
The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2002

J. Bosch et al. (eds.), Software Architecture

10.1007/978-0-387-35607-5_15

http://dx.doi.org/10.1007/978-0-387-35607-5_15


222 Nenad Medvidovic, Nikunj Mehta, and Marija Mikic-Rakic 

architectural design abstractions called styles and the semantics underpinning 
such styles [30]. An architectural style defines a vocabulary of component and 
connector types and a set of constraints on how instances of these types may be 
combined in a system or family of systems. Various formal architecture descrip
tion languages (ADLs) and their supporting tools have emerged from this body 
of research over the last decade [17]. To date, most architectural tools have 
focused on the simulation and analysis of architectural models to exploit the 
semantic power of ADLs. With few exceptions (e.g., Weaves [8], GenVoca [1]), 
insufficient progress has been made on supporting implementations of applica
tions based on styles and ADL models [17]. 

The second approach to software architectures has focused on providing 
software frameworks, often through object-oriented (00) reuse techniques such 
as design patterns and object hierarchies. A framework is a skeletal group of 
software modules that may be tailored for building domain-specific applica
tions, typically resulting in increased productivity and faster time-to-market 
[6,35]. This approach has led to the creation ofa variety of "middleware" tech
niques and associated commercial technologies for component-based develop
ment [28,33,36]. However, software implementations resulting from such use of 
frameworks often differ widely from conceptual models and lack adequate 
semantic underpinnings for analytic purposes. 

A major focus of our work has been precisely on alleviating this problem, 
and bridging the two approaches described above. While supporting powerful 
analysis of architectural models, we have also provided implementation support 
for conceptual architectures based on a specific architectural style, C2 [32]. The 
C2 style is targeted for distributed, dynamic, evolvable, decentralized, asyn
chronous, event-based, multi-lingual, and multi-platform applications. While 
different aspects of C2 have been reported elsewhere [13,16,32], this paper 
describes our work over the past seven years on developing a family of archi
tectural frameworks for supporting the implementation, deployment, execution, 
monitoring, and evolution of applications built according to the style. In this 
paper we demonstrate how applications designed in the C2 style are imple
mented using an architectural framework. We also describe how this framework 
has evolved over time to support various extra-functional properties required in 
applications, ranging from distributed enterprise applications to desktop sys
tems and hand-held devices. This evolution has resulted in a family of architec
tural frameworks that has been used in more than 100 applications developed by 
various academic and industrial organizations. We have also provided special
purpose utilities (software connectors [18]) that allow seamless construction of 
C2-style applications from components implemented in different programming 
languages (PLs), on top of different frameworks. While this work has been 
restricted to supporting application development according to the C2 style, we 
believe that a number of our insights and conclusions are applicable to other 
styles, and style-based implementation frameworks. 

The remainder of this paper is organized as follows. Section 2 summarizes 
the key characteristics of the C2 style. Section 3 presents our objectives for 
framework development, while Section 4 describes our approach to realizing 
these objectives. Section 5 discusses the evolution of our framework design, 
resulting in a family of architectural frameworks. Section 6 highlights the les
sons learned in the process. Section 7 discusses related approaches. The paper 
concludes with a brief overview of future work. 



A Family of Software Architecture Implementation Frameworks 223 

2 DESCRIPTION OF THE C2 STYLE 

C2 [32] is an architectural style for highly distributed, dynamic, and evolv
able systems. An ADL, C2SADEL [16] has been developed to formally 
describe C2-style architectures. A C2-style architecture is described through a 
set of components and connectors, and the topology into which they are com
posed. C2-style components maintain state information and perform applica
tion-specific computation. They interact with other components by exchanging 
messages via their two interfaces (named "top" and "bottom"). Connectors 
mediate the interaction among components by controlling the transmission and 
distribution of messages. A message consists of a name and set of typed 
parameters. A message in the C2 style is either a request for a component to 
perform an operation, or a notification that a given component has performed 
an operation or changed its state. Each component interface consists of a set of 
messages that may be received and a set that may be sent. Request messages 
may only be sent through the top interfaces, while notifications may only be 
sent through the bottom interfaces of components and connectors. 

The C2 style mandates that Lege"': 

components must always interact 1 
via connectors. The top (bottom) 1 Corntnoolcotion g C _ .. ::!!_ 

of a component may be attached to _ 
the bottom (top) of a single con- g 
nector; there is no bound on the 
number of components or connec-
tors that may be attached to a sin-
gle connector. This decoupling of 
components greatly aids system Figure 1. A simple architecture in the C2 style. 
flexibility and gradual evolution, 
where components can be added to 
or removed from an architecture with minimal impact on the rest of the system 
[20]. Figure 1 illustrates an architectural configuration in the C2 style. 

3 FRAMEWORK OBJECTIVES 

Our primary objective was to create a runtime environment that would sim
plify the implementation, deployment, execution, monitoring, and evolution of 
C2-style architectures while preserving the properties implicit in the style. 
Based on the characteristics of the style and applications for which it is 
intended, we identified the following to be the key objectives to be met by an 
architectural framework for C2 applications: 
• Traceability - The framework should support a simple, faithful mapping 

between the architectural elements and their implementations. This fidelity is 
necessary to ensure that the conceptual integrity and key properties of an 
application's architecture are preserved by the architecture's implementation. 

• Platform Independence - The framework should support application devel
opment in multiple PLs, operating systems (OS), and communication proto
cols. The framework may make implementation choices that would allow for 
efficient execution of an application on a given platform. 

• Distribution - The framework should not make any assumptions about the 
number or location of address spaces in which components will reside. 

• Dynamism - The framework should enable modification of a system's runt-



224 Nenad Medvidovic, Nikunj Mehta, and Marija Mikic-Rakic 

ime architecture with minimal effect on the execution of existing compo
nents [20]. 

• Efficiency - The framework should impose minimal overhead on an applica
tion's execution. The goal is to enable efficient execution of applications on 
platforms with varying characteristics (e.g., speed, capacity, network band
width). 

• Observability - The framework should support runtime monitoring and anal
ysis of an application. This is necessary for tracking the system performance 
and correctness, and for anticipating and detecting system faults. 

• Extensibility - The framework should support design and implementation of 
new elements compatible with the C2 style. This allows one to tailor the 
framework, and create and compose components and connectors suitable for 
specific application needs. 

4 OVERALL FRAMEWORK DESIGN 

To develop the architectural framework for C2, we (1) identified the ele
ments of the style and their characteristics, and (2) implemented a set of mod
ules in a PL (e.g., classes in an OOPL) to represent the identified elements, 
their relationships, their base behaviors, and their interactions. An applica
tion's concrete architecture is then created by extending and/or instantiating 
the appropriate modules from the framework. The framework thus supports 
direct transformation of application architectures from style elements to imple
mentation constructs. 

4.1 Overview 

Figure 2 shows 
the external API 
of the C2 architec
tural framework, 
with classes that 
are used by appli
cation developers 
to realize a con
ceptual C2 style 
architecture. The 
Architecture class 
records the config
uration of its con
stituent compo
nents and connec
tors. Component 
provides primi
tives to send and 
handle (Le., 
receive) mes-
sages. Connector 
keeps track of 

lifoCkIlet) 

IKlIr.(n.m. : a.no) 
IKltr.(n.aml : SUI\;. n. : Itt) 
:wlG 

O: \IOld 
lI1dawnO : 'IDlod 

udef:Rllqu_} :yOlO 

"HUt" : VOId 

ddComponanlpwnp : Compontlll) : 'tdO 

vad 

O:Jnneebf, c.omp: Component : 
«(Dmp : Compot\ln\. cem : : wid 
«coAM : CbnMCIl:lf, c:om2 : 'W31d 

mOtICompomnttCDlllp : CompoNnl, : ,oIeI 
martaCon.-.ctDI(COM : CbMlICtII): veld 

"It): "'OId 
.tt",..dCounC): 11'41 
rudFul'lGSonO : -.ofld 

dd 
'MFFO('I' : 0Ct,ed, : OtItlClt 

Figure 2. UML class diagram of the framework API. 

attached components and dispatches messages to the appropriate components. 
Components and connectors may run in a shared thread of control (Component 



A Family of Software Architecture Implementation Frameworks 225 

and Connector}, or they may execute in their own threads (ComponentThread 
and ConnectorThread). Component and ComponentThread classes are abstract. 
Thus, it is necessary to subclass one of them in order to create application-spe
cific components. On the other hand, since connectors provide application
independent interaction services, Connector and ConnectorThread are concrete 
and may be directly instantiated in an implementation. 

In addition to the generic Connector, we have developed a library of connec
tors, such as those supporting various message routing protocols (e.g., broad
cast, multicast, unicast), connectors that encapsulate middleware to support 
distribution of architectural elements [3], and secure connectors. Developers 
can select connectors that provide the needed interaction facilities from this 
library, and instantiate them directly into an architecture's implementation. At 
times when additional features are required or certain interaction behaviors 
need to be amended, the application architect can extend one or more connec
tors from this library to create the desired connector behavior [18]. 

As discussed in Section 2, all communication in C2-style architectures is 
achieved by sending and receiving Messages (Requests and Notifications). The 
framework provides basic mechanisms for creating and exchanging messages. 
Components create messages and send them to connectors based on the rules of 
the C2 style, the components' internal processing algorithms, and communica
tion needs. In response to a message, a receiving connector selects its attached 
components to which this message should be forwarded based on the connec
tor's internal distribution policy (e.g. broadcast, unicast, multicast). Each com
ponent implements application-specific processing of the incoming requests or 
notifications inside the corresponding handle method. In case of a connector-to
connector link, the messages are passed to another connector, which applies its 
own internal policy in further forwarding the messages on to its attached com
ponents (and possibly connectors). 

Over the past seven years, we have developed several 00 designs of the C2 
architectural framework, and have implemented them in several languages 
(C++, Ada, Java, Python), resulting in a family of framework implementations. 
Various structural changes have been made to the framework's internal design 
over time to enhance its performance and improve its extensibility. In order to 
support portability of C2 applications, we have preserved the external API 
shown in Figure 2 across framework implementations. This means that an 
application written for any framework in this family undergoes no changes 
when run on top of any other C2 framework implemented in the same PL. Such 
cross-compatibility between different versions of the framework allows us to 
choose the best framework available for an application based on its extra-func
tional characteristics such as speed, memory utilization, flexibility, and trace
ability of architectural decisions. 

4.2 Tool Support 

The process of translating the conceptual architecture of a system, described 
in the C2 style and the C2SADEL ADL [16], into an implementation is tool 
supported. The application architecture is designed using the DRADEL and 
ArchStudio environments [16,20].1 The environments support graphical design 
of an architecture, with tools for analyzing and generating a skeleton imple
mentation for that architecture. The generated code contains subclasses of the 
framework's Component and ComponentThread classes with application-spe-

I Both DRADEL and ArchStudio are also developed using the C2 style and implementation framework. 



226 Nenad Medvidovic, Nikunj Mehta, and Marija Mikic-Rakic 

cific method declarations. Each application component's message passing 
code is automatically generated its C2SADEL model. Furthermore, the gener
ated implementation also contains the subclassed Architecture class with code 
for instantiating the appropriate components and connectors and welding them 
into the configuration identified in the C2SADEL specification. A developer 
only needs to implement the method bodies of each component's message han
dlers. 

5 EVOLUTION OF THE FRAMEWORK 

5.1 Early Framework Design 

The initial C2 framewor12 was designed and implemented in C++. The 
class diagram of the C++ C2 framework, shown in Figure 3, contained a class 
for each C2-style concept. Each component maintained its own buffers of 
incoming and outgoing messages through its attached ports, and connectors 
copied messages from the output ports of source components to the input ports 
of all appropriate destination components. The connectors were very simplistic 
and could only perform broadcast distribution of messages. Messages were 
recorded as comma-delimited strings. Although messages were simple, the 
framework's approach to managing them resulted in high heap memory usage, 
primarily due to each message being copied in multiple ports during an appli
cation's execution. Since Architecture was a subclass of Component, creation 
of composite connectors was not directly supported. In addition, support for 
dynamic changes and runtime monitoring of the architecture was not provided. 

An Ada implementa
tion of the framework 
followed, along with the 
use of off-the-shelf 
(OTS) software interop
erability mechanisms 
inside connectors. These 
mechanisms were used to 
support the interactions 
of components deployed 
in different OS pro- ,,,,..., 
cesses, on different 
machines, and possibly 
implemented in different 
PLs (in this case, Ada 
and C++) [3,13]. 

A Java-based imple
mentation of the same 

Figure 3. C2 framework design class model. 

00 design was created to take advantage of Java's support for dynamic class 
loading, and to enable observability of the runtime architecture. Dynamic load
ing was leveraged in enabling runtime addition, removal, replacement, and 
reconnection of components [20]. Monitoring support was added to the Java 
C2 framework to track and possibly filter the messages flowing through com-

2 This version of the framework will be referred to simply as "C2" in the remainder of the paper, except in 
those cases where the framework needs to be disambiguated from the C2 style. 



A Family of Software Architecture Implementation Frameworks 227 

ponent and connector ports. In order to enable more effective and efficient pro
cessing of messages, the messages in the Java framework were stored as hash 
tables. This allowed parameter retrieval by key rather than by position, as was 
necessary in the C++ and Ada frameworks' string-based messages. 

This design of the framework provided a single, shared thread for process
ing messages in all components that did not run in their own thread of control 
(i.e., for all subclasses of the Component class). The Architecture class man
aged scheduling of message processing inside such components in a round
robin fashion. This design resulted in a low degree of parallelism, as compo
nents had to wait for their time slice in order to process independent messages. 

The initial implementation of the framework satisfied several of our objec
tives. It supported platform independence by adopting a layered approach. The 
framework hid all the platform specific details as well as the mechanism for 
achieving communication between components, rather than exposing them to 
the architectural elements and, thereby, to the developers. In this sense, the 
framework plays the role of a middleware. Additionally, the framework 
abstracted several platform-specific services into components. For example the 
general-purpose GraphicsBinding component provides user interface services. 
GraphicsBinding issues requests each time a user interface event occurs and 
receives notifications to display information. In a number of C2-style applica
tions built to date, cross-platform portability is aided by interchanging different 
GraphicsBinding components. 

The framework achieves distribution by encapsulating aspects such as 
threads and inter-process communication (IPC). The framework provides a sin
gle "shepherd" thread for those components that do not have their own thread 
of control. When such components receive a message, the encapSUlating archi
tecture's thread is typically run through their handle method by the framework. 
All IPC is abstracted away inside special-purpose connectors, called border 
connectors [3] available from the connector library. 

Dynamism in our framework is supported through operations for addition 
(add), removal (remove), connection (weld), and disconnection (unweld) of 
components and connectors in the Architecture class. Since the interaction 
among components is decoupled via flexible, first-class connectors (as man
dated by the C2 style), a high degree of dynamism is provided with minimal 
disturbance to the rest of the running system [20]. 

Finally, due to the external API of the framework, which directly reflects the 
C2 style concepts (recall Figure 2), it is possible to trace the relationship 
between a conceptual architecture and its concrete implementation. In addition, 
tools such as DRADEL and ArchStudio further simplify an architect's job of 
keeping the architectural model synchronized with the implementation via 
automated code generation. 

At the same time, the remaining objectives (efficiency, observability, and 
extensibility) were not met as successfully by this, initial implementation of the 
framework. The guiding principle behind this implementation was to ensure the 
maximum fidelity of an application to its architecture. While directly aiding 
traceability, the principle resulted in the increased framework weight (e.g., by 
duplicating the same message object in all recipient components' incoming 
queues) and slower speed (as evidenced by the performance numbers shown in 
Table 1). Similarly, there were no facilities in the framework to monitor an 
architecture at runtime, or to extend the framework itself without significant 
redesign. To achieve these goals, several modifications to the framework were 
undertaken, as discussed below. 



228 Nenad Medvidovic. Nikunj Mehta. and Marija Mikic-Rakic 

S.2 Framework Optimizations 

Recently, we have begun applying our architecture-based development sup
port to the emerging area of hand-held, mobile, possibly embedded, and 
resource-constrained execution environments. To that end, we have had to 
carry out a number of enhancements to the C2 framework, resulting in the eC2 
("embedded" C2) framework. As stated above, we have identified that it is dif
ficult to simultaneously maximize fidelity and efficiency in the framework. In 
the eC2 framework, efficiency became our primary focus. We replaced compo
nent Ports that maintained private queues, with a central FIFO mes
sage queue per each address space. This change slightly decreased the fidelity 
of the framework to the style, but it greatly increased the framework's perfor
mance. A pool of shepherd threads is kept ready to handle any messages sent 
by any component in a given address space. The size of the thread pool is 
parameterized and, hence, adjustable. For communication that spans address 
spaces or machine boundaries, a message is transported via a border connector 
to the recipient address space, and added to its message queue. A shepherd 
thread removes a message from the head of this queue as soon as it finishes 
processing the previous message. The shepherd thread is run through the con
nector attached to the sending component; the connector dispatches the mes
sage to relevant components using the same thread of execution for processing 
their handle methods (see Figure 4). If a recipient component generates further 
messages, they are added to the end of the message queue, and different 
threads are used for dispatching those messages to their recipients. An alterna
tive design allows separate threads to be used for dispatching a message from 
the connector to each intended recipient component. thus increasing the paral
lelism in the architecture. The control over the thread pool and the message 
queue is exercised from the Architecture class in the eC2 framework. Unlike 
the original C2 framework, each message exchanged between components in 
the same address space in eC2 is accessed by reference, rather than by copy. 

Note that, as long as the rate of __ 
production of messages is main
tained at or below the rate of pro
cessing them, a small finite 
message queue will suffice. How
ever, this is not always possible: in 
some applications the rate at 
which messages are generated will 
exceed the rate at which they are 
processed. There are at least three 
possible solutions to this problem: 
(1) instantiation of more shepherd 
threads, (2) temporary assignment 

Figure 4. Message dispatching in ee2. 

of higher priority to components that consume more messages than they gener
ate, and (3) selective dropping of messages when the average queue size grows 
faster than the rate at which messages can be processed (assuming the applica
tion is able to adapt to dropped messages). We are currently looking into these 

3 Although the C2 style does not allow assumptions to be made regarding the address space of an element, 
it allows us to take advantage of the local runtime environment conditions to optimize performance [32]. 



A Family of Software Architecture Implementation Frameworks 229 

alternatives as a way of minimizing the memory utilization in the applications 
running on top of the eC2 framework. 

5.3 Framework Extensibility 

The original C2 framework did not provide adequate support for compos
ing richer architectural elements using simple components and connectors. 
Architecture subclassed the Component class, which meant that a composite 
could be used in place of a simple component. However, one could not easily 
use a composite in place of a connector. Thus, composition of elements was 
asymmetric, although the C2 style itself is symmetric in this regard. Moreover, 
the optimizations performed in eC2 had constrained the flexibility and observ
ability of our framework by tightly coupling framework classes with the shared 
message queue and the shepherd thread pool. To overcome these difficulties, 
we decided to restructure the framework design and reduce the coupling 
between framework classes. While retaining most of the performance optimi
zations of the eC2 framework, this resulted in a highly extensible framework, 
xC2 ("extensible" C2). 

Figure 5 shows a UML 
class model of the xC2 
framework. Component, Co".."."",. ... 

o 
.. EwntCon."'n. 

Comp-lntnrnnad 

lSealold 

Connector, and Architec
ture are all sub-classed from 
Brick. Each subclass of 
Brick implements a specific 
set of interfaces based on 
the type of architectural ele
ment to which it belongs. 
IArchitecture provides 
methods for managing the 
architectural configuration; 
IConnector provides meth
ods for distributing mes
sages; and IComponent 
provides the methods for 
processing messages. Bricks 
are attached to an IScaffold 

Figure 5. xC2 framework design class model 

for providing execution and monitoring support. A class that implements 
IScaffold can selectively monitor messages flowing through the architecture 
based on their content, directly aiding architecture observability. Scaffolds are 
also used to store messages and pool threads so that message dispatching can 
be done in a way most suitable to the application. This also allows us to sepa
rate the management of threads and messages from the Architecture, allowing 
one to easily compose many sub-architectures in a single application. 

The xC2 framework is symmetric in its support for components and con
nectors. This has allowed us to create a set of reusable connectors, with com
plex C2-style internal architectures. For example, we have composed a 
security connector to authenticate communicating components. We have also 
created modular "border" connectors to allow components across machine 
boundaries to communicate with each other, synchronous message connectors 



230 Nenad Medvidovic, Nikunj Mehta, and Manja Mikic-Rakic 

with procedure call-like semantics, and multi-versioning connectors to support 
reliable runtime upgrades of components [24]. 

We have been able to support various message routing techniques such as 
broadcast, multicast, and unicast by assigning an Address to each Brick, and 
then using these addresses for more targeted distribution of messages. The 
addresses are used during communication for identifying component(s) that are 
the intended to message recipients. It is the responsibility of sending compo
nents to specify message targets. This can be accomplished in a variety of 
ways: (1) hardwiring addresses into each component during development, (2) 
using a registry to record component types, and querying the registry to locate 
the target components; (3) broadcasting an initial message aimed at discovering 
the components with which communication is desired, and later using the dis
covered addresses for unicast distribution. We are currently investigating all 
three alternatives, in terms of the tradeoff between performance and degree of 
component coupling. 

Support for dynamism, discussed in the context of the Java C2 framework in 
Section 5.1 and subsequently carried over into eC2, is taken a step further in 
xC2 by supporting component mobility. The framework provides connectors 
that migrate components across machine boundaries by leveraging the architec
ture's and components' IScaffold interfaces [14]. 

6 DISCUSSION 

Together, the frameworks discussed above in Sections 4 and 5 address all of 
the objectives outlined in Section 3. However, individually, each framework 
covers only a subset of the stated objectives. One reason is that several of the 
objectives conflict. For example, observability can be achieved only at the 
expense of decreased framework efficiency. Similarly, platform independence 
may hamper framework extensibility (e.g., by discouraging platform-specific 
extensions) and dynamism (e.g., some PLs and implementation platforms, such 
as Ada, typically do not support dynamic class loading). 

In the design and implementation of the frameworks we have attempted to 
account for different situations that might arise during development: 
• Different frameworks exhibit different extra-functional properties (e.g., per

formance, adaptability), allowing the selection of the framework most appro
priate for the needs of the given application. 

• The frameworks are implemented in different PLs (multiple flavors of C++, 
Ada, Java, and Python), allowing developers to select a framework based on 
their preferred PL, instead of the other way around. 

• The frameworks employ different OTS component interaction mechanisms 
(e.g., Java RMI [34], CORBA [19], Q [12], Polylith [26]), giving developers 
the flexibility to select the interaction mechanism with which they are most 
familiar and/or comfortable, or the mechanism that is the best fit for their cur
rent application needs. 

• The frameworks leverage their explicit connectors and the OTS interaction 
mechanisms to enable application development across language and platform 
boundaries. 

• The frameworks also leverage their multi-lingual support and explicit con
nectors to enable the integration of third-party components that do not adhere 
to the assumptions of the C2 style (e.g., asynchronous message-based interac
tion) into a C2-style application [13]. 



A Family of Software Architecture Implementation Frameworks 231 

Table 1: Properties of Java Cl framework implementations For illustration, 
Table 1 shows a 
summary of sev
eral properties of 
the three frame
works' Java 
implementations. 
Two simple appli
cations were used 
for obtaining the 
benchmarks: one 
consisted of a sin
gle connector and 
two components 
(one above and 

Fnmework CZ eCZ xCZ 

SLOC 2000 1800 1500 

Time (sec), I thread 1025.3 2.2 3.8 

Time (sec), 10 threads 87.1 2.7 4.2 

Time (sec), 50 threads N/A 3.0 4.4 

Time (sec), SO threads, SO 237.4 4.7 13.0 
components 

Memory usage (bytes) 5112 1400 2376 

Other PL support C++,Ada JavaKVM, JavaKVM, 
EVC++ EVC++,Python 

Flexibility Low Medium High 

Traceability High Low Low 

one below the connector), while the other consisted of 50 identical components 
above the connector and one component below. The benchmarks were per
formed on an Intel Pentium ill 500 MHz processor with 256 MB of RAM run
ning JDK 1.4 beta 2 on Microsoft Windows 2000. In both cases 100,000 
simple (parameter-less) messages are sent by the bottom component to the top 
component(s). Time reflects the amount of time required to complete the 
exchange of messages. Memory usage was recorded at the time of initializa
tion, and it indicates the amount of memory consumed by the framework and 
the first application's two components and one connector when used with one 
thread. Although all measurements are for the framework implementations in 
Java, the benchmarks are representative metrics for comparing the respective 
qualities of the different framework deSigns, which have been implemented in 
multiple PLs. 

The original C2 framework (implemented in C++, Ada, and Java) is signif
icantly outperformed by the more recent eC2 and xC2. The primary reason is 
that, with time, our understanding of the style itself and of its reification in a 
framework increased. For example, when the style was initially formulated, 
component communication ports were given an important role, despite the fact 
that each component always had a fixed number of ports (one on the top and 
one on the bottom) [32]. The original C2 framework tried to stay true to this 
vision, but eventually we realized that, unlike other styles such as Weaves [8], 
ports do not play an active role in a C2-style architecture. Therefore, explicit 
ports created unnecessary overhead in implementations and were removed in 
the subsequent frameworks. 

Another major evolution point for the frameworks was their implementa
tion of threading. The original C2 framework was again faithful to the concep
tual model formulated in the style, where threads are associated only with the 
individual components and connectors. However, this implementation turned 
out to be inefficient for various reasons. One reason was that the frameworks 
did not make any provisions for the fact that some components in an architec
ture will generate many more messages than others. Another reason was that 
message dispatch by a connector was always performed sequentially to each 
recipient component because the connector had one thread of control. In the 
subsequent frameworks, the Architecture class and implementation of the 
Iscaffold interface, respectively, control the thread pool, allowing for "lending" 



232 Nenad Medvidovic, Nikunj Mehta, and Marija Mikic-Rakic 

of threads to a connector and simultaneous dispatching of a message to multi
ple components (recall the discussion in Section 5.2). 

The recent implementation of xC2 marks another shift in our understanding 
of the C2 architectural style and in the emphasis we place on various architec
tural elements in general. Specifically, our experience since the development 

of the initial C++ C2 framework has indicated that in an architectural setting, 
and specifically in C2-style architectures, software connectors fundamentally 
influence the key properties of an architecture and of the resulting system 
[3,30]. xC2 recognizes this and provides the ability to incrementally construct 
connectors with arbitrarily complex internal architectures. This view of com
plex, compositional software connectors has been gaining support in the soft
ware architecture community [18,31]. We are currently directly leveraging xC2 
to further investigate this question. 

7 RELATED RESEARCH 

There exists a large body of research on 00 frameworks and middleware. 
Due to space constraints, we provide only a brief classification in this paper. 
The research and use of frameworks can be classified into six distinct genera
tions on the basis of the achieved level of component reuse: (1) Module inter
connection languages [4] enabled the reuse of components implemented in a 
single PL. (2) Remote procedure calls and platform-neutral data representa
tions (e.g., [2,25]) enabled distribution and reuse across PLs. (3) Platform-neu
tral runtime environments and dynamic component loading (e.g., [7,11]) 
enabled dynamism and reuse across computing platforms. (4) Domain-specific 
and GUI frameworks (e.g., [9,22]) enabled reuse across applications. (5) Pro
vision of infrastructure services such as naming, threading, persistence, and 
transaction management (e.g., [9,28,36]) introduced the possibility of reuse of 
architecture-level abstractions. (6) Reuse of architecture-level abstractions 
became an explicit focus of architectural style-based frameworks (e.g., 
[29,32]). While it exhibits the properties of frameworks spanning several gen
erations, the family of C2 frameworks described in this paper is most closely 
related to the sixth generation. 

8 CONCLUSIONS AND FUTURE WORK 

Over the past decade, software architectures have been touted as a possible 
answer to many of the problems inherent in engineering large, complex, dis
tributed, long-lived software systems. The many architectural styles, modeling 
notations, and analysis techniques that have emerged from the software archi
tecture research community during this period have given developers concep
tual tools with which to attack these problems. However, these architectural 
approaches have frequently failed to address the relationship between the 
abstract architectural models and concrete system implementations [17]. 

On the other hand, a number of software interoperability technologies have 
emerged primarily, though not exclusively (e.g., [12,23,26]), from industry 
[28,33,36]. These technologies provide solutions for composing implementa
tion-level, coarse-grain software components, giving developers powerful sys
tem building tools. However, although it has been shown that they indeed 
influence the architectural characteristics of systems [5], these technologies 
rarely explicitly acknowledge the architectural models that typically precede 



A Family of Software Architecture Implementation Frameworks 233 

the implementations, or architectural styles that influence the key properties of 
the implemented systems. 

In this paper, we have discussed our attempt at bridging this gap between 
the model-centric and implementation-centric approaches. We have coupled an 
explicit architectural style (with its accompanying ADL and analysis tools) 
with an implementation infrastructure in the form of a collection of 00 class 
frameworks, allowing for a straightforward transfer of architectural constructs 
and decisions into the running system. In doing so, we have defined a set of 
object models that underlie a component- and connector-based architectural 
style, further adding evidence to our previously stated argument that 00 and 
architectural approaches, while not identical, are compatible [15,27]. 

Our frameworks have been used over the past seven years in the develop
ment of over 100 applications. The applications have ranged in size from very 
small ''proof of concept" examples (on the order of 1,000 SLOC) to moder
ately-sized development environments (on the order of 50,000 SLOC, not 
counting large OTS components such as the Netscape Communicator or Ratio
nal Rose, which have been wrapped to be used as C2-style components in the 
environments). For example, the environments for modeling, analyzing, imple
menting, and evolving C2 applications (ArchStudio [20] and DRADEL [16]) 
are themselves implemented according to the rules of the C2 style and using 
the implementation frameworks presented in this paper. Finally, the relatively 
small size (about 1,750 undocumented SLOC on average) and light weight of 
the frameworks have made them well suited for use as a pedagogical tool for 
introducing and demonstrating the concepts of component-, connector-, and 
message-based application development. The original Java C2 framework 
(recall Table 1) has been used at several universities to teach the concepts of 
architecture-based development; more recently, we have also used the Java 
KVM, EVC++, and Python implementations of the xC2 framework in three 
graduate-level courses at USC. 

While we have amassed extensive experience with the frameworks and 
have applied them across several application domains, a number of issues 
remain open. One key issue is the performance of implemented applications. 
Our objective of maintaining the traceability of architectural decisions in an 
implementation results in applications in which components always communi
cate via intermediaries (i.e., connectors). This is desirable in situations in 
which a given component needs to broadcast information to multiple recipient 
components, of if the application is expected to evolve at runtime. However, 
the communication indirection induced by explicit connectors may be overly 
costly in situations in which the connector mediates interaction between only 
two components, the components do not require asynchronous message-based 
interaction, or the application is unlikely to evolve at runtime. We have begun 
identifying situations such as these, in which, to a large extent, specific optimi
zations to an implementation may be applied while preserving traceability of 
architectural decisions. One example such optimization is implemented in our 
synchronous message passing connectors [24]. 

Our on-going research thrust is investigating the suitability of the frame
works as implementation substrates on networks of small, resource-con
strained, mobile, possibly embedded devices. While eC2 was implemented 
specifically for this purpose and our initial results are very promising, this is 
still work in progress. We are currently investigating the possible role ofXML 
as an enabler for communication across heterogeneous devices (e.g., Palm 



234 Nenad Medvidovic, Nikunj Mehta, and Marija Mikic-Rakic 

Pilot and Compaq Pocket PC), as well as the exact nature and role of border 
connectors in a wireless network. These issues will frame our work in the 
immediate future. We believe that our current framework implementations 
form a fertile ground for investigating these issues. 

9 ACKNOWLEDGEMENTS 

We wish to acknowledge the contributions of K. Anderson, E. Dashofy, P. 
Oreizy, S. Phadke, A. Rampurwala, and J. Robbins in the creation of various 
members of the family of C2 architecture frameworks. 

This material is based upon work supported by the National Science Foun
dation under Grant No. CCR-998S441. Effort also sponsored by the Defense 
Advanced Research Projects Agency, Rome Laboratory, Air Force Materiel 
Command, USAF under agreement number F30602-00-2-061S. The U.S. Gov
ernment is authorized to reproduce and distribute reprints for Governmental 
purposes notwithstanding any copyright annotation thereon. The views and 
conclusions contained herein are those of the authors and should not be inter
preted as necessarily representing the official policies or endorsements, either 
expressed or implied, of the Defense Advanced Research Projects Agency, 
Rome Laboratory or the U.S. Government. Effort also sponsored by Xerox. 

10 REFERENCES 

1. D. Batory, R. Cardone, Y. Smaragdakis, Object-Oriented Frameworks and Product Lines. 
In: Proc. First Software Product Lines Conference, Denver, Colorado, 2000, pp 227-247. 

2. A. Birrell, B. Nelson. Implementing Remote Procedure Calls. ACM Transactions on 
Computer Systems, 2(1):39-59, February 1984. 

3. E.M. Dashofy, N. Medvidovic, R.N. Taylor, Using off-the-shelfmiddleware to implement 
connectors in distributed software architectures. In Proceedings of the 1999 International 
Conference on Software Engineering, Los Angeles, CA, pp 3-12. 

4. F. DeRemer and H. H. Kron, Programmmg-in-the-Large versus Programming-in-the
Small. IEEE Transactions on Software Engineering, June 1976. 

5. E. Di Nitto, D. S. Rosenblum. Exploiting ADLs to Specify Architectural Styles Induced by 
Middleware Infrastructures. 21st International Conference on Software Engineering, Los 
Angeles, CA, May 1999. 

6. G. Fregonese, A. Zorer; G. Cortese. Architectural framework modeling in 
telecommunication domain. Proceedings of the 1999 International Conference on Software 
Engineering, Los Angeles CA 1999. 

7. A. Goldberg. Smalltalk-80: The Language, Addison-Wesley, 1989. 
8. M.M. Gorlick, R.R. Razouk, Using Weaves for Software Construction and Analysis. In 

Proceedings of International Conference on Software Engineering (lCSE i91), IEEE CS 
Press, Los Alamitos, Calif.,1991, pp. 23-34. 

9. I. F. Haddad. X/MotifProgramming. Linux Journal. Issue 73 May 2000. 
10. R.E. Johnson. Documenting Frameworks as Patterns. In Proceedings of the Conference on 

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA '92), 
Vancouver, BC, Canada, 1992. 

11. T. Lindholm, F. Yellin. The Java Virtual Machine Specification. 2nd Edition Java Series. 
Addison Wesley 1999. 

12. M. Maybee, D. Heimbigner, L.J. Osterweil. Multilanguage Interoperability in Distributed 
Systems: Experience Report. In Proceedings of the 18th International Conference on 
Software Engineering, Berlin, Germany, March 1996. 

13. N. Medvidovic, P. Oreizy, R.N. Taylor. Reuse of Off-the-Shelf Components in C2-Style 
Architectures. In Proceedings of the 1997 International Conference on Software 
Engineering, 1997. pp 692 - 700. 

14. N. Medvidovic, M. Rakic. Exploiting Software Architecture Implementation Infrastructure 



A Family of Software Architecture Implementation Frameworks 235 

in Facilitating Component Mobility. In Proceedings of the Software Engineering and 
Mobility Workshop, Toronto, Canada, May 2001. 

15. N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, 1. E. Robbins. Modeling Software 
Architectures in the Unified Modeling Language. ACM Transactions on Software 
Engineering and Methodology. Vol. 11, No. I, January 2002. 

16. N. Medvidovic, D. S. Rosenblum, R. N. Taylor. A Language and Environment for 
Architecture-Based Software Development and Evolution. In Proceedings of the 1999 
International Conference on Software Engineering, pp.44-53, 1999. 

17. N. Medvidovic, R.N. Taylor. A classification and comparison framework for software 
architecture description languages. IEEE Transactions on Software Engineering, Jan. 2000, 
vol 26(1), p. 70-93. 

18. N.R. Mehta, N. Medvidovic, S. Phadke. Towards a Taxonomy of software connectors, 2000 
International Conference on Software Engineering, Limerick, Ireland, June 2000. 

19. R. Orfali, D. Harkey, J. Edwards. The Essential Distributed Objects Survival Guide. John 
Wiley & Sons, Inc. 1996. 

20. P. Oreizy, N. Medvidovic, R. N. Taylor. Architecture-Based Runtime Software Evolution. 
In Proceedings of the 20th International Conference on Software Engineering, pp.177-186, 
Kyoto, Japan, April 1998. 

21. D.E. Perry, A.L. Wolf. Foundations for the Study of Software Architectures. ACM 
SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp. 40-52, October 1992. 

22. J. Prosise. Programming Windows with MFC. Microsoft Press, 2nd Edition. 1999. 
23. J. Purtilo. The Polylith Software Bus. ACM Transactions on Programming Languages and 

Systems, January 1994. 
24. M. Rakic, N. Medvidovic. Increasing the Confidence in Off-the-Shelf Components: A 

Software Connector-Based Approach. Proceedings of the 2001 Symposium on Software 
Reusability, Toronto, Canada, May 2001. 

25. H.C. Rao. Distributed application framework for large-scale distributed systems, 
Proceedings the 13th International Conference on Distributed Computing Systems, 1993. 
pp 31 -38. 

26. S. P. Reiss. Connecting Tools Using Message Passing in the Field Environment. IEEE 
Software, July 1990. 

27. J.E. Robbins, N. Medvidovic, D.F. Redmiles, D.S. Rosenblum. Integrating Architecture 
Description Languages with a Standard Design Method. In 20th International Conference 
on Software Engineering, April 1998, pp. 209-218. 

28. B. Shannon, M. Hapner, V. Matena, et al. Java 2 Platform, Enterprise Edition: Platform and 
Component Specifications (The Java Series) by Addison Wesley 2000. 

29. M. Shaw et al. Abstractions for Software Architecture and Tools to Support Them. IEEE 
Transactions on Software Engineering. Vol. 21, no. 4, pp 314-335, April 1995. 

30. M. Shaw, D. Garlan. Software Architecture: Perspectives on an Emerging Discipline. 
Prentice-Hall, 1996. 

31. B. Spitznagel, D. Garlan. A Compositional Approach for Constructing Connectors. 
Submitted to The Working IEEElIFIP Conference on Software Architecture, The 
Netherlands, August 28-31,2001. 

32. R.N. Taylor, et al. A Component- and Message-Based Architectural Style for GUI 
Software. IEEE-TSE. 22(6),1996. 

33. S. Williams, C. Kindel. The Component Object Model: Technical Overview. Dr. Dobbs 
Journal, December 1994. <ht1;p:/Imsdn.microsoft.com/libraty/default.asp?URL=/library/ 
techartJmsdn cOJI!Pl!r.htm>. 

34. Sun Microsysterns Inc. Remote Method Invocation. htql://java.sun.comldocs/books/ 
tutoriaVrmi/index.htrnl 

35. Case studies of IBM San Francisco usage (<http://www-4.ibm.comlsoftware/ad/ 
sanfrancisco!casestudies.html> ). 

36. A Discussion of the Object Management Architecture (OMA) Guide, OMG, 1997. 


	A FAMILY OF SOFTWARE ARCmTECTUREIMPLEMENTATION FRAMEWORKS
	1 INTRODUCTION
	2 DESCRIPTION OF THE C2 STYLE
	3 FRAMEWORK OBJECTIVES
	4 OVERALL FRAMEWORK DESIGN
	4.1 Overview
	4.2 Tool Support

	5 EVOLUTION OF THE FRAMEWORK
	5.1 Early Framework Design
	5.2 Framework Optimizations

	5.3 Framework Extensibility
	6 DISCUSSION
	7 RELATED RESEARCH
	8 CONCLUSIONS AND FUTURE WORK
	9 ACKNOWLEDGEMENTS
	10 REFERENCES


