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A FAMILY OF SOLUTIONS OF THE MAGNETO-HYDROSTATIC
PROBLEM IN A CONDUCTING ATMOSPHERE IN A
GRAVITATIONAL FIELD

Y. W. Dungey
(Received 1953 January 28)

Summary

Quiescent solar prominences appear to be in static equilibrium and it is
believed that magnetic fields play an essential role ; the electromagnetic force
must balance the resultant of the pressure gradient and the force of gravity.
The static equation for an isothermal atmosphere is derived and a simple
family of two-dimensional solutions is obtained. This consists of a set of lines
of force such that any magnetic field with these lines of force can be in static
equilibrium. A model is obtained which resembles a filament and its
associated coronal arches.

1. Introduction.—In recent years the belief has grown among solar physicists
that magnetic fields play an essential role in the phenomena of solar prominences
and Alfvén (1) has discussed the possibility that their important feature is an
electrical discharge. The reasons for this belief may be summarized as follows:

(i) The trajectories of falling material have the general appearance of lines
of force.

(1) Prominences are strongly correlated with sunspots and a large proportion
of prominences make their first appearance near sunspots.

(iii) The quiescent prominences appear to be almost in static equilibrium,
in spite of apparent pressure variations which could not exist in static
equilibrium, if the only force available to balance the pressure gradient were
the force of gravity.

Because of (iii)) and the difficulty of treating the dynamical problem
quantitatively it is expected that insight will be gained by a study of models in
static equilibrium, the additional force required to balance the pressure gradient
being due to a magnetic field. Such a static equilibrium has already been
considered by Menzel (2), who obtained solutions which resemble prominences.
The electrodynamic side of the problem is briefly as follows. In a perfectly
conducting gas the variation of the magnetic field is such that the magnetic flux
linked by any closed curve moving with the gas is constant. In the solar
atmosphere the conductivity is so large that the decay time of the magnetic field
is much longer than the life of a prominence, but the Hall electric field must be
considered; it can be shown that for any solution of the equations given in
Section 3 the Hall field is irrotational and hence does not contribute to dH/oz.
The origin of the magnetic field supposed to be associated with a prominence
is a separate question, but, remembering the high conductivity of the solar
atmosphere, the observation (ii) suggests that this field is a remnant of a sunspot
field.

The main purpose of this paper is to present a simple exact solution of the
equation for static equilibrium, under certain simplifying conditions, which it is
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hoped will shed some light on the general problem. The solution takes the
form of a set of lines of force having the property that, for any magnetic field -
having these lines of force, a disttibution of the gas exists which will be in
equilibrium with this field. The advantage of such a solution is that the magnetic
field can be made to vanish outside any region bounded by a line of force and
hence the problem of convergence at infinity is avoided. Before describing this
solution the magnetic force will be discussed in a general way.

2. The magnetic force.—The magnetic force density is jaH/c, where H is
the magnetic field and the current density j is given for a static field by

4mj=c curl H. (1)
Hence jaH/c=(H.V)H/47m — V(H?/87), (2)

where H=|H|. The first term in (2) depends on the curvature of the lines
of force and the second represents the ‘ magnetic pressure ’, H?/8x, the total
force being perpendicular to H. If pisthe gas pressure, the expression (p + H?/8)
may be termed the  total pressure’ and horizontal variations of the total
pressure can result only from the first term in (2). Also, since the magnetic
force does not affect the variation of p along a line of force, the values of p at
different points on the same line of force are proportional to exp [— [dz/h],
where x is the height, % the scale height and the integral is taken along the line
of force. Measurements by van de Hulst (3) of the brightness in eclipse
photographs of the-corona suggest that the electron density in the polar plumes
varies approximately in this way and the polar plumes are thought to be due to
a magnetic field.

The material in and above sunspots also is probably in a state approximating
to static equilibrium. The magnetic field probably causes a low gas pressure
in a spot and one may then expect a low pressure in the atmosphere above a spot.
In this case there must be a magnetic force in the atmosphere to balance the
horizontal pressure gradient, and hence there must be currents in the atmosphere.
For this reason the model in which the magnetic field over a bipolar spot group
is taken to approximate to a dipole field is not justified, for it is based on the
absence of currents in the atmosphere. The postulate that H?/p is constant
on a line of force, which is exactly true for the model described in this paper,
probably gives a better approximation; H then decreases exponentially with
height instead of following an inverse cube law.

The model described in this paper and Menzel’s models are all two-
dimensional, and it should be noted that they are unstable. Their stability may
be discussed by considering movements of the gas in which the magnetic lines of
force are regarded as moving with the gas. The magnetic energy [H?dV/8x
contained in a tube of force increases with the length of the tube if the volume
remains constant, so that the energy of a toroidal tube of force can be reduced
by radial contraction accompanied by expansion in the direction of the axis of
the toroid, as shown in Fig. I (@); the tube becomes a long thin cylinder as in
Fig. 1 (b). A topological argument now shows that, if there are no linked lines
of force, the magnetic energy can be reduced to zero. By splitting each tube into
smaller tubes, separating these and contracting them, and by repeating the
process indefinitely, each line of force can be shrunk to a point. Thus any
magnetic field containing no linked lines of force is unstable, but it is hard to say
whether this instability is important for the solar applications.
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3. The simplified model—We now consider the simplified model in which
the temperature and composition of the gas and the gravitational field are all
uniform. The equation to be solved is the static equation

jaH/c+pg—Vp=o, - (3)

where u is the mass density and the gravitational field g is constant and equal
to —g in the z-direction. It is convenient to write

pg =op
with a=h"1=mglkT,

where m is the mean ionic mass and T'is the temperature ; 4 is then the scale height.
We now restrict the model to be two-dimensional: all variables are
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independent of the coordinate y and H, is zero. We may then introduce a
vector potential which has only a y-component, A, so that

H,= —3A4/s,
H,— 0Aox. } “@

Equation (4) shows that 4 is constant on a line of force. Also (1) shows that j
has only a y-component j given by

. ¢ (0?4 4
1=" 3\ T 32) )
The x- and z-components of equation (3) are
194 9 _
cox ox O (©)
jod _ % _
and e P 55 =0 7)

Introducing ¢=p €%, (7) may be written

104 0

15— o, ®)
From (8) and (6) we obtain

oq/ox 0A|ox

ogjoz ~ 0Ajoz"*
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Hence g is a function of 4, and is constant on a line of force. Since ¢ is a
function of 4, we obtain
J=ce™ dgldd (9)
by dividing (6) or (8) by 0A4/ox or 0A4/0z respectively, so that (g) is true unless
H vanishes. Equation (9) shows that e* is a function of 4.
4. A particular family of solutions.—The family of solutions described here
is defined by the lines of force. The condition is imposed that

for any magnetic field having these lines of force, a distribution
of the gas exists which will be in equilibrium with this field. (A)

The lines of force may be defined by the vector potential 4 of any field having
these lines of force; the lines of force are the lines of constant 4 by (2). Hence,
if B is the vector potential of another field having the same lines of force,
B is a function of 4, and, if the suffixes 4 and B refer to quantities derived from
the vector potentials 4 and B respectively, we obtain from (5) and (4)

. .dB ¢ d*B

IB=Jagg — Z;HAZ(Z—AP' (10)
Now the condition (A) requires that (9) should be true for jp and since B is a
tunction of 4, e*p must then be a function of 4. Then (10) shows that
e**H 42 must be a function of 4. This is in fact the condition that, if the magnetic
field vanishes outside a region bounded by a line of force, the magnetic force
on the bounding surface can be balanced by a discontinuous change in gas
pressure proportional to €. It now follows that there will be a function C
of 4 which satisfies the equation

H02 =e %, (I I)
It 1s convenient to use C to determine the lines of force. From (1I) and (4) we
may put
e %2 sin = — 6a_C2' = Hg,,
20 (12)
e—c!Z/z coS l/l = Tx = HCZ’
0, o 0*C 0
9 12 =_ 9% _ 9 e
and then 5% (e sin i) 5%0% 3% (e7%2 cos )
giving (cos l’b% —sin zﬁa%) Jr=73o cos . (13)

Now for a line of force dx/dz=tan ¢ and for a curve orthogonal to the lines
of force dx/dz= —cot . The left-hand side of (13) is the curvature dis/ds of
such an orthogonal, so that the orthogonals can be obtained by integrating

@ _
dx
Equation (14) shows that the orthogonals and hence also the lines of force are
periodic in x with period 4m/a. We may therefore use the conformal trans-
formation

%o . (x4)

|

§ + i"] = g—ol? +iz)2 :
¢ and 7 are periodic in . Then
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. c?  (0°C  o*C ,
and from (5) Jo= "~ 16.¢ (agz + 8772) (5"
and (11) becomes (0C/[0€)? + (0C[om)? = 4072 (11')
in ¢ = —$xdC/o,
Instead of (12) we put ELZZ=§aZaO;/a£, 7 } (15)
and obtain (cos ¢ 9/0¢ —sin ¢ 0/on)d =o. (x6)
Equation (16) shows that the orthogonals are straight lines in the (£, ) plane.
2C o C 0 0
o= 2 2=2) = — (sin b= -
Also from (15) Lo ( 3 + 37)2) (sm ¢a§ +cos ¢a"7) é. | (x7)
Now (9), (5’) and (17) yield
. 0 d\ , 8 dq
(s1nq5§g+cos¢é—n->¢——a—@. (18)

The left-hand side of (18) is the curvature of a line of force in the (¢, ) plane
and, since the right-hand side is a function of C, this must be constant for a line
of force. 'The lines of force are therefore circles in the (£, n) plane and, since their
orthogonals are straight lines, they are concentric circles. It is easily verified
that if 4 is any function of F=(£—&;)? + (n—1,)?, where £, and 7, are constants,

(9) is satisfied, since aF\2 oF\2
(%) + (%) -+
and e + -
0&% ' oy’

Changes in £, and 7, correspond to movement of the origin of x and 2, and it is
convenient to put £ =1 and n,=0, giving

F=e%—2e % cos fox+I. (19)
The lines of force determined by F =constant are shown in Fig. 2. They are

closed loops for F<1 and infinite wavy lines for F>1.
Since A4 is now a function of F we have from (4)

H,*=o2e*F(dA/dF)? (20)
. co? dA d’A
and from (5) Ja=— —Ar;e—“z (ﬁ‘ + F?fﬁ) . (21)
o? (dA d*A dg/dF
Then from (q) - (2-15 +F W) - —-—dz/ TaF

or, multiplying by dA4/dF, using (20) and replacing g by pe*,
%,{e"‘" (p+H?/87)} = —e*H?/8= F. (22)

Given H, equation (22) determines p apart from an arbitrary constant which
must be chosen large enough for p to be positive everywhere. Since from (19)
F is positive, the right-hand side of (22) is negative and e**(p + H?/8=) increases
as F decreases. ‘ -

5. Discussion.—It has already been pointed out that solutions in which the
magnetic field vanishes outside a certain region are of interest; thus we may
consider a solution in which the magnetic field is confined to the region between
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two of the infinite horizontal cylinders generated by projecting the closed loops
in the y-direction. The situation may be specified by the quantity of matter
inside the inner cylinder, and in the region of the magnetic field by the quantity
of matter inside any cylinder, as a function of the value of 4 on that cylinder.
It is probable that the equilibrium configuration for a system specified in this
way is unique and, since the family of solutions discussed above contains a
solution for any such specification, this would then be the unique solution.

Fic. 2.

Equation (22) shows that the total pressure at a given height increases with
decreasing F, so that the total pressure is largest for the inner cylinders. This
is due to the first term in (2), which represents a tension in the lines of force and
so increases the pressure on the concave side of the lines of force. On a horizontal
line passing through the above model the gas density just inside the outer
cylinder is reduced by the magnetic field, but in the inner cylinder the density
is increased above the normal value. Mechanical equilibrium requires that the
total mass contained by the outer cylinder should be the same as it would be in
the absence of a magnetic field; otherwise it would float upwards or sink.
Consequently the gas pressure inside the inner cylinder may be substantially
larger than the normal pressure at the same height. This effect is similar to
the constriction of a discharge, which has been discussed by Alfvén (1).

If this model is to be relevant to solar phenomena, the dimensions of the
latter must be comparable with the scale height. At the photosphere g is
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2:8 x 10 cm sec™? and the temperature varies from 5000 deg. K in the reversing
layer to about 10® deg. K in the corona. The radius of the photosphere 7, is
7 x 10%° cm and the scale height % varies from 7,/5000 in the reversing layer to
7o/25 in the corona. The horizontal width of the closed loops in Fig. 2 cannot
exceed 27h, and closed loops which are much smaller than this are approximately
circular. :

If the magnetic field causes a notable variation in the gas pressure, (22) shows
that the magnetic pressure must be comparable with the gas pressure, that is
H?~8mp. Sunspot fields are known to be of this order at the level of the
photosphere ; in the upper chromosphere where p~1 dyn/cm?, a field of about
5 gauss is needed.

Prominences are almost certainly regions of high pressure; this increases
the radiation loss and explains why prominences are cooler than the surrounding
corona. The high pressure may be caused by a magnetic field in the way
illustrated by our model. Most quiescent prominences appear on the disk as
dark filaments; M. and Mme. d’Azambuja (4) have given as typical dimensions:
width ~7,/100, length ~7,/3 and height ~7y/20. Since their length is so much
greater than their width a rough model for these might be obtained by taking
a suitable length of the cylinders in our model and neglecting the lack of
equilibrium at the ends. The filament would then be the inner cylinder, where
the pressure is high, and the y-axis would have the direction of the filament.
On the other hand the temperature of prominences is about 2 x 10* deg. K and
since the surrounding corona is at about 10% deg. K the isothermal model must
be seriously wrong in some respects. Other types of prominence, besides being
relatively short-lived, are wispier in appearance and are usually composed of
many streamers.

There seems to be better justification for applying our model to the coronal
arches observed above prominences, because these are likely to be more nearly
isothermal. They are seen in white light at eclipses and are common features
of the corona. They are difficult to photograph, but can be seen in drawings (5);
there are usually several concentric arches alternately dark and bright, with a
bright centre. The brightness in the corona is proportional to the line-of-sight
integral of the electron density, so that the dark arches have a low density and
probably a low gas pressure; this can be explained by the existence of magnetic
fields in the dark arches.

A system of arches resembling those observed can be obtained from the upper
parts of the closed loops in our model, with a suitable choice of 4. The arches
are bounded by cylinders generated by projecting the lines of force in the
y-direction, and hence the y-direction must be nearly the direction of the line
of sight. The model explains why the arches are associated with a prominence
and predicts that this is a filament directed in the line of sight, that is east—west
on the Sun. No data are available to check this, but the orientation of filaments
is closely correlated with their heliographic latitude and filaments lying nearly
east—west occur at latitudes greater than 50°; although arches can be found at
all latitudes the most pronounced occur near latitude 60°. Assuming a
temperature of 10% deg. K, the model predicts that the width of the arches should
not exceed 7y/4; arches are observed with widths up to twice this value.
Photometric measurements by von Kliiber (6) show that the electron density
in the dark arches must be an order of magnitude less than the density in the
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normal surroundings, and that the extension of the dark arches along the line
of sight must be a considerable fraction of the solar radius.

In conclusion, the model described in this paper is useful as an illustration
of the effect of the magnetic force. Although it is too simple to apply directly to
prominences, the points of similarity encourage the belief that the same physical
effects are important in prominences.
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