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Abstract

Background: Alternative splicing and polyadenylation are important mechanisms for creating the

proteomic diversity necessary for the nervous system to fulfill its specialized functions. The

contribution of alternative splicing to proteomic diversity in the nervous system has been well

documented, whereas the role of alternative polyadenylation in this process is less well

understood. Since the CstF-64 polyadenylation protein is known to be an important regulator of

tissue-specific polyadenylation, we examined its expression in brain and other organs.

Results: We discovered several closely related splice variants of CstF-64 – collectively called

βCstF-64 – that could potentially contribute to proteomic diversity in the nervous system. The

βCstF-64 splice variants are found predominantly in the brains of several vertebrate species

including mice and humans. The major βCstF-64 variant mRNA is generated by inclusion of two

alternate exons (that we call exons 8.1 and 8.2) found between exons 8 and 9 of the CstF-64 gene,

and contains an additional 147 nucleotides, encoding 49 additional amino acids. Some variants of

βCstF-64 contain only the first alternate exon (exon 8.1) while other variants contain both

alternate exons (8.1 and 8.2). In mice, the predominant form of βCstF-64 also contains a deletion

of 78 nucleotides from exon 9, although that variant is not seen in any other species examined,

including rats. Immunoblot and 2D-PAGE analyses of mouse nuclear extracts indicate that a protein

corresponding to βCstF-64 is expressed in brain at approximately equal levels to CstF-64. Since

βCstF-64 splice variant family members were found in the brains of all vertebrate species examined

(including turtles and fish), this suggests that βCstF-64 has an evolutionarily conserved function in

these animals. βCstF-64 was present in both pre- and post-natal mice and in different regions of

the nervous system, suggesting an important role for βCstF-64 in neural gene expression

throughout development. Finally, experiments in representative cell lines suggest that βCstF-64 is

expressed in neurons but not glia.

Conclusion: This is the first report of a family of splice variants encoding a key polyadenylation

protein that is expressed in a nervous system-specific manner. We propose that βCstF-64

contributes to proteomic diversity by regulating alternative polyadenylation of neural mRNAs.
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Background
Alternative mRNA processing is the mechanism by which
multiple forms of mRNAs are generated from a common
pre-mRNA via differential ligation of exons (alternative
splicing, [1]), or differential 3' end site choice (alternative
polyadenylation, [2]). Alternative mRNA processing con-
tributes to proteomic diversity by generating protein iso-
forms that have different biochemical and structural
properties [3,4]. Both of these processes are regulated in a
tissue-specific manner, with the highest incidence occur-
ring in the nervous system [5-7]. Not surprisingly, the
processes of splicing and polyadenylation are coupled,
leading to a high degree of interaction between the two
processing machineries [8,9]. However, there have been
only a few reports of alternative processing of mRNAs
encoding critical proteins of the polyadenylation machin-
ery: alternative splicing of poly(A) polymerase (PAP, [10])
and alternative splicing and polyadenylation of the 77
kDa subunit of the cleavage stimulation factor (CstF-77)
in Drosophila [11] and mammals [12] have been
reported. Alternatively spliced forms of these and other
polyadenylation proteins could contribute to expansion
of the proteome by promoting tissue-specific polyade-
nylation.

Like splicing, polyadenylation is an essential step in gene
expression. The process of 3' end formation promotes
transcription termination, mRNA export from the nucleus
to the cytosol, mRNA stability, and translation initiation
[13,14]. In addition to having a constitutive role in gene
expression, polyadenylation also contributes to the gener-
ation of mRNA isoforms in a tissue-specific manner, par-
ticularly in the nervous system. For example, the mRNAs
encoding β-adducin [15], huntingtin [16], amyloid pre-
cursor protein [17], ferritin heavy chain [18,19], gluta-
mate transporter EAAT2 [20], voltage-gated potassium
channel [21], 68-kDa neurofilament [22], and many
other proteins [23-28] have alternative polyadenylation
signals that lead to production of nervous system-specific
transcripts. Nervous system-specific coupling of alterna-
tive splicing and polyadenylation of mRNAs encoding cal-
citonin/calcitonin gene-related peptide [29], neural cell
adhesion molecule [30], and vesl-1/homer1 [31] proteins
lead to generation of tissue-specific protein isoforms from
a common pre-mRNA. It has been speculated that use of
alternative polyadenylation signals in these mRNAs may
be due to expression of nervous system-specific polyade-
nylation factors [32], although none have been reported.
CstF-64 is a key subunit of the polyadenylation complex
that is known to function in regulation of polyadenyla-
tion [33,34]. Important domains of CstF-64 include an
RNA-binding domain [35-38], CstF-77 interaction
domain [39], proline/glycine-rich domain [36], MEARA
repeat domain [40], and a conserved C-terminal domain
[41]. Furthermore, a paralogous form of CstF-64, τCstF-

64, was previously discovered in mouse male germ cells
[42] and was found to be essential for normal sperma-
togenesis [43].

In this paper, we report the discovery of a family of alter-
natively spliced forms of the CstF-64 mRNA that are
expressed in the nervous system of all vertebrate animals
we have examined. These splice variants, which we collec-
tively call βCstF-64, are due to inclusion of one or two
alternate exons between constitutive exons 8 and 9. In
mice, these alternate exons join to an alternative 3' splice
site within exon 9. Mice express another minor splice var-
iant, αCstF-64, which is formed by joining of exon 8 to
the alternative 3' splice site in exon 9. However, the αCstF-
64 splice variant was not observed in any other species
including rats or humans. All the βCstF-64 splice variants
are in-frame with the CstF-64 coding region and encode
up to 49 additional amino acids in the proline/glycine-
rich domain. The βCstF-64 splice variants are expressed in
brains of many vertebrate species, including human and
turtle, and the genome of simple vertebrates such as puff-
erfish and zebrafish contain homologous sequences. This
leads us to hypothesize that the βCstF-64 variants have an
important evolutionarily conserved role in brain func-
tion. Other experiments suggest that βCstF-64 is expressed
predominantly in neurons, suggesting that it plays a role
in expression of alternatively polyadenylated mRNAs
important for neuronal function, thus contributing to
proteomic diversity in the nervous system.

Results
Alternatively spliced CstF-64 mRNAs are present in mouse 

brain

Previous results from our laboratory indicated that CstF-
64 mRNA could be subject to alternative splicing (B. Dass
and A. M. Wallace, unpublished). In order to investigate
this possibility, we conducted an RT-PCR survey of CstF-
64 mRNA in mouse tissues using primers that together
span the entire CstF-64 coding region (Figure 1). RNA was
isolated from various mouse tissues as indicated and sub-
jected to RT-PCR using primer pairs A, B, C and D that
span exons 1–5, 5–8, 7–11 and 9–14 respectively (Figure
1A). RT-PCR with primer pairs A, B, and D yielded a single
PCR product in all tissues that corresponded to the
reported form of CstF-64 (Figure 1B, panels a, b, d, lanes
1–8). This suggests little or no alternative splicing
between exons 1–8 and 9–14. However, RT-PCR using
primer pair C (which spans exons 7–11) resulted in mul-
tiple PCR products (Figure 1B, panel c). Every mouse tis-
sue examined showed the presence of the reported form
of CstF-64 (595 bp) and a shorter splice variant that we
named αCstF-64 (panel c, lanes 1–8). Cloning and
sequencing of the αCstF-64 PCR product indicated that
the shorter splice variant of CstF-64 was generated by join-
ing of exon 8 to an alternative 3' splice site in exon 9
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resulting in an mRNA molecule shorter by 78 nucleotides
(Figure 1C). We reported this alternatively spliced form to
GenBank as αCstF-64, variant 4 (GenBank: EU616681).
The αCstF-64 splice variant is in frame with exon 9, and
should result in a protein isoform that is shorter by 26
amino acids (not tested, but see Figure 2C). Since the
αCstF-64 splice variant was not expressed in any other
species we examined (see below), we chose not to charac-
terize it further.

Surprisingly, using primer pair C, we found that brain had
a larger PCR product (664 bp) that was absent from all the
other tissues (Figure 1B, panel c, compare lane 1 to lane
2–8). Cloning and sequencing of the larger PCR product
revealed that it contained an additional 147 nucleotides
between exon 8 and the αCstF-64 splice site within exon
9 (see Additional File 1 for nucleotide sequence). We
named the alternate exons 8.1 and 8.2, and the longer
brain-expressed variant CstF-64, βCstF-64. The above
form of mouse βCstF-64 containing exons 8.1, 8.2 and use
of alternative 3' splice site was given the GenBank nomen-
clature βCstF-64, variant 1 (GenBank: EU616682.1). We
compared the sequence of the βCstF-64 variant region to
the mouse genome and determined that βCstF-64 was
generated by splicing of two alternate exons (8.1 and 8.2,
Figure 1C) from the intronic region between exons 8 and
9 and selection of an alternative 3' splice site in exon 9.
Exons 8.1 and 8.2 contained 60 and 87 nucleotides
respectively. The alternative splicing patterns suggests that
βCstF-64 remains in-frame with the CstF-64 coding
region, and that it encodes an expressed protein isoform
of CstF-64. The predicted domain structure of the protein
isoform encoded by βCstF-64 mRNA is illustrated in Fig-
ure 1D; this predicted protein isoform would lack 26
amino acids in the proline/glycine-rich domain of CstF-
64 encoded by exon 9 and contain an additional 49
amino acids encoded by exons 8.1 and 8.2 (Figure 1D).
BLAST comparison of the brain-expressed βCstF-64
domain to all sequences in GenBank revealed no other
described proteins with similar features (not shown).
Thus, these data suggest that mouse βCstF-64 mRNA
encodes a protein in brain that is 23 amino acids longer
than CstF-64, containing a unique 49 amino acid brain-
specific domain.

The βCstF-64 protein isoform is expressed in mouse brain

In order to investigate whether the βCstF-64 protein was
expressed in mouse brain, antibodies were raised against
16 amino acids of the unique 49 amino acid domain of
the protein (Materials and Methods). The specificity of the
anti-βCstF-64 antibody was tested using recombinant
βCstF-64 and CstF-64 proteins expressed in HeLa cells
(Figure 2A). Plasmids encoding epitope-tagged
(3XFLAG)-βCstF-64 and CstF-64 proteins were transfected
into HeLa cells as described in "Materials and Methods".

An alternatively spliced mRNA of CstF-64 is present in mouse brainFigure 1
An alternatively spliced mRNA of CstF-64 is present 
in mouse brain. A) Gene structure of CstF-64 and location 
of primer pairs. Boxes indicate exons; black line indicates 
introns; exons 8 and 9 are in red while all the other exons 
are black; the 3' UTR is blue. B) RT-PCR analysis of alterna-
tively spliced mRNAs of CstF-64. RNA from indicated mouse 
tissues was subjected to RT-PCR using primer pairs A, B, C, 
and D (panels a, b, c, and d respectively). Sizes of amplified 
products are indicated at the right. Panel e (-RT) denotes 
RT-PCR using primer pair C with no reverse transcriptase 
added. C) Splicing patterns in CstF-64 mRNA. a) CstF-64 
genomic structure showing exon 8, 9 and the intervening 
intron. Boxes indicate exons and horizontal lines indicate 
introns; vertical lines indicate splicing patterns. The thin 
white line in exon 9 denotes the alternative 3' splice site. b) 
Splicing pattern of the regular form of CstF-64 mRNA. c) 
Splicing pattern of the shorter CstF-64 mRNA (αCstF-64). 
d) Splicing pattern of βCstF-64 mRNA. The sizes of the 
βCstF-64-specific exons (8.1 and 8.2) are indicated. D) Pre-
dicted domain structures of mouse CstF-64 and βCstF-64. 
Shown are the RNA-binding domains (RBD, dark gray), the 
region of interaction with CstF-77 (77-BD, light gray), the 
proline/glycine domain (Pro/Gly, white box), MEARA repeat 
domain (12× MEARA, dark gray) and the conserved C-termi-
nal domain (CTD, light gray). The region within the Pro/Gly 
domain that contains a deletion of 26 amino acids is indicated 
by vertical lines, and the 49 amino acid βCstF-64-specific 
domain is indicated by the black box.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU616681
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU616682.1


BMC Molecular Biology 2009, 10:22 http://www.biomedcentral.com/1471-2199/10/22

Page 4 of 12

(page number not for citation purposes)

Whole cell lysates were prepared and subjected to SDS-
PAGE and immunoblot analysis using anti-βCstF-64 (Fig-
ure 2A, top panel), anti-FLAG (Figure 2A, middle panel),
and anti-tubulin antibodies (Figure 2A, bottom panel).
This experiment demonstrated that the βCstF-64 epitope
was not detected in HeLa cells (lane 1) or in HeLa cells
transfected with FLAG-CstF-64 (lane 2) but was expressed
at the predicted size in HeLa cells transfected with FLAG-
βCstF-64 (lane 3) suggesting that the anti-βCstF-64 anti-
body could uniquely distinguish CstF-64 and βCstF-64 in
mammalian cells.

Next, expression of βCstF-64 protein in various mouse tis-
sues was investigated using the anti-βCstF-64 antibody.
Nuclear extracts from the indicated mouse tissues were
subjected to immunoblot analysis using the anti-βCstF-64
and anti-CstF-64 antibodies (Figure 2B). Using the anti-
CstF-64 antibody, CstF-64 was detected in all tissues (Fig-
ure 2B, lower panel). In contrast, using the anti-βCstF-64
antibody, a protein of approximately 68 kDa was detected
in brain but not in other tissues examined (Figure 2B,
upper panel, compare lanes 1 and 2–7). Detection of this
protein was blocked by preincubation of the antibody
with the 16 amino acid peptide that was used as an immu-
nogen (lane 9). These results suggest that while the CstF-
64 protein is expressed in most or all tissues [44], the
βCstF-64 isoform is restricted to brain and probably other
neural tissues.

βCstF-64 and CstF-64 protein levels are similar in mouse 

brain

We wanted to investigate the relative levels of the CstF-64
and βCstF-64 proteins in mouse brain. Since we could not
resolve βCstF-64 from CstF-64 proteins in a single dimen-
sion (Figure 2B and data not shown), 2D-PAGE analysis
was employed to investigate this. Nuclear extracts from
mouse brain and liver were resolved in the first dimension
by isoelectric focusing and in the second dimension by
SDS-PAGE [45]. Using the anti-CstF-64 antibody, at least
two closely opposed patterns of spots were detected in
brain (Figure 2C, panel a) while a single pattern of spots
was detected in liver (Figure 2C, panel c). The basic to
acidic range of spots most likely reflects differential phos-
pohorylation of CstF-64 [36,46]. Identical blots were
probed with the anti-βCstF-64 antibody, and only a single
pattern of spots was detected in brain (Figure 2C, panel
b), while no signal was detected in liver (panel d). Align-
ment of the anti-CstF-64 blot (panel a) with the anti-
βCstF-64 blot (panel b) confirmed that the anti-βCstF-64
pattern overlapped with the upper pattern in the anti-
CstF-64 blot. This suggested that only the upper pattern
detected in brain by the anti-CstF-64 antibody contained
the βCstF-64 epitope. Judging by the relative intensities of
the two patterns of spots in brain (panel a), we estimate
that the protein levels of CstF-64 and βCstF-64 are approx-

The βCstF-64 protein is expressed predominantly in mouse brainFigure 2
The βCstF-64 protein is expressed predominantly in 
mouse brain. A) Whole cell extracts from HeLa cells 
transfected with 800 ng of either 3XFLAG (lane 1), 3XFLAG-
CstF-64 (lane 2) or 3XFLAG-βCstF-64 (lane 3) were sub-
jected to immunoblot analysis using anti-βCstF-64 (upper 
panel), anti-FLAG (middle panel), or anti-α-Tubulin (lower 
panel) antibodies. The apparent molecular weights of 
3XFLAG-CstF-64, 3XFLAG-βCstF-64, and tubulin are indi-
cated at left. B) Protein immunoblot detection of βCstF-64 
in various mouse tissues. Nuclear extracts from indicated 
mouse tissues were subjected to immunoblot analysis using 
pre-immune serum (lane 8), peptide-blocked anti-βCstF-64 
antibody (lane 9), anti-βCstF-64 antibody (upper panel, lanes 
1–7), or anti-CstF-64 antibody (lower panel, lanes 1–7). The 
apparent molecular weights of CstF-64 and βCstF-64 are 
indicated at left. C) 2D-PAGE analysis of mouse brain and 
liver nuclear extracts. Nuclear extracts were resolved in the 
first dimension by isoelectric focusing on a pH 3–10 immo-
biline strip as indicated. The proteins were then resolved in 
the second dimension by denaturing PAGE, transferred to 
nitrocellulose membrane and probed with the anti-CstF-64 
antibody (panels a and c) or anti-βCstF-64 antibody (panels 
b and d). The arrows denote CstF-64 and βCstF-64. The 
asterisk in panels a and c indicates a pattern that may be 
αCstF-64.
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imately the same in mouse brain. Interestingly, a faint pat-
tern of spots is seen in both brain and liver using the anti-
CstF-64 antibody (panels a and c, asterisks). We speculate
that this might represent the mouse-specific αCstF-64 pro-
tein isoform.

The βCstF-64 family of splice variants is evolutionarily 

conserved

In order to determine whether βCstF-64 was also
expressed in brains of other mammalian species, RT-PCR
analysis was conducted using human RNA samples (Fig-
ure 3A). RT-PCR analysis using human-specific primers
flanking exons 8 and 9 (Table 1) indicated that CstF-64
mRNA was present in brain, liver and testis (Figure 3A,
lanes 1–3). A larger PCR product was detected in human
brain RNA (Figure 3A, lane 1). Smaller amounts of this
product were also detected in human testis (lane 3). Clon-
ing and sequencing of the larger PCR product from
human brain revealed a product that contained only exon
8.1 and lacked exon 8.2 and use of the alternative 3' splice
site. This demonstrated that the alternatively spliced
βCstF-64 isoform in human brain differed from that in
mice. We named this isoform, βCstF-64 variant 2 (Gen-
Bank: EU616679.1). However, EST database searches
(NCBI) showed that mRNAs containing exon 8.1 joined
to exon 8.2 were found in humans (Accession numbers:

AK095684.1, DA513594.1 and wild boar (Accession
number: AJ959057.1). Therefore, using primers specific to
the predicted exon 8.2, we detected mRNAs containing
this exon in humans (data not shown). We have never
observed a βCstF-64 variant mRNA (either by database
searches or by cloning) containing exon 8 joined to exon
8.2 in either humans, mice or any other mammals. The
βCstF-64 mRNA that contained both exons 8.1 and 8.2
but lacked use of the alternative 3' splice site in exon 9 was
given the GenBank nomenclature, βCstF-64 variant 3
(GenBank: EU616680.1). These data suggested that both
βCstF-64 variant 2 (exon 8.1 only) and βCstF-64 variant 3
(exon 8.1 and 8.2) are expressed in human brain. The
βCstF-64 variant 3 mRNA was also detected in the brains
of the mouse species Mus spretus and in rats (data not
shown). No product corresponding to αCstF-64 was seen
in any of the human samples (lanes 1–3).

We wanted to determine whether the βCstF-64 variant
family was restricted to mammals, or could be detected in
other vertebrate species. Therefore, RT-PCR analysis was
conducted using RNA from brain and liver of turtle (Tra-
chemys scripta elegans). RT-PCR products corresponding to
βCstF-64 mRNA were detected in turtle brain (Figure 3,
lane 7) but not liver (Figure 3, lane 8). Cloning and
sequencing of the band revealed that its splicing pattern

Table 1: Primers used in detection and analysis of CstF-64 splice variants

Species Primer Name Primer Sequence

Mouse Pair A 5' GGGTGAGCCATGGCGGGTT 3'
5' CTGTTCTGGTGGAAGACTGGCAA 3'

Mouse Pair B 5' CCCCAGGAAGCACGAAACA 3'
5' CCTCGTTCCATGGGCACTG 3'

Mouse, Rat Pair C 5' CAATGGCGCACCTCCTATGATG 3'
5' GGCACGGGCTTCCAGTCCT 3'

Mouse Pair D 5' GATTAGATGCACGGGGGATGGA 3'
5' TGGAGCAATGGCGATGTAAGACC 3'

Human Pair C 5' CCCCTCAGGCCCAGTCTTTG 3'
5' TGGCCCTCCCCTCAGTTCAT 3'

Turtle Pair C 5' GACAGATGCCAGCCTCCGTAGC 3'
5' CCATTGGTCCTCCCCTCATTTCAT 3'

Mouse X 5' CAATGGCGCACCTCCTATGATG 3'

Mouse Y 5' TTCCACCTTGCATGCTTGCTC 3

Mouse E 5 ' GATCTATGGCGGGTTTGCCAGTGAG 3'

Mouse F 5 ' TCTAGATCAAGGTGCCCCAGTGGATTTC 3

Nucleotide sequences of the various primer pairs used in this study are indicated at right. The names of primer pairs along with their corresponding 
species are indicated at left in the table.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU616679.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AK095684.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DA513594.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ959057.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU616680.1
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was similar to βCstF-64 variant 2 mRNA observed in
human (Figure 3B). RT-PCR analysis suggested that βCstF-
64 mRNA with a splicing pattern similar to that observed
in turtle was also present in ground squirrel, alligator, and
Monodelphis (not shown, summarized in Figure 3B).

Database searches using exons 8.1 and 8.2 as query were
conducted to determine the distribution of βCstF-64 in
various animal species (Figure 3B and Additional File 2).
Comparison of mouse βCstF-64 nucleotide sequence to
the human genome showed that exon 8.1 was 98% iden-
tical whereas exon 8.2 was 96% identical. The nucleotide
sequence of exons 8.1 and 8.2 were 96% identical when
compared to that of rhesus monkey (Macaca mulatta).
Additionally, survey of the whole-genome-shotgun
sequence database at NCBI showed a high degree of con-
servation of exons 8.1 and 8.2 in the genomes of other
mammalian species such as guinea pig, horse, cat, and
others. Finally, using BLASTX and BLASTP searches at the
NCBI database, amino acids encoded by exon 8.1 were
predicted to be present in proteins from chimpanzee, cow,
dog (eutherian mammals), platypus (monotreme), Xeno-
pus (amphibian), pufferfish, and zebrafish (fish). We
note that exon 8.2 was not explicitly observed in these
species, but the incomplete nature of some of these
genome data sets does not allow us to rule out its pres-
ence. The high degree of conservation in vertebrate animal
species suggests an essential function for the βCstF-64
family of splice variants in neural mRNA polyadenylation.

βCstF-64 mRNA is present throughout the mouse nervous 

system

An RT-PCR approach was used to investigate the expres-
sion of βCstF-64 mRNA in mouse nervous system. RNA
was isolated from mouse spinal cord and five different
regions of the brain (cerebrum, cerebellum, brain stem,
diencephalon and olfactory bulb). βCstF-64 mRNA was
detected in all five brain regions (Figure 4, lanes 3–7) and
in spinal cord, but not in adrenal gland (Figure 4, lane 8),
consistent with nervous system-predominant expression
of βCstF-64. RT-PCR of ribosomal S16 mRNA was used to
assess RNA loading (Figure 4, lower panel).

βCstF-64 mRNA is not present in glial cell lines examined

We wanted to determine in which neural cell types (neu-
rons or glia) βCstF-64 was expressed. For this, RNAs from
various rodent and human neuronal and glial cell lines
were subjected to RT-PCR using species-specific primers
flanking exons 8 and 9 of the CstF-64 gene (Figure 5). The
rat and human thyroid carcinoma cell lines (CA77, Figure
5A, lane 5 and TT, Figure 5B, lane 2) used in this study
have a neuronal phenotype and are neuroendocrine in
nature [47,48]. The PC-12 cell line (Figure 5A, lane 6)
derived from rat adrenal chromaffin cells, is neuroendo-
crine in nature, and, when treated with nerve growth fac-
tor (NGF, lane 7), differentiates into a cell that resembles
the sympathetic neurons in the peripheral nervous system
[49]. βCstF-64 mRNA was detected in CA77 (Figure 5A,
lane 5), undifferentiated and NGF-differentiated PC-12
cell lines (Figure 5, lanes 6 and 7), TT (Figure 5B, lane 2),
and SK neuroblastoma cell lines (Figure 5B, lane 3). Inter-
estingly, the expression of βCstF-64 mRNA appeared to

The βCstF-64 family of splice variants is evolutionarily con-served in vertebratesFigure 3
The βCstF-64 family of splice variants is evolutionar-
ily conserved in vertebrates. A) RT-PCR analysis of 
human and turtle CstF-64 mRNAs. Human brain, liver, and 
testis RNAs were subjected to RT-PCR using primers flank-
ing exons 8 and 9 of the human CstF-64 gene (lanes 1–6). 
RNA isolated from brain and liver of adult turtle was sub-
jected to RT-PCR analysis using primers flanking exons 8 and 
9 of the turtle CstF-64 gene (lanes 7–10). RT-PCR with no 
reverse transcriptase (-RT) is shown in lanes 4–6 (left panel) 
and lanes 9, 10 (right panel). B) Alternative splicing patterns 
of CstF-64 in various animal species. The splicing pattern of 
CstF-64 is shown on top. The distributions of the βCstF-64 
variant mRNAs in different animal species is as follows: 
βCstF-64, variant 1: Mus musculus; βCstF-64, variant 2: chim-
panzee (Pan troglodytes), bovine (Bos taurus), dog (Canis famil-
iaris), thirteen-lined ground squirrel (Spermophilus 
tridecemlineatus), gray short-tailed opossum (Monodelphis 
domestica), African clawed toad (Xenopus laevis), duck-billed 
platypus (Ornithorhynchus anatinus), zebrafish (Danio rerio), 
and pufferfish (Tetraodon nigroviridis); βCstF-64, variant 3: 
Algerian mouse (Mus spretus), rat (Rattus norvegicus), human 
(Homo sapiens), pig (Sus scrofa domestica); βCstF-64, variant 4: 
mouse (Mus musculus). The splicing patterns of βCstF-64 
mRNA in mice (Mus musculus and Mus spretus), rat, human, 
ground squirrel, short-tailed opossum, alligator, and turtle 
were determined from cloning and sequencing of RT-PCR 
products. The splicing patterns for chimpanzee, bovine, dog, 
toad, platypus, zebrafish, and pufferfish were obtained by 
searches of EST and protein databases utilizing BLASTX and 
BLASTP programs (not shown).
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increase in PC-12 cells treated with nerve growth factor
(NGF, lane 7). βCstF-64 mRNA was not detected in mouse
P19 embryonic carcinoma cell line (Figure 5A, lane 3),
and NB41A3 neuroblastoma cell line (Figure 5A, lane 2).
In contrast, βCstF-64 was not detected in any of the
human glial cell lines tested (Figure 5B, lanes 4–7), sug-
gesting that βCstF-64 expression might be restricted to
neurons in the nervous system.

βCstF-64 mRNA is present in mice of all ages

We wanted to investigate the developmental expression of
βCstF-64 in mice (Figure 6). For this experiment, female
mice mated with male mice were examined for the pres-
ence of copulatory plugs. The day copulatory plugs were
found, embryos were designated as day 1 post-coitum (1
dpc). Newborn mice were designated as day 1 postpartum
(1 dpp) and mice at 42 dpp were designated as adult. RNA
from the brains of embryos at 15, 19, 21 dpc, 1 dpp, and
adult male mice was subjected to RT-PCR analysis using
primers flanking exons 8 and 9 of the CstF-64 gene. The
mRNAs corresponding to αCstF-64, CstF-64 and βCstF-64
were detected at 15, 19, and 21 dpc, 1 dpp, and adult mice
(Figure 6, lane 1–5). RT-PCR of ribosomal S16 mRNA was
used to assess RNA loading (Figure 6, lower panel). βCstF-
64 mRNA was also detected in male and female mice of
ages 1 dpp, 5 dpp, 7 dpp, 9 dpp, 13 dpp, 15 and 42 dpp
at approximately equal levels as CstF-64 mRNA (data not
shown).

Discussion and conclusion
While surveying the CstF-64 mRNA for evidence of alter-
native splicing, we made the discovery of a family of alter-
natively spliced forms, collectively called βCstF-64, that

βCstF-64 mRNA is present throughout the mouse nervous systemFigure 4
βCstF-64 mRNA is present throughout the mouse 
nervous system. RT-PCR analysis was performed on RNA 
isolated from the spinal cord, adrenal gland and five regions 
of mouse brain using primer pair C that flanks exons 7–11 of 
the CstF-64 gene. RT-PCR products were resolved by 1% 
agarose gel electrophoresis. RT-PCR of ribosomal S16 
mRNA (lower panel) was used a loading control.

βCstF-64 mRNA expression in neuronal and glial cell linesFigure 5
βCstF-64 mRNA expression in neuronal and glial cell 
lines. RT-PCR analysis of βCstF-64 using exon-specific 
primer pairs (Table S1) from indicated rodent and human 
neuronal and glial cell lines. A) RT-PCR analysis of βCstF-64 
mRNA from mouse brain (lane 1), NB41A3 mouse neurob-
lastoma (lane 2), P19 mouse embryonic carcinoma (lane 3), 
rat brain (lane 4), CA77 rat thyroid carcinoma (lane 5), PC-
12 rat pheochromocytoma (lane 6), or PC-12 rat pheochro-
mocytoma cells treated for 4 days with 50 ng/mL NGF (lane 
7). B) RT-PCR analysis of βCstF-64 mRNA from human 
brain (lane 1), TT thyroid carcinoma (lane 2), SK neuroblast-
oma (lane 3), CHME5 microglia (lane 4), 1321N1 astrocy-
toma (lane 5), A172 astrocytoma (lane 6), or T98G 
glioblastoma cells (lane 7).

βCstF-64 mRNA is present in mice of all agesFigure 6
βCstF-64 mRNA is present in mice of all ages. RT-PCR 
analysis using RNA isolated from brain of day 15 embryo 
(lane 1), day 19 embryo (lane 2), day 21 embryo (lane 3), 
newborn mice (1 dpp, lane 4), and adult male mice (lane 5). 
RT-PCR of ribosomal S16 mRNA (lower panel) was used a 
loading control.
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were found exclusively in the brain and spinal cord of
mice and other vertebrate animal species (Figures 1, 3). In
mice, the predominant form of these splice variants
includes two alternate exons (8.1 and 8.2) joined to an
alternative 3' splice site in exon 9, encoding an additional
49 amino acids while deleting 26 amino acids from exon
9. Interestingly, a smaller splice variant, αCstF-64, which
was expressed widely in mice (Figure 1B), was not
observed in non-rodent species, suggesting it arose inde-
pendently of the βCstF-64 variants. We summarized the
nomenclature of these isoforms in Figure 3B. Since our
data demonstrate that the βCstF-64 protein is expressed in
mice (Figure 2), and that the βCstF-64 mRNA family is
present in all vertebrate species examined, we propose
that the βCstF-64 protein variant has an ancient and
essential role in neural function. We hypothesize that
βCstF-64 regulates alternative polyadenylation in these
tissues, leading to greater diversity of neural gene expres-
sion.

A survey of the EST and protein databases (BLASTX and
BLASTP programs) indicated that exon 8.1 was predicted
to be present in mammalian and non-mammalian
genomes. In contrast, a similar analysis showed that exon
8.2 was predicted to be present only in mammalian
genomes. This suggests the possibility that exon 8.2
appeared after the divergence of mammals and other ver-
tebrates, and might serve to supplement the function of
the more ancient exon 8.1. We also found that the
intronic regions between exons 8.1, 8.2 and 9 were highly
conserved between mice and humans (84% identity).
Since the intronic regions and exons 8.1 and 8.2 likely
contain splicing regulatory sequences [50], this supports
the notion that the region between exons 8 and 9 is a "hot
spot" for alternative splicing during evolution. We failed
to detect βCstF-64 exonic sequences in invertebrates such
as Drosophila [51] and the simple chordate Ciona intesti-
nalis [52], leading us to hypothesize that βCstF-64 has a
role in aspects of mRNA polyadenylation that are specific
to higher vertebrates, perhaps being critical for important
features of neural functions such as myelination [53].

In surveying rodent and human neuronal and glial cell
lines (Figure 5), we obtained data suggesting that βCstF-
64 expression was restricted to neurons in the nervous sys-
tem. Even though we did not detect βCstF-64 in any of the
glial cell lines examined, we do not rule out the possibility
that it might be expressed in normal glial cells. Detailed
immunohistochemical analysis of brain slices will pro-
vide a better understanding of βCstF-64 expression in
neurons and glia.

We obtained data suggesting that βCstF-64 was expressed
in cell lines that represent neural progenitor cells and are
neuroendocrine in nature (Figure 5). For example, we
found evidence for βCstF-64 expression in neural-crest

derived cell lines such as CA-77 and thyroid carcinoma
cells. We also obtained data suggesting that while βCstF-
64 was expressed in undifferentiated and NGF-differenti-
ated PC-12 cell lines (Figure 5), it was not expressed in
adrenal gland (Figure 4). PC-12 cells, unlike adrenal chro-
maffin cells, are thought to possess the pluripotency of
primitive progenitor cells such as neural crest cells. These
data support the hypothesis that βCstF-64 is important for
neuronal gene expression.

What might be the function of βCstF-64 in the nervous
system? Our finding that βCstF-64 was expressed through-
out the nervous system and at different stages of develop-
ment suggests that it might be important for global neural
gene expression and brain function. Several studies have
indicated that many neural mRNAs have multiple polya-
denylation sites in their 3' UTRs or use sites that differ
from those in other tissues. Many of these mRNAs have
regulatory elements surrounding the alternative polyade-
nylation sites. Differential use of polyadenylation sites
within the 3' UTR has been shown to regulate translation
[17], stability [54], and rate of transcription [54] of these
neural mRNAs. It has been hypothesized that tissue-spe-
cific use of polyadenylation sites in these mRNAs might
be due to the expression of nervous system-specific poly-
adenylation factors [15]. Our discovery of the nervous sys-
tem-specific βCstF-64 splice variant supports the above
hypothesis, and leads us to propose that βCstF-64 might
recognize alternative polyadenylation signals in these
mRNAs contributing to their neural-specific expression. It
is possible that βCstF-64 might also contribute to the gen-
eration of protein isoforms specific to the nervous system
by use of internal poly(A) sites found in many neural
mRNAs [29-31].

How might βCstF-64 function in neural mRNA polyade-
nylation? In one model, βCstF-64 might recognize RNA
sequence elements that are specific to nervous system-
expressed polyadenylation sites. A similar model has been
proposed for the testis-expressed τCstF-64 variant [35,55].
A bioinformatic survey revealed that the downstream U/
GU-rich sequences in the pre-mRNA are enriched in nerv-
ous system-specific transcripts, lending plausibility to this
model [6]. How might βCstF-64 recognize these variant
RNA sequence elements if its RNA-binding domain is the
same as CstF-64? The insertion in βCstF-64 in the proline/
glycine-rich domain might alter the conformation of that
domain which might in turn affect the conformation of
the RNA-binding domain and alter the RNA binding spe-
cificities of βCstF-64 or otherwise affect the overall rate of
polyadenylation [56]. In another model, the insertion of
the βCstF-64 domain might alter the overall structure of
the CstF complex (for example, its dimerization, [57]),
affecting its interaction with CPSF or other components of
the polyadenylation machinery.
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For a final model, we note that the 49 amino acid βCstF-
64 domain is not similar to any other known protein
domains (data not shown). Based on this, we speculate
that the βCstF-64 domain might be a previously unde-
scribed protein-protein interaction domain. It is possible
that βCstF-64 interacts with as-of-yet unknown nervous
system-specific polyadenylation factors or brings about
new interactions within the polyadenylation complex. It
might also interact with the splicing machinery since
splicing factors are known to modulate polyadenylation
efficiency [58-60]. Any of these proposed interactions
could help βCstF-64 in generating protein isoforms via
recognition of internal intronic and exonic poly(A) sites
thus increasing proteomic diversity in the nervous system.

Methods
Animals and RNA Samples

All animal studies were conducted in accordance with the
National Institutes of Health guidelines and all protocols
were approved by the TTUHSC Institutional Animal Care
and Use Committee. Tissues from adult male and female
CD-1 mice (Charles River Laboratories, Wilmington, DE)
were dissected post-euthanasia and stored in RNAlater
(Ambion, Austin, TX). Brains from mouse embryos at
days 15, 19, and 21 days post-coitus (dpc) were dissected
from the gravid females post-euthanasia. The first day on
which a vaginal plug was observed in the female, after
mating, was considered as 1 dpc. Human brain, liver and
testis RNA samples purchased from Ambion (Austin, TX)
were from single individuals. Slider turtle (Trachemys
scripta elegans) brain and liver RNA and 13-lined ground
squirrel (Spermophilus tridecemlineatus) brain RNA were
obtained from B. Dass (TTUHSC, Lubbock, TX) and Alli-
gator (Alligator mississippiensis) custom cDNA library was a
gift from Phil Hartig (US-EPA). Monodelphis tissues were
provided by Janice MacRossin and John L. VandeBerg
(Southwest Foundation for Biomedical Research).

RNA Analysis and RT-PCR

Different regions of the brain and indicated mouse tissues
were dissected, total RNA extracted by using TRIzol rea-
gent (Invitrogen, Carlsbad, CA), and treated with TurboD-
Nase (Ambion). Equal amounts of DNased RNA (4 μg)
from each tissue sample were used to synthesize cDNA
using SuperScriptII Reverse Transcriptase and oligo-dT
according to the manufacturer's protocol (Invitrogen).
Polymerase chain reaction (PCR, 30 cycles) was con-
ducted using the indicated primers (see Table 1) in an Air
Thermocycler (Idaho Technologies, Salt Lake City, UT).
Amplicons were resolved by electrophoresis on a 1% aga-
rose gel electrophoresis. Ethidium bromide stained RT-
PCR products were excised from the gel (Qiagen, Valencia,
CA), cloned using Topo II system (Invitrogen), and iden-
tified by DNA sequence analysis.

Cloning and Plasmids

The plasmid encoding full length βCstF-64 fused to the
FLAG epitope tag [61] (3XFLAG-βCstF-64) was created as
follows: mouse brain cDNA was subjected to RT-PCR
using primers X and Y containing HinDIII, KpnI restric-
tion sites (Table 1) and ligated into a 3X-HA vector encod-
ing full length CstF-64 (kind gift of K. W. McMahon)
digested by the same enzymes. Note that this vector also
contained the MS2 RNA binding domain though that did
not interfere with its expression or antigenicity. The
3XFLAG-βCstF-64 plasmid was created by amplifying full
length βCstF-64 using primers E and F containing XbaI,
BglII sites (Table 1) using 3X-HA-βCstF-64 as template.
This fragment was digested with Xba I and Bgl II, and
ligated into a similarly digested 3XFLAG-CstF-64 vector.
The cloning scheme of 3XFLAG-CstF-64 is described in
[61].

Cell Culture and Transfections

HeLa cells were grown at 37°C in 5% CO2 in Dulbecco's
Minimal Eagle Media (CellGro, Manassas, VA) containing
10% cosmic calf serum and 1% penicillin/streptomycin
(Gibco). HeLa cells were seeded in 6-well plates at a den-
sity of 300,000 cells/well and transfected the next day
with 800 ng of the indicated plasmids using Lipo-
fectamine (Invitrogen). Cells were harvested 48 hours
post-transfection by rinsing with ice-cold PBS, and lysed
in SDS loading buffer [62].

Antibodies

The following antibodies were used in this study: anti-α-
tubulin and anti-FLAG antibodies (Sigma, St. Louis, MO);
anti-CstF-64 antibody (3A7, [44]) and anti-βCstF-64 cus-
tom antibody generated in rabbits by Genscript Corpora-
tion (Piscataway, NJ) by injection of the peptide
GPAGPASIERVQGQRT representing part of the βCstF-64
insert.

Protein Analysis

For protein analysis, nuclear extract was prepared from
indicated mouse tissues [63], boiled and sonicated in SDS
loading buffer [62]. Protein concentration was measured
using the bicinchoninic acid (Pierce, Rockford, IL) assay.
Equal amounts of protein from the indicated tissues (20
μg) or HeLa cells were resolved by 10% SDS-PAGE, and
transferred to nitrocellulose membranes for immunoblot-
ting. For immunoblotting using anti-CstF-64 antibody,
membranes were blocked with Tris-buffered saline con-
taining 0.2% Tween-20 (TBST) with 2% nonfat dry milk
(TBST) for 2 hours and treated with anti-CstF-64 antibody
[44] at a dilution of 1:50. For immunoblotting using anti-
βCstF-64 antibody, the membrane was first treated with
0.2 mM glycine-HCl, pH 2.6 for 30 minutes at room tem-
perature, and rinsed extensively with TBST. Pre-treatment
with glycine at low pH was found to enhance the effective-
ness of this antibody while decreasing non-specific back-
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ground. The membrane was then blocked with 2% nonfat
dry milk in TBST for 2 hours. The anti-βCstF-64 antibody
was used at a dilution of 1:5000 in 2% nonfat dry milk in
TBST, 0.05% Empigen (Calbiochem, La Jolla, CA). In the
peptide blocking experiment, the anti-βCstF-64 antibody
(1 μg/μL) was incubated with 10 fold excess peptide (10
μg) in 2% nonfat dry milk in TBST for 2 hours at room
temperature before addition to the membrane. Mem-
branes were subsequently treated with horseradish perox-
idase-conjugated goat anti-mouse and anti-rabbit IgG
(1:2500) and immunoreactive bands were visualized by
chemiluminescence using the Pierce SuperSignal kit
(Rockford, IL).

Two dimensional-PAGE Analysis

Nuclear extracts from mouse brain and liver were pre-
pared as described above. Protein concentration was esti-
mated by BCA assay. 392 μL of rehydration buffer (9 M
urea, 2% Triton X-100), 8 μL IPG buffer (pH 4–7) (Amer-
sham Biosciences, Piscataway, NJ) and 0.5 μL 1 M DTT
was added to 80 μg of nuclear protein. The mix was lay-
ered over a 7 cm pH 3–10 immobiline strip (Amersham
Biosciences) and allowed to rehydrate for 16 hours. The
strips were then subjected to isoelectric focusing at the fol-
lowing voltages: 200 V for 1 minute, 500 V for 20 minutes,
1000, 1500, 2000, 2500 V for 20 minutes and 3500 V for
60 minutes. The strip was equilibrated in equilibration
solution (20% SDS, 50 mM Tris, pH 8.8, 6 M urea, 30%
glycerol) containing 65 mM DTT but no iodoacetamide
for 15 minutes and then in equilibration solution con-
taining 135 mM iodoacetamide but no DTT for 15 min-
utes. The strip was then placed horizontally on a 10% SDS
gel, subjected to denaturing PAGE and immunoblot anal-
ysis.

Authors' contributions
GSS conducted all experiments except the ones described
below and wrote the manuscript. PWC conducted all the
dissections described in the paper and helped analyze
data. BD provided RNA from slider turtle and sequence
information for CstF-64 from various animal species.
CCM conceived the study, lent expert guidance, and pro-
vided critical comments for developing the manuscript.
All authors read and approved the final manuscript.

Additional material

Acknowledgements
We thank Nathaly Cormier for help with 2D-PAGE analysis, Hua Lou, 

Peter Syapin, and Jose-Luis Redondo for providing RNA samples and cell 

lines, Wyatt McMahon and Andrew Hockert for providing plasmid con-

structs and Dr. Sandra Whelly for technical assistance and critical reading 

of manuscript. We also thank Phil Hartig (US-EPA) for providing the Alliga-

tor (Alligator mississippiensis) custom cDNA library and Janice MacRossin 

and John L. VandeBerg (Southwest Foundation for Biomedical Research) 

for providing Monodelphis tissue samples.

This work was supported by National Institutes of Health Grant 5 R01 

HD37109-8, the South Plains Foundation, and the Texas Tech University 

Health Science Center SOM Seed Grant Program (to C.C.M).

References
1. Black DL: Mechanisms of alternative pre-messenger RNA

splicing.  Annu Rev Biochem 2003, 72:291-336.
2. Edwalds-Gilbert G, Veraldi KL, Milcarek C: Alternative poly(A)

site selection in complex transcription units: means to an
end?  Nucleic Acids Res 1997, 25(13):2547-2561.

3. Li Q, Lee JA, Black DL: Neuronal regulation of alternative pre-
mRNA splicing.  Nat Rev Neurosci 2007, 8(11):819-831.

4. Stetefeld J, Ruegg MA: Structural and functional diversity gen-
erated by alternative mRNA splicing.  Trends Biochem Sci 2005,
30(9):515-521.

5. Yeo G, Holste D, Kreiman G, Burge CB: Variation in alternative
splicing across human tissues.  Genome Biol 2004, 5(10):R74.

6. Zhang H, Lee JY, Tian B: Biased alternative polyadenylation in
human tissues.  Genome Biol 2005, 6(12):R100.

7. Xu Q, Modrek B, Lee C: Genome-wide detection of tissue-spe-
cific alternative splicing in the human transcriptome.  Nucleic
Acids Res 2002, 30(17):3754-3766.

8. Kyburz A, Friedlein A, Langen H, Keller W: Direct interactions
between subunits of CPSF and the U2 snRNP contribute to
the coupling of pre-mRNA 3' end processing and splicing.
Mol Cell 2006, 23(2):195-205.

9. Rigo F, Martinson HG: Functional coupling of last-intron splic-
ing and 3'-end processing to transcription in vitro: the
poly(A) signal couples to splicing before committing to
cleavage.  Mol Cell Biol 2008, 28(2):849-862.

10. Zhao W, Manley JL: Complex alternative RNA processing gen-
erates an unexpected diversity of poly(A) polymerase iso-
forms.  Mol Cell Biol 1996, 16(5):2378-2386.

Additional file 1

Nucleotide and amino acid sequence of mouse βCstF-64. The nucle-

otide sequence of exons 8.1 and 8.2 of mouse βCstF-64 (accession num-

bers provided) and their corresponding amino acid sequences are 

indicated. The nucleotide and amino acid sequences of the region deleted 

from exon 9 via use of the alternative 3' splice site are also shown.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-

2199-10-22-S1.doc]

Additional file 2

Multiple sequence alignment of the 50 amino acid βCstF-64 sequence 

from various animal species. The amino acid sequences of βCstF-64 

from mouse, rat, human, turtle, ground squirrel, alligator and monodel-

phis were predicted from cloning and in silico translation of RT-PCR prod-

ucts while the rest were determined by searching EST and protein 

databases at NCBI. Multiple sequence alignment was determined by Clus-

talW using sequences with the following accession numbers: 

XP_001068092.1 (Rat), EU616682 (Mouse), EU616679 (Human), 

AJ959057.1 (Wild boar), XP_529072 (Chimpanzee), Ground Squirrel 

(B. Dass, unpublished), AAI1265544 (Cow), XP_549135 (Dog), Mon-

odelphis (B. Dass, unpublished), XP_001513073 (Platypus), Alligator 

(B. Dass, unpublished), Turtle (G. Shankarling and B. Dass, unpub-

lished), NP_001080179.1 (Xenopus), CAG09844.1 (Pufferfish), 

CU459168.8, CT027817.1 (Zebrafish). Boxed residues denote amino 

acids that differ from rodent. The various animal species included in this 

study are indicated on right.

Click here for file

[http://www.biomedcentral.com/content/supplementary/1471-

2199-10-22-S2.pdf]

http://www.biomedcentral.com/content/supplementary/1471-2199-10-22-S1.doc
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_001068092.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU616682
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EU616679
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AJ959057.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_529072
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AAI1265544
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_549135
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=XP_001513073
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NP_001080179.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CAG09844.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CU459168.8
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=CT027817.1
http://www.biomedcentral.com/content/supplementary/1471-2199-10-22-S2.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12626338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12626338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9185563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9185563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9185563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17895907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17895907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16023350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16023350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15461793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16356263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16356263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12202761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12202761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16857586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16857586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17967872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17967872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17967872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8628305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8628305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8628305


BMC Molecular Biology 2009, 10:22 http://www.biomedcentral.com/1471-2199/10/22

Page 11 of 12

(page number not for citation purposes)

11. Mitchelson A, Simonelig M, Williams C, O'Hare K: Homology with
Saccharomyces cerevisiae RNA14 suggests that phenotypic
suppression in Drosophila melanogaster by suppressor of
forked occurs at the level of RNA stability.  Genes Dev 1993,
7(2):241-249.

12. Pan Z, Zhang H, Hague LK, Lee JY, Lutz CS, Tian B: An intronic
polyadenylation site in human and mouse CstF-77 genes sug-
gests an evolutionarily conserved regulatory mechanism.
Gene 2006, 366(2):325-334.

13. Edmonds M: A history of poly A sequences: from formation to
factors to function.  Prog Nucleic Acid Res Mol Biol 2002, 71:285-389.

14. Zhao J, Hyman L, Moore C: Formation of mRNA 3' ends in
eukaryotes: mechanism, regulation, and interrelationships
with other steps in mRNA synthesis.  Microbiol Mol Biol Rev 1999,
63(2):405-445.

15. Costessi L, Devescovi G, Baralle FE, Muro AF: Brain-specific pro-
moter and polyadenylation sites of the beta-adducin pre-
mRNA generate an unusually long 3'-UTR.  Nucleic Acids Res
2006, 34(1):243-253.

16. Casanova E, Alonso-Llamazares A, Zamanillo D, Garate C, Calvo P,
Chinchetru MA: Identification of a long huntingtin mRNA tran-
script in mouse brain.  Brain Res 1996, 743(1–2):320-323.

17. de Sauvage F, Kruys V, Marinx O, Huez G, Octave JN: Alternative
polyadenylation of the amyloid protein precursor mRNA
regulates translation.  Embo J 1992, 11(8):3099-3103.

18. Joshi JG, Fleming JT, Dhar M, Chauthaiwale V: A novel ferritin
heavy chain messenger ribonucleic acid in the human brain.
J Neurol Sci 1995, 134(Suppl):52-56.

19. Percy ME, Wong S, Bauer S, Liaghati-Nasseri N, Perry MD, Chauthai-
wale VM, Dhar M, Joshi JG: Iron metabolism and human ferritin
heavy chain cDNA from adult brain with an elongated
untranslated region: new findings and insights.  Analyst 1998,
123(1):41-50.

20. Munch C, Schwalenstocker B, Hermann C, Cirovic S, Stamm S,
Ludolph A, Meyer T: Differential RNA cleavage and polyade-
nylation of the glutamate transporter EAAT2 in the human
brain.  Brain Res Mol Brain Res 2000, 80(2):244-251.

21. Jang GM, Tanaka BS, Gutman GA, Goldin AL, Semler BL: Alterna-
tive polyadenylation signals in the 3' non-coding region of a
voltage-gated potassium channel gene are major determi-
nants of mRNA isoform expression.  Gene 2008, 408(1–
2):133-145.

22. Nakahira K, Ikenaka K, Wada K, Tamura T, Furuichi T, Mikoshiba K:
Structure of the 68-kDa neurofilament gene and regulation
of its expression.  J Biol Chem 1990, 265(32):19786-19791.

23. Ihara H, Tsutsuki H, Ida T, Kozaki S, Tsuyama S, Moss J: Alternative
polyadenylation sites of human endothelial nitric oxide syn-
thase mRNA.  Biochem Biophys Res Commun 2007, 363(1):146-152.

24. Drews VL, Lieberman AP, Meisler MH: Multiple transcripts of
sodium channel SCN8A (Na(V)1.6) with alternative 5'- and
3'-untranslated regions and initial characterization of the
SCN8A promoter.  Genomics 2005, 85(2):245-257.

25. Kobayashi K, Kurosawa Y, Fujita K, Nagatsu T: Human dopamine
beta-hydroxylase gene: two mRNA types having different 3'-
terminal regions are produced through alternative polyade-
nylation.  Nucleic Acids Res 1989, 17(3):1089-1102.

26. Pan MG, Rim C, Lu KP, Florio T, Stork PJ: Cloning and expression
of two structurally distinct receptor-linked protein-tyrosine
phosphatases generated by RNA processing from a single
gene.  J Biol Chem 1993, 268(26):19284-19291.

27. Blasius R, Weber RG, Lichter P, Ogilvie A: A novel orphan G pro-
tein-coupled receptor primarily expressed in the brain is
localized on human chromosomal band 2q21.  J Neurochem
1998, 70(4):1357-1365.

28. Harakall SA, Brandenburg CA, Gilmartin GA, May V, Braas KM:
Induction of multiple pituitary adenylate cyclase activating
polypeptide (PACAP) transcripts through alternative cleav-
age and polyadenylation of proPACAP precursor mRNA.
Ann N Y Acad Sci 1998, 865:367-374.

29. Zhou HL, Baraniak AP, Lou H: Role for Fox-1/Fox-2 in mediating
the neuronal pathway of calcitonin/calcitonin gene-related
peptide alternative RNA processing.  Mol Cell Biol 2007,
27(3):830-841.

30. Barbas JA, Chaix JC, Steinmetz M, Goridis C: Differential splicing
and alternative polyadenylation generates distinct NCAM

transcripts and proteins in the mouse.  Embo J 1988,
7(3):625-632.

31. Niibori Y, Hayashi F, Hirai K, Matsui M, Inokuchi K: Alternative
poly(A) site-selection regulates the production of alterna-
tively spliced vesl-1/homer1 isoforms that encode postsynap-
tic scaffolding proteins.  Neurosci Res 2007, 57(3):399-410.

32. Lou H, Gagel RF: Alternative RNA processing – its role in reg-
ulating expression of calcitonin/calcitonin gene-related pep-
tide.  J Endocrinol 1998, 156(3):401-405.

33. Shell SA, Hesse C, Morris SM Jr, Milcarek C: Elevated levels of the
64-kDa cleavage stimulatory factor (CstF-64) in lipopolysac-
charide-stimulated macrophages influence gene expression
and induce alternative poly(A) site selection.  J Biol Chem 2005,
280(48):39950-39961.

34. Takagaki Y, Seipelt RL, Peterson ML, Manley JL: The polyadenyla-
tion factor CstF-64 regulates alternative processing of IgM
heavy chain pre-mRNA during B cell differentiation.  Cell
1996, 87(5):941-952.

35. Monarez RR, MacDonald CC, Dass B: Polyadenylation proteins
CstF-64 and tauCstF-64 exhibit differential binding affinities
for RNA polymers.  Biochem J 2007, 401(3):651-658.

36. Takagaki Y, MacDonald CC, Shenk T, Manley JL: The human 64-
kDa polyadenylylation factor contains a ribonucleoprotein-
type RNA binding domain and unusual auxiliary motifs.  Proc
Natl Acad Sci USA 1992, 89(4):1403-1407.

37. Perez Canadillas JM, Varani G: Recognition of GU-rich polyade-
nylation regulatory elements by human CstF-64 protein.
Embo J 2003, 22(11):2821-2830.

38. Salisbury J, Hutchison KW, Graber JH: A multispecies compari-
son of the metazoan 3'-processing downstream elements
and the CstF-64 RNA recognition motif.  BMC Genomics 2006,
7:55.

39. Takagaki Y, Manley JL: Complex protein interactions within the
human polyadenylation machinery identify a novel compo-
nent.  Mol Cell Biol 2000, 20(5):1515-1525.

40. Richardson JM, McMahon KW, MacDonald CC, Makhatadze GI:
MEARA sequence repeat of human CstF-64 polyadenylation
factor is helical in solution. A spectroscopic and calorimetric
study.  Biochemistry 1999, 38(39):12869-12875.

41. Qu X, Perez-Canadillas JM, Agrawal S, De Baecke J, Cheng H, Varani
G, Moore C: The C-terminal domains of vertebrate CstF-64
and its yeast orthologue Rna15 form a new structure critical
for mRNA 3'-end processing.  J Biol Chem 2007,
282(3):2101-2115.

42. Dass B, McMahon KW, Jenkins NA, Gilbert DJ, Copeland NG, Mac-
Donald CC: The gene for a variant form of the polyadenyla-
tion protein CstF-64 is on chromosome 19 and is expressed
in pachytene spermatocytes in mice.  J Biol Chem 2001,
276(11):8044-8050.

43. Dass B, Tardif S, Park JY, Tian B, Weitlauf HM, Hess RA, Carnes K,
Griswold MD, Small CL, Macdonald CC: Loss of polyadenylation
protein tauCstF-64 causes spermatogenic defects and male
infertility.  Proc Natl Acad Sci USA 2007, 104(51):20374-20379.

44. Wallace AM, Dass B, Ravnik SE, Tonk V, Jenkins NA, Gilbert DJ,
Copeland NG, MacDonald CC: Two distinct forms of the 64,000
Mr protein of the cleavage stimulation factor are expressed
in mouse male germ cells.  Proc Natl Acad Sci USA 1999,
96(12):6763-6768.

45. O'Farrell PH: High resolution two-dimensional electrophore-
sis of proteins.  J Biol Chem 1975, 250:4007-4021.

46. Edwalds-Gilbert G, Milcarek C: Regulation of poly(A) site use
during mouse B-cell development involves a change in the
binding of a general polyadenylation factor in a B-cell stage-
specific manner.  Mol Cell Biol 1995, 15(11):6420-6429.

47. Russo AF, Lanigan TM, Sullivan BE: Neuronal properties of a thy-
roid C-cell line: partial repression by dexamethasone and
retinoic acid.  Mol Endocrinol 1992, 6(2):207-218.

48. Berger CL, de Bustros A, Roos BA, Leong SS, Mendelsohn G, Gesell
MS, Baylin SB: Human medullary thyroid carcinoma in culture
provides a model relating growth dynamics, endocrine cell
differentiation, and tumor progression.  J Clin Endocrinol Metab
1984, 59(2):338-343.

49. Greene LA, Tischler AS: Establishment of a noradrenergic
clonal line of rat adrenal pheochromocytoma cells which
respond to nerve growth factor.  Proc Natl Acad Sci USA 1976,
73(7):2424-2428.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8436295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8436295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8436295
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16316725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16316725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12102557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12102557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10357856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10357856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10357856
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16414955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16414955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16414955
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9017261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9017261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1353447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1353447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1353447
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8847545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8847545
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9581019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9581019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9581019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11038258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077107
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2246261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2246261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2246261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17825792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17825792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17825792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15676283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15676283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15676283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2922261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2922261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2922261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8396131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8396131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8396131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9523551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9523551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9523551
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9928031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9928031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17101796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17101796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17101796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3396534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3396534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3396534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17196693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17196693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17196693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9582495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9582495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9582495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16207706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16207706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16207706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8945520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8945520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8945520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17029590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17029590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17029590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1741396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1741396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1741396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12773396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12773396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16542450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16542450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16542450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10669729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10669729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10669729
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10504257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10504257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10504257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17116658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17116658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17116658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11113135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11113135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11113135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10359786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=236308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=236308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7565794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7565794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7565794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1569964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1569964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1569964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6736207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6736207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6736207
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1065897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1065897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1065897


Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:

http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Molecular Biology 2009, 10:22 http://www.biomedcentral.com/1471-2199/10/22

Page 12 of 12

(page number not for citation purposes)

50. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR: ESEfinder: A
web resource to identify exonic splicing enhancers.  Nucleic
Acids Res 2003, 31(13):3568-3571.

51. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanati-
des PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al.: The
genome sequence of Drosophila melanogaster.  Science 2000,
287(5461):2185-2195.

52. Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A,
Davidson B, Di Gregorio A, Gelpke M, Goodstein DM, et al.: The
draft genome of Ciona intestinalis: insights into chordate
and vertebrate origins.  Science 2002, 298(5601):2157-2167.

53. Northcutt RG: Understanding vertebrate brain evolution.  Inte-
grative and Comparative Biology 2002, 42(4):743-746.

54. Hu X, Bi J, Loh HH, Wei LN: Regulation of mouse kappa opioid
receptor gene expression by different 3'-untranslated
regions and the effect of retinoic acid.  Mol Pharmacol 2002,
62(4):881-887.

55. MacDonald CC, Redondo JL: Reexamining the polyadenylation
signal: were we wrong about AAUAAA?  Mol Cell Endocrinol
2002, 190(1–2):1-8.

56. Chao LC, Jamil A, Kim SJ, Huang L, Martinson HG: Assembly of the
cleavage and polyadenylation apparatus requires about 10
seconds in vivo and is faster for strong than for weak poly(A)
sites.  Mol Cell Biol 1999, 19(8):5588-5600.

57. Bai Y, Auperin TC, Chou CY, Chang GG, Manley JL, Tong L: Crystal
structure of murine CstF-77: dimeric association and impli-
cations for polyadenylation of mRNA precursors.  Mol Cell
2007, 25(6):863-875.

58. Castelo-Branco P, Furger A, Wollerton M, Smith C, Moreira A,
Proudfoot N: Polypyrimidine tract binding protein modulates
efficiency of polyadenylation.  Mol Cell Biol 2004,
24(10):4174-4183.

59. Lou H, Gagel RF, Berget SM: An intron enhancer recognized by
splicing factors activates polyadenylation.  Genes Dev 1996,
10(2):208-219.

60. Lou H, Neugebauer KM, Gagel RF, Berget SM: Regulation of alter-
native polyadenylation by U1 snRNPs and SRp20.  Mol Cell Biol
1998, 18(9):4977-4985.

61. Maciolek NL, McNally MT: Characterization of Rous sarcoma
virus polyadenylation site use in vitro.  Virology 2008,
374(2):468-476.

62. Laemmli UK: Cleavage of structural proteins during the
assembly of the head of bacteriophage T4.  Nature 1970,
227(5259):680-685.

63. Gorski K, Carneiro M, Schibler U: Tissue-specific in vitro tran-
scription from the mouse albumin promoter.  Cell 1986,
47(5):767-776.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10731132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10731132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12481130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12481130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12481130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12237335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12237335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12237335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10409748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10409748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10409748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17386263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17386263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17386263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15121839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15121839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8566754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8566754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9710581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9710581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18272196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18272196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5432063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5432063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3779841
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3779841
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Alternatively spliced CstF-64 mRNAs are present in mouse brain
	The bCstF-64 protein isoform is expressed in mouse brain
	bCstF-64 and CstF-64 protein levels are similar in mouse brain
	The bCstF-64 family of splice variants is evolutionarily conserved
	bCstF-64 mRNA is present throughout the mouse nervous system
	bCstF-64 mRNA is not present in glial cell lines examined
	bCstF-64 mRNA is present in mice of all ages

	Discussion and conclusion
	Methods
	Animals and RNA Samples
	RNA Analysis and RT-PCR
	Cloning and Plasmids
	Cell Culture and Transfections
	Antibodies
	Protein Analysis
	Two dimensional-PAGE Analysis

	Authors' contributions
	Additional material
	Acknowledgements
	References

