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Abst rac t .  This paper presents several methods to construct trapdoor 

block ciphers. A trapdoor cipher contains some hidden structure; know- 

ledge of this structure allows an attacker to obtain information on the key 

or to decrypt certain ciphertexts. Without this trapdoor information the 

block cipher seems to be secure. It is demonstrated that for certain block 

ciphers, trapdoors can be built-in that make the cipher susceptible to 

linear cryptanalysis; however, finding these trapdoors can be made very 

hard, even if one knows the general form of the trapdoor. In principle 
such a trapdoor can be used to design a public key encryption scheme 

based on a conventional block cipher. 

1 Introduction 

Researchers have been wary of t rapdoors in encryption algorithms, ever since 

the DES [9] was proposed in the seventies [15]. In spite of this, no one has been 

able to show how to construct a practical block cipher with a t rapdoor.  For most  

current block ciphers it is relatively easy to give strong evidence that there exist 

no full trapdoors.  We define a full t rapdoor as some secret information which 

allows an attacker to obtain knowledge of the key by using a very small number 

of known plaintexts, no matter  what these plaintexts are or what the key is. 

In this paper  we consider partial trapdoors,  i.e., t rapdoors that not necessarily 

work for all keys, or that give an attacker only partial  information on the key. We 

show that it is possible to construct block ciphers for which there exists a linear 

relation with a high probability; knowledge of such a relation allows for a linear 

attack which requires only a very small number of known plaintexts [13, 14]. A 

t rapdoor  is said to be detectable (undetectable) if it is computationally feasible 

(infeasible) to find it even if one knows the general form of the trapdoor.  

The rest of this paper  is organized as follows. In w we explain how both 

detectable and undetectable t rapdoors can be built into S-boxes. w deals with 

t rapdoors  in round functions and complete block ciphers. Extensions are dis- 

cussed in w and the conclusions are presented in w 
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The inner product of two Boolean vectors x and y with components x[0] 

through x[m] and y[0] through y[m] will be denoted with 

m 

�9 v = v i i i .  

i=1 

2 T r a p d o o r  m • n S - b o x e s  

In this section we discuss the construction and hiding of trapdoors in S-boxes. 

2.1 C o n s t r u c t i o n  

An m x n substitution box (or S-box) can be defined by its component functions: 

a collection of n Boolean functions fi (x), i = 1 , . . . ,  n, that take as input Boolean 

vectors x of dimension m. We start with an m x ( n -  1) S-box S(x) consisting of 

n - 1 functions f/,  i = 1 , . . . ,  n, i r q selected randomly according to a uniform 

distribution (or following an arbitrary design criterion). The trapdoor m x n 

S-box T(x)  is derived from S(x) by adding an extra function in the following 

way. We choose an n-bit Boolean vector/3 with j3q = 1 for some q with 1 < q < n 

and ensure that 
n 

fq(X) = ~ /3[i]. fi(x) (1) 

i=l , i#q 

with probability PT. Then 

}9 �9 T(x)  = 0 

holds with probability PT (19). This is equivalent to a correlation 

(2) 

CT(/~) = 2. Pw(fl) -- 1 

between the constant zero function and j3 �9 T(x) .  The trapdoor information is 

the vector/~. 

2.2 Hiding the Trapdoor 

If the S-box is claimed to be selected randomly according to a uniform distribu- 

tion from all m x n S-boxes, it is rather easy to hide a t rapdoor in it. Indeed, for 

large values of n and m, the function fq(x) is computationally indistinguishable 

from a randomly selected one. We first prove that this construction in fact in- 

troduces only one j3-vector with a high correlation value, not accompanied by a 

range of t3-vectors with 'smaller' correlation values. Then we discuss the difficulty 

of finding this t rapdoor vector. 
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Introducing no more than one/3  with high correlation: Suppose S(x) is 

an m x (n - 1) S-box selected such that for all n-bit vectors 7, 

Cs("y) ~ Cmax. 

Consider now the m x n S-box T(x) that results from adding fq(x) to S(x).  It 

still holds that for all 7 with 7q = O, 

CT('~) ---- CS(7)  ---~ Cmax, 

so we are left with the cases where 7q : 1. If PT = 1, then/3 �9 T(x) = 0 and: 

7 " T(x) = (7 �9 T(x)) @ (~ �9 T(x)) 

= (7 @/9) �9 T(x) 

= (7 �9 (3) 

Since (7 �9 }~)q ---- O, for all 7 # f~, 

CT (7) : CS (7 (]~ t ~) <-- Cmax. (4) 

Equation (3) holds with probability PT. If PT < 1 it is possible that (4) does 

not hold. Consider in this case the S-box T'(x)  that results from (1) i fpT = 1. 

All correlations of T'(x) are below Cmax. Thus T(x) can be considered as being 

constructed by applying (1 - P T ) "  2 m random changes to one component of T '  (x). 

The prol~ability that these random changes to the random S-box will result in a 

significant change of Cma• is very small. 

R e c o v e r i n g  ;3 If a cryptanalyst suspects a relation of the form (2), he can decide 

to examine the 2 n - 1 non-zero values of/9 exhaustively. For each value of fl, 

verifying PT requires the computation of a Walsh-Hadamard transform on an m- 

bit Boolean function [2], which requires O(m.  2 m) operations. If (m, n) = (8, 32) 

this is feasible and the t rapdoor is detectable, but for (m, n) - (8, 64) this requires 

about 264 Walsh-Hadamard transformations on 8-bit functions, which is currently 

quite hard (256 times more difficult than a DES key search). For (m, n) = (10, 80) 

an exhaustive search is at present not feasible. The search can possibly be sped 

up by lattice methods (such as LLL [12]) or coding theory techniques, but the 

applicability of these techniques is still an open problem. 

The search for the/%vector that has high correlation is equivalent to the prob- 

lem of learning a parity function in the presence of noise. The Pari ty Assumption 

[4] tells that this problem is probably NP-hard. This classification only deals with 

the general problem; specific instances might be easier to solve. For instance, if 

PT is very close to one, it is possible to use Gaussian elimination to solve the 

problem. 

Define the m Boolean vectors a(J), j = 1 , . . . , n  as a(J)[i] = fj( i) ,  i - 
0 , . . . 2  m - 1. Equation (1) can then be translated into 

n 

@ a(') = (5) 
i=1 
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If  (1) holds with probabili ty one, or pT(/3) ---- 1, then 5 = 0. In this case the 

a(i)'s are linearly dependent and the linear relation between the vectors can be 

recovered in a very efficient way with Gaussian elimination on (5). If the prob- 

ability of (1) is smaller than one, the vectors a (i) are independent; 5 is different 

f rom zero and unknown to the cryptanalyst ,  and the Hamming  weight of (f is 

given by 

Wh(5) = 2re( l - -  PT). 

The cryptanalyst  can still try to recover j3 by guessing a (low-weight) value for 5 

and solving the set of equations (5). Equation (5) will only have a solution when 

the guess for 5 is correct. A more complex strategy for the cryptanalyst  is to use 

the following equations: 

n d 

(~ fl[il" a(i) ---- ~ 7[i] ' (f(i) �9 (6) 

/ = 1  i = 1  

The d vectors ~(i) are guessed by the cryptanalyst .  If  the unknown ~ can be 

expressed as a linear combination of the vectors ~(i), the cryptanalyst  can hope 

to find the t rapdoor  by solving (6) for fl[i] and 7[i]. The probabil i ty that ~ is a 

linear combination of the d vectors (f(i) increases with d. 

If the ~(i) vectors are linearly independent, they generate a vector space of size 

2 d. Note that we are only interested in the vectors with a low Hamming  weight, 

say all vectors with Hamming weight _< D. For simplicity we assume that all the 

5(i) vectors have Hamming  weight one. The number of vectors in a d-dimensional 

space with Hamming  weight <_ D is given by 

D 

k = l  

Table 1 shows the numerical values for several choices of D and d. 

D d = 64 d = 96 d = 256 d = 1024 

1 

I0 

20 

32 

40 

26 
237 

255 
263 
264 

2 7 

244 
268 
286 
292 

28 
2 s8 
298 
2136 

215~ 

210 

27a 
21s9 

22o~ 

2240 

Table 1. The number of vectors in a d-dimensional space with Hamming weight < D. 

For example, consider a 10 x 40 S-box. There are 21~ inputs, and for each 

input the equations may hold or not hold, resulting in a number of 2 ~1~ possible 

vectors; 22~ of them have Hamming  weight < 32. If we take d = 64, the 
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probability Pie that ~ is a linear combination of d randomly chosen ~(i) vectors is 

equal to 263/22~ The work factor of this algorithm is determined by ptc and by 

the work to solve (6), which is O((2 m + n + d) 3) (note that the best asymptotic 

algorithms reduce the exponent from 3 to 2.376 [6]). 

By increasing d we increase pt~. However, if d becomes larger than a certain 

threshold value, spurious solutions for 5 will start to appear that have a large 

Hamming weight. These unwanted solutions correspond to /~  vectors with low 

correlation values. This effect limits the use of Gaussian elimination. This al- 

gorithm will be be more useful than exhaustive search for/~ if D and n are small, 

and m is large. 

2.3 Bent Functions 

The construction of w can be extended to deal with additional constraints 

imposed on the functions f~ (x). For example, in some block ciphers (such as the 

CAST family [1]), it is necessary that the component functions fi(x) are bent 

functions. The Maiorana construction for bent functions [7] can then be used to 

obtain an S-box satisfying property (2): an m-bit  bent function f (x )  (m is even) 

is obtained from an m/2-bi t  permutation zr(y) and an arbitrary m/2-bi t  function 

g(z) as follows: 

f (x)  -- f (y , z )  = 7r(y) .z  ~ g(z).  

Here '. '  denotes multiplication in GF(2m/2). If two component functions fi (x) 

and fj  (x) are derived from the same permutation rr(y), we obtain 

f (y, z) �9 f j ( y ,  z) = g (z) 

which can be chosen arbitrarily close to a constant function. To hide (2) in a bent 

function based S-box we proceed as follows, we choose a/~ with even Hamming 

weight. We divide the set of indices where t3i -- 1 arbitrarily into pairs. For 

each pair of indices we select a different mapping ~ ~-+ (y, z) and a different 

permutation zr. We define m/2-bi t  functions gi(z), and extend them to full m-bit 

functions by adding zero values. Then 

m 

�9 T(x)  = = 0 

i----1 

with probability PT. 
This construction shows that is possible to find a set of bent functions that 

sum to an almost constant function. We believe that is also possible to use other 

bent functions in a similar construction. 

3 Trapdoor Ciphers 

In this section we propose several constructions for trapdoors in block ciphers 

starting from the building blocks, i.e., the round functions. 
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3.1 T r a p d o o r  R o u n d  F u n c t i o n s  

We now show that the trapdoors in S-boxes can be extended to trapdoors in 

the round function of a Feistel cipher [8]. A 2p-bit Feistel cipher with r rounds 

operates as follows: plaintext and ciphertext consist of two p-bi t  halves denoted 

with L0, R0 and Lr, Rr respectively. The key is denoted with K.  Each round 

takes a 2p-bit message input block Li-  1, R~- 1 and a k-bi t  key input Ki which is 

derived from K using the key scheduling algorithm. The output of the ith round 

is computed as follows: 

Ri : Li-1 (~ F(KI ~ Ri-1) 

Li = Ri-1 i =  1 , . . . , r .  

Here F is the round function of the Feistel cipher. Note that after the last round, 

the swapping of the halves is undone to make encryption and decryption similar. 

In this section we consider the round functions of variants on CAST [10] and 

LOKI91 [5]. 

t C A S T :  The ciphers of the CAST family are 64-bit Feistel ciphers, or p = 32. 

The round function F is based on four 8 x 32 S-boxes, which have components 

that are either randomly selected functions or are bent functions [1]. The 32-bit 

input of the round function is divided into four bytes, each going to one of the 

four S-boxes; the 32-bit output is obtained as the sum modulo 2 of the outputs 

of the four S-boxes. Using four S-boxes with the same trapdoor fl (but with a 

different value of cw, denoted with CT(, )), we obtain 

4 

. = T(i)(x(i)).  

i----1 

Hence the round function correlates with the constant zero function with a cor- 

relation equal to 

C F --~ CT( D CT(~) CT(a) CT(4) . 

As mentioned before, 8 x 32 S-boxes can be checked for this type of trapdoors. 

However, should CAST be extended in a natural way to an 128-bit block cipher 

by using 8 x 64-bit S-boxes, finding this trapdoor becomes very difficult. The 

technique can be extended to CAST variants where the exor operation is replaced 

by a modular addition or multiplication. 

t L O K I :  The expansion in the round function of LOKI91 [5] allows for a subtle 

trapdoor,  not visible in the individual S-boxes, but only in the round function. 

We denote concatenation with '[['. The round function of LOKI91 uses four 

times the same 12 x 8 S-box, and is defined as: 

F (x [1 ] , . . . ,  x[32]) = P(S(x[29], x[30], x[311, x[32], x[1], . . . ,  x[8])]] 

S(x[5], x[6] , . . . ,  x[16])]] S(x[13], x[14] , . . . ,  x[24])]l S(x[21], x[22], . . . ,  x[32])) 
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In this analysis the bit permutation P is not relevant and will be ignored. We can 

build a trapdoor into this round function as follows. Let a (1) (x), a (~) (x), a (3) (x), 

and a(4) (x) be four 8-bit Boolean functions and fi = j3(1)llfl(2)llfl(3)ll~ (4) a 32-bit 

Boolean vector. Suppose the following nonlinear relations hold with probabilities 

Pl, P2, P3, P4 respectively. 

/3 (1) �9 S(x[1] , . . .  x[12]) = a(D(x[1], x[2], x[3], x[4]) @ a(2)(x[9], x[10], z[11], x[12]) 

fl(2).  S(x[1] , . . .  x[12]) = a(2)(x[1], x[2], x[3], x[4]) @ a(3)(x[91, x[10], x[ll],  x[12]) 

/3 (3) * S(x[l],... x[12]) = a(a)(x[l], x[2], x[3], x[4]) @ a(4)(x[91, x[lO], x[ll], x[12]) 

/3 (4) �9 S(xl,... x12) = a(4)(x[1], x[2], x[3], x[4]) @ a(1)(x[9], x[lO], x[ll],  x[12]) 

The use of nonlinear relations in a linear approximation was already studied by 

Knudsen and Robshaw [11]. The correlation between 

fl �9 F(x[1] , . . . ,  ;~[32]) = / 3 0 ) .  S(x[29] , . . . ,  x[8]) @ /3 (2) �9 S(x[5] , . . . ,  x[16]) 

/3 (3) �9 S(x[13] , . . . ,  x[24]) @ /3 (4) �9 S(x[21] , . . . ,  x[32]) 

and the constant zero function is now given by ( 2 p l -  1)(2p2-1)  (2p3-1)  (2p4-1) .  

For the parameters of LOKI91, this is probably a detectable trapdoor, at least for 

someone who knows what he is looking for. Again, larger block sizes and S-boxes 

would make such trapdoors harder to detect. 

3.2 Trapdoor Ciphers 

The trapdoor round functions defined above can be used to construct a trapdoor 

cipher. The resulting cipher will have iterative linear relations that approximate 

the output of every other round. For a cipher with 7" rounds, one needs [r/2J - 1 

round approximations. 

For example, consider a version of tCAST with 16 rounds, block size 80 bits, 

and using four 10 x 40 S-boxes. If PT = 1 -  2-5 we can recover the round key of the 

first and the last round with Matsui's algorithm 2 [13] using approximately 875 

known plaintexts. Since the Hamming weight of ~ is 32, the Gaussian elimination 

technique to find the trapdoor will not work faster than exhaustive search. 

4 E x t e n s i o n s  

The trapdoors we considered make all use of "type II" linear relations as defined 

in [14]: correlations that exist between the output bits of the round function. It 

is also possible to hide "type I" linear relations: correlations between input and 

output bits of the round function. For example, we can construct S-boxes such 

that 

/3 * S [ x ]  = a �9 x ( A )  

�9 S [ * ]  = Z �9 * ( S )  
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with high probability. It is easy to see that these relations can be concatenated 

in the following way: A B  - B A  - A B  - . . .  The main advantage of this type of 

relations is that there are more of them: 2 n+'~ instead of 2 n. If (m, n) = (8, 32), 

as in CAST, there are already 24~ cases to verify. 

When building the t rapdoor in the round function of tLOKI, we make use of 

the fact that in LOKI91 the key is added before the expansion (the input to the 

round function consists of 32 bits, but some of these are duplicated such that 48 

bits are input to the S-boxes). In the DES the key is added after the expansion; 

in this case one can introduce trapdoors as well. A first approach consists of 

choosing linear functions a ( i )  ( x ) .  In this way the absolute value of the correlation 

between bits is independent of the key. However this imposes a severe restriction 

on the number of possible trapdoors, which makes them easy to detect. (We 

checked the DES for these trapdoors and have not found any.) Another option 

is to hide several key dependent trapdoors. The key schedule could be carefully 

adapted such that only a small number of key bits have an actual influence. 

In a similar way one can hide differentials into block ciphers, in order to 

make them vulnerable to differential cryptanalysis [3]. However, exploitation of 

such trapdoors requires chosen rather than known plaintexts, which is much less 

practical. 

5 P u b l i c  K e y  E n c r y p t i o n  

Besides the obvious use by government agencies to catch dangerous terrorists and 

drug dealers, t rapdoor block ciphers can also be used for public key cryptography. 

For this application on selects a block cipher with variable S-boxes and makes 

it widely available (it is a system-wide public parameter). Bob generates a set 

of S-boxes with a secret trapdoor. These S-boxes form his public key. If Alice 

wants to send a confidential message to Bob, she generates a random session key, 

encrypts her message and a fixed set of plaintexts and sends the ciphertexts to 

Bob. The set of plaintexts can be fixed, or can be generated from a short seed 

using a pseudo-random bit generator. Bob uses the t rapdoor and the known 

plaintexts to recover the session key and decrypts the message. 

There seems to be no obvious way to extend this construction to digital 

signatures. 

6 C o n c l u s i o n  

We have shown that is rather easy to hide trapdoors in expanding S-boxes like 

the 8 • 32-boxes that are currently used in some ciphers. Extending the S-boxes 

to 10 • 80 bits makes the trapdoors undetectable. 

The expansion function that is used in LOKI and the DES can be used to 

combine ' innocent'  S-boxes into a t rapdoor round function. The fact that key 

addition in the DES is done after the expansion creates the possibility for key 

dependent trapdoors. 
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We conclude that the danger of trapdoors in block ciphers is real. Defending 

against built-in trapdoors can be done in several ways. For some ciphers it is 

feasible check for several classes of trapdoors. A pro-active approach is to nourish 

a healthy distrust for other people's pseudo-random generators. A design that 

uses random elements should clearly explain the process of the pseudo-random 

bit generation, and, if applicable, the screening process. For algorithms which are 

kept secret, such as Skipjack, this is an even more worrying problem. 
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