable array controller generates 
addresses to memories in a ping-pong fashion.  

The processor array architecture [4], consists of 
independent processing elements, with local buffers, which 
are connected using an interconnect network.  

Pipeline FFT architectures, introduced in [5], contain 
logrN blocks; each block consists of delay lines, arithmetic 
units that implement a radix-r FFT butterfly operation and 
ROMs for twiddle factors. A variety of pipeline FFTs have 
been implemented [6]-[9]. Most pipeline FFT realizations 
use delay lines for data reordering between the processing 
elements.  Although this gives simple data flow architecture, 
it causes high power consumption.  

Several techniques have been proposed for memory 

address generation. Cohen described an address generation 
scheme based on a counter, shifters and rotators [10]. It 
allows parallel organization of memory so that the data used 
at any instant reside in different memories. Pease proposed 
dividing the memory into sub-memories for overlapping the 
access [11]. A multi-bank memory address assignment for a 
radix-r FFT was developed in [12]. The memory assignment 
minimizes the memory size and allows conflict-free 
simultaneous memory access. Ma developed a fast address 
generation scheme [13] with hardware cost comparable to 
the address generation scheme in [10]. Ma and Wanhammar 
proposed an address generation scheme in [14] to reduce the 
hardware complexity and power consumption. 

Many of the FFT algorithms relate to the “butterfly 
structure” presented first by Cooley and Tukey [1] where 
separate processing element (PE) is assigned for each node 
of the FFT flow. FFT algorithms have several stages of so-
called butterfly computations, and a number of butterflies 
are calculated at each stage. In the pipeline FFT architecture 
all the butterflies of each stage are computed using a single 
PE and PE assigned to different stages form a line of 
processors. It is also possible to map the computation 
network into another line of processing where the stages of 
FFT are sequentially computed by parallel PE’s connected 
by the perfect shuffling network. All the butterflies of a 
single stage are computed in parallel. It is called iterative 
architecture in [18].    

This paper describes a scalable architecture which is a 
compromise between various implementations as it provides 
a systematic approach of FFT computing on the selected 
number of processing elements connected through the 
perfect shuffle interconnection network.  

The method proposed in this paper is based on a 
decomposition of perfect shuffle which results in a constant 
geometry structures. Each stage of the FFT is computed in 
by the available number of processing elements. The PEs 
computes several butterfly operations in parallel and the 
process is repeated until all butterflies of the stage are 
computed. Then the PEs start the computation of the next 
stage and so on. The data flow between processors is 
automated guaranteeing correct uninterrupted data flow. 
This approach allows for choice of specific number of 
processing elements thus, the scalable architecture. This 
work is the continuation of the effort started in [19]-[21]. 
Other scalable approaches in [15]-[17] use complicated 
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sequential perfect shuffling networks while our proposed 
approach presents a more systematic alternative method. 

As a case study this paper also presents the 
implementation of a radix-2 1024-point FFT using two PEs. 
The architecture and algorithm can be easily extended to 
higher radix implementation; however, this is beyond the 
scope of this paper. 

II. FFT CONSTANT GEOMETRY 
In [1] Radix-2 FFT of N points –where N is integer power 

of 2- requires N log2N complex operations compared to N2 
of direct DFT computation. Also, algorithms are known in 
two types DIT, decimation in time, where complex 
multiplication occurs after the two-point DFT; and DIF, 
decimation in frequency, where complex multiplication 
occurs before the two-point DFT. Further more, the 
notations “in-place” and “not-in-place” refer whether an 
input point ends up in the same register it came from or not. 
The FFT algorithm consists of log2N stages. Each stage 
consists of N/2 radix-2 butterfly operations. Fig. 1 shows a 
radix-2 16-point for N=16 and W=2 constant geometry 
algorithm with ordered input and bit-reversed output [18]. 
Since output of the butterflies did not go back from where it 
came, this refers to not-in-place algorithm.  

Constant geometry algorithm is well suited for hardware 
implementation due to the symmetry rippling across stages. 
Eventually, only one stage is translated into hardware, the 
rest of stages utilize the same hardware with additional 
control. The architecture is designed to exploit operation-
level parallelism in each stage. 

 
 

III. DECOMPOSITIONS OF PERFECT SHUFFLE (UNSHUFFLE) 
REORDERING 

In [15] data permutations are considered as operators 
acting on the indices of data where code word for binary 
representation of an index is specified by the fields: 

],...,,...,,...,[],,[ 111 zzyyxxzyx wvu= (1) 

Where:  }1,0{],,[ ∈iii zyx  and zyx vvw +++ 2.2.  is index 
value. 

The representation describes data flow in parallel structure 
and translated [15] as [cycle, PE, path] where cycle, 
references the cycle at which data is available for 
computation, PE is a processing element –otherwise 
butterfly- and path, the particular input channel of a 
processing element. The idea behind this is that each 
bracketed representation corresponds to an architecture 
where 2w butterflies of 2v data items are computed in 
parallel in one column of 2w processor element (PE) with 2v 
inputs each, and the x coordinate establishes the sequence 
process in each stage of the transform (2w+v). Calculation 
time per stage is 2u clock cycles where time period is limited 
by computational time at a butterfly of 2v data items. 

If R is the reordering operator acting on an index   then 
applying the operator R to this index yields: 

],...,[],...,[ 0101 bbaaR ll −− = (2) 
Applying several iteration of the data permutation 

sequentially is possible yielding the following: 
       ]),...,([]),...,[( 0120112 bbRaaRR ll −− = ],...,[ 01 ccl−= (3) 

This convention permits the identification of intermediate 
location during sequential data permutation as can be 
illustrated in fig. 2. Furthermore, let us define the operator 
acting on indices of data locations and performing a perfect 
shuffle, T

NP 2, – un-shuffle, 2,NP - permutation of order k as: 
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Additionally, these operators could be defined acting on 
two indices as: 

B
it-

re
ve

rs
ed

 O
ut

pu
t

N
orm

ally O
rdered Input

 
Fig. 1.  Constant Geometry Not-in-place16-point FFT. 

 
Fig. 2.  Decomposition of the Perfect Shuffle. 

322



  

                

]]....[
],......[

],......[[

1

11

11
,
)(

zz
yyxx

xxyy

w

kvk

kuk
yx

k

+

+=σ

(6) 

Then according to [17] the following fact holds: 
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Local ordering ∑ zx
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)(
 is implemented by way of FIFO 

associated with each processing element (PE) for how many 

are there exist in design. While ∑ zy

w

,

)(
 can be implemented 

as the interconnect network between PEs represented in 
external hard connection. In general, the implementation of 
the external interconnection between PEs and the sequential 
reordering network are done by a network of hard 
connections. Additionally, as mentioned earlier, the internal 
reordering is implemented using special memory 
organization comprising the sequential perfect shuffle and or 
un-shuffle networks (SPSN). The next two sections discuss 
the architecture and hardware implementation of the SPSN 
in detail. Now, propositions of a family of SPSN obtained 
form the following two statements for an arbitrary W [19]: 

A. Proposition 1 
(The internal) perfect un-shuffle or and shuffle reordering 

of order w could be decomposed into set of reordering R¬i 
as follow: 
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B. Proposition 2 
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IV. ARCHITECTURE  
This section explains the system using top-down analysis. 

Fig. 3 shows block diagram of the overall system with a 
perfect shuffle interconnect network. Similar to any FFT 
algorithm, however, this is more generalized statement, the 
scalable FFT comprises of number of computational 
elements –including complex adders and multipliers, 
reordering network, storage elements– for both twiddle 
factors storage and inter-stages data exchange. 

Fig. 3 shows a Radix-2 scalable FFT model for W = 2 
with two PEs, associated FIFOs and perfect shuffle 
interconnect network. For the purpose of simplicity of our 
system description, the loop back connections are shown in 
here. The system is as simple as it can be. Here, two PEs are 
serving the entire system for how many number of 2n point 
the system is designed for. The PE in this case also serves as 
data feeder for on-the-fly or the inter-stages data inputs 
besides hosting the complex computational butterfly unit. 
Note that PE location can be on either sides of the diagram 
without impacting or changing the functionality of the 
system. Furthermore, regardless of PE location, the data 
feeder part is kept on the input side of the module. In fact 
our simulated model conforms to this configuration. 

FIFO’s comprised of SPSN network, which its shift-
exchange units (SEU) are proportional to the size of FFT 
computational points N in this case. For the scalable 
architecture, first, the number of PEs is decided then FIFO 
size becomes totally dependant on the FFT size N. 

With very large N, the number of SEUs in a FIFO 
increases dramatically. For example, for an N = 1024 and PE 
=2 radix-2 FFT, the number of SEUs reaches 8 with last 
SEU holding 128 delay storage.  

 A third component of major importance is the perfect 
shuffle (unShuffle) network. As mentioned earlier, this part 
of the architecture is implemented with direct connections 
either prior to FIFO inputs forming (perfect shuffle) or after 
FIFO outputs forming (perfect undhuffle). Both 
configurations facilitate external data reordering in 
coordination with FIFO’s SEUs forming an uninterruptible 
data exchange and reordering system. 

The processing element is considered by far the most 
critical components of the architecture because it contains 
the FFT computational unit, otherwise butterflies. Each PE 
is comprised of one feeder and one butterfly. A bi-
directional input register – controlled by a select signal- and 
one direction output form the unit feeder. Depending on the 
FFT radix r, feeder’s inputs and outputs are varied via 
parametrical instantiation of the PE module. When select 
signal is enabled, the feeder presents a set of new input data 
to the butterfly for computation as shown in fig. 4. In 
another configuration, the output of the feeder is sent to the 
interconnect network or directly into FIFO – this is the case 
used in our simulation. The last stage output forms the 
second feeder’s input.   

Butterfly is integral part of the PE unit. It could be located 

 
Fig 3 2PE W=1 FFT Architecture
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before or after the feeder depending on desired system 
configuration –there are no variations in overall system’s 
attributes for various configurations. Butterflies perform 
complex addition and multiplication operations; thus, for 
radix-2 FFT, there are four real adders and 6 real multipliers. 
Our RTL model is based on fixed-point operations in which, 
real and fractional parts of a data point are split in half. 
Depending on configuration, the output of a PE is sent to 
either reordering interconnect network or FIFOs.  Note that 
Butterflies and interconnect network are configured similar 
to that of fig. 3 and used throughout the rest of this paper. 

Fig. 5 shows top-down decomposition structure of a FIFO 
and its components. A FIFO is formed by way of SPSN 
which, essentially composed of number of smaller units 
called SEUs. The number of SEUs in an SPSN is calculated 
as 

1)(log# 2 −=
PE
NSEU  (11) 

Equation (11) says that when number of PEs increases, 
the number of delay elements is reduced dramatically. This 
in tern decreases overall system delay.  Section 5 presents 
examples illustrating data iteration using same FFT size N 
with 2 and 4 PEs. Also, Table 1 presents SEUs calculation 
for various N samples. 

Generally, SEUs have one common structure; two equally 
sized arrays of delay elements separated by criss-cross 
switch – also known as commutator. However, they differ by 
the size of delay arrays, which in their part dependant on 
their sequence order (i) in the SPSN. Therefore, SEUs are 
sized in the order of 20, 21, 22, 23… 2i. 

 
The operation of SEU is simple; an element entering an 

SPSN is delayed by the length of the delay array of current 
SEU from its coupled input at the second SPSN. Data 
shuffle and reordering occurrence is based on the status of 
current switch –commutator- and current location of data 
datum in the delay arrays. Reordering occurs during SEU’s 
switch on position at which, an element moves from the first 
SPSN to the other and vise versa.  The output of an SEU is 
sequentially fed into subsequent SEUs with longer delay and 
slower switching rate according to a ratio of order 20, 21, 
22, 23… 2i.  The total delay in FIFO is the sum of delay in 
all SEUs and the total delay in the entire structure is the sum 
of delays in all FIFOs. 

One final thought about presented system is that FFT 
radix intentionally was not specified. This is to continue 
with the notation that the scalable architecture is also radix 
scaled and could easily be extended to higher radix 

V. ALGORITHM ILLUSTRATION 
Next, we present two examples illustrating the 

functionality of data reordering and shuffling for a 16-point 
and 64-point FFTs, DIT with out of place output using 2 and 
4 PEs respectively. In the first example of fig. 6, a 16-point 
FFT with 2 PE is shown. Data at the Feeder is represented in 
column one, columns with colors represent data in SUEs –
yellow for SEU0 with one delay element and dark green is 
for SEU2 wit two delays,- and data in last column represents 
butterflies computations. Interconnect network is resembled 
by thin arrows. 

 
NOTE: Numbers in the boxes represent data indices, 

color boxes show reordered indices, and thick blue 
arrows represent iteration. 

Table 1.  Calculation of Number of SEUs in a Design.

    

N 2PE 4PE Num Stages
16 2 1 4
32 3 2 5
64 4 3 6

1024 8 7 10  
 

Fig. 5.  PE Structure. 

 
Fig. 4.  FIFO Structure. 

12 8 4 0
13 9 5 1

14 10 6 2
15 11 7 3

12 8 4 0
14 10 6 2

13 9 5 1
15 11 7 3

10 8 2 0
14 12 6 4

11 9 3 1
15 13 7 5

6 4 2 0
14 12 10 8

7 5 3 1
15 13 11 9

6 4 2 0
7 5 3 1

5 4 1 0
7 6 3 2

3 2 1 0
7 6 5 4

14 12 10 8
15 13 11 9

13 12 9 8
15 14 11 10

11 10 9 8
15 14 13 12

3 2 1 0
11 10 9 8

10 2 8 0
11 3 9 1

9 1 8 0
11 3 10 2

7 6 5 4
15 14 13 12

14 6 12 4
15 7 13 5

13 5 12 4
15 7 14 6

9 1 8 0
13 5 12 4

5 1 4 0
13 9 12 8

12 8 4 0
13 9 5 1

11 3 10 2
15 7 14 6

7 3 6 2
15 11 14 10

14 10 6 2
15 11 7 3

6 4 2 0
14 12 10 8

7 5 3 1
15 13 11 9

3 2 1 0
7 6 5 4

11 10 9 8
15 14 13 12

9 1 8 0
11 3 10 2

13 5 12 4
15 7 14 6

 
Fig. 6.  PE=2, W=1, N=16, All Stages FFT . 
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Given N = 16 and PE = 2, four data sets presented by the 
feeder through interconnect network. It is clear from the 
figure above that first data sets (0,8) reaches butterfly after 
three clock cycles. It also shows that it takes four cycles to 
complete one full stage. This means a total of 8 cycles are 
required for first set of computation and total of 19 clock 
cycles to have all 16 results at the output. With 4 PE and 
same number of stages, only one SEU is required. In this 
case, the first set (0,8) arrives at the butterfly after 1 cycle 
delay and each stage requires 2 clock cycles to compute, a 
total of 4 x 2 +1 = 9 clock cycles. That is a saving over 2PE-
design of 10 clock cycles; that is over 50% faster. 

 
 NOTE: it seems at first glance that number of delay 

elements in 2PE-design is much larger than that of 4PE-
design, thus, larger hardware but it is not the case. A 
4PE-design requires twice the number of complex adders 
and multipliers, which in tern increases area versus 2PE-
design. 

 
Fig. 7 shows only the first stage of 64-point FFT transfer 

of 2PE-design. Making the same observations as last 
example, it takes 16 clock cycles for first set (0,32) to appear 
at butterflies with 2PE-design and 8 cycles with 4PE-design; 
also, there are 4 SEUs in the 2PE vs. 3 SEUs in the 4PE. In 
this example we also see a speed improvement of 50% going 
from 2PE to 4PE design. Total cycles to calculate one stage 
of the 64-point for 2PE and 4PE is 16 and 8 cycles 
respectively and overall calculation time is 6 x 16 + 15 = 
111 cycles for 2PE and 6 x 8 + 7 = 55 cycles for 4PE 
designs.  

Similarly, in this example the number of SEUs is reduced 
by 1 when using 2-PE vs. 4-PEs yet number of delay 
elements is the same for both designs. As an observation 
from this example, the complexity of design increases in two 
areas: first the area of processing elements; and second, 
doubling the size of perfect shuffle interconnect network –
mainly datapath sizing.  Additionally, number of clock 
cycles for 64-point FFT computation is reduced by more 
than 50% contributing to increase in throughput of about the 
same factor as well.   

Other performance parameters are in one way or the other 
impacted by the total number of PEs available in a design, 
the picture becomes clearer when analyzing hardware 
implementation. Additionally, as a comparative edge, table 2 
shows a summary of important architecture characteristics 
comparison between conventional pipeline architecture –see 

[6], [18] – and the scalable architecture.  
First, number of coefficients storages is divided by the 

available number of PEs, then, in general, N/PE. As was 
shown in examples, the overall delay element is equal to N 
but the total observed delay is actually proportional to PE 
and equals to N/PE. Unlike pipeline FFT, The number of 
complex multipliers is directly related to number of 
processing elements in the scalable architecture. Each 
butterfly requires 4 multipliers and 6 adders for complex 
operation, thus, 4*PE real multipliers and 6*PE real adders 
are required in a design. Time to process the first set of data 
points is a function of FFT size N and number of processing 
elements PE; generally is N/2PE -1 while the next N points 
will require N/2PE cycles.  Number of FIFOs in a design is 
equal to number of PEs. Number of SEUs in a FIFO is 
calculated by equation presented in section 4. Number of 
switches in a design is equal to PE * SEUs in one FIFO. 

VI. IMPLEMENTATION OF A 1024-POINT FFT 

A. Placement and Route 
The FFT core was designed using Verilog-HDL and 

implemented using an automatic synthesizes place and route 
approach. The FIFOs were implemented using normal D-
Flops.   A very high performance, 45nm, process was used 
for the implementation with standard cell library carefully 
designed for high speed applications. The routing was 
limited to metal layer-7. Tables 3 summarize the 
implementation results. Fig. 8 shows the floorplan of the 
core, the design elements are colored differently to show 
their relative size to each others. Fig. 9 shows the routed 
FFT core. The FFT core occupied an area of 569.5µm by 
570.0µm, of which the memory elements occupied 43.7% 
while the combinational logic occupied 56.3% with a total 
utilization of ~69.3%. 

B. Timing 
The placed, routed and tapeout ready FFT core meets 

timing for setup and hold at 653.6 MHZ (~1530ps period) 

56 48 40 32 24 16 8 0 52 48 36 32 20 16 4 0
60 52 44 36 28 20 12 4 60 56 44 40 28 24 12 8

57 49 41 33 25 17 9 1 53 49 37 33 21 17 5 1
61 53 45 37 29 21 13 5 61 57 45 41 29 25 13 9

58 50 42 34 26 18 10 2 54 50 38 34 22 18 6 2
62 54 46 38 30 22 14 6 62 58 46 42 30 26 14 10

59 51 43 35 27 19 11 3 55 51 39 35 23 19 7 3
63 55 47 39 31 23 15 7 63 59 47 43 31 27 15 11

44 40 36 32 12 8 4 0 28 24 20 16 12 8 4 0
60 56 52 48 28 24 20 16 60 56 52 48 44 40 36 32

45 41 37 33 13 9 5 1 29 25 21 17 13 9 5 1
61 57 53 49 29 25 21 17 61 57 53 49 45 41 37 33

46 42 38 34 14 10 6 2 30 26 22 18 14 10 6 2
62 58 54 50 30 26 22 18 62 58 54 50 46 42 38 34

47 43 39 35 15 11 7 3 31 27 23 19 15 11 7 3
63 59 55 51 31 27 23 19 63 59 55 51 47 43 39 35

56 48 40 32 24 16 8 0
57 49 41 33 25 17 9 1

58 50 42 34 26 18 10 2
59 51 43 35 27 19 11 3

60 52 44 36 28 20 12 4
61 53 45 37 29 21 13 5

62 54 46 38 30 22 14 6
63 55 47 39 31 23 15 7

 
 
Fig. 7.  PE=4, W=1, N=64, Stage0 FFT. 

Table 2.  Conventional Pipeline and Scalable Architectures 
Characteristics Comparison. 

Factor Pipeline 
Architecture 

Scalable 
Architecture 

Coefficient Storage N - 2 N / PE 
Delay Elements N – 2 N / PE 
Multipliers (real) 4 log2N 4 PE 
Adders (real) 6 log2N 6 PE 
Total time to process 
first N point N/2 cycles 

 
N/2PE – 1 

Time for subsequent N 
points N/2 cycles 

 
N/2PE 
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using industry standard STA tools, an extracted and back-
annotated netlist was analyzed. At this cycle speed, a 1024-
point FFT will complete in ((1024/2*4) - 1 for first stage + 
(1024/2*4) * 9 for the rest of stags) = 1279 cycles. At a 
1530ps cycle time, this translates to 1279* 1.53ns = 1.957µs. 
Fig. 10 shows the critical timing path for the design which 
was from one of the SPSN registers to an output. 

VII. CONCLUSION 
The proposed systematic scalable pipeline architecture 

presents a new efficient method for decomposition of perfect 
shuffle permutation and data reordering for FFT algorithm. 
Examples for both 2 and 4 PE radix 2 FFT discussed in 
detail. Placement and timing for 1024 points radix 2 
presented as prove of concept. Also, proposed architecture 
can be easily proved extendable to higher FFT radix. 
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