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Abstract In this paper we present a family of ternary quasi-perfect BCH codes. These
codes are of minimum distance 5 and covering radius 3. The first member of this family is
the ternary quadratic-residue code of length 13.
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1 Introduction

We start with several definitions which are traditional in the field of coding theory. The Galois
field of q elements, where q is a prime power, is denoted by GF(q). The Hamming space of
all n-tuples of elements from GF(q) will be denoted by H(n, q). The elements of H(n, q)

will be referred to as words or vectors. The Hamming space can be considered as a metric
space together with the metric function d(x, y), which is equal to the number of positions
where x and y differ, known as Hamming distance. By sphere and ball of radius r around
a vector x we understand the set of all vectors at Hamming distance exactly and at most r
from x, respectively. An arbitrary subset C of H(n, q) is called q-ary error-correcting code,
or simply a code. The parameter n is known as the length of the code. Clearly, H(n, q) is
a vector space over the field GF(q) with addition and multiplication by scalar performed
component-wise as in GF(q). Any linear subspace of H(n, q) is referred to as a linear code.
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The minimum distance for a code C is defined by

d(C)
�= min{d(x, y) | x, y ∈ C, x �= y}.

We use the notation (n, M, d)q for a general code of length n, cardinality M and minimum
distance d(C) = d . If the code is linear and its dimension as a subspace is k we denote it by
[n, k, d]q .

The minimum distance is an important parameter which defines the error-correcting prop-
erties of the code when it is used for communication over i.a. additive-white-Gaussian-noise
(AWGN) communication channels. It is easy to see that up to

t (C) =
⌊

d(C) − 1

2

⌋

errors can be successfully corrected and this quantity is known as the packing radius of the
code C . This represents the largest possible integer number such that the spheres of this
radius around the codewords are disjoint. In a similar manner the covering radius of a code
C is defined as the least possible integer number such that the balls of this radius around the
codewords cover the whole space H(n, q). Formally we write

ρ(C)
�= max

x∈H(n,q)
min
c∈C

d(x, c).

Obviously, the covering radius is at least as big as the packing radius. Codes that achieve
this equality, i.e. t (C) = ρ(C), are called perfect. The parameters for which perfect codes
over Galois fields exist have been completely classified [11–13]. The possible cases for the
parameters (n, M, d)q are

• (n, qn, 1)q —the whole space H(n, q), where n is a positive integer and q is a prime power;
• (2l − 1, 2, 2l − 1)2—the binary repetition codes, where l is a positive integer;
• ((qs − 1)/(q − 1), q(qs−1)/(q−1)−s−1, 3)q—the Hamming codes, where s is a positive

integer and q is a prime power;
• (23, 4096, 7)2—the binary Golay code;
• (11, 729, 5)3—the ternary Golay code.

The next interesting case is when the covering radius exceeds the packing radius by
one, i.e. ρ(C) = t (C) + 1. Codes that satisfy this condition are known as quasi-perfect.
Classification of the putative sets of parameters for quasi-perfect codes seems to be much
more complicated than that for the perfect case. In a recently published paper by Etzion and
Mounits [6] a survey of the known results for the binary case is given. It appears that there
is a great variety of quasi-perfect codes of minimum distances up to 5. However, only two
non-trivial examples of binary quasi-perfect codes of minimum distance greater than 5 are
known and they are connected to the binary Golay code.

Considerably less is known for q-ary quasi-perfect codes with q > 2. One infinite fam-
ily of ternary codes is known due to Gashkov and Sidel’nikov [7]. The family members are
[(3s +1)/2, (3s +1)/2−2s, 5]3-codes with covering radius 3. Similarly, two families of qua-
ternary codes with the parameters [(4s−1)/3, (4s−1)/3−2s, 5]4 and [(22s+1+1)/3, (22s+1+
1)/3 − 2s − 1, 5]4 have been presented by Gevorkjan et al. [8] and Dumer and Zinoviev
[5], respectively. The parameter s above is an integer number greater than 1. The quasi-
perfectness, i.e. the fact that the covering radius is 3, of these codes have been shown by one
of the authors in [3,4]. In this paper we show that there exist [(3s −1)/2, (3s −1)/2−2s, 5]3

quasi-perfect codes for all odd s ≥ 3. The first member of the family is the [13, 7, 5]3

quadratic-residue code [1].
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A family of ternary quasi-perfect BCH codes 267

In Sect. 2 we define the codes and determine their minimum distance while in Sect. 3 we
prove that their covering radius is equal to 3. Finally in Sect. 4 we suggest possible decoding
algorithms for the presented codes.

2 Definition of the codes

Recall that a code is called cyclic if every cyclic shift of a codeword is also a codeword.
Linear cyclic codes can be identified by ideals in the polynomial ring GF(q)[x]/(xn − 1).
Thus every q-ary linear cyclic code is defined by its generator polynomial g(x) ∈ GF(q)[x]
which is a divisor of xn − 1.

Let us define α as a primitive n
√

1, where n = (3s − 1)/2, in an extension field of GF(3).
The element α can be found in the field GF(3s). If β is a primitive element of GF(3s), then
α = β2. The minimal polynomials of α and α−1 with respect to GF(3) are

g1(x) = (x − α)(x − α3) . . . (x − α3s−1
)

and

g−1(x) = (x − α−1)(x − α−3) . . . (x − α−3s−1
),

respectively. For every positive integer s let us define the code Cs to be the cyclic ternary
code of length n = (3s − 1)/2 with generator polynomial g(x) = g1(x)g−1(x). Obviously
the dimension of Cs is

k = n − 2s = 3s − 1

2
− 2s.

To determine the minimum distance we use the BCH bound for the minimum distance of
a cyclic code.

Proposition 1 The cyclic codes Cs defined above have minimum distance d(Cs) ≥ 5, when
s is odd and d(Cs) = 2, when s is even.

Proof We start with the case when s is odd. In this case we have gcd(2, n) = 1. If we set
γ = α2 we observe that the set{

γ (n−3)/2, γ (n−1)/2, γ (n+1)/2, γ (n+3)/2
}

= {
α−3, α−1, α, α3}

is a subset of roots of the generator polynomial of Cs . Thus by the BCH bound (see for
example [10] Cor. 9, p. 202) the minimum distance is at least 5.

When s is even we have codes of even length and can easily check that the vector corre-
sponding to the polynomial c(x) = 1+xn/2 is a codeword in Cs of weight 2, thus d(Cs) ≤ 2.
Clearly the minimum distance can not be strictly less than 2. ��

We shall see at the end of the next section that for odd s ≥ 3 the minimum distance d(Cs)

is actually exactly 5.

3 The covering radius

Here we show that the covering radius of the defined codes is always 3 whenever the param-
eter s is odd. We assume that s is odd throughout this section. Let r = (r0, r1, . . . , rn−1) be
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an arbitrary vector in H(n, 3). Let us identify r with the polynomial

r(x) =
n−1∑
i=0

ri xi ∈ GF(3)[x].

We have to show that for arbitrary polynomial r(x) of degree at most n − 1, there always
exist polynomials c(x) and e(x), corresponding to vectors c and e from H(n, 3), such that
r(x) = c(x) + e(x), c(x) ∈ C and wtH (e(x)) ≤ 3. Define, as usual, the syndromes

Si (r) = r(αi ) ∈ GF(3s),

for i ∈ {±1}. Since c(x) is a codeword and α±1 are roots of the generator polynomial g(x),
we can define

Si = Si (r) = r(αi ) = e(αi ) = Si (e) ∈ GF(3s),

for i ∈ {±1}. Every vector r ∈ H((3s − 1)/2, 3) corresponds to a pair of syndromes
(S1, S−1) ∈ (GF(3s))2. Thus we have to show that for an arbitrary pair of elements (a, b)

from GF(3s) there exists a polynomial e(x) with at most 3 non-zero coefficients from GF(3s),
such that

(S1, S−1) = (S1(e), S−1(e)) = (a, b). (1)

Due to the special choice of the code-length we can identify the vectors of Hamming
weight one in H((3s −1)/2, 3) with the non-zero elements of GF(3s). The following Lemma
clarifies this identification.

Lemma 1 For every non-zero element β i of GF(3s) there exists an unique monomial m(x) ∈
GF(3)[x] of degree at most (3s − 3)/2, such that m(α) = β i , where α = β2.

Proof It is sufficient to show the existence since both the number of monomials in GF(3)[x]
of degree at most (3s − 3)/2 and the non-zero elements in GF(3s) is equal to 3s − 1. If
i is even, i.e. i = 2k for some k ∈ {0, 1, . . . , (3s − 3)/2}, then for m(x) = xk we have
m(α) = αk = β2k = β i and deg m(x) ≤ (3s − 3)/2. If i is odd, i.e. i = 2k + 1 for some
k ∈ {0, 1, . . . , (3s −3)/2}, then the monomial m(x) = −xk+(3s+1)/4, for 0 ≤ k ≤ (3s −7)/4
and m(x) = −xk−(3s−3)/4, for (3s − 3)/4 ≤ k ≤ (3s − 3)/2 satisfies the conditions since
β(3s−1)/2 = −1 and 3s ≡ 3 (mod 4) when s is odd. ��

Every monomial m(x) in GF(3)[x] has the property that m(x)m(x−1) = 1. If we repre-
sent the polynomial e(x) ∈ GF(3)[x] of Hamming weight l, as a sum of monomials in the
following way

e(x) =
l∑

i=1

ei x pi =
l∑

i=1

ei (x),

then we have

e(x−1) =
l∑

i=1

(ei (x))−1.

In the light of Lemma 1 and the last observation, the search for a polynomial e(x) that satisfies
Eq. 1 is equivalent to solving the system of equations

|z1 + z2 + · · · + zl = a
z−1

1 + z−1
2 + · · · + z−1

l = b
(2)

123



A family of ternary quasi-perfect BCH codes 269

over the field GF(3s). According to Proposition 1 the system (2) has at most one solution
(up to permutation) for l = 1 and l = 2. In the case l = 1 we have a solution if and only if
ab = 1.

Let us arbitrarily fix the pair (a, b) ∈ (GF(3s))2, such that (a, b) �= (0, 0) and ab �= 1.
We shall provide a solution to the system (2) in the case l = 3. Define the functions µ(x) =
a2b2x2 + ax4 + b and ν(x) = a2b2x2 − ax4 − b on the field GF(3s). For arbitrary y ∈
(GF(3s))∗ we can easily check that

µ(y − y−1ab2) + ν(y + y−1ab2) = 0. (3)

The element −1 ∈ GF(3s) is not a perfect square when s is odd since β(3s−1)/2 = −1
and (3s − 1)/2 is odd. Thus by Eq. 3 either µ(y − y−1ab2) or ν(y + y−1ab2) is a perfect
square. Any of the equations y − y−1ab2 = x and y + y−1ab2 = x has at most two different
solutions in y. Thus either µ(x) or ν(x) is a perfect square for at least (3s + 1)/4 different
x’s.

In the case when µ(x) is a perfect square the following triple

(z1, z2, z3) =
(

1 − ax2

b − x2 ,
x(1 − ab) + √

µ(x)

x(b − x2)
,

x(1 − ab) − √
µ(x)

x(b − x2)

)
,

is a solution to (2) with l = 3, whenever x2 �∈ {0, a−1, b}. In the case when ν(x) is a perfect
square the triple

(z1, z2, z3) =
(

1 + ax2

b + x2 ,
x(1 − ab) + √

ν(x)

x(b + x2)
,

x(1 − ab) − √
ν(x)

x(b + x2)

)
,

is a solution to (2) with l = 3, whenever x2 �∈ {0,−a−1,−b}. In both cases the number of
“unsuitable” choices of x is at most 5. This means that there always exists x such that one
of the suggested triples above provides a solution to the system (2) since (3s + 1)/4 > 5 for
s ≥ 3.

It is well known that vectors with the same syndrome belong to the same coset defined by
a code. Due to the fact that d(Cs) ≥ 5, for fixed a and b such that ab �= 1, it is not possible
to have two different solutions of the system (2) with l = 2. We have shown that in the coset
corresponding to the syndrome (a, b) for which ab �= 1, there are at least (3s + 1)/4 − 5
vectors of Hamming weight at most 3. Since 3[(3s + 1)/4 − 5] − 1 > n = (3s − 1)/2 for all
s ≥ 4, we have two vectors of weight at most 3 in the coset which have a non-zero element
in the same position. This means that we have a codeword in Cs of weight at most 5. The
existence of a codeword of Hamming weight 5 in the case s = 3 can be checked directly [1].

The results above can be summarized in the following statement.

Theorem 1 The ternary cyclic codes Cs defined in Sect. 2 have covering radius ρ(Cs) = 3
when s ≥ 3 is odd. Moreover, the minimum distance of the codes is d(Cs) = 5.

Direct consequence of this theorem is the following.

Corollary 1 The codes Cs, defined in Sect. 2, are quasi-perfect for all positive odd integers
s ≥ 3.

In [10] after showing that the double-error-correcting binary primitive BCH codes are
quasi-perfect [9], the authors conjectured as a research problem (9.4) on pp. 280, that there
are no other BCH codes which are quasi-perfect. Clearly, Corollary 1 provides an infinite
family of counter-examples to that conjecture.
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4 Decoding of the codes

It was mentioned in Sect. 2 that the codes Cs can be considered as BCH codes and thus any
standard BCH decoder for double error correction can be applied in the case of odd s (see
for example [2] Ch. 7).

A special syndrome-decoding algorithm can be designed based on the observations in
Sect. 3. Short description of this algorithm follows.

Step 1. Calculate S1 and S−1 as in (1).
Step 2. If S1 = S−1 = 0, no errors. Otherwise go to Step 3.
Step 3. If S1S−1 = 1, one error. Calculate the error monomial e(x)

as in the proof of Lemma 1 for a = S1. Otherwise go to
Step 4.

Step 4. If S1S−1(S1S−1 − 1) is a non-zero perfect square in GF(3s),
two errors. Determine the roots of the quadratic equation
S−1 y2 − S1S−1 y + S1 = 0 and the error monomials e1(x) and e2(x)

as in the proof of Lemma 1 for these roots. The error
polynomial is e(x) = e1(x) + e2(x).
Otherwise three errors.

Advantage of the suggested algorithm is that the error vector is obtained by simple cal-
culations of the syndromes and possibly solution of a quadratic equation.

5 Conclusions

A family of ternary BCH codes previously unknown to be quasi-perfect has been presented.
This is only the fourth infinite sequence of parameters for which non-binary quasi-perfect
codes are known to exist. Unfortunately the construction works only for odd values of the
parameter s. For the even case a new approach is needed. A challenging open question is
the existence of quasi-perfect [(3s − 1)/2, (3s − 1)/2 − 2s, 5]3 codes for even values of s.
Some steps towards a solution of this problem has already been taken and hopefully we will
be able to present a result in a near future.
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