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1. INTRODUCTION

The von Mises distribution has a central role as a symmetric distribution
on the circle. Other popular symmetric distributions on the circle include
the cardioid and wrapped Cauchy distributions. The circular uniform distri-
bution is a special case of all of these. See Mardia (1972), Batschelet (1981),
Fisher (1993), Mardia and Jupp (1999) and Jammalamadaka and SenGupta
(2001) for book treatments of these distributions to which the reader is re-
ferred for standard details.

In this paper, we propose a simple general family of symmetric unimodal
distributions on the circle that incorporates all of the above distributions. It
has density

fψ(θ) ∝ {1 + tanh(κψ) cos(θ − µ)}1/ψ, µ− π < θ ≤ µ+ π. (1)

Here, µ is a location parameter, κ ≥ 0 is a concentration parameter equiv-
alent to the usual parameter of the von Mises distribution, and ψ ∈ �; the
cases ψ = 1,−1 and, by continuity, 0, yield the cardioid, wrapped Cauchy
and von Mises distributions, respectively. See Section 2 for details including
unimodality, normalising constant, special cases, graphs and genesis of the
distribution. Further properties, centred on trigonometric moments and in-
cluding detailed consideration of circular variance and kurtosis, are given in
Section 3. A brief comparison of the new family of densities with the wrapped
normal distribution and with the symmetric stable family of distributions is
given in Section 4.

We consider the asymptotics of maximum likelihood estimation in Sec-
tion 5 and the Appendix, with particular emphasis on the estimation of κ
and ψ. The family of distributions is then fitted to two examples of animal
orientation data from the literature (Section 6), in the second of these as a
component of a mixture with the circular uniform distribution. In Section
7, we consider the sample sizes necessary in practice to be able to reliably
discriminate between the von Mises, cardioid and wrapped Cauchy distri-
butions. Finally, in Section 8, brief consideration is given to extending the
family of symmetric circular distributions to a family of rotationally sym-
metric distributions on the sphere.
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2. BASIC PROPERTIES

2.1 Unimodality and Identifiability

It can easily be shown that the density given by (1) is unimodal with mode
at θ = µ and antimode at θ = µ + π for all ψ ∈ � and κ > 0. When κ = 0,
(1) gives the uniform density for all ψ. Note that, in an obvious notation,
fψ(θ;−κ, µ) = fψ(θ; κ, µ + π). This distribution is the original distribution
rotated to have mode at µ+π; as is common practice with e.g. the von Mises
distribution, this duplication is the reason for restricting κ to be nonnegative
throughout. In the remainder of Sections 2, 3 and 4, as well as Section 7,
the location parameter µ will be taken to be 0 without loss of generality.

2.2 Normalising Constant

Write z = cosh(κψ) ∈ [1,∞) so that f(θ) ∝ (z+sgn(ψ)
√
z2 − 1 cos θ)1/ψ.

Then, when ψ > 0, use the following standard integral from Gradshteyn and
Ryzhik (1994, (3.664.1)):∫ π

0
(z +

√
z2 − 1 cos x)1/ψdx = πP1/ψ(z)

where P1/ψ(z) is the associated Legendre function of the first kind of de-
gree 1/ψ and order 0 (Gradshteyn and Ryzhik, 1994, Section 8.7–8.8). For
negative ψ,∫ π

−π

1

(z −√
z2 − 1 cosx)−1/ψ

dx =
∫ π

−π

1

(z +
√
z2 − 1 cos(π − x))−1/ψ

dx

=
∫ 2π

0

1

(z +
√
z2 − 1 cosx)−1/ψ

dx

= 2πP−(1/ψ)−1(z) = 2πP1/ψ(z),

by (3.664.2) and (8.731.5) of Gradshteyn and Ryzhik. It follows that

fψ(θ) =
(cosh(κψ) + sinh(κψ) cos θ)1/ψ

2πP1/ψ(cosh(κψ))
. (2)

2.3 Special Cases

Case 1: ψ = 0; the von Mises distribution. The key is that, for small |ψ|,

(cosh(κψ) + sinh(κψ) cos θ)1/ψ � exp

{
1

ψ
log (1 + κψ cos θ)

}
� exp (κ cos θ) .
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Also, setting µ = 0, z = κ and ν = 1/ψ > 0 in (9.6.49) of Abramowitz and
Stegun (1965), limψ↓0 P1/ψ(cosh(κψ)) = I0(κ) where I0 is the modified Bessel
function of the first kind of order 0. Essentially the same argument with
ν = −1/ψ gives the same limit for negative ψ. So density (2) tends to the
von Mises density eκ cos θ/(2πI0(κ)) as ψ tends to 0.

Case 2: ψ = 1; the cardioid distribution. P1(z) = z and so

f1(θ) = (2π)−1(1 + 2ρ cos θ).

Here, we have employed the parametrisation 0 ≤ ρ = tanh(κ)/2 ≤ 1/2.
Often, authors specify |ρ| ≤ 1/2 i.e. κ ∈ �; we disallow negative ρ for the
reason given in Section 2.1.

Case 3: ψ = −1; the wrapped Cauchy distribution. P−1(z) = P0(z) = 1
and so, in its usual parametrisation,

f−1(θ) =
1

2π

1− ρ2

1 + ρ2 − 2ρ cos(θ)
, 0 ≤ ρ ≤ 1,

where ρ = tanh(κ/2). As well as the book treatments mentioned in Section
1, see McCullagh (1996) for further insights into wrapped Cauchy models.

Case 4: 0 < ψ, κ → ∞; Cartwright’s power-of-cosine distribution. This
has density

2(1/ψ)−1Γ2((1/ψ) + 1)(1 + cos(θ))1/ψ

πΓ((2/ψ) + 1)
=

2(2/ψ)−1Γ2((1/ψ) + 1) cos(θ/2)2/ψ

πΓ((2/ψ) + 1)
(3)

(Cartwright, 1963). Note that Jammalamadaka and SenGupta (2001, Section
2.2.2) make an unnecessary restriction to ψ ≤ 1. The normalizing constant —
which has various alternative forms via properties of gamma and beta func-
tions — follows because limz→∞ z−1/ψP1/ψ(z) = Γ((2/ψ)+1)/{21/ψΓ2((1/ψ)+
1)} for ψ > 0 ((8.776.1) of Gradshteyn and Ryzhik, 1994). We also ob-
serve that Cartwright’s distribution is that of Θ = 2 sin−1(B) where B ∼
Beta(α, β) on [−1, 1] and α = β = (1/ψ) + (1/2) for ψ > 0. Such circu-
lar beta distributions for general α, β are discussed by Jammalamadaka and
SenGupta (2001, Section 2.2.10), but the connection with Cartwright’s distri-
bution is not made there. Equivalently, Θ = 2 tan−1(T/

√
ν) where T follows

the Student t distribution with ν degrees of freedom and ν = (2/ψ) + 1 ≥ 1,
an observation also made in Minh and Farnum (2003).
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Case 5: −2 ≤ ψ ≤ 0, κ → ∞; Dirac delta function at 0. This is well
known for the case ψ = 0. It follows for other −2 < ψ < 0 using (8.776.1)
of Gradshteyn and Ryzhik (1994) again. Write 1/2 < ν = −1/ψ < ∞ and
x = −κψ > 0. Then, (cosh x − sinh x cos θ)νPν−1(coshx) ∼ (cosh x)2ν−1

(1− tanh x cos θ)ν → ∞ for θ �= 0, while for θ = 0, (cosh x)2ν−1(1− tanh x)ν

∼ e−x. Finally, for ψ = −2, P−1/2(cosh x) = {(π/2) cosh(x/2)}−1K(tanh(x/2))
and K(tanh(x/2)) � x/2; here, K is the complete elliptic integral of the first
kind and we have used (8.13.2) and (17.3.26) of Abramowitz and Stegun
(1965). Now, (coshx − sinh x cos θ)1/2/ cosh(x/2) = O(1) for θ �= 0, while
(coshx− sinh x)1/2/ cosh(x/2) ∼ e−x for θ = 0, and the result follows.

Case 6: −∞ < ψ < −2, κ → ∞; a new distribution with a pole at 0.
Write 0 < ν = −1/ψ < 1/2 and x = κψ > 0, and use (8.776.1) of Gradshteyn
and Ryzhik (1994) once more. Then, 2π(coshx − sinh x cos θ)νPν−1(coshx)
� √

πΓ(−ν + (1/2))(1 − tanh x cos θ)ν/{2ν−1Γ(−ν + 1)}. A little further
manipulation allows the limiting density to be written just as in (3) except
with the sine function replacing the cosine. Now, this density is that of
Θ = 2 cos−1(B) where B ∼ Beta(α, β) on [−1, 1] and α = β = (1/ψ) + (1/2)
for 0 > 1/ψ > −1/2; and Θ = 2 cot−1(T/

√
ν) where t ∼ tν and 0 < ν =

(2/ψ)+1 < 1. Notice that this completes the ‘missing’ range of trigonometric
transformations of beta and t distributions from Case 4.

Cases 7 and 8: κ = 0 and ψ → ±∞, κ finite; both yield the circular
uniform distribution.

2.4 Graphs of Density

Density (2) is plotted in Fig. 1 for ψ = −1.5 to 1.5 in steps of 0.5, in
Fig. 1(a) for κ = 1/2 and in Fig. 1(b) for κ = 2. Note that these choices
include standard distributions in the wrapped Cauchy when ψ = −1, von
Mises when ψ = 0 and cardioid when ψ = 1. Considerable similarities are
apparent between members of the family for the smaller value of κ, these
similarities increasing as κ continues to become smaller, when all members
of the family tend to the uniform distribution. That ψ > 0 produces a more
spread distribution than ψ ≤ 0 for the same value of κ is clear from both
frames of Fig. 1. For the larger value of κ, the ψ < 0 densities are starting
to reflect their delta function limit; positive ψ continues to yield well spread
distributions. There is relatively little difference between distributions with
different values of ψ for small κ and between distributions with different
values of κ for ψ > 0.
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* * * Fig. 1(a)(b) about here * * *

2.5 Conditional Derivations

Two different constructions involving conditioning bivariate symmetric
distributions onto the unit circle lead to the same conditional distributions
on the circle. The first concerns a spherically symmetric distribution with
nonzero location, without loss of generality taken to be at (m, 0), m > 0 i.e.
(Xs, Ys) ∼ fs(x, y) ∝ g{(x−m)2 + y2} (Fang et al., 1990, Chapter 2). Then,
the polar random variables (Rs,Θs) ∼ rsg{(r2s+m2)−2mrs cos θs} and, thus,
conditional on Rs = rs ∈ (0,∞),

Θs|Rs = rs ∼ g{(r2s +m2)− 2mrs cos θs}. (4)

Alternatively, let (Xe, Ye) ∼ fe(x, y) ∝ g{(x2 − 2δxy + y2)/(1 − δ2)}, −1 ≤
δ < 1, follow an elliptically symmetric distribution with mean at the origin
(Fang et al., 1990, Chapter 2). Then, letting (Re,Φ) denote polar coordinates
in this case,

Φ|Re = re ∼ g
{
r2e(1− δ sin 2φ)

1− δ2
}
.

This is, of course, an axial distribution, so double the angle to get Θe ≡
2Φ|Re = re ∼ g{r2e(1− δ sin θe)/(1− δ2)}. This has mode at π/2 if δ > 0 and
at −π/2 if δ < 0. Recentre the distribution at 0, so that sin θe transforms to
sin{θe + sgn(δ)π/2} = sgn(δ) cos θe, and we have

Θe|Re = re ∼ g
{
r2e(1− |δ| cos θe)

1− δ2
}
. (5)

Formulae (4) and (5) match provided we make the identifications |δ| =

2mrs/(r
2
s +m

2), re = |r2s −m2|/
√
r2s +m

2 or equivalently m = (re/2)d+(δ),

rs = (re/2)d−(δ) where d±(δ) = (1− |δ|)−1/2 ± (1 + |δ|)−1/2.
Three special choices for g cover virtually all of the family (1). As is

well known, the von Mises distribution arises from conditioning on R in
the bivariate normal distribution: g(z) = e−z/2 yields f0(θ) ∝ eκ cos θ where
0 < κ = mrs = r2e |δ|/{2(1 − δ2)} < ∞. The bivariate t distribution (Fang
et al., 1990, Section 3.3) has g(z) = (1 + z/ν)−(ν/2)−1, ν > 0, which gives
fψ(θ) for 0 ≤ tanh(κψ) = 2mrs/(ν +m

2 + r2s) = r2e |δ|/{ν(1− δ2) + r2e} ≤ 1
and 0 > ψ > −1. Conditioning a t distribution using the nonzero location
spherically symmetric version, and hence this subset of our distributions,
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has been considered briefly by Shimizu and Iida (2002). The bivariate sym-
metric beta distribution (Fang et al., 1990, Section 3.4) is based on g(z) =
(1 − z)b−(3/2)I(0 ≤ z ≤ 1) for b > 1/2. The spherical version of this distri-
bution centred at (m, 0) completely envelops the circle of radius rs centred
at the origin only if m + rs ≤ 1. So we condition on Rs = cs(1 − m) for
0 ≤ cs ≤ 1. With 0 ≤ tanh(κψ) = 2mcs/(1 + m − c2s(1 − m)) ≤ 1, for
b > 3/2, we obtain fψ(θ) for ψ > 0 while values of 1/2 < b < 3/2 provide
members of family (1) with −1 < ψ < ∞, albeit with mode shifted from
0 to π. Likewise, the elliptical version of the beta distribution completely

envelops only circles of radius
√
1− |δ| or less, so we need to condition on

R2
e = ce(1 − |δ|) for 0 ≤ ce ≤ 1. The same values of ψ then ensue with

0 ≤ tanh(κψ) = ce|δ|/(1− ce + |δ|) ≤ 1.
The only member of family (1) not available from this conditional deriva-

tion is the wrapped Cauchy distribution, ψ = −1. Interestingly, the wrapped
Cauchy is the only member of the family that arises by projection on to,
rather than conditioning on, the unit circle. It is the distribution obtained
by doubling the angle in the axial distribution that is the angular central
Gaussian distribution (Mardia and Jupp, 1999, Section 3.5.6). The latter is,
in fact, obtained by projecting any bivariate elliptical distribution with mean
at the origin, not just the Gaussian, on to the unit circle. As is also clear
from this section of Mardia and Jupp, the wrapped Cauchy distribution does
not arise from projecting a bivariate spherically symmetric distribution with
nonzero mean on to the circle.

3. FURTHER PROPERTIES

3.1 Trigonometric Moments and Characteristic Function

For p = 1, 2, ..., use the further standard integrals from Gradshteyn and
Ryzhik (1994, (8.711.2)):

∫ π

0
cos(px)(z +

√
z2 − 1 cosx)1/ψdx =

πΓ((1/ψ) + 1)

Γ((1/ψ) + p + 1)
P p

1/ψ(z), ψ > 0,

and

∫ π

0

cos(px)

(z −√
z2 − 1 cosx)−1/ψ

dx =
πΓ(−(1/ψ)− p)

Γ(−(1/ψ))
P p

1/ψ(z), ψ < 0,
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where P p
1/ψ(z) is the associated Legendre function of the first kind of degree

1/ψ and order p (Gradshteyn and Ryzhik, 1994, Section 8.7–8.8). Note that
P 0

1/ψ(z) ≡ P1/ψ(z).

Now, for a symmetric circular density like fψ, φp = E(eipΘ) = αp, where
{φp : p = 0,±1, ...} is the characteristic function of Θ and αp = E(cos(pΘ))
is the pth cosine moment. We immediately have

φp =




Γ((1/ψ)+1)P p
1/ψ

(cosh(κψ))

Γ((1/ψ)+p+1)P1/ψ(cosh(κψ))
, ψ > 0,

Ip(κ)/I0(κ), ψ = 0,
Γ((1/|ψ|)−p)P p

1/ψ
(cosh(κψ))

Γ(1/|ψ|)P1/ψ(cosh(κψ))
, ψ < 0,

where Ip(κ) is the modified Bessel function of the first kind of order p.
As P 1

1 (z) =
√
z2 − 1 and P p

1 (z) = 0, p = 2, 3, ..., α1 correctly reduces to
tanh(κψ)/2 and αp to 0, p = 2, 3, ..., for the cardioid distribution. For
ψ = −1, Γ(1 − p)P p

0 (z) = {(z + 1)/(z − 1)}p/2 (Gradshteyn and Ryzhik,
1994, (8.751.2)), so that Γ(1 − p)P p

0 (cosh(κ)) = {tanh(κ/2)}p = αp for the
wrapped Cauchy distribution.

3.2 Circular Variance

A useful measure of variation on the circle is the circular variance 0 ≤
ν ≤ 1 given by ν = 1− ρ, where ρ denotes the mean resultant length. For a
distribution with µ = 0, as here, ρ = α1. From Section 3.1,

α1 =
|ψ|

(1 + ψ)

P 1
1/ψ (cosh(κψ))

P1/ψ (cosh(κψ))
.

The contour plot in Fig. 2 represents the numerically calculated value of ν as
a function of κ and ψ. The circular variance takes its maximal value of 1 for
the uniform distribution which corresponds to the left-hand edge of Fig. 2
at which κ = 0 and is also the limiting form to which the distributions are
tending as |ψ| → ∞. Note that the circular variance is not, as a first glance
might suggest, symmetric in ψ.

* * * Fig. 2 about here * * *

The circular variance decreases with increasing κ for all ψ. Here is a
demonstration of that fact. Recall that, for a distribution with µ = 0, ν =
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1 − E(cos θ). Then, differentiation under the integral sign shows that, for
ψ �= 1,

∂ν

∂κ
= −sech2(κψ)Cov(cos θ, fκψ(cos θ))

where fκψ(y) = y/(1+tanh(κψ)y). The covariance is positive because fκψ(y)
is a monotone increasing function of y for all κ and ψ, and hence ν decreases.
An even simpler argument holds for the case ψ = 1. Direct computation
shows the circular variances of Cartwright’s distribution for ψ > 0, the delta
function limit for 0 ≥ ψ ≥ −2, and the distribution of Case 6 in Section 2.3
for ψ < −2, to be ψ/(1 + ψ), 0 and (2 + ψ)/(1 + ψ), respectively. These
limiting values of the circular variance as κ→ ∞ are in accordance with Fig.
2.

A very similar contour plot arises if we instead consider another measure
of variation on the circle, the circular dispersion of Fisher (1993, p.42). We
used the formula (1−α2)/(2ρ

2) where α2 = E[cos{2(Θ−µ1)}] and µ1 denotes
the mean direction, which we believe to be a correction to the formula given
by Fisher. It should be noted however that for symmetric distributions, as
here, Fisher’s definition is equivalent to ours.

3.3 Circular Kurtosis

Circular kurtosis is normally considered to be a function of α2 which is
given by

α2 =
ψ2

(1 + ψ)(1 + 2ψ)

P 2
1/ψ (cosh(κψ))

P1/ψ (cosh(κψ))

for our family. Assuming µ = 0, and hence ρ = α1, the usual standardisation
of α2, designed to account for different scales, is Mardia’s (1972, (3.7.11))
kurtosis coefficient (α2 − α4

1)/(1 − α1)
2. An alternative circular kurtosis is

Mardia’s (1972, (3.7.10)) (α2 − 4α1 + 3)/(1− α1)
2 = K, say. Both formulae

arise from consideration of a small variability matching of circular distribu-
tions with linear distributions; the former arises from the latter through a
desire to make the measure approximately take the value zero for the von
Mises distribution.

We offer an alternative argument and formula which eschews approxima-
tion. The variance and coefficient of kurtosis of a random variable associated
with a distribution on � symmetric about zero are precisely equal to the
mean and squared coefficient of variation plus one of the square of that ran-
dom variable. The latter two quantities can therefore reasonably be used as
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measures of scale and tailweight for any distribution on �+. Applying this
argument to the random variable 1 − cosΘ yields the variability measure
1− α1 and kurtosis measure

α2 + 2α1(α1 − 4) + 5

2(1− α1)2
. (6)

In fact, (6) is nothing other than (K/2) + 1.
A plot of quantity (6), obtained numerically, as a function of κ and ψ

is given in Fig. 3. Mardia’s measure (3.7.11) affords a similar plot in the
area of high kurtosis, but has rather different, and unattractive, behaviour
for ψ > 0. The kurtosis of Fig. 3 shares a fairly similar shape with the
variance of Fig. 2 except that the kurtosis takes its minimal value of 1/2 for
the uniform distribution and appears to increase with increasing κ for all
ψ. We have no proof of the latter. Direct computation shows the circular
kurtosis of Cartwright’s distribution for ψ > 0, and the distribution of Case
6 in Section 2.3 for ψ < −2, to be (ψ+2)/(1+2ψ) and ψ2/{(1+2ψ)(2+ψ)},
respectively. That of the von Mises distribution, ψ = 0, is 2. For 0 > ψ ≥ −2,
manipulations using (8.1.5) of Abramowitz and Stegun (1965) suggest that
the limiting kurtosis is 4(1 + ψ)/(2 + 5ψ) for 0 > ψ > −2/5 and is ∞
otherwise. These limiting values of the circular kurtosis as κ → ∞ are not
at odds with further numerical computation along the lines of Fig. 3.

* * * Fig. 3 about here * * *

4. COMPARISONS WITH DISTRIBUTIONS NOT IN THE FAMILY

4.1 Comparison with Wrapped Normal Distribution

The one major symmetric distribution on the circle which is not a member
of family (1) is the wrapped normal distribution. It is well known that the
von Mises and wrapped normal distributions match each other reasonably
closely over the entire range of values for κ (Stephens, 1963, Collett and
Lewis, 1981). Fig. 4 is a plot of the L2 distance between density (2) and
the wrapped normal distribution fitted to (2) by matching first trigonometric
moments. If ΘWN is a random variable from the wrapped normal distribution,

then E(cos pΘWN) = {E(cosΘWN)}p2
= αp2

1 when E(cosΘWN) is set equal
to α1 (which is always possible since there is a wrapped normal distribution
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for any value of 0 < α1 < 1). A Parseval-type identity shows the L2 distance
to be 

1

π

∞∑
p=2

(αp2

1 − αp)
2




1/2

. (7)

The quantity plotted in Fig. 4 is 1000 times (7) with the sum truncated after
p = pmax = 20. Taking the upper limit of the sum to be larger than this made
no qualitative difference to any of the contours shown, but added small-scale
artefacts which can probably be put down to numerical instability.

* * * Fig. 4 about here * * *

Broadly speaking, the good fit of the wrapped normal distribution to the
von Mises distribution, ψ = 0, is apparent and persists, albeit to a slightly
lesser degree, for ψ > 0, including the cardioid distribution, ψ = 1. The
dissimilarity between (2) and the wrapped normal is considerably greater for
ψ < 0, including the wrapped Cauchy distribution, ψ = −1, for κ not too
large. Most non-wrapped-normal of all are distributions with −1 > ψ > −2,
which are also amongst the distributions with greatest kurtosis according to
Section 3.3.

4.2 Comparison with Wrapped Symmetric Stable Distribution

We are aware of only one alternative three parameter family of symmet-
ric distributions on the circle, namely the wrapped symmetric stable dis-
tributions of Mardia (1972, Section 3.4.8e), Jammalamadaka and SenGupta
(2001, Section 2.2.8) and Gatto and Jammalamadaka (2004). As their name
suggests, these distributions arise by wrapping real-line stable distributions
onto the circle. In general, their densities can be written only in terms of an
infinite series, specifically as

fα(θ) =
1

2π


1 + 2

∞∑
p=1

ρpα

cos(p(θ − µ))

 , µ− π < θ ≤ µ+ π,

where µ ∈ [0, 2π), ρ ∈ [0, 1] and α ∈ (0, 2]. The wrapped symmetric stable
family and our new family are somewhat complementary. Their common
special case is the wrapped Cauchy distribution. The new family includes the
von Mises distribution while the wrapped symmetric stable family includes
the wrapped normal distribution.
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Distributions ‘between and beyond’ the von Mises/wrapped normal and
wrapped Cauchy distributions — those with ψ < 0 in our case and with
parameter α < 2 in the stable case — are quite similar. First, compare the
dashed curves in Fig. 1(b) of this paper with the solid curves in Fig. 2.5 of
Jammalamadaka and SenGupta (2001). Second, we repeat the comparative
exercise of Section 4.1 for the wrapped symmetric stable distributions: Fig. 5
(numerical artefacts included) is the result of plotting 1000 times


 1

π

20∑
p=3

(αpα

1 − αp)
2




1/2

, (8)

the (approximate) L2 distance between density (2) and that of the wrapped
symmetric stable distribution with first and second trigonometric moments
equated. In particular, the value of α has been chosen to be α = log2(loge(α2)/
loge(α1)) so that α2α

1 = α2. Empirically, we note that this formula appears
to yield a value of α ≤ 2 for almost all ψ ≤ 0, but often fails to give sensible
values for α if we try to extend the exercise to distributions with ψ > 0.
Indeed, it is fair to say that there are no direct analogues of the cardioid and
other ψ > 0 distributions in the wrapped symmetric stable family but, as
we have already seen, the wrapped normal can be rescaled to be similar to
those distributions.

* * * Fig. 5 about here * * *

5. MAXIMUM LIKELIHOOD ESTIMATION

In general, our family of distributions has three parameters, location µ,
concentration κ and power ψ. Recall the notation z = cosh(κψ). Write the
log-likelihood as

*(µ, κ, ψ) =
1

ψ

n∑
i=1

log(cosh(κψ) + sinh(κψ) cos(θi − µ))− n log{2Q1/ψ(z)}

where
Qν(z) =

∫ π

0
(cosh(κψ) + sinh(κψ) cosx)νdx.

It will prove more convenient to work in terms of Q, its derivatives and
related functions rather than in terms of associated Legendre functions and
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their derivatives. All such functions are amenable to numerical integration,
although care has to be taken with numerical accuracy, particularly for large
absolute values of κψ, and hence values of tanh(κψ) close to ±1.

The score equations and elements of the observed and expected informa-
tion matrix for this model are given in the Appendix. Standard asymptotic
likelihood theory applies. First, note that the maximum likelihood estimate
of location, µ, is asymptotically independent of the maximum likelihood es-
timates of the other two parameters, on which we now concentrate. Second,
it may seem, from the Appendix, that elements of the expected information
matrix ικψ = O(1/ψ) and ιψψ = O(1/ψ2) as ψ → 0. However, it can readily
be shown that the leading terms in both expressions cancel out, as does the
O(1/ψ) term of ιψψ after considerably more manipulation.

The asymptotic correlation between κ̂ and ψ̂ is given in terms of elements
of the expected information matrix by −ικψ/(ικκιψψ − ι2κψ). Taking their
formulae from the Appendix, a contour plot of this asymptotic correlation is
given in Fig. 6. Note that the vertical axis in Fig. 6 runs only from ψ = −2
to 2 because of numerical difficulties for larger |ψ|. The general impression
is of small to moderate correlations between κ̂ and ψ̂ for most κ and ψ, with
the exception of higher correlations for small |ψ|, expecially ψ < 0, and large
κ. Notice that the asymptotic correlation is positive throughout. We have
not found any simple reparametrisation of (κ, ψ) to have smaller asymptotic
correlations.

* * * Fig. 6 about here * * *

6. EXAMPLES

6.1 Example 1

We first consider a grouped dataset of n = 714 ‘vanishing angles’ of
non-migratory British mallard ducks, taken from Table 1.1 of either Mardia
(1972) or Mardia and Jupp (1999), but originally given by Matthews (1961).
Over a period of a year, the ducks were taken under sunny conditions from
Slimbridge in Gloucestershire to various sites at distances of between 30km
and 250 km. Each duck’s vanishing angle is the bearing, measured clockwise
from north, at which it disappeared from view when released. Mardia (1972,
p.10) describes the distribution of the data as being “somewhat symmetri-
cal”, and application of Pewsey’s (2002) test for reflective symmetry found
no evidence that the underlying distribution is not symmetric.
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Maximisation of the log-likelihood surface was carried out using a grid of
starting values and the Nelder-Mead simplex algorithm (Nelder and Mead,
1965). Results for fitting the full family of distributions and for fitting each of
the von Mises, cardioid and wrapped Cauchy submodels are given in Table 1.
The von Mises distribution proves to be much the best of these three, but it is
firmly rejected by a likelihood ratio test in favour of the member of the family
that maximises the likelihood, which has ψ = −0.35. Indeed, approximate
95% confidence intervals for ψ are: (−0.54,−0.18) based on the profile log-
likelihood and the χ2

1 asymptotic distribution for the log-likelihood ratio;
(−0.53,−0.17) based on ±1.96 times the standard error obtained from the
observed information and (−0.49,−0.21) based on ±1.96 times the standard
error obtained from the expected information. The profile log-likelihood for
ψ (not shown) is well-behaved and reasonably symmetric about ψ = −0.35,
which helps account for the similarity of these intervals.

* * * Table 1 about here * * *

The best fitting member of the family of distributions and the fitted von
Mises density are plotted together with a histogram of the data in Fig. 7.
The fit of the distribution with ψ = −0.35 is noticeably better than that
of the distribution with ψ = 0. Chi-squared tests of the goodness-of-fit of
these distributions, based on the binning shown in Fig. 7 but combining
class intervals to have expected values greater than 5, emphatically reject
the von Mises model (p-value 0.0002) but are much more marginal about the
ψ = −0.35 model (p-value 0.0467).

* * * Fig. 7 about here * * *

In this and the following example, occasional ‘nonsense’ solutions to
the general maximum likelihood problem were found. These were clearly
ill-fitting versions of the distribution with unbelievable values of the log-
likelihood, and were caused by the numerical difficulties alluded to in Section
4 when |κψ| is large.

6.2 Example 2

Our second example concerns an experiment in which ants were placed
singly in the centre of an arena and the initial direction in which they moved
in relation to a visual stimulus at an angle of 180 degrees from the zero
direction was recorded (to the nearest 10◦). The data come from Jander
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(1957) as plotted in Batschelet (1981, Fig. 3.2.2(A)); they are somewhat
approximate in that frequencies in class intervals were recorded to the nearest
five ants. In total, n = 730, yet both Batschelet (1981) and SenGupta and Pal
(2001) forgot about the data being recorded in units of five and erroneously
used n = 146 in their analyses of these data.

An initial fitting of our family of distributions led to a maximum like-
lihood solution having ψ̂ = −1.30 with maximised log-likelihood −926.55.
However, inspection of a histogram of the data together with this fitted
model (see Fig. 8 later) displays a lack-of-fit which is remedied by expanding
our model to have density of the form pfψ(θ)+(1−p)/(2π), a p : 1−pmixture
of the new family of distributions and the circular uniform distribution. Note
that this model has a clear interpretation in animal orientation experiments:
a (large) proportion p of animals follow some form of ‘typical’ oriented be-
haviour while the remainder are completely unaffected by the experimental
conditions (here, presence of the stimulus).

Results for fitting each of the full family and von Mises, cardioid and
wrapped Cauchy submodels, each mixed with the uniform distribution, are
given in Table 2. Clearly, the difference between maximised log-likelihoods
shows that the presence of the uniform mixing component improves mat-
ters greatly over its absence. Also, there is no loss in moving from the full
family/uniform mixture, with ψ = −0.10, to the von Mises/uniform mixture
model.

* * * Table 2 about here * * *

Also in Table 2 is the result of fitting the wrapped symmetric stable
distribution mixed with the uniform to these data by maximum likelihood.
This model has a maximised log-likelihood only very slightly smaller than
ours. What is more, the general wrapped symmetric stable/uniform mix-
ture can be specialised to a wrapped normal/uniform mixture without loss.
Indeed, on likelihood grounds (and on chi-squared goodness-of-fit grounds
not discussed in detail here), there is nothing to choose between the four
best models and, in particular, between von Mises/uniform and wrapped
normal/uniform mixtures. See also Fig. 8. (These results enhance those
of SenGupta and Pal, 2001, who fitted wrapped symmetric stable/uniform
mixture distributions to these data: we used more appropriate n, maximum
likelihood parameter estimation and noted the opportunity to specialise to
the wrapped normal/uniform mixture.) Notice that for all models supported
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by the data, the proportion of ants reacting to the stimulus is estimated to
be around 2/3.

* * * Fig. 8 about here * * *

7. DISCRIMINATION BETWEEN VON MISES, CARDIOID AND WRAPPED

CAUCHY DISTRIBUTIONS

The examples of Section 6 suggest that the principal members of the
family of distributions, the von Mises, cardioid and wrapped Cauchy distri-
butions, can be readily discriminated between, but in each example n was
over 700. How readily can these distributions be discriminated between on
the basis of smaller samples? Pewsey and Jones (2004) develop the work of
Collett and Lewis (1981) on discriminating between von Mises and wrapped
normal distributions, and we follow one of their approaches here. In terms
of models M1 and M2, say, it consists in: (i) defining T = *M1 − *M2

where *M is the maximised log-likelihood value assuming model M to be
appropriate, a positive value of T suggesting that M1 is to be preferred to
M2; (ii) defining the misclassification probabilities p1(ρ) = P (T ≤ 0 | sample
actually comes from M1 with mean resultant length ρ) and p2(ρ) = P (T ≥
0 | sample actually comes from M2 with mean resultant length ρ); (iii) set-
ting p(ρ) = max(p1(ρ), p2(ρ)); and (iv) estimating, using simulation, values
of p(ρ) for a range of values of ρ and n. For each ρ, it is of particular interest
to identify the lowest value of n for which p(ρ) is small e.g. 0.1, 0.05 or even
0.01.

Performing this algorithm for n = 25(25)200, 250, 300(100)600, ρ = 0.05,
0.1(0.1)0.9, 0.95 and taking M1 and M2 to be the von Mises and wrapped
Cauchy distributions resulted in Fig. 9(a). Discrimination proves possible
for relatively small sample sizes if the data are sampled from highly con-
centrated cases of the distributions. For instance, for ρ = 0.95, as few as
n = 50 observations are necessary in order to ensure that both misclassifi-
cation probabilities are less than 0.01. For ρ = 0.6, on the other hand, the
sample sizes required to ensure that p(0.6) is less than 0.1, 0.05 and 0.01 are
around 100, 150 and 370, respectively. For small ρ, huge sample sizes would
be required as the distributions become more and more alike and tend to the
uniform.

* * * Fig. 9 about here * * *
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Similar results for the comparison of the cardioid distribution with the von
Mises distribution and with the wrapped Cauchy distribution are presented
in Fig. 9(b),(c), respectively. Note that ρ = 1 − ν ≤ 1/2 for the cardioid
distribution. For ρ = 0.5, discrimination between the appropriate version
of Cartwright’s distribution and the von Mises distribution requires around
230 observations to ensure that p(0.5) ≤ 0.05. For ρ = 0.4, the sample size
required to ensure that p(0.4) ≤ 0.1 is around 400. For smaller ρ values,
huge sample sizes will be required before discrimination can be conducted
with small misclassification probabilities. On the other hand, clearly we can
readily discriminate between the cardioid distribution and the von Mises
distribution for data samples from concentrated cases of the latter. Similar
patterns of results arise for the comparison between cardioid and wrapped
Cauchy distributions (Fig. 9(c)), except that discrimination between the two
is much easier. For example, the sample size required to ensure that p(0.4) ≤
0.05 is now only around 180.

Following Royall (1997), it can be argued that the value ‘0’ used in both
p1(ρ) and p2(ρ) be replaced by a nonzero value t, a sensible value for which
might be t = log 8. This would correspond to deciding in favour of model
M1, say, only if the likelihood ratio in favour of M1 over M2 were et or big-
ger. Values of T between et and e−t would result in indifference between
M1 and M2, and values smaller than e−t would indicate model M2 rather
than M1. The probabilities p1(ρ) and p2(ρ) are no longer misclassification
probabilities per se, but probabilities of weak and misleading evidence taken
together. Pewsey and Jones (2004) give details of this second approach for
discrimination between von Mises and wrapped normal distributions. Here,
we simply record that the same approach applied to our pairwise distribu-
tion comparisons results, clearly, in larger sample sizes to achieve reliable
discrimination. The required sample sizes for those values of ρ quoted above
are, very roughly speaking, increased by between 50 and 100%.

8. ROTATIONALLY SYMMETRIC DISTRIBUTIONS ON THE SPHERE

The immediate extension of family (1) to distributions on the sphere in
p ≥ 2 dimensions, Sp−1, has density fψ(x) ∝ {1 + tanh(κψ)xTµ}1/ψ where x
and µ are unit vectors and superscript T denotes vector transpose. As such,
the distributions are apparently novel special cases of the general family of
spherical models with rotational symmetry (about µ), see e.g. Watson (1983,
Chapter 4) and Mardia and Jupp (1999, Section 9.3.3). The pre-existing
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special case is the von Mises-Fisher-Langevin distribution (Mardia and Jupp,
1999, Section 9.3.2) corresponding to ψ = 0.

Following Watson and Mardia and Jupp, rotationally symmetric spherical
random variables can be written x = Tµ +

√
1− T 2ξ where ξ is the unit

tangent to Sp−1 at µ, uniformly distributed on Sp−2 and independent of the
scalar random variable T = xTµ. When x is uniform on Sp−1, T has density
B((p − 1)/2, 1/2)−1(1 − t2)(p−3)/2 on t ∈ [−1, 1], where B(·, ·) denotes the
beta function. It follows that∫

Sp−1
(1 + tanh(κψ)xTµ)1/ψdx

= B((p− 1)/2, 1/2)−1
∫ 1

−1
(1 + tanh(κψ)t)1/ψ(1− t2)(p−3)/2dt.

This can be evaluated for ψ both positive and negative by judicious use of
(8.711.1) of Gradshteyn and Ryzhik (1994). For ψ �= 0, the density on the
sphere with respect to the uniform distribution turns out to be

fψ(x) =
| sinh(κψ)|(p/2)−1

2(p/2)−1Γ(p/2)

(cosh(κψ) + sinh(κψ)xTµ)1/ψ

P
1−(p/2)
(1/ψ)+(p/2)−1(cosh(κψ))

.

This reduces to 2π times (2) when p = 2 and also reduces to a simpler form
when p = 3, namely

fψ(x) =
(1 + ψ) sinh(κψ)

ψ sinh(κ(1 + ψ))
(cosh(κψ) + sinh(κψ)xTµ)1/ψ

if ψ �= −1, with another simple formula for ψ = −1. The nonzero mean
spherically symmetric conditioning arguments of Section 2.5 can be extended,
as is shown in special cases by Downs (1966) and Shimizu and Iida (2002).

APPENDIX

Use primes to denote differentiation of Qν(z) with respect to z and superscript
circles to denote differentiation of Qν(z) with respect to ν. We will continue to
write z for cosh(κψ) in places.

A.1 Score Equations

Differentiate the log-likelihood with respect to each of µ, κ and ψ, in that
order. Then, the score equations are

0 =
1
ψ
sinh(κψ)

n∑
i=1

sin(θi − µ)
cosh(κψ) + sinh(κψ) cos(θi − µ)

,
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0 = sinh(κψ)

{
n∑

i=1

(1 + coth(κψ) cos(θi − µ))
cosh(κψ) + sinh(κψ) cos(θi − µ)

− nψ
Q′

1/ψ(z)

Q1/ψ(z)

}

and

0 =
κ

ψ
sinh(κψ)

{
n∑

i=1

(1 + coth(κψ) cos(θi − µ))
cosh(κψ) + sinh(κψ) cos(θi − µ)

− nψ
Q′

1/ψ(z)

Q1/ψ(z)

}

− 1
ψ2

{
n∑

i=1

log(cosh(κψ) + sinh(κψ) cos(θi − µ))− n
Q◦

1/ψ(z)

Q1/ψ(z)

}
.

Here,

Q′
ν(z) = ν

∫ π

0
(cosh(κψ) + sinh(κψ) cos x)ν−1(1 + coth(κψ) cos x)dx

and

Q◦
ν(z) =

∫ π

0
(cosh(κψ) + sinh(κψ) cos x)ν log(cosh(κψ) + sinh(κψ) cos x)dx.

A.2 Observed Information

Elements of the observed information matrix are minus the second derivatives
of ; denote them by J with subscripts µµ, µκ, etc. We have:

Jµµ =
1
ψ
sinh(κψ)

n∑
i=1

sinh(κψ) + cosh(κψ) cos(θi − µ)
(cosh(κψ) + sinh(κψ) cos(θi − µ))2

,

Jµκ = −
n∑

i=1

sin(θi − µ)
(cosh(κψ) + sinh(κψ) cos(θi − µ))2

,

Jµψ =
κ

ψ
Jµκ +

1
ψ2
sinh(κψ)

n∑
i=1

sin(θi − µ)
cosh(κψ) + sinh(κψ) cos(θi − µ)

,

Jκκ = −ψ
n∑

i=1

1− cos2(θi − µ)
(cosh(κψ) + sinh(κψ) cos(θi − µ))2

+ nψ2

{
cosh(κψ)

Q′
1/ψ(z)

Q1/ψ(z)
+ sinh2(κψ)

(
Q′′

1/ψ(z)

Q1/ψ(z)
−
(Q′

1/ψ(z))
2

Q2
1/ψ(z)

)}
,

Jκψ = −κ
n∑

i=1

1− cos2(θi − µ)
(cosh(κψ) + sinh(κψ) cos(θi − µ))2

+ n {sinh(κψ) + κψ cosh(κψ)}
Q′

1/ψ(z)

Q1/ψ(z)

+ nκψ sinh2(κψ)

{
Q′′

1/ψ(z)

Q1/ψ(z)
−
(Q′

1/ψ(z))
2

Q2
1/ψ(z)

}
− n

ψ
sinh(κψ)

{
Q′◦

1/ψ(z)

Q1/ψ(z)
−

Q′
1/ψ(z)Q

◦
1/ψ(z)

Q2
1/ψ(z)

}
,
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Jψψ =
2κ
ψ2

n∑
i=1

sinh(κψ) + cosh(κψ) cos(θi − µ)
cosh(κψ) + sinh(κψ) cos(θi − µ)

− κ2

ψ

n∑
i=1

1− cos2(θi − µ)
(cosh(κψ) + sinh(κψ) cos(θi − µ))2

+ nκ2 sinh2(κψ)

{
Q′′

1/ψ(z)

Q1/ψ(z)
−
(Q′

1/ψ(z))
2

Q2
1/ψ(z)

}
− 2nκ

ψ2
sinh(κψ)

{
Q′◦

1/ψ(z)

Q1/ψ(z)
−

Q′
1/ψ(z)Q

◦
1/ψ(z)

Q2
1/ψ(z)

}

+
n

ψ4

{
Q◦◦

1/ψ(z)

Q1/ψ(z)
−
(Q◦

1/ψ(z))
2

Q2
1/ψ(z)

}
+ nκ2 cosh(κψ)

Q′
1/ψ(z)

Q1/ψ(z)

− 2
ψ3

{
n∑

i=1

log(cosh(κψ) + sinh(κψ) cos(θi − µ))− n
Q◦

1/ψ(z)

Q1/ψ(z)

}
.

Here,

Q′′
ν(z) = ν(ν − 1)

∫ π

0
(cosh(κψ) + sinh(κψ) cos x)ν−2(1 + coth(κψ) cos x)2dx

− ν sinh−3(κψ)
∫ π

0
(cosh(κψ) + sinh(κψ) cos x)ν−1 cos xdx,

Q′◦
ν (z) =

∫ π

0
(cosh(κψ) + sinh(κψ) cos x)ν−1(1 + coth(κψ) cos x)dx

+ ν

∫ π

0
(cosh(κψ) + sinh(κψ) cos x)ν−1(1 + coth(κψ) cos x)

× log(cosh(κψ) + sinh(κψ) cos x)dx,

Q◦◦
ν (z) =

∫ π

0
(cosh(κψ) + sinh(κψ) cos x)ν log2(cosh(κψ) + sinh(κψ) cos x)dx.

A.3 Expected Information

Elements of the expected information matrix follow simply from those of the
observed information matrix. Denote n−1 times the expected information matrix
by ι. Then:

ιµµ =
1
ψ
sinh(κψ)

R1/ψ(z)
Q1/ψ(z)

, ιµκ = ιµψ = 0,

ικκ = −ψ
S1/ψ(z)
Q1/ψ(z)

+ψ2

{
cosh(κψ)

Q′
1/ψ(z)

Q1/ψ(z)
+ sinh2(κψ)

(
Q′′

1/ψ(z)

Q1/ψ(z)
−
(Q′

1/ψ(z))
2

Q2
1/ψ(z)

)}
,

ικψ = −κ
S1/ψ(z)
Q1/ψ(z)

+ {sinh(κψ) + κψ cosh(κψ)}
Q′

1/ψ(z)

Q1/ψ(z)

+ κψ sinh2(κψ)

{
Q′′

1/ψ(z)

Q1/ψ(z)
−
(Q′

1/ψ(z))
2

Q2
1/ψ(z)

}
− 1

ψ
sinh(κψ)

{
Q′◦

1/ψ(z)

Q1/ψ(z)
−

Q′
1/ψ(z)Q

◦
1/ψ(z)

Q2
1/ψ(z)

}
,
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ιψψ =
2κ
ψ2

R1/ψ(z)
Q1/ψ(z)

− κ2

ψ

S1/ψ(z)
Q1/ψ(z)

+ κ2 sinh2(κψ)

{
Q′′

1/ψ(z)

Q1/ψ(z)
−
(Q′

1/ψ(z))
2

Q2
1/ψ(z)

}

− 2κ
ψ2
sinh(κψ)

{
Q′◦

1/ψ(z)

Q1/ψ(z)
−

Q′
1/ψ(z)Q

◦
1/ψ(z)

Q2
1/ψ(z)

}

+
1
ψ4

{
Q◦◦

1/ψ(z)

Q1/ψ(z)
−
(Q◦

1/ψ(z))
2

Q2
1/ψ(z)

}
+ κ2 cosh(κψ)

Q′
1/ψ(z)

Q1/ψ(z)
.

Here,

Rν(z) =
∫ π

0
(cosh(κψ) + sinh(κψ) cos x)ν−1(sinh(κψ) + cosh(κψ) cos x)dx

and
Sν(z) =

∫ π

0
(cosh(κψ) + sinh(κψ) cos x)ν−2(1− cos2 x) dx.
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Table 1. Parameter Values Maximising the Log-Likelihood and Correspond-
ing Maximised Log-Likelihood Values for the Full Distribution Family and
Three Sub-Families for the Mallard Data.

Distribution ψ µ κ Log-Likelihood

full family −0.35 −0.81 1.84 −869.36
von Mises 0 −0.80 2.12 −877.46
cardioid 1 −0.74 2.76 −981.55
wrapped Cauchy −1 −0.82 1.50 −889.42

Table 2. Parameter Values Maximising the Log-Likelihood and Correspond-
ing Maximised Log-Likelihood Values for Various Models Mixed With the
Circular Uniform for the Ant Data. The columns headed ψ or α and κ or
ρ give ψ and κ for our family of distributions and α and ρ for the wrapped
symmetric stable distributions.

Distribution ψ or α µ κ or ρ p Log-Likelihood

full family −0.10 −3.10 5.01 0.67 −918.72
von Mises 0 −3.10 7.54 0.66 −918.80
cardioid 1 3.07 3.80 0.85 −1122.85
wrapped Cauchy −1 −3.10 1.86 0.86 −923.77
wrapped

symmetric stable 1.95 −3.10 0.93 0.67 −918.89
wrapped normal 2 −3.10 0.93 0.66 −918.90
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Figure 1. Density (2) for ψ = −3/2,−1,−1/2 (dashed), ψ = 0 (solid), and
ψ = 1/2, 1, 3/2 (dotted), in Order of Decreasing Height at 0, for (a) κ = 1/2,
(b) κ = 2

[Figure 1(a)]

-3 -2 -1 0 1 2 3

theta

0.0

0.1

0.2

0.3

de
ns

ity

24



[Figure 1(b)]
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Figure 2. The Circular Variance as a Function of κ and ψ
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Figure 3. The Circular Kurtosis (6) as a Function of κ and ψ
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Figure 4. One Thousand Times the L2 Distance (7), Truncated After pmax =
20, Between (2) and the Wrapped Normal Distribution as a Function of κ
and ψ
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Figure 5. One Thousand Times the L2 Distance (8), Truncated After pmax =
20, Between (2) and the Wrapped Symmetric Stable Distribution as a Func-
tion of κ and ψ ≤ 0
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Figure 6. Asymptotic Correlation Between κ̂ and ψ̂ as a Function of κ and ψ
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Figure 7. Histogram of the Mallard Data Together With Maximum Like-
lihood Fits of the Full Family of Distributions (Solid Curve) and the Von
Mises Distribution (Dashed Curve). The data and densities are plotted on
approximately (µ̂− π, µ̂+ π)
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Figure 8. Histogram of the Ant Data Together With Maximum Likelihood
Fits of the Full Family of Distributions Solid Curve), the Von Mises/Uniform
Mixture (Dashed Curve) and the Wrapped Normal/Uniform Mixture (Dotted
Curve). The latter two curves are essentially coincident across most of the
figure. The data and densities are plotted on approximately (µ̂− π, µ̂+ π)

0 1 2 3 4 5 6
direction of movement

0.0

0.2

0.4

0.6

0.8

de
ns

ity

32



Figure 9. Estimated Values of p(ρ) as Functions of n. Plots correspond to:
(a) von Mises versus wrapped Cauchy; (b) cardioid versus von Mises; (c)
cardioid versus wrapped Cauchy. From the topmost downwards, the solid
lines correspond to increasing values of ρ; ρ takes values 0.05, 0.1(0.1)0.9,
0.95 in frame (a) and 0.05, 0.1(0.1)0.5 in frames (b) and (c). The dotted
lines are at 0.1, 0.05 and 0.01

[Figure 9(a)]
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[Figure 9(b)]
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[Figure 9(c)]
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