

20. ABSTRACT CONTINUED

schema is sufficiently broad to include line search algorithms as well. Next we show that a wide range of step selection strategies satisfy the requirements of our convergence theory. This leads us to propose several new algorithms that use second derivative information and achieve strong global convergence, including an indefinite line search algorithm, several indefinite dogleg algorithms, and a modified "optimal-step" algorithm. Finally, we propose an implementation of one such indefinite dogleg algorithm.

A FAvilly of TRUST REGION BASED ALGORITHMS FOR UNCONSTRAINED MIVIMIZATION WITH STRONG GLOBAL CONVERGENCE PROPERTIES

by

```
Gerald A. Shultz, Robert B. Schnabel*,
                    and
                    Richard H. Byrd**
            Department of Computer Science
            University of Colorado at Boulder
                        Boulder, Colorado 80309
```

 CU-CS-216-32 Harch 10, 1932
 INTERIM TECHNICAL REPORT
U.S. ARMY RESEARCH OFFICE CONTRACT NO. DAAG 29-81-K-0108
*This research was supported, in part, by ARO contract UAAG 29-81-K-0108 **This research was supported, in part, by NSF grant MCS 81-15475

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE FOUNDATION.

WE ACKNOWLEDGE U. S. ARMY RESEARCH SUPPORT UNDER CONTRACT NO. DAAG 29-81-K-Ø108 AND NATIONAL SCIENCE FOUNDATION SUPPORT UNDER GRANT NO. MCS 80øøØ17.

CONTENTS

Introduction 2
Global Convergence of a General Trust Region Algorithm 4
Some Permissible Trust Region Updating Strategies 14
Some Permissible Step Selection Strategies 16
New Algorithms That Use Negative Curvature 24
An Implementation of the Indefinite Dogleg Algorithm 29
References 34

Abstract

This paper has two aims: to exhibit very general conditions under which members of a broad class of unconstrained minimization algorithms are globally convergent in a strong sense, and to propose several new algorithms that use second derivative information and achieve such convergence. In the first part of the paper we present a general trust region based algorithm schema that includes an undefined step selection strategy. We give general conditions on this step selection strategy under which limit points of the algorithm will satisfy first and second order necessary conditions for unconstrained minimization Our algorithm schema is sufficiently broad to include line search algorithms as well. Next, we show that a wide range of step selection strategies satisfy the requirements of our convergence theory. This leads us to propose several new algorithms that use second derivative information and achieve strong global convergence, including an indefinite line search algorithm, several indefinite dogleg algorithms, and a modified "optimal-step" algorithm. Finally, we propose an implementation of one such indefinite dogleg algorithm.

1. Intraciucical

In ths paper we ciiscuss the convergence properties of a broad class of algorithms for the unconstrained minimization problem

$$
\begin{equation*}
\min _{x \subset R^{n}} f(x): R^{n} \rightarrow R \tag{1.1}
\end{equation*}
$$

where it is assumed that f is twice continuously differentiable. The algorithms discussed are of the trust region type, but the algorithm schema used is sufficiently general that our convergence results apply to many algorithms of the line search typa as well.

In the first part of the paper we give a general condition under which the limit points of a bioad class of trust region algorithms satisfy the first order necessary conditions for Problem 1.1. In this paper we shall call such an algorithm "first order stationary point convergent". At the same time, we give a general condition that shows how the limit points of these algorithms may satisfy the second order necessary conditions for 1.1 by incorporating second order information. We shall refer to such an algorithm as "second order stationary point convergent".

In the second part of the paper, we show that many algorithms satisty these conditions for first and second order stationary point convergence, and we suggest several new algorithms that use second order information.

The convergence results presented here are a generalization of those given by Sorensen [i980]. Sorensen proves strong convergence properties for a specific trust region algorithm, which uses second order information. Others, including Fletcher and Freeman [1977], Goldfarb [1980], Kaniel and Dax [1979]. N.cCormick [1977], Nore and Sorensen [1979], Mukai and Polak [1978], and Vial and Zang [1975], have discussed and proven the second order stationary point convergence of algoritums that lise second order information but are not of the Liust region type. Fowell [1975], on the other hand, discusses the first order
statiorary point convicreace properiies of a class of trust region algoritinns.
In Section 2 we define our general algorithm schema, state the conditions for the types of convergence mentioned above, and prove the convergence results. In Section 3 we take the first step toward showing the applicability of the class of algorithms by commenting that practically all trust radius adjusting strategies in use fit into our algorithm schema. In Sections 4 and 5 we further show the meaning of the schema by discussing a varicty of different types of step selection strategies that satisfy the conditions given in Section 2. Finally in Section 6 we propose an implementation of one of these, an "indefinite dogleg" algorithm.

In the remainder of the paper we use the following notation:
$\|\cdot\|$ is the Euclidean norm.
$g(x) \varepsilon R^{n}$ is the gradient of f evaluated at x.
$H(x) \varepsilon R^{n \times n}$ is the Hessian of f evaluated at x.
$\left\{x_{k}\right\}$ is a sequence of points generated by an algorithm, and $f_{k}=f\left(x_{k}\right), g_{k}=g\left(x_{k}\right)$, and $H_{k}=H\left(x_{k}\right)$.
$\lambda_{1}(B)$ and $\lambda_{n}(B)$ are the smallest and largest eigenvalues, respectively, of the symmetric matrix B.
[u_{1}, \ldots, u_{m}] is the subspace of R^{n} spanned by the vectors u_{2}, \ldots, u_{m}.

In this section we describe a class of trust region algorithms in a way that includes most trust rezion algorithms as well as many other algorithms, and that isolates the condicions they may meet in order to have various convergence properties.

The form of most existing trust region algorithms is basically as follows. The algorithm generates a sequence of points x_{k}. At the k-th iteration, it forms a quadratic model of the objective function about x_{k}.

$$
\psi_{k}(w)=f_{k}+g_{k}^{T} w+\not / k w^{T} B_{k} w,
$$

where $w \varepsilon R^{n}$ and $B_{k} \varepsilon R^{n \times n}$ is some symmetric matrix, and finds an initial value for the trust radius, Δ_{k}. Then a "minor iteration" is performed, possibly repeatedij. The minor iteration consists of using the current trust radius Δ_{k} and the information contained in the quadratic model to compute a step

$$
p_{k}\left(\Delta_{k}\right)=p\left(g_{k}, B_{k}, \Delta_{k}\right)
$$

and then comparing the actual reduction of the objective function

$$
\operatorname{ared}_{k}\left(\Delta_{k}\right)=f_{k}-f\left(x_{k}+p_{k}\left(\Delta_{k}\right)\right)
$$

to the reduction predicted by the quadratic model

$$
\operatorname{pred}_{k}\left(\Delta_{k}\right)=f_{k}-\psi_{k}\left(p_{k}\left(\Delta_{k}\right)\right)
$$

If the reduction is satisfactory, then the step can be taken, or a larger trust region tried. Otherwise the trust region is reduced and the minor iteration is repeated.

Three aspects of this algorithm are unspecified, namely how to form the matrix B_{k} for the quadratic model, how the step computing function $p(g, B, \Delta)$ is performed on each minor iteration, and how the trust radius Δ_{t} is adjusted. In our abstract definition of a trust region algorithm below, the minor iterations and the straiegy for adjusting the trust region are replaced by a condition that the step and trust radius must satisfy upon quitting the major iteration. This
allows the description to cover a wide variety of trust region strategies. The methods of computing B_{k} and $p(g, B, \Delta)$ are left unspecified, since we later want to give conditions on these quantities that ensure the convergence properties. For our abstract definition of a trust region algorithm it is enough to know that they are computed in such a way that the algorithm is well-defined.

We now define the general trust region algorithm:

Algorithm 2.1

$0)$ Given $\gamma_{1}, \eta_{1}, \eta_{2} \varepsilon(0,1), x_{1} \varepsilon R^{n}$, and $\Delta_{c}>0, k=1$.

1) Compute $f_{k}=f\left(x_{k}\right), g_{k}=g\left(x_{k}\right)$, symmetric $B_{k} \varepsilon R^{n \times n}$.
2) Find Δ_{k} and compute $p_{k}=p_{k}\left(\Delta_{k}\right)$ satisfying:
$\left\|\boldsymbol{p}_{\boldsymbol{k}}\right\| \leqslant \Delta_{k}$ and
a) $\frac{\operatorname{ared}_{k}\left(\Delta_{k}\right)}{\operatorname{pred} d_{k}\left(\Delta_{k}\right)} \geq \eta_{l}$ and
b) either $\Delta_{k} \geq \Delta_{k-1}$ or
for some $\Delta \leqslant \frac{1}{\gamma_{1}} \Delta_{k}$.
$\frac{\operatorname{ared}_{k}(\Delta)}{\operatorname{pred}_{k}(\Delta)}<\eta_{2}$ or $\frac{\operatorname{ared}_{k-1}(\Delta)}{\operatorname{pred}_{k-1}(\Delta)}<\eta_{2}$.
3) $x_{k+1}=x_{k}+p_{k}, k=k+1$.
4) Goto 1).

Again, note that the computations of $B_{k}, p_{k}(\Delta)$, and Δ_{k} are left unspecified. In Theorem 2.2 we give conditions on B_{k} and $p(g, B, \Delta)$ that yield various convergence properties. In Section 3 we will discuss a number of trust radius adjusting strategies that satisfy the requirements in Algorithm 2.1. step 2)

Now we set fortin conditions which the step computing function $p(g, B, \Delta)$ may satisiy and prove that if it does meet these conditions then the conver-
gence results iollow. in Sections 4 and 5 we will discuss various step computing a'soritums that fuilll the conditions below.

The first condition says that the siep must give sufficient decrease of the quadratic model. The second condition requires that when $H(x)$ is indefinite the siep give as good a decrease of the quadratic model as a direction of sufficient negutive curvature. The third condition simply says that if the Hessian is posii. $\because \mathrm{c}$ definite and the Newion step lies within the trust region, then the Newton s'upis chosen.

Before stating the conditions we define some additional notation.

$$
\operatorname{pre}^{2}(g, B, \Delta)=-g^{T} p(g, B, \Delta)-\not / k p(g, B, \Delta)^{T} B p(g, B, \Delta) .
$$

Uur conditions that a siep selection strategy may satisfy are:

Concition \#:

Tine: e are $\bar{c}_{1}, \sigma_{1}>0$ such that for all $g \varepsilon R^{n}$, for all symmetric $B \varepsilon R^{n \times n}$, and for all $\Delta>0, \operatorname{pred}(g, B, \Delta) \geq \bar{c}_{1}\|g\| \min \left(\Delta, \sigma_{1} \frac{\|g\|}{\|B\|}\right)$.

Concition \#2

Tincre is a $\bar{c}_{2}>0$ such that for all $g \varepsilon R^{n}$, for all symmetric $B \varepsilon R^{n \times n}$, and for all $\dot{i}>0$. $\operatorname{pred}(\exists, B, \Delta) \geq \bar{c}_{2}\left(-\lambda_{1}(B)\right) \Delta^{2}$.

Condition ${ }_{7}^{3}$

If B is jositive definite and $\left\|-B^{-1} g\right\| \leq \Delta$, then $p(g, B, \Delta)=-B^{-1} g$.
lie now state and prove the convergence theorem. The proois are similar to those of Sorensen [1980]. Conditions \#1,\#2, and \#3 constitute a major generalization of his assumption that

$$
p(g, B \Delta)=\operatorname{argmin}\left\{g^{T} w+w^{T} B w: \| w \mid \leq 1\right\}
$$

Theorem 2.2

Let $f: R^{n} \rightarrow R$ be twice continuousiy differentiable and bounded below, and let $H(x)$ satisfy $\|H(x)\| \leq \beta_{1}$ for all $x \varepsilon R^{n}$. Suppose that an algorithm satisfying the conditions of Algorithm 2.1 is applied to $f(x)$. starting from some $x_{1} \varepsilon R^{n}$, generating a sequence $\left\{x_{k}\right\}, x_{k} \varepsilon R^{n}, k=1,2 \ldots$. Then:

1. If $p(g, B, \Delta)$ satisfies Condition \#1 and $\left\|B_{k}\right\| \leq \beta_{2}$ for all k, then g_{k} converges to 0 (first order stationary point convergence).
II. If $p(g, B, \Delta)$ satisfies Conditions \#1 and \#3, $B_{k}=H\left(x_{k}\right)$ for all $k, H(x)$ is Lipschitz continuous with constant L, and x_{0} is a limit point of $\left\{x_{k}\right\}$ with $H\left(x_{0}\right)$ positive definite, then x_{k} converges q-quadratically to x.
III. If $p(g, B, \Delta)$ satisfies Conditions \#1 and \#2, $B_{k}=H\left(x_{k}\right)$ for all $\mathbf{k}, H(x)$ is uniformly continuous, and x_{k} converges to x_{0}. then $H\left(x_{0}\right)$ is positive semi-definite (second order stationary point convergerice, with I.).

Proof:
Each of the proofs of I. II, and III use the following fact:
Lemma If there is a positive integer M and a function $w(\Delta)$ such that

1) $\lim _{\Delta \rightarrow 0^{+}} w(\Delta)=0$,
2) for all $\Delta>0$, for all $k \geq M$.

$$
\left|\frac{\operatorname{ared} d_{k}(\Delta)}{\operatorname{pred} d_{k}(\Delta)}-1\right| \leq w(\Delta), \text { and }
$$

3) each Δ_{k} satisfies the trust radius requirement in step 2b) of Algorithm 2.1. then $\left\{\Delta_{k}\right\}$ is bounded away from 0 .

Proof of the lemma: By 1) and 2), there is a $\bar{\Delta}>0$ such that if $0<\Delta<\bar{\Delta}$ and $k \geq M$. then $\frac{u r e d_{k}(\Delta)}{\operatorname{pred} d_{k}(\Delta)} \geq \eta_{2}$. Thus, for $k \geq M+1$. if $\Delta_{k}<\Delta_{k-1}$, then by 3) there must be some $\Delta \leqslant \frac{1}{\gamma_{1}} \Delta_{k}$ which either has $\frac{\operatorname{ared}_{k}(\Delta)}{\operatorname{pred}_{k}(\Delta)}<\eta_{2}$ or $\frac{\operatorname{ared}_{k-1}(\Delta)}{\operatorname{pred}_{k-1}(\Delta)}<r_{i}$. But that means that $\Delta \geq \bar{\Delta}$. so $\Delta_{k} \geq \gamma_{1} \Delta \geq \gamma_{1} \bar{\Delta}$. Hence, for $k \geq M+1, \Delta_{k} \geq \min \left(\Delta_{k-1}, \gamma_{1} \bar{\Delta}\right)$. so clearly $\left\{\Delta_{k}\right\}$ is

Dunui-a alay frerei
Each of the tiree parts also uses the following:
By iayior's theorem, for any ki ana any $\Delta>0$,

$$
\begin{gathered}
\left.\mid \operatorname{crcd} d_{k}(\Delta)-p r e d_{k}(\Delta)\right\} \\
=\left|f_{k}-f\left(x_{k} \div p_{k}(\Delta)\right)-\left(f_{k}-f_{k}-g_{k}^{T} p_{k}(\Delta)-\nmid k p_{k}(\Delta)^{T} B_{k} p_{k}(\Delta)\right)\right| \\
=\mid \nmid p_{k}(\Delta)^{T} B_{k} p_{k}(\Delta)-\int_{0}^{1} p_{k}(\Delta)^{T} H\left(x_{k}+\xi p_{k}(\Delta)\right) p_{k}(\Delta)(i-\xi) d \xi! \\
\leq\left.!\left|p_{k}(\Delta)\right|\right|^{2} \int_{0}^{1}\left\|B_{k}-H\left(x_{k}+\xi p_{k}(\Delta)\right)\right\|(1-\xi) d \xi .
\end{gathered}
$$

So,

$$
\begin{gathered}
\left|\frac{\operatorname{ared}_{k}(\Delta)}{\operatorname{pred} d_{k}(\Delta)}-1\right| \\
\leq \frac{\left\|p_{k}(\Delta)\right\|^{2} \int_{0}^{1}\left\|B_{k}-H\left(x_{k}+\xi p_{k}(\Delta)\right)\right\|(1-\xi) d \xi}{\left|\operatorname{pred}_{k}(\Delta)\right|}
\end{gathered}
$$

All three parts proceed by using the relevant hypotheses and the above argument to bound $\operatorname{pred}_{\boldsymbol{k}}(\Delta)$ below by a term that is $O\left(\Delta^{2}\right)$, and then using the lemma above.

Proof of I: Consider any m with $\left\|g_{m}\right\| \neq 0$.
For any $\mathrm{x},\left\|g(x)-g_{m}\right\| \leq \beta_{1}\left\|x-x_{m}\right\|$, so if $\left\|x-x_{m}\right\|<\frac{| | g_{m} \|}{2 \beta_{1}}$, then

$$
\|g(x)\| \geq\left\|g_{m}\right\|-\left\|g(x)-g_{m}\right\| \geq \frac{\left\|g_{m}\right\|}{2}
$$

Call $R=\frac{\operatorname{lig} g_{m}!}{2 \beta_{1}}$, and $B_{P}=\left\{x:\left\|x-x_{m}\right\|<R\right\}$.
Now, there are two possibilities. Either for all $k \geq m, x_{k} \varepsilon B_{R}$, or eventually $\left\{x_{k}\right\}$ leaves the ball B_{R}. It turns out that the sequence can not stay in lize ball. If $x_{k} \leq B_{R}$ for all $k \geq m$, then for all $k \geq m,\left\|g_{k}\right\| \geq \frac{\left\|g_{m}\right\|}{2}$, which we shall call ε. Thlis, by Condition \#i.

$$
\begin{aligned}
\operatorname{pred}_{k}(\Delta) & \geq \sigma\left\|g_{k}\right\| \min \left(\Delta, \xrightarrow[\beta_{k}]{\| B_{k}}\right) \\
& \geq \sigma \varepsilon \min \left(\Delta \cdot \frac{\varepsilon}{\beta_{2}}\right)
\end{aligned}
$$

for all $k \geq m$, where $\sigma \approx \bar{c}_{1} \sigma_{1}$ is used to simplify the notation. So,

$$
\begin{gathered}
\left|\frac{\alpha r \varepsilon d_{k}^{\prime}(\Delta)}{\operatorname{pred} d_{k}(\Delta)}-1\right| \\
\leq \frac{\Delta^{2} \int_{0}^{1}| | B_{k}-H\left(x_{k}+\xi p_{k}(\Delta)\right) \mid 1(1-\xi) \alpha \xi}{\sigma \varepsilon \min \left(\Delta, \frac{\varepsilon}{\beta_{2}}\right)} \\
\leq \frac{\Delta^{2}\left(\beta_{1}+\beta_{2}\right)}{\sigma \varepsilon \min \left(\Delta, \frac{\varepsilon}{\beta_{2}}\right)} \\
\leq \frac{\Delta\left(\beta_{1}+\beta_{2}\right)}{\sigma \varepsilon}
\end{gathered}
$$

for all $k \geq m$ and $\Delta \leq \frac{\varepsilon}{\beta_{2}}$. Applying the lemma with $w(\Delta)=\frac{\Delta\left(\beta_{1}+\beta_{2}\right)}{\sigma \varepsilon}$, and $M=m$, we see that $\left\{\Delta_{k}\right\}$ is bounded away from 0 . But, since

$$
\begin{gathered}
f_{k}-f_{k+1}=\operatorname{ared}_{k}\left(\Delta_{k}\right) \geq \eta_{2} \text { pred }_{k}\left(\Delta_{k}\right) \\
\geq \eta_{1} \sigma \varepsilon \min \left(\Delta_{k} \cdot \frac{\varepsilon}{\beta_{2}}\right) .
\end{gathered}
$$

and f is bounded below, Δ_{k} converges to 0 , which is a contradiction Hence, eventually $\left\{x_{k}\right\}$ must be outside B_{R} for some $k>m$.

Let $l+1$ be the first index after m with x_{l+1} not in B_{R}. Then

$$
\begin{gathered}
f\left(x_{l+1}\right)-f\left(x_{m}\right)=\sum_{k=m}^{l} f\left(x_{k+1}\right)-f\left(x_{k}\right) \\
\geq \sum_{k=m}^{k} \eta_{1} \operatorname{pre} \alpha_{k}\left(\Delta_{k}\right) \geq \sum_{k=m}^{k} \eta_{1} \sigma \min \left(\Delta_{k}, \frac{\varepsilon}{\beta_{2}}\right) \\
\geq \eta_{1} \sigma_{\varepsilon} \min \left(\sum_{k=m}^{k} \Delta_{k},(l-m) \frac{\varepsilon}{\beta_{2}}\right) \\
\geq \eta_{1} \sigma_{\varepsilon} \min \left(\sum_{k=m}^{k} i i p_{k}\left(\Delta_{k}\right) \|,(l-m) \frac{\varepsilon}{\beta_{2}}\right)
\end{gathered}
$$

$$
\begin{gathered}
\geq \eta_{1} \sigma \varepsilon \min \left(R .(l-m) \frac{\varepsilon}{\beta_{2}}\right) \\
=\eta_{1} \sigma \frac{\left\|g_{m}\right\|}{2} \min \left(\frac{\left\|g_{m}\right\|}{2 \beta_{1}} \cdot(l-m) \frac{\left\|g_{m}\right\|}{2 \beta_{2}}\right) \\
=\left\|g_{m}\right\|^{2} \eta_{1} \frac{\sigma}{4} \min \left(\frac{1}{\beta_{1}} \cdot \frac{1}{\beta_{2}}\right) .
\end{gathered}
$$

Now, since f is bounded below and $\left\{f\left(x_{k}\right)\right\}$ is monotonically decreasing. $\left\{f\left(x_{k}\right)\right\}$ converges to some limit, say f. Then by the above, for any k

$$
\left\|g_{k}\right\|^{2} \leq\left(\eta_{1} \frac{\sigma}{4} \min \left(\frac{1}{\beta_{1}} \frac{1}{\beta_{2}}\right)^{-1}\left(f\left(x_{k}\right)-f \cdot\right) .\right.
$$

Thus since $\left\{f\left(x_{k}\right)\right\} \rightarrow f,\left\|g_{k}\right\| \rightarrow 0$.

Proof of II: By assumption, x_{0} is a limit point, say $x_{k_{j}}$ converges to x_{0}. We will show first that in fact, if $H\left(x_{0}\right)$ is positive definite, then x_{k} converges to x_{0}. Ey I, $g\left(x_{0}\right)=0$. Since $H\left(x_{0}\right)$ is positive definite and H is continuous, we can find $\delta_{1}>0$ such that if $||x-x \cdot||<\delta_{1}$, then $H(x)$ is positive definite, and if $x \neq x$. then $g(x) \neq 0$. Call $B_{1}=\left\{x:\|x-x \cdot\|<\delta_{1}\right\}$.

Since $g\left(x_{0}\right)=0$, we can find $\delta_{2}>0$, with $\left\|H(x)^{-1} g(x)\right\|<\frac{\delta_{1}}{2}$ for all $\approx \varepsilon B_{2}=\left\{x:\|x-x \cdot\|<\delta_{2}\right\}$. Also, take $\delta_{2}<\frac{\delta_{1}}{4}$.

Find j_{0} such that $f\left(x_{k_{j_{0}}}\right)<\inf \left\{f(x): x \varepsilon B_{1}-B_{2}\right\}$, and $x_{k_{j_{0}}} \varepsilon B_{2}$. Consider any x_{l}, with $l \geq k_{j_{0}} x_{l} \varepsilon B_{2}$. We claim that $x_{l+1} \varepsilon B_{2}$ which implies that the entire sequence beyond $x_{k_{j_{0}}}$ is in B_{2}. If x_{l+1} is not in B_{2}, then since $f_{l+1}<f_{k_{j_{0}}} x_{l+1}$ is not in B_{1}, either, so

$$
\begin{aligned}
& \Delta_{l}=\left\|x_{l+1}-x_{l}\right\| \geq\left\|x_{l+1}-x \cdot\right\|-\left\|x_{l}-x \cdot\right\| \geq \delta_{1}-\frac{\delta_{1}}{4}=\frac{3}{4} \delta_{1} \\
&>\frac{\delta_{1}}{2} \geq\left\|B\left(x_{l}\right)^{-1} g\left(x_{l}\right)\right\| .
\end{aligned}
$$

E. - . since the Newton step from x_{1} is within the trust rasion, by Condition \#3, $p_{l}\left(\Delta_{l}\right)=-H\left(x_{l}\right)^{-1} g\left(x_{l}\right)$. But then since $\left\|p_{l}\left(\Delta_{l}\right)\right\|<\delta_{1}, x_{l+1} \varepsilon B_{1}$, which is a contrad-
icion．
＇Thus for all $k \geq k_{j_{0}}, x_{k} \varepsilon B_{2}$ ，and so since $f\left(x_{k}\right)$ is a strictly decreasing sequence and x_{0} is the unique minimizer of f in B_{2} ，we have that x_{k} converges切ェ。

Now，to show that the convergence rate is quadratic，we show that $\left\{\Delta_{k}\right\}$ is bcunded away from 0 ，which gives the result，since $\left\|H\left(x_{k}\right)^{-1} g\left(x_{k}\right)\right\|$ converges to 0 ，so eventually，by Condition $\# 3$ ，the Newton step will always be taken．Then by a usual theorem the Lipschitz continuity of H implies the quadratic conver－ gence rate．

To show that $\left\{\Delta_{k}\right\}$ is bounded away from 0 ，we will again use the lemma．In crder to do so，we need the appropriate lower bound on $\operatorname{pred}_{k}(\Delta)$ ．

1．Condition \＃1，

$$
\operatorname{pred}_{k}(\Delta) \geq \sigma\left\|g_{k}\right\| \min \left(\Delta, \frac{\left\|g_{k}\right\|}{\left\|B_{k}\right\|}\right) \geq \sigma\left\|g_{k}\right\| \min \left(\left\|p_{k}(\Delta)\right\|, \frac{\left\|g_{k}\right\|}{\left\|B_{k}\right\|}\right)
$$

and for all k large enough，$B_{k}=H\left(x_{k}\right)$ is positive deflnite，so either the Newton step is longer than the trust radius，or $p_{k}(\Delta)$ is the Newton step．In either case， $p_{k}(\Delta) \leq\left\|-B_{k}^{-1} g_{k}\right\| \leq\left\|B_{k}^{-1}\right\|\left\|g_{k}\right\|$ ，so $\left\|g_{k}\right\| \geq \frac{\left\|p_{k}(\Delta)\right\|}{\left\|B_{k}^{-1}\right\|}$ ．Thus．

$$
\begin{aligned}
\operatorname{pred}_{k}(\Delta) & \geq \sigma\left\|p_{k}(\Delta)\right\| \min \left(\left\|p_{k}(\Delta)\right\| \cdot \frac{\left\|p_{k}(\Delta)\right\|}{\left\|B_{k}^{-1}\right\|\left\|B_{k}\right\|}\right) \\
& =\sigma\left\|p_{k}(\Delta)\right\|^{2} \min \left(1, \frac{1}{\left\|B_{k}^{-1}\right\|\left\|B_{k}\right\|}\right)
\end{aligned}
$$

\therefore ：i．call $c_{0}=y_{2} \min \left(1, \frac{1}{\left\|H\left(x_{0}\right)^{-1}\right\|\left\|H\left(x_{0}\right)\right\|}\right.$ ，and nois that by continuity there is an M such that for $k \geq M, \quad B_{k}$ is positive definite and $\min \left(1, \frac{1}{\left\|B_{k}^{-1}\right\|\left\|B_{k}\right\|}\right) \geq c$.

Finally，note that by the argument given earlier and Lipschitz continuity．

$$
\operatorname{arad}_{k}(\Delta)-\operatorname{pred}_{k}(\Delta): \leq i\left|p_{k}(\Delta)\right|^{3} \frac{L}{2}
$$

thus for any $\Delta>0$ and $k \geq M$.

$$
\begin{aligned}
& \left|\frac{\operatorname{arcd}_{k}(\Delta)}{\operatorname{pred}_{k}(\Delta)}-1\right| \leq \frac{\left\|p_{k}(\Delta)\right\|^{3} \frac{L}{2}}{\sigma c \cdot\left\|p_{k}(\Delta)\right\|^{2}} \\
& \quad=\frac{L\left\|p_{k}(\Delta)\right\|}{2 \sigma c} \leq \frac{L \Delta}{2 \sigma c \cdot}
\end{aligned}
$$

so by applying the lemma with $w(\Delta)=\frac{L \Delta}{2 \sigma c{ }_{0}}$, we have that $\left\{\Delta_{k}\right\}$ is bounded away from 0 and we are done.

Proof of III: Suppose to the contrary that $\lambda_{1}\left(H\left(x_{\cdot}\right)\right)<0$. By the uniform continuity of H, for any $\Delta>0$, and any k.

$$
\left|\frac{\operatorname{cred}_{k}(\Delta)}{\operatorname{pred}_{k}(\Delta)}-1\right| \leq \frac{\left\|p_{k}(\Delta)\right\|^{2} \bar{w}(\Delta)}{\operatorname{pred}_{k}(\Delta)}
$$

where

$$
\bar{w}(\Delta)=\int_{0}^{1}\left\|H\left(x_{k}+\xi p_{k}(\Delta)\right)-H\left(x_{k}\right)\right\|(1-\xi) d \xi .
$$

and thus $\lim _{\Delta \rightarrow 0^{+}} w(\Delta)=0$.
Find M such that if $k \geq M, \lambda_{1}\left(B_{k}\right)<\frac{\lambda_{1}\left(H\left(x_{0}\right)\right)}{2}<0$. By Condition \#2, for all $k \geq M$, and for all $\Delta>0$,

$$
\operatorname{pred}_{k}(\Delta) \geq \bar{c}_{2}\left(-\lambda_{1}\left(B_{k}\right)\right) \Delta^{2} \geq \bar{c}_{2}\left(-\lambda_{1}(H(x .)) / 2\right) \Delta^{2}
$$

so since $\left\|p_{k}(\delta)\right\|<\delta$, the lemma applies with

$$
w(\Delta)=\frac{\bar{w}(\Delta)}{\bar{c}_{2}\left(-\lambda_{1}\left(H\left(x_{0}\right)\right) / 2\right)} .
$$

Thus, $\left\{\Delta_{k}\right\}$ is bounded away from 0 .
But,

$$
\arg _{k}\left(\Delta_{k}\right) \geq \eta_{1} \operatorname{pred}_{k}\left(\Delta_{k}\right) \geq \bar{c}_{2}\left(-\lambda_{1}\left(H\left(x_{\cdot}\right)\right) / 2\right) \Delta_{k}^{2}
$$

and since f is bounded below $\operatorname{are} d_{k}\left(\Delta_{k}\right)$ converges io 0 . so Δ_{k} converges to 0 . which is a contradiction. Hence, $\lambda_{1}\left(H\left(x_{0}\right)\right) \geq 0$. This concludes the proof of
intorem 2.2.

The results of this theorem also apply to different shapes of trust region. Specifically we may wish to use a trust region defined by $\left\|D_{k} p\right\| \dot{\leq} \Delta$ for some non-singular square matrix D_{k} such that $\left\|D_{k}\right\|$ and $\left\|D_{k}^{-1}\right\|$ are uniformly bounded in k. This satisfies the conditions of Algorithm 2.1 and Theorem 2.2 sizce if we make a change of variables replacing Δ by Δ times the upper bound c: $: D_{k}^{-1}:$ then $\left\|p_{k}\right\| \leq \Delta$ and the conditions otherwise do not involve $\|p\|$.
e conditions are also not restricted to Euclidean norm and Theorem 2.2 epplies as well to rectangular trust regions.

3. Some Permissible Trust Region Updating Strategies

The conditions on the trust region radius Δ_{k} that we gave in siep 2 of Algorithm 2.1 were chosen to be near minimal conditions that allow us to prove the results of Theorem 2.2. Obviously in implementing an algorithm unvoiviag trusi regions, there are many detailed considerations in choosing and adjusting the trust region radius that we have not considered so far in this paper. Cur purpose in Algorithm 2.: was to set forth conditions that apply to almosi ary reasonable strategy. Here we indicate more specifically what types of stratezies are covered.

Most approaches for choosing and adjusting the radius Δ_{k} follow the foilo: ing general pattern. Iteration k of the algorithm begins with an initial trust radius which defines a step p. If this step is unsatisfactory a sequence cf_{f} smaller radii are tried until a satisfactory one is found. If the step p is satisfactory it may be used or a larger trial trust region radius tried. At the next iterate $x_{k+1}=x_{k}+p_{k}$ and a new initial trust radius is generated.

To choose the initial trial radius at the k-th iteration. Algorithm 2 i on'y requires that two conditions be met. First, the initial trial r tius can be smaller than the final radius used for the previous step only if the previous step failed the sufficient decrease condition, i.e.

$$
\frac{\operatorname{argd}_{k-1}\left(\Delta_{k-1}\right)}{\operatorname{pred}_{k-1}\left(\Delta_{k-1}\right)}<\eta_{2}
$$

Second, in this case the ratio between the previous Δ_{k-1} and the new trial radius must be bounded by some constant that is fixed for the entire algorithm. These possibilities are covered by the condition b) in step 2) of Algorithm 2.1. Algorithm 2.1 allows the possibility of making the initial trial radius larger than Δ_{k-1} by any method chosen, if that seems advantageous. Clearly some metiods for doing this could be very ineficient, but from the point of view of global convergence any increase is allowable.

One metnod ioi cosusing the initial trial trust region at the k-th iteration 1.2witrigorithm 2.1 Goes aut cover is basing the radius on the length of the pretious step p_{k-1} even: $\because p_{k-1}$ falls in the interior of the trust region Δ_{k-1}. We s.: Litle justiscation for this strategy, and including it in our theory, if possible, lou'd make the ana'ysis mase cumbersome.

Given the initial thal radius at the k-th iteration, a sequence of trial radii Liay be iried until a saisiactory one is found. Algorithm 2.1 only requires that the tial radius be redused when the previous trial step fails to satisiy the condit.o. a) in step 2) of Algorithm 2.1 and only in this case, and that the reduction bo bounded below by a constant that is fixed for the entire algorithm. This case is covered by the condition

$$
\Delta \leq \frac{1}{\gamma_{1}} \Delta_{k}
$$

end

$$
\frac{\operatorname{ared}_{k}(\Delta)}{\operatorname{pred}_{k}(\Delta)}<\eta_{2}
$$

in Algorithm 2.1. Of course, the trust region ultimately used must satisfy this condition.

The conditions of Algorithm 2.1 also allow successively larger trial trust resions to be tried within the k-th iteration whenever this seems advantageous. There is no restriction on the method used to increase the trial radius, nor on the amount of the increase, as long as the final one used satisfies condition a) of step 2) in Algorithm 2.1. Notice that it is not necessary to increase the trust reaion at any point. Never increasing the trust region may cause great inefficiency, but convergence is still assured.

4. Some Permissible Siep Selection Strategies

In this section we present three lemmas describing useful conditions under which the step $p_{k}(\Delta)$ in Algorithm 2.1 will satisfy conditions \#1 and \#2. Using these lemmas we will see that a number of different methods for computing steps yield first and second order stationary point convergent trust region type algorithms.

First let us mention two types of step selection strategies that have been used in trust region algorithms to which we will refer.

The "optimal" trust region step selection strategy is to take

$$
\begin{equation*}
p_{k}\left(\Delta_{k}\right)=\operatorname{argmin}\left\{f_{k}+g_{k}^{T} w+\not \not 2 w^{T} B_{k} w:\|w\| \leq \Delta_{k}\right\} . \tag{4.1}
\end{equation*}
$$

This strategy has been discussed and used by many authors, see e.g. Hebden [:973], More [1978], Sorensen [1980], and Gay [1981]. B_{k} is positive definite and $\left\|-B_{k}^{-1} g_{k}\right\| \leq \Delta_{k}$, then $p_{k}=-B_{k}^{-1} g_{k}$ is the solution to (4.1). Otherwise, p_{k} satisfies $\left(B_{k}+\alpha_{k} I\right) p_{k}=-g_{k}$, for some non-negative α_{k} such that $\left(B_{k}+\alpha_{k} I\right)$ is at least positive semi-definite and $\left\|p_{k}\right\|=\Delta_{k}$. If B_{k} is positive definite, then so is $\left(B_{k}+\alpha_{k} r\right)$ and

$$
\begin{equation*}
p_{k}=-\left(B_{k}+\alpha_{k} I\right)^{-1} g_{k} \tag{4.2}
\end{equation*}
$$

where α_{k} is uniquely determined by $\left\|p_{k}\right\|=\Delta_{k}$. If B_{k} has a negative eigenvalue, then p_{k} is still of the form (4.2) unless g_{k} is orthogonal to the null space of $\left(B_{k}-\lambda_{1} I\right)$ and $\left\|\left(B_{k}-\lambda_{1} I\right)^{+} g_{k}\right\|<\Delta_{k}$; here the superscript + denotes the generalized inverse and λ_{1} denotes the most negative eigenvalue of B_{k}. In this case, which More and Sorensen [1981] refer to as the "hard case", $p_{k}=-\left(B_{k}-\lambda_{1} I\right)^{+} g_{k}+\xi_{k} v_{k}$, where v_{k} is any eigenvector of B_{k} corresponding to the eigenvalue λ_{1}, and ξ_{k} is chosen so that $\left\|p_{k}\right\|=\Delta_{k}$. The lemmas of this section will lead to algorithms that are similar to this "optimal" algorithm and have the same convergence properties but are considerably easier to implement.

The second type oi trusi region step selection strategy includes the dogleg lypi azoritims of Pcweil [i970] and Dennis and Nei [1979]. These algorithms we dafined in the case when B_{k} is positive deinnite and always choose $\left.\bar{P}_{k} \varepsilon_{-}^{r}-g_{k},-B_{k}^{-1} g_{k}\right]$. When $\Delta_{k} \geq\left\|-B_{k}^{-1} g_{k}\right\| \mid, p_{k}$ is the Newton step $-B_{k}^{-1} g_{k}$; when $\Delta_{k} \leq \frac{\left\|g_{k}\right\|^{3}}{g_{k}^{T} B_{k} g_{k}} \leq\left\|-B_{k}^{-1} g_{k}\right\|, p_{k}$ is the steepest descent step of length Δ_{k}; when $\Delta_{k} \varepsilon\left(\frac{\left\|I_{k}\right\|^{3}}{g_{k}^{7} B_{k} g_{k}}, \|-B_{k}^{-1} g_{k}!\mid\right), p_{k}$ is the step of length Δ_{k} on a specified piecewise Lhear curve connecting $\frac{-\left\|g_{k}\right\| \|^{2}}{g_{k}^{T} B_{k} g_{k}} g_{k}$ and $-B_{k}^{-1} g_{k}$ (see Dennis and Schnabel [1953] for further explanation). The lemmas of this section will lead to natural and eficient extensions of these algorithms to the indeinite case which satisfy the conditions of Theorem 2.2 for second order stationary point convergence.

The first lemma gives a very general condition on the step at each iteration that ensures satisfaction of Condition \#1, and hence first order stationary point convergence. By way of motivation we note that if an algorithm simply took the "best gradient step", i.e. the solution to

$$
\min \left\{g_{k}^{\top} w+Y_{2} w^{T} B_{k} w:\|w\| \leq \Delta, w \varepsilon\left[-g_{k}\right]\right\}
$$

then it would satisfy Condition \#1. Lemma 4.3 is a slight generalization of this fact.

Here we slightly change our earlier notation and let

$$
\operatorname{pred}(s)=-g^{T} s-\not / 2 s^{T} B s .
$$

Lemma 4.3
Suppose there is a constant $c_{1} \varepsilon(0,1]$ such that at each iteration k,

$$
\operatorname{pred}\left(p_{k}(\Delta)\right) \geq-\min \left\{g_{k}^{T} w+\not / w^{T} B_{k} w:\|w\| \leq \Delta, w \varepsilon\left[d_{k}\right]\right\}
$$

for some d_{k} satisiying

$$
d_{k}^{T} g_{k} \leq-c_{1}\left\|d_{k}\right\|\left\|g_{k}\right\|
$$

Then $p_{k}(\Delta)$ satisfies Condition \#1, and hence a trust region algorithm using it is
first order stationary point convergent.

Proof: We will drop the subscripts k throughout and will show that $\operatorname{pred}\left(s_{0}\right) \geq \frac{c_{1}}{2}\|g\| \min \left(\Delta, \frac{c_{1}\|g\|}{\|B\|}\right.$, where s. solves the above minimization problem. This will clearly imply satisfaction of Condition \#1 by $p(\Delta)$. since $\operatorname{pred}(p(\Delta)) \geq p r e d\left(s_{0}\right)$, by assumption.

Define $h(\alpha)=-\operatorname{pred}(a d)=a g^{T} d+\frac{a^{2}}{2} d^{T} B d$. Then $h^{\prime}(a)=a d^{T} B d+g^{T} d$, and $h^{\prime \prime}(\alpha)=d^{T} B d$.

Let $s_{\bullet}=a . d$, i.e. a_{0} is the multiple of d which minimizes the quadratic $g^{T} w+w^{T}$ Bw along that direction, subject to the constraint $\|w\| \leq \Delta$. Now, if $d^{T} B d>0$, then either $a_{0}=\frac{-g^{T} d}{d^{T} B d}$ if $\frac{-g^{T} d}{d^{T} B d} \leq \Delta$, or else $a_{0}=\frac{\Delta}{\|\alpha\|}$. In the first case we have

$$
\begin{aligned}
& \operatorname{pred}(s \cdot) \\
&=\operatorname{pred}(a \cdot d)= \frac{g^{T} d}{d^{T} B d} g^{T} d-\not /\left(\frac{g^{T} d}{d^{T} B d}\right)^{2} d^{T} B d \\
&=\not / 2 \frac{\left(g^{T} d\right)^{2}}{d^{T} B d} \\
& \geq \not / 2 c \frac{1\|g\|\left\|^{2}\right\| d \|^{2}}{d^{T} B d} \\
& \geq \not / 2 c_{1}^{2} \frac{\|g\|^{2}}{\|B\|}
\end{aligned}
$$

In the second case, we have

$$
\begin{aligned}
& \operatorname{pred}\left(s_{0}\right) \\
& \qquad \begin{aligned}
& \operatorname{pred}\left(s_{0}\right)=-\frac{\Delta}{\|d\|^{2} d-\not g^{2}} \frac{\Delta^{2}}{\|d\|^{2}} d^{T} B d \\
& \geq-42 \frac{\Delta}{\|d\|^{g} d} \\
&\text { (with the inequality above true since } \left.\frac{\Delta}{\|\alpha\|}<-\frac{g^{T} d}{d^{T} B d}\right)
\end{aligned}
\end{aligned}
$$

$$
\geq \frac{0_{1}}{2} J\|g\| .
$$

Finally, if $a^{T} B d \leq 0, a \cdot=\frac{\Delta}{\|d\|}$, and so we have

$$
\begin{gathered}
\operatorname{pred}(s \cdot) \\
=-\frac{\Delta}{\|d\|^{2}} g^{\prime}-\not / 2\left(\frac{\Delta}{\|\alpha\|}\right)^{2} d_{B d} \\
\geq-\frac{\Delta}{\|d\|} g^{T} T_{d} \geq c_{1} \Delta\|g\| .
\end{gathered}
$$

Thus, s. and hence $p(\Delta)$ satisfy Condition \#1. with constants $\bar{c}_{1}=\frac{c_{1}}{2}$ and $\sigma_{i}=\varepsilon_{i}$.

We may summarize the lemma by saying that as long as an algorithm takes sleps which do as well on the quadratic model as directions with "sufficient" descent, then Condition \#: is satisfied, and hence the algorithm is first order stationary point convergent.

Using Lemma 4.3, we can immediately note first order stationary point convergence for a number of algorithms. The lemma can be used to prove the first order stationary point convergence of most line search algorithms which keep the angle between the steps and the gradient bounded away from 90 degrees. because the step length adjusting strategy and step acceptance strategy in the line search can be shown to correspond to a trust radius adjusting strategy and step acceptance strategy allowed by Algorithm 2.1. In addition, it applies to any dogleg type algorithm, e.g. Powell [1970] and Dennis-Vei [1979], since these algorithms always do at least as well as the "best gradient step". Finally, we note that the lemma applies immediately to the "optimal" algorithin described above, for the same reason.

The next lemma says, roughly, that if each step taken by the algorithm gives as much descent as a direction of sufficient negative curvature, when unere is one, then Condition \#2 is satisined.

Lemma 4.4

Suppose there is a constant $c_{2} \varepsilon(0,1]$ such that at each itcration k where $\lambda_{1}\left(H\left(x_{k}\right)\right)<0$, we have $B_{k}=H\left(x_{k}\right)$ and

$$
\operatorname{pred}\left(p_{k}(\Delta)\right) \geq \operatorname{pred}\left(t_{k}\right)
$$

where

$$
t_{k}=\operatorname{argmin}\left\{g_{k}^{T} w+\nmid k w^{T} B_{k} w:\|w\| \leq \Delta, w \varepsilon\left[q_{k}\right]\right\} .
$$

for some g_{k} satisfying

$$
q_{k}^{T} B_{k} q_{k} \leqslant c_{2} \lambda_{1}\left(H\left(x_{k}\right)\right)\left\|q_{k}\right\|^{2}
$$

Then $p_{k}(\Delta)$ satisfies Condition $\# 2$.
Proof: We have just to show that for some $\bar{c}_{2}>0, \operatorname{pred}\left(t_{k}\right) \geq \bar{c}_{2}\left(-\lambda_{1}\left(H\left(x_{k}\right)\right) \Delta^{2}\right.$, for all iterations with $\lambda_{1}\left(H\left(x_{k}\right)\right)<0$. Again, we will drop the subscripts k.

Define $w=-\operatorname{sgn}\left(g^{T} q\right) \frac{1}{\|q\|} q$. Then

$$
\begin{aligned}
\operatorname{prez}(w) & \left.=\frac{\left|g^{T} q\right|}{\| q!}\right\rfloor-k \frac{\Delta^{2}}{2\|q\|^{2}} q^{T} B q \\
& \geq-\frac{\Delta^{2}}{2} c_{2} \lambda_{1}(H(x)) .
\end{aligned}
$$

since $q^{T} B q \leq c_{2} \lambda_{1}(H(x)),\left.q\right|^{2}$. So. since $\operatorname{pred}(w) \leq \operatorname{pred}^{\prime}\left(t_{k}\right) \leq \operatorname{pred}\left(p_{k}(\Delta)\right), p_{k}(\Delta)$ satisfies Condition \#2 with $\bar{c}_{2}=\frac{c_{2}}{2}$.

So, if the steps taken by an algorithm satisfy the hypotheses of both Lemmas $\leq .3$ and 4.4, then the algorithm is second order stationary point convergent. For example, if an algorithm uses any steps giving as much descent as

$$
s=\operatorname{argmin}\left\{g_{k}^{T} w+\not \not \not 2 w^{T} B_{k} w:\|w\| \leq \Delta, w \varepsilon\left[d_{k}, q_{k}\right]\right\}
$$

where d_{k} satisfies the requirement in Lemma 4.3, and q_{k} satisfies the requirement in Lemma 4.4 when $\lambda_{1}\left(H\left(z_{k}\right)\right)<0$ and is 0 otherwise, then it satisfies both Conditions \#1 and \#2. One such algorithm is mentioned in Section 5.

Finally, we note that Lemma 4.4 applies to the "optimal" a'forithm (Sorensen [1980]), since this algorithm always achieves at least as riuch descent as is
possiv.e in the eigenvoctor direction corresponding to the most negative eigenvine of $f_{(}^{\prime}\left(x_{k}\right)$. Taren cogether with Theorem 2.2, the two lemmas prove that lise "optimai" algorithm is second order stationary point convergent.

Lemmas 4.3 and 4.4 can also be used to show convergence of algorithms Lising scaled trust regions of the form $\left\{t:\left\|D_{k} t\right\| \leqslant \Delta_{k}\right\}$, where D_{k} is a positive ciagonal scaling mairix that may change at every iteration. If we are using such a scaled region to determine a step otherwise satisíying the conditions of Lemma $\div 3$, then we are requiring

$$
s_{k}=\operatorname{argmin}\left\{s_{T} g_{k}+\frac{1 / 2}{} s^{T} B_{k} s:\left\|D_{k} s\right\| \leq \Delta, s \varepsilon\left[d_{k}\right]\right\}
$$

Tris satisfies the conditions of Lemma 4.3 as stated but with Δ replaced by $\frac{\Delta}{\left\|D_{k}\right\|}$ Then by the Lemma, Condition $\# 1$ is satisfied with \bar{c}_{1} replaced by $\frac{\bar{c}_{1}}{\prod_{k}!D_{k}!}$ and similarly for σ_{1}. The same argument with Lemma 4.4 shows that Condition $\# 2$ remains satisfied with a modified trust region. Thus if we require that $\left\|D_{k}\right\|$ and $\| D_{k}^{-1}:$ be bounded for all k, then the convergence results from Lemmas 4.3 and $\leq .4$ also apply when using such a scaled trust region. They a'so apply to steps using trust regions based on other norms, such as l_{1} or $l_{\text {a }}$.

The final lemma contains a different set of sufficient conditions for a step computing method to satisfy both Conditions \#1 and \#2. These conditions are related to the step ($\angle .2$) of the "optimal" algorithm; however Lemma 4.5 is broad enough to prove the second order stationary point convergence of a variety of algorithms, including several discussed in Sections 5 and 6.

Lemma 4.5

\therefore rpose $E_{k}=H\left(x_{k}\right)$ and $p_{i}(d)$ sulisfies Condition \#1 whenever $\lambda_{1}\left(H\left(x_{k}\right)\right) \geq 0$. Suppuse iurther that there exist constants $c_{3}>1$ and $c_{4} \varepsilon(0,1]$ such that whenever
 i) : $: \Delta<-\left(B_{k}+\alpha_{k} I\right)^{-1} \mathcal{O}_{k} ; i$, then $D_{k}(\Delta)$ is any step satisiying Conditions \#1 and
\#2:
ii) if $\Delta=\left\|-\left(B_{k}+\alpha_{k} I\right)^{-1} g_{k}\right\|$, then $p_{k}(\Delta)=-\left(B_{k}+\alpha_{k} I\right)^{-1} g_{k}$.
iii) if $\Delta>\left\|-\left(B_{k}+\alpha_{k} I\right)^{-1} g_{k}\right\|$, then $p_{k}(\Delta)=-\left(B_{k}+\alpha_{k} I\right)^{-1} g_{k}+\xi q_{k}$, for some q_{k} satis fying $q_{k}^{T} B_{k} q_{k} \leq c_{1} \lambda_{1}\left(B_{k}\right)\left\|q_{k}\right\|^{2}$, where $\xi \varepsilon R$ is chosen so that $\left\|p_{k}(\Delta)\right\|=\Delta$ and $\operatorname{sgn}(\xi)=-\operatorname{sgn}\left(q_{k}^{T}\left(B_{k}+a_{k} I\right)^{-1} g_{k}\right)$.
Then $\boldsymbol{p}_{k}(\Delta)$ also satisfies Conditions \#i and $\# 2$ whenever $\lambda_{1}\left(H\left(x_{k}\right)\right)<0$, and thus an algorithm using $p_{k}(\Delta)$ is second order stationary point convergent.
Proof: We will drop the subscripts k, and call $\lambda_{1}=\lambda_{1}\left(H\left(x_{k}\right)\right)$. We will first show that the step in iii) satisfies Conditions \#1 and \#2, and then see from the same calculation that the step in ii) satisfies these conditions.

If $p(\Delta)=-(B+\alpha I)^{-1} g+\xi q$, then by simple algebraic manipulation we have that

$$
\begin{aligned}
& \operatorname{pred}^{\prime}\left(\boldsymbol{p}^{\prime}(\Delta)\right)= \\
& =-g^{T}\left(\xi q-(B+\alpha I)^{-1} g\right)-1 /\left(\xi q-(B+\alpha I)^{-1} g\right)^{T} B\left(\xi q-(B+\alpha I)^{-1} g\right) \\
& =g^{T}(B+\alpha I)^{-1} g-\xi g^{T} q-\frac{\xi^{2}}{2} q^{T} B q+\xi q^{T} B(B+\alpha I)^{-1} g-\not 2 g^{T}(B+\alpha I)^{-1} B(B+\alpha I)^{-1} g \\
& =\nless g^{T}(B+\alpha I)^{-1} g-\frac{\xi^{2}}{2} q{ }^{T} B q-\xi \alpha q^{T}(B+\alpha I)^{-1} g+\frac{\alpha}{2}\left\|(B+\alpha I)^{-1} g\right\|^{2} \\
& \geq \nless g^{T}(B+\alpha I)^{-1} g-\xi^{2} \frac{c_{4} \lambda_{1}}{2}\|g\|^{2}-\xi \alpha q^{T}(B+\alpha I)^{-1} g+\frac{\alpha}{2}\left\|(B+\alpha I)^{-1} g\right\|^{2} \\
& =\not / 2 g^{T}(B+\alpha I)^{-1} g-\frac{c_{4} \lambda_{1}}{2}\left\|\xi q-(B+\alpha I)^{-1} g\right\|^{2} \\
& +\left(-\xi c_{4} \lambda_{1}-\xi \alpha\right)_{q}{ }^{T}(B+\alpha I)^{-1} g+\left(\frac{\alpha}{2}+\frac{c_{4} \lambda_{1}}{2}\right)\left\|(B+\alpha I)^{-1} g\right\|^{2} \\
& \geq \not K_{2}^{T}(B+\alpha I)^{-1} g+\frac{c_{4}}{2}\left(-\lambda_{1}\right)\|p(\Delta)\|^{2}
\end{aligned}
$$

since the last two terms in the next to last expression above are positive due to $\alpha>-\lambda_{1}>-c_{4} \lambda_{1}$ and $q^{T}(B+\alpha I)^{-1} g<0$.

So, we see that

$$
\operatorname{pred}\left(p(\Delta) j \geqslant \not / g^{T}(B+\alpha I)^{-1} g+\frac{c_{4}\left(-\lambda_{1}\right)}{2} \Delta^{2}\right.
$$

and since the first quantity is positive, Condition \#Z is clearly satisfied. Also,

$$
\begin{aligned}
\operatorname{pred}(p(\Delta)) & \geq \nVdash g^{T}(B+\alpha I)^{-1} g \geq \not \not 2 \frac{\|g\|^{2}}{\|B+\alpha I\|} \\
& \geq \frac{1}{2\left(c_{3}+1\right)} \frac{\|g\|^{2}}{\|B\|^{2}} .
\end{aligned}
$$

with che last inequality due to

$$
\left\|B+a I=\lambda_{n}+c \leq \lambda_{n}+c_{3} \max \left(\left|\lambda_{1}\right|, \lambda_{n}\right) \leq\left(c_{3}+1\right)\right\| B \|
$$

So. Condition $\% 2$ is also saisfied.
Finaily, note that in case ii), we can take $\xi=0$, and the same calculations yiela satisiaction of Conditions \#1 and \#2 by the step in ii).

The vaiue of Lemma 4.5 is that it suggests many algorithms that are second order stationary point convergent but are relatively efficient to implement. The reader may have recofnized that conditions ii) and iii) of Lemma 4.5 just give an easy-to-impiement way to identify the "hard case" in a second order algorithm, aind to choose a step in this case. The inequality concerning q_{k} in iii) says that q_{i} must be a direction of sufficient negative curvature. The inequality concernirg α_{k} says that we can overestimate the magnitude of $\lambda_{1}\left(H\left(x_{k}\right)\right)$ by an amount pocortionai to $\left\|H\left(x_{k}\right)\right\|$ and still achieve global convergence. When we are not in this "hard case" Lemma 4.5 says that we have great leeway in choosing the stoy p_{i}. The algorithms of Section 5 are mainly based on Lemma 4.5 .

5. New Algorithms That Use Negative Curvature

In this section we present several idealized step selection strategies for rroblem 1.1 which use second order information. The step selection strategies are all based on the lemmas of Section 4 and so any algorithm that uses one of them within the framework of Algorithm 2.1 achieves second order stationary point convergence. They are idealized only in the sense that they may use the largest and smallest eigenvalues of the Hessian matrix and a direction of sufficient negative curvature q_{k} without specifying how these quantities are to be computed. In Section 6 we will suggest a possible implementation of one of these algorithms, including the computation of the extreme eigenvalues and negative curvature direction when required.

Before describing the step selection strategies we turn briefly to the question of judging these strategies. So far we have been concerned with convergence properties. We now consider two other factors, the computational work involved in calculating the step and the continuity of the step selection strategy. We define a continuous step selection strategy to be one where the function $p(g . B, \Delta)$ is a continuous function of g, B, and Δ. W'e note that the "optimal" $\mathrm{s}!\mathrm{ra}$ tegy in Sorensen [1980] has this property except in the highly unusual case that the algorithm is at a point x with $\lambda_{2}(H(x))=0, g$ orthogonal to the null space of $H(x)$, and $\left\|H(x)^{+} g\right\|_{i}<\Delta$. All of the strategies to follow will have the same property, except as otherwise noted. As for the computational work, the algorithm we present in Section 6 should be quite efficient in terms of arithmetic operations required per step.

The first step selection strategy shows how a line search using second order information can be extended to the indefinite case in a natural way that satisfics the conditions of Lemma 4.5 and so assures second order stacionary poitit convergence. The strategy is related to an algorith n by Gll and Murray [i972].

In all oi the following, let $\mathcal{B}_{k}=H\left(\approx_{k}\right)$.

Algorithm 5.1 Indefinite Line Search Step
Let $\kappa \gg 1, \kappa \leq \frac{1}{\text { machine } \varepsilon}$.
a) When $\lambda_{1}\left(B_{k}\right) \geq 0$ and $\kappa_{2}\left(B_{k}\right) \leq \kappa$
(κ_{2} is the i_{2} condition number).
if $\left\|-B_{k}^{-1} g_{k}\right\| \leq \Delta$,
then $p_{k}(\Delta)=-B_{k}^{-1} g_{k}$,
otherwise $p_{k}(\Delta)=-\frac{\Delta}{\left\|-B_{k}^{-1} g_{k}\right\|}-B_{i}^{-1} g_{k}$.
b) When $\lambda_{1}\left(B_{k}\right)<0$ or $\kappa_{2}\left(B_{k}\right)>\kappa_{1} \alpha_{k}$ is
chosen such that $B_{k}+\alpha_{k} I$ is positive definite and
$\kappa_{2}\left(B_{k}+\alpha_{k} i\right)=\kappa$, and $p_{k}(\Delta)$ is chosen by
bi) if $: 1\left(B_{k}+a_{k} I\right)^{-1} G k \| \geq \Delta$ or $\lambda_{1}\left(B_{k}\right) \geq 0$,

$$
\text { then } p_{k}(\Delta)=-\frac{\Delta}{\left\|\left(B_{k}+\alpha_{k} I\right)^{-1} g_{k}\right\|}\left(B_{k}+\alpha_{k} I\right)^{-1} g_{k} \text {. }
$$

bii) otherwise,

$$
p_{k}(\Delta)=\left(B_{k}+\alpha_{k} I\right)^{-1} g_{k}+\xi q_{k}
$$

where ξ and q_{k} are selected as in
Lemma 4.5.

The second order stationary point convergence of any algorithm of the form of Algorithm 2.1 that choses its steps by Algorithm 5.1 can trivially be proven by - Ting Lemma 4.5 combined with Lemma 4.3. Note that the constant x that is used in Algorithm 5.1 could easily be replaced by some appropriate interval. Also, in order for the step selection strategy to be continuous as discussed above, q_{k} must be a continuous function of g_{k} and B_{k}.

The next two step selection strategies are extensions of the dogleg strategy to the indefinte case. Aigoritinm 5.2 shows how to construct a dogleg version of
the "optimal" algorithm. It is not implementable, due to its use of the generalized inverse and the most negative eigenvalue and corresponding eigenvector of B_{k}. We include it in order to motivate Algorithm 5.3 , which is similar but is really implementable, as we shall see in Section 6. Both steps are easily seen to satisfy the conditions of Lemma 4.5, with Lernma 4.3 again applying to the portion of the algorithm not specified in Lemma 4.5.

Algorithm 5.2 Indefinite Dogleg Step A

a) When $\lambda_{1}\left(B_{k}\right)>0$.

$$
p_{k}(\Delta)=\operatorname{argmin}\left\{g_{k}^{T} w+y_{2} w^{T} B_{k} w:\|w\| \leqslant \Delta, w \varepsilon\left[-g_{k},-B_{k}^{-1} g_{k}\right]\right\}
$$

b) When $\lambda_{1}\left(B_{k}\right) \leq 0$,
bi) if g_{k} is not orthogonal to the null space of $B_{k}-\lambda_{1} I$,
or $\left\|\left(B_{k}-\lambda_{1} I\right)^{+} g_{k}\right\| \geq \Delta$.
then $p_{k}(\Delta)=\operatorname{argmin}\left\{g_{k}^{T} w+\not Z_{2} w^{T} E_{k} w:\|w\|=\Delta, w \varepsilon\left[-g_{k}, v_{k}\right]\right\}$, where $B_{k} v_{k}=\lambda_{1} v_{k}$ i
bii) otherwise $p_{k}(\Delta)=-\left(B_{k}-\lambda_{1} I\right)^{+} g_{k}+\xi v_{k}$.
where ξ is selected so that $\left\|p_{k}(\Delta)\right\|=\Delta$.

Of course, the step in a) could be replaced by a usual dogleg or double dogleg step, losing only the continuity of $p_{k}(\Delta)$ at $\lambda_{1}\left(B_{k}\right)=0$. Also note that minimizing the quadratic model over a two-dimensional subspace involves performing the "optimal" algorithm when $n=2$. or, equivalently. solving one fourth degree polynomial in one unknown, meaning that its computational cost is negligible.

The following is the Indefinite Dogleg Step that we propose in practice. Again, the step a) for the positive definite case could be replaced by a normal dogleg or double dogleg step.

Algorithm 5.3 Indefinite Dogleg Step B

a) When $\lambda_{1}\left(B_{k}\right)>0$, do the same as in Dogleg A.
1.) winen $\lambda_{1}\left(B_{k}\right) \leq 0$. isi α_{k} be chosen as in Lemma 4.5.
$r_{k}=-\left(B_{k}+\alpha_{k} I\right)^{-1} ソ_{k}$, and $P_{k}(\Delta)$ chosen by
ki) ie $\left\|_{i} r_{k}\right\| \geq \Delta$, then

$$
\left.p_{k}(\Delta)=a r g m i n\left\{g_{k}^{T} w+\not \not \psi_{k} w^{T} B_{k} w:\|w\|=\Delta, w \varepsilon_{L}^{r}-g_{k}, r_{k}\right]\right\} ;
$$

bii) otherwise
$\tilde{p}_{k}(\hat{1})=r_{k}+\xi \varsigma_{k}$, where ξ and q_{k} are selected as in Lemma 4.5.

The advantage of Algorithm 5.3 is that it is fairly easy and efficient to implement, Es we will show in Section 6, while also being a continuous step selection strategy that is second order stationary point convergent, and that it approximates the "optimal" step selection strategy to some extent.

Algorithm 5.4 shows how a simpler indefinite dogleg step can be nons.reted that satisnes the conditions of Lemmas 4.3 and 4.4 and so also ackieves second order stationary point convergence.
L. Gouitin 5.4. Simple Indefinite Dogleg Step
a) Winen $\lambda_{1}\left(B_{k}\right)>0$, do the same as Doglegs A and B.
b) When $\lambda_{1}\left(B_{k}\right) \leq 0$. let q_{k} satisiy

$$
q_{k}^{T} B_{k} q_{k} \leq-c_{4} \lambda_{1}\left(B_{k}\right)\left\|q_{k}\right\|^{2}
$$

wher C_{4} is a uniiorm constant for all k, as in Lemma 4.5 , and $g_{k}^{T} q_{k} \leq 0$, and let

$$
\bar{N}_{k}(\Delta)=\operatorname{argmin}\left\{g_{k}^{\top} u+\not / 2 w^{T} B_{k} \omega:\|w\|=\Delta, w \varepsilon\left[-g_{k}, q_{k}\right]\right\} .
$$

\therefore gorithm $\overline{0} .4$ is not continuous as discussed above when $\lambda_{1}\left(B_{k}\right)=0$ but if q_{k} is resonabiy chosen this will not be a problem, and the algorithm has the redeeming feature that it may be implemented so as to require no matrix factoilizations for most incicfinite iterations. However, Algorithm 5.4 might require morc iterations than Algorithin 5.3 to solve the minimization problems. In Section 6 we propuse an implementation of an algorithm that subsumes Algoritians 5.3 and
5.4.

Finally, we mention a slight generalization of the "optimal" step (Sorensen [1980]) that still leads to a second order stationary point convergent algorithm.

Algorithm 5.5 Variation of "Optimal" Step
a) When $\lambda_{1}\left(B_{k}\right)>0$, let $p_{k}(\Delta)$ be the "optimal" step.
b) When $\lambda_{1}\left(B_{k}\right) \leq 0$, let α_{k} and q_{k} be chosen as in Lemma 4.5,
let $r_{k}=-\left(B_{k}+\alpha_{k} I\right)^{-1} g_{k}$, and
bi) if $\left\|r_{k}\right\| \geq \Delta$, then $p_{k}(\Delta)=\operatorname{argmin}\left\{g_{k}^{T} w+\not \subset w^{T} B_{k} w:\|w\|=\Delta\right\}$;
bii) otherwise $p_{k}(\Delta)=r_{k}+\xi q_{k}$, where ξ is chosen so that $\left\|p_{k}\right\|=\Delta$.

This step differs from the "optimal" step in that it uses α_{k}, not necessarily a close estimate of the most negative eigenvalue, in identifying the hard case, and that it just uses the direction of negative curvature q_{k} in this case, not necessarily an eigenvector corresponding to the most negative eigenvalue. This makes it considerably more efficient to implement in the hard case. The second order stationary point convergence follows obviously from Lemma 4.5.
6. Ais Irypiemencaic: of the laceñite Dogleg Aigoricism

In this section we will always use $B_{k}=H\left(x_{k}\right)$.
Now we present onc possible implementation of the step selection strategy in Algorithm 5.3, both as an example of the sort of algorithm the theory has been aimed at, and as partial justification that such algorithms can be efficiently implemented.

Our implementation differs from More and Sorensen's [1981] in that it uses explicit approximations to the most negative eigenvalue λ_{1} and corresponding eignnvector v_{1}. We claim that this approach may well be more efficient. The bulk of the computational work in most optimization algorithms, aside from function and derivative evaluations, is made up by matrix factorizations. In our implementation there is the additional work involved in obtaining the approximations to the largest and smallest eigerivalues and the most negative eigenvector. Computational experience shows that a good algorithm for this, e.g. the Lunczos method, can obtain approximations to outer eigenvalues and eigenvectors of a symmetric matrix with guaranteed accuracy, with fewer operations than oze matrix factorization. According to Parlett [1980], the Lanczos algorithm usually requires $O\left(n^{2.5}\right)$ or fewer arithmetic operations. Thus, calculating the desired eigen-information explicitly may not introduce a significant additional cost.

Figure 6.1 below contains a diagram of our proposed implementation of A.gorithm 5.3. This implementation includes estimation of the extreme eigenvalues and the corresponding eigenvectors of B_{k}. This would only be done at the first minor iteration of each major ($k-t h$) iteration. If additional minor iterations were required, at this major iteration, the necessary eigen-information would aready be known and so one would immediately calculate the step in part a) or b) of Algorithm 5.3.

In two places in Figure 6.1 there are "attempted Choiesky decompositions". of B_{k} and $B_{k}+\alpha I$. These algorithms are given in Gill, Murray, and Wright [1981] or Dennis and Schnabel [1983]. If the matrix is numerically positive definite, the factorization algorithm calculates the $L L^{T}$ factorization of the matrix. If it is not numerically positive definite, the factorization algorithm returns a lower bound λ_{s} on the most negative eigenvalue of the matrix and a direction of negative curvature v for the matrix (i.e. for B_{k} or $E_{k}+\alpha /$, respectively). The factorization algorithm requires about $\frac{\boldsymbol{n}^{3}}{6}$ multiplications and additions in all cases. Since the Lanczos algorithm is restarted using this direction v, the λ_{1} that results from the next use of the Lanczos algorithm at the same iteration must be smaller than the curvature of \boldsymbol{v}. Thus in particular, the λ_{1} resulting from the Lanczos algorithm can be positive only if B_{k-1} was not positive definite and one is going through the left-hand loop of Figure 6.1 for the first time in the \mathbf{k}-th iteration.

A possible choice of α in Figure 6.1 is

$$
\alpha:=\frac{\max \left(0, \lambda_{n}\right)}{\varepsilon}-\lambda_{1}
$$

where $\varepsilon \geq \sqrt{\text { machine } \varepsilon}$. If $B_{k}+a I$ is positive definite and step bii) is required, v almost certainly will satisfy the conditions on q_{k} in Lemma 4.5; this may be tested using $-\alpha$ which is a lower bound on $\lambda_{1}\left(B_{k}\right)$. It is theoretically possible that additional iterations of the Lanczos procedure would be required to find a saiisfactory u in this case.

Figure 6.2 shows how our implementation of Algorithm 5.3 given in Figure 6.1 can be modiffed to sometimes substitute the simpier step b) of Algorithm 5.4 for step b) of Algorithm 5.3, when B_{k} is not positive definite. A lower bound λ_{1} on $\lambda_{1}\left(B_{k}\right)$ is always available, initially from the Gerschgorin theorem, and subsequently from the failed Cholesky decomposition. If the negative curvature direction v from the Lanczos algorithm satisfies the condition of Lemma 4.5 for q_{k}.

Fisure 0.1
An implementation of the step selection strategy of Algorithm 5.3.

 es. it is posisibie, the step selection strategy of figures 6.1 and 6.2 may require r. . matrix iactorizationis when B_{k} is not posicive definite. Another alternative is to toke this step oily in some fixed number of Cholesiy decompositions have faced say tro.

The implementations in Figures 6.1 and 6.2 strive 10 minimize the number of matrix factorizations. When B_{i} is positive definite, only one factorization will be needed, in adition the Lanczos work will be required only if B_{k-1} was not positive deinite. When B_{k} is not posilive dennite, the algorithm will perform
 i: Figure $0 . \bar{Z}$ is taken on the firsi iteration, no factorizations are needed. Genc...y the jainzzos digorithin will yieid a good enough approximation to $\lambda_{2}\left(B_{k}\right)$ t:ニ: the frst a will yicid a positive definite $B_{k}+\alpha I$, and thus only one factorizat:cn will ba resimed in tha indefivite case. In certain rather pathological cases, t上a Lanczos alsorithm can tend to converge not to the smallest eigenvalue but
rịure 6.2
Optiona! augmentation with the step selection strategy of Algorithm 5.4.

to a iurge：one，in winich case the Cholesky factorization will fail．Then the algo－ RWhm wiii tue the cirection oî negative curvature from the Cholesky failure as a s＇arting vector ior the Lanczos process，which guarantees that the Lanczos algo－ rithe will converge to a smaller eigenvalue than the last one．Thus，although we c：ract ondy one factosization to be required in the indefinite case，it is possible \because Envaral may be needed，but never more than n ．

In summary，this implementation will require one factorization on all posi－ Luに このfrite Hessian matrices，and most indefinite ones．In addition，when B_{k} is A．\because ativa defnite $: t$ will require the work involved in the Lanczos process， villis likely to be consicerably less than the work of one factorization when n ir large．The implementation satisfies the requirements of Lemmas 4.3 and 4．5， End hence a computer code using this step in the framework of Algorithm 2.1 is second order stationary point convergent．Of course，by Theorem 2.2 it is also juca；，ci－quadratically convergent．The techniques in Figure 6.1 could also be Eirployed in the imp＇ementation of other step selection sirategies，in particular tine indefzite line search step given in Algorithm 5.1 or the modified＂optimal＂ ste．given in Algorithm 5．3，leading again to implementations that are second order stationary point convergent．

7. Reierences

Dennis, J. E. Jr. and Mei. H. H. W. [1979]. Two new unconstrained optimization algorithms which use function and gradient values, J.O.T.A., pp. 453-482.

Dennis, J. E. Jr. and Schnabel, R. B. [1983]. Numerical methods for unconstrained opimization and nonlinear equations, Prentice-Hall, Pnglewood Cliffs, New Jersey:

Fletcher, R. and Freeman, T. L. [1977]. A modified Nevton method for minimization, J.O.T.A. 23 (3). pp. 357-372.

Gay, D. M. [198i]. Computing optimal localy; constrained steps, SIAM J. Sci. Stat. Comput. 2. pp. 185-197.

Goldfarb, D. [1980]. Curvilinear path steplength algorithms for minimization which use directions of negative curvature, Math. Prog., 1B, pp. 31-40.

Gill, P. E. and Murray, W. [1972]. Quasi-Newton methods for unconstrained optimization, The Journal of the Institute of Mathematics and its Applications, 9, pp. 91-108.

Gill, P. E., Murray, W., and Wright, N. [1981]. Practical optimization, Academic Press, New York.

Hebden, N. D. [1973]. An algorithm for minimization using exact second cierivajives, Atomic Energy Research Establisiment report T.P. 515, Harwell. England.

Kaniel, S. and Dax, A. [1979]. A modified Newton's method for unconstrained minimization, SIAV J. Num. Anal., pp. 324-331.

NeCormick. G. P. [1977]. A modification of Armijo's ste:-siza rule for negative curvalure, Vath. Prog. 13, pp. 111-115.

Nore, J. J. [1978]. The Levenberg-Marquardt algorithm: implementation and theory. pp. 105-116 of Lecture Notes in Mathematics 630. G. A. Watson, ed., Springer-Verlag, Berlin, Heidelberg, and New York.

Nore, J. J. and Sorensen, D. C. [1979]. On the use of directions of negative curvature in a modified Newton method. Math. Prog. 16, pp. 1-20.

Kore, J. J. and Sorensen. D. C. [1981]. Computing a trusi region step, Argonne National Laboratory report, Argonne, Illinois.

Sukai, H. and Polak, E. [1978]. A second order metiod ior unconstrained optimization. J.O.T.A. 26, pp. 501-513.

Fariett, B. N. [1980]. The symmetric cigenvalue probier, Prentice-Hall, Englewood Clifis, New Jersey.

Powell, K. S. D. [:970]. A hybrid melhod for nonlinear oquaticns, pp. 87-114 of Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed., Gordon and Breach, London.
 rithas, in Noblinaer Programitige 2, O. L. Mangasarian, R. R. Meyer, and S. M.

 rodinatice, Agonne Sational Laboratory, Report ANL-80-106, Argonne, Illiin is. SIAV S. Num. Ane'., to eppear.
上, grcuicnt paLia, C.ORE. discussion paper.

