

Abstract— The paper presents a family of architectures for
FFT implementation based on the decomposition of the perfect
shuffle permutation, which can be designed with variable
number of processing elements. This provides designers with a
trade-off choice of speed vs. complexity (cost and area.). A
detailed case study is provided on the implementation of 1024-
point FFT with 2 processing elements using 45nm process
technology, including area, timing, power and place-and-route
results.

I. INTRODUCTION
The Fast Fourier Transform (FFT) is a conventional

method for an accelerated computation of the Discrete
Fourier Transform (DFT) [1], which has been used in many
applications such as spectrum estimation, fast convolution
and correlation, signal modulation, etc. Even though FFT
algorithmically improves computational efficiency,
additional hardware-based accelerators are used to further
accelerate the processing through parallel processing
techniques. A variety of architectures have been proposed to
increase the speed, reduce the power consumption, etc. [18].

A single memory architecture consists of a scalar
processor connected to a single N-word memory via a
bidirectional bus. While this architecture is simple, its
performance suffers from inefficient memory bandwidth
[18]. A cache memory architecture adds a cache memory
between the processor and the memory to increase the
effective memory bandwidth. Baas, in [2], presented a cache
FFT algorithm which increases energy efficiency and
effectively lowers the power consumption.

Dual memory architecture, implemented in [3], [22], [23],
uses two memories connected to a digital array signal
processor. The programmable array controller generates
addresses to memories in a ping-pong fashion.

The processor array architecture [4], consists of
independent processing elements, with local buffers, which
are connected using an interconnect network.

Pipeline FFT architectures, introduced in [5], contain
logrN blocks; each block consists of delay lines, arithmetic
units that implement a radix-r FFT butterfly operation and
ROMs for twiddle factors. A variety of pipeline FFTs have
been implemented [6]-[9]. Most pipeline FFT realizations
use delay lines for data reordering between the processing
elements. Although this gives simple data flow architecture,
it causes high power consumption.

Several techniques have been proposed for memory

address generation. Cohen described an address generation
scheme based on a counter, shifters and rotators [10]. It
allows parallel organization of memory so that the data used
at any instant reside in different memories. Pease proposed
dividing the memory into sub-memories for overlapping the
access [11]. A multi-bank memory address assignment for a
radix-r FFT was developed in [12]. The memory assignment
minimizes the memory size and allows conflict-free
simultaneous memory access. Ma developed a fast address
generation scheme [13] with hardware cost comparable to
the address generation scheme in [10]. Ma and Wanhammar
proposed an address generation scheme in [14] to reduce the
hardware complexity and power consumption.

Many of the FFT algorithms relate to the “butterfly
structure” presented first by Cooley and Tukey [1] where
separate processing element (PE) is assigned for each node
of the FFT flow. FFT algorithms have several stages of so-
called butterfly computations, and a number of butterflies
are calculated at each stage. In the pipeline FFT architecture
all the butterflies of each stage are computed using a single
PE and PE assigned to different stages form a line of
processors. It is also possible to map the computation
network into another line of processing where the stages of
FFT are sequentially computed by parallel PE’s connected
by the perfect shuffling network. All the butterflies of a
single stage are computed in parallel. It is called iterative
architecture in [18].

This paper describes a scalable architecture which is a
compromise between various implementations as it provides
a systematic approach of FFT computing on the selected
number of processing elements connected through the
perfect shuffle interconnection network.

The method proposed in this paper is based on a
decomposition of perfect shuffle which results in a constant
geometry structures. Each stage of the FFT is computed in
by the available number of processing elements. The PEs
computes several butterfly operations in parallel and the
process is repeated until all butterflies of the stage are
computed. Then the PEs start the computation of the next
stage and so on. The data flow between processors is
automated guaranteeing correct uninterrupted data flow.
This approach allows for choice of specific number of
processing elements thus, the scalable architecture. This
work is the continuation of the effort started in [19]-[21].
Other scalable approaches in [15]-[17] use complicated

A Family of Scalable FFT Architectures and an Implementation of
1024-Point Radix-2 FFT for Real-Time Communications

Adnan Suleiman1, Hani Saleh2, Adel Hussein3, and David Akopian3
1Cirrus Logic, 2Intel Corporation, and 3 University of Texas at San Antonio, Electrical and Computer

Engineering Department

321978-1-4244-2658-4/08/$25.00 ©2008 IEEE

sequential perfect shuffling networks while our proposed
approach presents a more systematic alternative method.

As a case study this paper also presents the
implementation of a radix-2 1024-point FFT using two PEs.
The architecture and algorithm can be easily extended to
higher radix implementation; however, this is beyond the
scope of this paper.

II. FFT CONSTANT GEOMETRY
In [1] Radix-2 FFT of N points –where N is integer power

of 2- requires N log2N complex operations compared to N2
of direct DFT computation. Also, algorithms are known in
two types DIT, decimation in time, where complex
multiplication occurs after the two-point DFT; and DIF,
decimation in frequency, where complex multiplication
occurs before the two-point DFT. Further more, the
notations “in-place” and “not-in-place” refer whether an
input point ends up in the same register it came from or not.
The FFT algorithm consists of log2N stages. Each stage
consists of N/2 radix-2 butterfly operations. Fig. 1 shows a
radix-2 16-point for N=16 and W=2 constant geometry
algorithm with ordered input and bit-reversed output [18].
Since output of the butterflies did not go back from where it
came, this refers to not-in-place algorithm.

Constant geometry algorithm is well suited for hardware
implementation due to the symmetry rippling across stages.
Eventually, only one stage is translated into hardware, the
rest of stages utilize the same hardware with additional
control. The architecture is designed to exploit operation-
level parallelism in each stage.

III. DECOMPOSITIONS OF PERFECT SHUFFLE (UNSHUFFLE)
REORDERING

In [15] data permutations are considered as operators
acting on the indices of data where code word for binary
representation of an index is specified by the fields:

],...,,...,,...,[],,[111 zzyyxxzyx wvu= (1)

Where: }1,0{],,[∈iii zyx and zyx vvw +++ 2.2. is index
value.

The representation describes data flow in parallel structure
and translated [15] as [cycle, PE, path] where cycle,
references the cycle at which data is available for
computation, PE is a processing element –otherwise
butterfly- and path, the particular input channel of a
processing element. The idea behind this is that each
bracketed representation corresponds to an architecture
where 2w butterflies of 2v data items are computed in
parallel in one column of 2w processor element (PE) with 2v
inputs each, and the x coordinate establishes the sequence
process in each stage of the transform (2w+v). Calculation
time per stage is 2u clock cycles where time period is limited
by computational time at a butterfly of 2v data items.

If R is the reordering operator acting on an index then
applying the operator R to this index yields:

],...,[],...,[0101 bbaaR ll −− = (2)
Applying several iteration of the data permutation

sequentially is possible yielding the following:
]),...,([]),...,[(0120112 bbRaaRR ll −− =],...,[01 ccl−= (3)

This convention permits the identification of intermediate
location during sequential data permutation as can be
illustrated in fig. 2. Furthermore, let us define the operator
acting on indices of data locations and performing a perfect
shuffle, T

NP 2, – un-shuffle, 2,NP - permutation of order k as:

]]......[
],......[

],......[[],,[

11

11

11)(

+

+

+=

kwk

kvk

kukk

zzyy
yyxx

zxzzzyxσ
(4)

And

]]......[
],......[

],......[[],,[

11

11

11)(

+−−

+−−

+−−=∑

kuukw

kwwkv

kvvkuk

xxzz
zzyy

yyxxzyx
(5)

Additionally, these operators could be defined acting on
two indices as:

B
it-

re
ve

rs
ed

 O
ut

pu
t

N
orm

ally O
rdered Input

Fig. 1. Constant Geometry Not-in-place16-point FFT.

Fig. 2. Decomposition of the Perfect Shuffle.

322

]]....[
],......[

],......[[

1

11

11
,
)(

zz
yyxx

xxyy

w

kvk

kuk
yx

k

+

+=σ

(6)

Then according to [17] the following fact holds:

.],,[],,[

].,,[],,[
,

)(

,

)()(

,
)(

,
)()(

∑ ∑∑ =

=
zy

w

zx

ww

zy
w

zx
ww

zyxzyx

zyxzyx σσσ
(7)

Local ordering ∑ zx

w

,

)(
 is implemented by way of FIFO

associated with each processing element (PE) for how many

are there exist in design. While ∑ zy

w

,

)(
 can be implemented

as the interconnect network between PEs represented in
external hard connection. In general, the implementation of
the external interconnection between PEs and the sequential
reordering network are done by a network of hard
connections. Additionally, as mentioned earlier, the internal
reordering is implemented using special memory
organization comprising the sequential perfect shuffle and or
un-shuffle networks (SPSN). The next two sections discuss
the architecture and hardware implementation of the SPSN
in detail. Now, propositions of a family of SPSN obtained
form the following two statements for an arbitrary W [19]:

A. Proposition 1
(The internal) perfect un-shuffle or and shuffle reordering

of order w could be decomposed into set of reordering R¬i
as follow:

]....[...]...][[

],...[...]...][[
011

)(
0

0110
)(

xxRRRxx

xxRRRxx
ppp

w
p

pppp
w

⋅⋅⋅⋅=

⋅⋅⋅=
−

−

∑
σ

(8)

Where:

].......[]......[

}1,0{],...[
0101

1

xxxxxxxxR

andxxxx
iipiipi

j
i

ii
wi

−− =

∈=

B. Proposition 2
i
w

i
w

ii RRRR ⋅⋅⋅= −11 ... (9)

]............[

]............[

]......[

1
11

11

1
1

11
1

01

∗∗∗∗

=∗∗∗∗

=

−−−

−−−

−

……
……

ii
t

ii
w

i
t

i
w

ii
t

i
w

ii
t

i
w

i
t

iipi
t

xxxxxx

xxxxxxR

xxxxR
(10)

IV. ARCHITECTURE
This section explains the system using top-down analysis.

Fig. 3 shows block diagram of the overall system with a
perfect shuffle interconnect network. Similar to any FFT
algorithm, however, this is more generalized statement, the
scalable FFT comprises of number of computational
elements –including complex adders and multipliers,
reordering network, storage elements– for both twiddle
factors storage and inter-stages data exchange.

Fig. 3 shows a Radix-2 scalable FFT model for W = 2
with two PEs, associated FIFOs and perfect shuffle
interconnect network. For the purpose of simplicity of our
system description, the loop back connections are shown in
here. The system is as simple as it can be. Here, two PEs are
serving the entire system for how many number of 2n point
the system is designed for. The PE in this case also serves as
data feeder for on-the-fly or the inter-stages data inputs
besides hosting the complex computational butterfly unit.
Note that PE location can be on either sides of the diagram
without impacting or changing the functionality of the
system. Furthermore, regardless of PE location, the data
feeder part is kept on the input side of the module. In fact
our simulated model conforms to this configuration.

FIFO’s comprised of SPSN network, which its shift-
exchange units (SEU) are proportional to the size of FFT
computational points N in this case. For the scalable
architecture, first, the number of PEs is decided then FIFO
size becomes totally dependant on the FFT size N.

With very large N, the number of SEUs in a FIFO
increases dramatically. For example, for an N = 1024 and PE
=2 radix-2 FFT, the number of SEUs reaches 8 with last
SEU holding 128 delay storage.

 A third component of major importance is the perfect
shuffle (unShuffle) network. As mentioned earlier, this part
of the architecture is implemented with direct connections
either prior to FIFO inputs forming (perfect shuffle) or after
FIFO outputs forming (perfect undhuffle). Both
configurations facilitate external data reordering in
coordination with FIFO’s SEUs forming an uninterruptible
data exchange and reordering system.

The processing element is considered by far the most
critical components of the architecture because it contains
the FFT computational unit, otherwise butterflies. Each PE
is comprised of one feeder and one butterfly. A bi-
directional input register – controlled by a select signal- and
one direction output form the unit feeder. Depending on the
FFT radix r, feeder’s inputs and outputs are varied via
parametrical instantiation of the PE module. When select
signal is enabled, the feeder presents a set of new input data
to the butterfly for computation as shown in fig. 4. In
another configuration, the output of the feeder is sent to the
interconnect network or directly into FIFO – this is the case
used in our simulation. The last stage output forms the
second feeder’s input.

Butterfly is integral part of the PE unit. It could be located

Fig 3 2PE W=1 FFT Architecture

323

before or after the feeder depending on desired system
configuration –there are no variations in overall system’s
attributes for various configurations. Butterflies perform
complex addition and multiplication operations; thus, for
radix-2 FFT, there are four real adders and 6 real multipliers.
Our RTL model is based on fixed-point operations in which,
real and fractional parts of a data point are split in half.
Depending on configuration, the output of a PE is sent to
either reordering interconnect network or FIFOs. Note that
Butterflies and interconnect network are configured similar
to that of fig. 3 and used throughout the rest of this paper.

Fig. 5 shows top-down decomposition structure of a FIFO
and its components. A FIFO is formed by way of SPSN
which, essentially composed of number of smaller units
called SEUs. The number of SEUs in an SPSN is calculated
as

1)(log# 2 −=
PE
NSEU (11)

Equation (11) says that when number of PEs increases,
the number of delay elements is reduced dramatically. This
in tern decreases overall system delay. Section 5 presents
examples illustrating data iteration using same FFT size N
with 2 and 4 PEs. Also, Table 1 presents SEUs calculation
for various N samples.

Generally, SEUs have one common structure; two equally
sized arrays of delay elements separated by criss-cross
switch – also known as commutator. However, they differ by
the size of delay arrays, which in their part dependant on
their sequence order (i) in the SPSN. Therefore, SEUs are
sized in the order of 20, 21, 22, 23… 2i.

The operation of SEU is simple; an element entering an

SPSN is delayed by the length of the delay array of current
SEU from its coupled input at the second SPSN. Data
shuffle and reordering occurrence is based on the status of
current switch –commutator- and current location of data
datum in the delay arrays. Reordering occurs during SEU’s
switch on position at which, an element moves from the first
SPSN to the other and vise versa. The output of an SEU is
sequentially fed into subsequent SEUs with longer delay and
slower switching rate according to a ratio of order 20, 21,
22, 23… 2i. The total delay in FIFO is the sum of delay in
all SEUs and the total delay in the entire structure is the sum
of delays in all FIFOs.

One final thought about presented system is that FFT
radix intentionally was not specified. This is to continue
with the notation that the scalable architecture is also radix
scaled and could easily be extended to higher radix

V. ALGORITHM ILLUSTRATION
Next, we present two examples illustrating the

functionality of data reordering and shuffling for a 16-point
and 64-point FFTs, DIT with out of place output using 2 and
4 PEs respectively. In the first example of fig. 6, a 16-point
FFT with 2 PE is shown. Data at the Feeder is represented in
column one, columns with colors represent data in SUEs –
yellow for SEU0 with one delay element and dark green is
for SEU2 wit two delays,- and data in last column represents
butterflies computations. Interconnect network is resembled
by thin arrows.

NOTE: Numbers in the boxes represent data indices,

color boxes show reordered indices, and thick blue
arrows represent iteration.

Table 1. Calculation of Number of SEUs in a Design.

N 2PE 4PE Num Stages
16 2 1 4
32 3 2 5
64 4 3 6

1024 8 7 10

Fig. 5. PE Structure.

Fig. 4. FIFO Structure.

12 8 4 0
13 9 5 1

14 10 6 2
15 11 7 3

12 8 4 0
14 10 6 2

13 9 5 1
15 11 7 3

10 8 2 0
14 12 6 4

11 9 3 1
15 13 7 5

6 4 2 0
14 12 10 8

7 5 3 1
15 13 11 9

6 4 2 0
7 5 3 1

5 4 1 0
7 6 3 2

3 2 1 0
7 6 5 4

14 12 10 8
15 13 11 9

13 12 9 8
15 14 11 10

11 10 9 8
15 14 13 12

3 2 1 0
11 10 9 8

10 2 8 0
11 3 9 1

9 1 8 0
11 3 10 2

7 6 5 4
15 14 13 12

14 6 12 4
15 7 13 5

13 5 12 4
15 7 14 6

9 1 8 0
13 5 12 4

5 1 4 0
13 9 12 8

12 8 4 0
13 9 5 1

11 3 10 2
15 7 14 6

7 3 6 2
15 11 14 10

14 10 6 2
15 11 7 3

6 4 2 0
14 12 10 8

7 5 3 1
15 13 11 9

3 2 1 0
7 6 5 4

11 10 9 8
15 14 13 12

9 1 8 0
11 3 10 2

13 5 12 4
15 7 14 6

Fig. 6. PE=2, W=1, N=16, All Stages FFT .

324

Given N = 16 and PE = 2, four data sets presented by the
feeder through interconnect network. It is clear from the
figure above that first data sets (0,8) reaches butterfly after
three clock cycles. It also shows that it takes four cycles to
complete one full stage. This means a total of 8 cycles are
required for first set of computation and total of 19 clock
cycles to have all 16 results at the output. With 4 PE and
same number of stages, only one SEU is required. In this
case, the first set (0,8) arrives at the butterfly after 1 cycle
delay and each stage requires 2 clock cycles to compute, a
total of 4 x 2 +1 = 9 clock cycles. That is a saving over 2PE-
design of 10 clock cycles; that is over 50% faster.

 NOTE: it seems at first glance that number of delay

elements in 2PE-design is much larger than that of 4PE-
design, thus, larger hardware but it is not the case. A
4PE-design requires twice the number of complex adders
and multipliers, which in tern increases area versus 2PE-
design.

Fig. 7 shows only the first stage of 64-point FFT transfer

of 2PE-design. Making the same observations as last
example, it takes 16 clock cycles for first set (0,32) to appear
at butterflies with 2PE-design and 8 cycles with 4PE-design;
also, there are 4 SEUs in the 2PE vs. 3 SEUs in the 4PE. In
this example we also see a speed improvement of 50% going
from 2PE to 4PE design. Total cycles to calculate one stage
of the 64-point for 2PE and 4PE is 16 and 8 cycles
respectively and overall calculation time is 6 x 16 + 15 =
111 cycles for 2PE and 6 x 8 + 7 = 55 cycles for 4PE
designs.

Similarly, in this example the number of SEUs is reduced
by 1 when using 2-PE vs. 4-PEs yet number of delay
elements is the same for both designs. As an observation
from this example, the complexity of design increases in two
areas: first the area of processing elements; and second,
doubling the size of perfect shuffle interconnect network –
mainly datapath sizing. Additionally, number of clock
cycles for 64-point FFT computation is reduced by more
than 50% contributing to increase in throughput of about the
same factor as well.

Other performance parameters are in one way or the other
impacted by the total number of PEs available in a design,
the picture becomes clearer when analyzing hardware
implementation. Additionally, as a comparative edge, table 2
shows a summary of important architecture characteristics
comparison between conventional pipeline architecture –see

[6], [18] – and the scalable architecture.
First, number of coefficients storages is divided by the

available number of PEs, then, in general, N/PE. As was
shown in examples, the overall delay element is equal to N
but the total observed delay is actually proportional to PE
and equals to N/PE. Unlike pipeline FFT, The number of
complex multipliers is directly related to number of
processing elements in the scalable architecture. Each
butterfly requires 4 multipliers and 6 adders for complex
operation, thus, 4*PE real multipliers and 6*PE real adders
are required in a design. Time to process the first set of data
points is a function of FFT size N and number of processing
elements PE; generally is N/2PE -1 while the next N points
will require N/2PE cycles. Number of FIFOs in a design is
equal to number of PEs. Number of SEUs in a FIFO is
calculated by equation presented in section 4. Number of
switches in a design is equal to PE * SEUs in one FIFO.

VI. IMPLEMENTATION OF A 1024-POINT FFT

A. Placement and Route
The FFT core was designed using Verilog-HDL and

implemented using an automatic synthesizes place and route
approach. The FIFOs were implemented using normal D-
Flops. A very high performance, 45nm, process was used
for the implementation with standard cell library carefully
designed for high speed applications. The routing was
limited to metal layer-7. Tables 3 summarize the
implementation results. Fig. 8 shows the floorplan of the
core, the design elements are colored differently to show
their relative size to each others. Fig. 9 shows the routed
FFT core. The FFT core occupied an area of 569.5µm by
570.0µm, of which the memory elements occupied 43.7%
while the combinational logic occupied 56.3% with a total
utilization of ~69.3%.

B. Timing
The placed, routed and tapeout ready FFT core meets

timing for setup and hold at 653.6 MHZ (~1530ps period)

56 48 40 32 24 16 8 0 52 48 36 32 20 16 4 0
60 52 44 36 28 20 12 4 60 56 44 40 28 24 12 8

57 49 41 33 25 17 9 1 53 49 37 33 21 17 5 1
61 53 45 37 29 21 13 5 61 57 45 41 29 25 13 9

58 50 42 34 26 18 10 2 54 50 38 34 22 18 6 2
62 54 46 38 30 22 14 6 62 58 46 42 30 26 14 10

59 51 43 35 27 19 11 3 55 51 39 35 23 19 7 3
63 55 47 39 31 23 15 7 63 59 47 43 31 27 15 11

44 40 36 32 12 8 4 0 28 24 20 16 12 8 4 0
60 56 52 48 28 24 20 16 60 56 52 48 44 40 36 32

45 41 37 33 13 9 5 1 29 25 21 17 13 9 5 1
61 57 53 49 29 25 21 17 61 57 53 49 45 41 37 33

46 42 38 34 14 10 6 2 30 26 22 18 14 10 6 2
62 58 54 50 30 26 22 18 62 58 54 50 46 42 38 34

47 43 39 35 15 11 7 3 31 27 23 19 15 11 7 3
63 59 55 51 31 27 23 19 63 59 55 51 47 43 39 35

56 48 40 32 24 16 8 0
57 49 41 33 25 17 9 1

58 50 42 34 26 18 10 2
59 51 43 35 27 19 11 3

60 52 44 36 28 20 12 4
61 53 45 37 29 21 13 5

62 54 46 38 30 22 14 6
63 55 47 39 31 23 15 7

Fig. 7. PE=4, W=1, N=64, Stage0 FFT.

Table 2. Conventional Pipeline and Scalable Architectures
Characteristics Comparison.

Factor Pipeline
Architecture

Scalable
Architecture

Coefficient Storage N - 2 N / PE
Delay Elements N – 2 N / PE
Multipliers (real) 4 log2N 4 PE
Adders (real) 6 log2N 6 PE
Total time to process
first N point N/2 cycles

N/2PE – 1

Time for subsequent N
points N/2 cycles

N/2PE

325

using industry standard STA tools, an extracted and back-
annotated netlist was analyzed. At this cycle speed, a 1024-
point FFT will complete in ((1024/2*4) - 1 for first stage +
(1024/2*4) * 9 for the rest of stags) = 1279 cycles. At a
1530ps cycle time, this translates to 1279* 1.53ns = 1.957µs.
Fig. 10 shows the critical timing path for the design which
was from one of the SPSN registers to an output.

VII. CONCLUSION
The proposed systematic scalable pipeline architecture

presents a new efficient method for decomposition of perfect
shuffle permutation and data reordering for FFT algorithm.
Examples for both 2 and 4 PE radix 2 FFT discussed in
detail. Placement and timing for 1024 points radix 2
presented as prove of concept. Also, proposed architecture
can be easily proved extendable to higher FFT radix.

REFERENCES
[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine

calculation of complex Fourier series,” Math. Comput., vol. 19, pp.
297-301, 1965.

[2] B. M. Baas, “A low-power, high-performance, 1024-point FFT
processor,” IEEE Journal of Solid-State Circuits, vol.34, no. 3, pp.
380–387, March 1999.

[3] Magar, S., S. Shen, G. Luikuo, M. Fleming, and R. Aguilar, “An
Application Specific DSP Chip Set for 100 MHz Data Rates,”
International Conference on Acoustics, Speech, and Signal
Processing, vol. 4, pp. 1989–1992, April 1988.

[4] O’Brien, J., J. Mather, and B. Holland, “A 200 MIPS Single-Chip 1K
FFT Processor,” IEEE International Solid-State Circuits Conference,
pp. 166–167, 327, 1989.

[5] H. L. Groginsky and G. A. Works, “A pipelined fast Fourier
transform,” IEEE Transactions on Computers, vol. C-19. pp. 1015-
1019, 1970.

[6] E.H. Wold and A.M. Despain, “Pipeline and parallel-pipeline FFI7
processors for VLSI implementation,” IEEE Transactions on
Computers, vol. C-33, pp. 414-426, May 1984.

[7] G. Bi and E. V. Jones, “A pipelined FFT processor for word
sequential data,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 37, pp. 1982-1985, December 1989.

Fig. 8. FFT Core Routing.

Table 3. Design Specifications.

Item Details

FFT Algorithm Radix-2, Decimation-in-Frequency
N 1024 points
Format Fixed-point (int.frac): 16.16
Number of PEs 4
Total Number of
Cells 89,045
Combinational
area % 56.3%
Non
Combinational
area % 43.7%
Height 569.52 uM
Width 570.08uM
Utilization 69.3%
Total Wire Length 1,937,640.81 uM
Frequency 653.6 MHz
Technology 45 nm Bulk CMOS
Supply Voltage 0.9 V
Dynamic Power 168.6mW
Leakage Power 14.7mW

Fig. 10. FFT Core Floorplan.

Fig. 9. FFT Core Critical Path.

326

[8] E. E. Swartzlander, V. K. Jain, and H. Hikawa, “A radix 8 wafer
scale FFT processor,” Journal of VLSI Signal Processing, vol. 4,
pp. 165-176, May 1992.

[9] He, S. and M. Torkelson. “Design and Implementation of a 1024-
point Pipeline FFT Processor,” IEEE Custom Integrated Circuits
Conference, pp. 131–134, May 1998.

[10] D. Cohen, “Simplified control of FFT hardware,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol.
ASSP-24, pp. 577-579, 1976.

[11] M. C. Pease, “Organization of large scale Fourier processors,”
Journal of the ACM, vol. 16, pp. 474-482, 1969.

[12] L. G. Johnson, “Conflict free memory addressing for dedicated
FFT hardware,” IEEE Transactions on Circuits and Systems, II,
vol. 39, pp. 312-316, 1992.

[13] Y. Ma, “An effective memory addressing scheme for FFT
processors,” IEEE Transactions on Signal Processing, vol. 47, pp.
907-911, 1999.

[14] Y. Ma and L. Wanhammar, “A hardware efficient control of
memory addressing for high-performance FFT processors,” IEEE
Transactions on Signal Processing, vol. 48, pp. 917-921, 2000.

[15] E. L. Zapata and F. Arguello, ”Application-specific architecture for
fast transforms based on successive doubling method,” IEEE
Trans. Sig. Processing, vol.41, pp. 1476-1481, 1993.

[16] E. L. Zapata and F. Arguello, ”A VLSI constant geometry
architecture for the fast Hartley and Fourier transforms,” IEEE
Trans. Parallel Distrib. Syst.,vol.3, pp. 58-70, 1992.

[17] E. L. Zapata and F. Arguello, “A VLSI constant geometry
architecture for the fast Hartley and Fourier transforms,” IEEE
Trans. Parallel Distrib. Syst.,vol.3, pp. 58-70, 1992.

[18] Rabiner, L. R. and Gold, B.”Theory and Application of Digital
Signal Processing,” Prentice-Hall, Englewood Cliffs, New Jersey,
1975.

[19] D. Akopian, J. Takala, J. Astola and J. Saarinen, “Multistage
interconnection network for k/n rate parallel Viterbi decoders,”
IEEE Trans. on Communications, Sep. 2003.

[20] D. Akopian, Systematic Approaches to Parallel Architectures for
DSP Algorithms, 1997, Acta Politechnica Scandinavica, EI 89,
Espoo, Finland.

[21] D. Akopian and J. Astola, "Fast architecture oriented algorithms
for trigonometric transforms and their mapping to scalable
structures," Proceedings of First International Workshop on
Transforms and Filterbanks, TICSP Series-1, June 1998, pp. 433-
471.

[22] Hani Saleh and Earl Swartzlander Jr., "A Contention-Free Radix-2
8k-points Fast Fourier Transform Engine Using Single Port
SRAMs", IEEE SoutheastCon 2008.

[23] Hani Saleh, Bassam Mohd, Adnan Aziz and Earl Swartzlander Jr.,
"Contention-Free Switch-Based Implementation of 1024-point
Fourier Transform Engine", ICCD-2007 (XXV IEEE International
Conference on Computer Design), Lake Tahoe, CA, 2007.

327

