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ABSTRACT

"This paper has (wo aims: to exhibit very general conditions under which

members of a broad class of unconstrained minimization algorithms are globally
convergent in a strong sense, and to propose several new algorithms that use
second derivative information and achieve such convergence. In the first part of
the paper we present a general trust region based algorithm schema that
includes an undefined step selection strategy. We give general conditions on this
step szlection strategy under which limit points of the algorithm will satisfy first
and second order necessary conditioﬁs for unconstrained minimization. Our
algorithm schema is sufficiently broad to include line search algorithms as well.
Next, we show that a wide range of step selection strategies satisfy the require-
ments of our convergence theory. This leads us to propose several new algo-
rithms that use second derivative information and achieve strong global conver-
gence, including an indefinite line search algorithm, several indefinite dogleg
algorithms, and a modified "optimal-step” algorithm. Finally, we propose an

implementation of one such indefinite dogleg algorithm.
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1. Iptroducica
In this paper we discuss the convergence properties cf a broad class of algo-

rithms for the unconstrained minimization problem

minf (z). R*-R (1.1)

zZR"
where it is assumed that f is twice continuously differentiable. The algorithms
discussed are of the trust region type, but the algerithm schema used is
sufficiently general Lhat our convergence results apply to many algorithms of

the line search type as well.

In the first part of the paper we give a general condition under which the

limit points of a broad class of trust region algorithms satisfy the first order.

necessary conditions for Problem 1.1. In this paper we shall call such an algo-
rithm "first order stationary point convergent”. At the same time, we give a
general condition that shows how the limit points of these algorithms may
satisfy the second order necessary conditions for 1.1 by incorporating second
order information. We shall refer to such an algorithm as "second order station-

ary point convergent”.

In the second part of the paper, we show that many algorithms satisty these
conditions for first and second order stationary point convergence, and we sug-

gest several new algorithms that use second order information.

The convergence results presented here are a generalization of those given
by Sorensen {i980). Sorensen proves strong convergence properties for a
specific trust region algorithm, which uses second order information. Others,
including Fletcher and Freeman [1977]. Goldfarb [1980], Kaniel and Dax [1979],
VeCormick [1977], More and Sorensen [1979), Mukai and Polak [1978], and Vial
and Zang [1975], have discussed and proven the second order stationary point
couvergence of algoritams that use second order information but are not of the

Lrust region type. Fowell {1975], on the other hand, discusses the first order




stationary poiil convergeince properties of a class of trust region algorithms.

In Seclion 2 we define our general algorithm schema, state the conditions
for the types of convergence mentioned ébove, and prove the convergence
results. In Section 3 we take the first step toward showing the applicability of
the class of algorithms by commenting that practically all trust radius adjusting
st..rategies in use fit into our algorithm schema. In Sections 4 and 5 we further
show the meaning of the schema by discussing a varicty of different types of
step selection strategies that satisfy the conditions given in Section 2. Finally in
Section 6 we propose an implementation of one of these, an "indefinite dogleg"

elgorithm.

In the remainder of the paper we use the following notation:
I1- 1} is the Euclidean norm.
g{z)eR™ is the gradient of f evaluated at x.
7{z)e ™™™ is the Hessian of f evaluated at x.
{z; ] is a sequence of points generated by an algorithm, and f, =f (z;). gx =g (z:).
end H,=H(z.).
Ai(B) and A,(B) are the smallest and largest eigenvalues, respectively, of the

symmetric matrix B.

{%1.....4m ] is the subspace of R™ spanned by the vectors u,....,1,,.
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2. wobz: “cavergenc:s . 2 Geaeval T-ust Region Algerithm

In this section we describe a class of trust region algorithms in a way that
includes most trust region algorithms as well as many other algorithms, and
thet isolates the conditions they niay meet in order to have various convergence
properties,

The form of most existing trust region algorithms is basically as follows.
The algorithm generates a sequence of points z;, . At the k-th iteration, it forms
a quadratic model of the objective function abeut z;,
Y (W)=fr+giw+ hwlBw ,

where weK™ and B,eR™*® is some symmetric matrix, and finds an initial value
for the trust radius, 4,. Then a "minor iteration” is performed, possibly repeat-
edly. The minor iteration consists of using the current trust radias A, and the
infermation contained in the quadratic model to compute a step

Pe (A )=p(gk. By .Op)
and then comparing the actual reduction of the objective function

aredy (8 )=f —f (zx +p (A ))
to the reduction predicted by-the quadratic model

predy (8, )= fx =¥ (P (A ))-
It the reduction is satisfactory, then the step can be taken, or a larger trust
region tried. Otherwise the trust region is reduced and the minor iteration is

repeated.

Three aspects of this algorithm are unspecified, namely how to form the
matrix B, for the quadratic model, how the step computing function p(g.B.4) is
performed on each minoer iteration, and how the trust radius 4, is adjusted. In
our abstract definition of a trust region algorithm below, the minor iterations

ana the siralegy for adjusling the trust region are replaced by a condition that

the step and trust radius must satisfy upon quitting the major iteration. This

et




allows the description to cover a wide variety of trust region strategies. The
methods of computing Z and p(g.7.8) are left unspecified, since we later want
to give conditions on these quantities that ensure the convergence properties.
For our abstract definiticn of a trust region algorithm it is enough to know that

they are computed in such a way that the algorithm is well-defined.
We now define the general trust region algorithm:

Algorithm 2.1
0) Given ¥y, 171, 72 £(0.1), z;eR™, and
A0, k=1,
1) Compute fe=f (). g =g (Zx), symmetric By e R™*".
2) Find 4, and compute p, =p; (A ) satisfying:
||Pe |Isty and

) ared, (A,)
@ pred, (&)

b) either Ag=A¢_; or

=7, and

for some A< ;I—Ak.
1

ared, (A) ared, _,(4)
predy®) < reg @) <

3) zk#l=zk+.pk- k=k+1.

4) Goto ).

Again, note that the computations of B, p,(A), and A, are left unspecified.
In Theorem R.2 we give conditions on 5, and p(g.B.4) that yield various conver-
gence properties. In Section 3 we will discuss a number of trust radius adjusting

strategies that satis{ly the requirements in Algorithm 2.1, step 2).

Now we set forth conditions which the step computing function p(g.5,A)

may salisiy and prove that if it does meet these conditions then the conver-
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gence resuits follow. in Sections 4 and S we will discuss various step computing

zlzeriiams taal fulfill the conditions below.

The first condition says that the step must give sufficient decrease of the

quadratic model. The second condition requires that when H(z) is indefinite the

slep give as good a decrease of the quadratic model as a direction of sufficient

negative curvature. The third condition simply says that if the Hessian is posi-

L.-c definite and the Newion step lies within the trust region, then the Newton

s'cp s chosen.

Before stating the conditions we define some additional notation.

D SIS TEtr -SRI  TPEr

pred(g.5.4)=-g"p(g.B.8)- % p(9.8.8)"B p(g.B.4).

L.ur conditions that a step selection strategy may satisfy are:

A REIA Omprry oo

‘ondition #1

There are T;, ;>0 such that for all geR™, for all symmetric Be R**", and for all

18>0, pred(g.B.A)=E, lg Hm’in(A.O'x‘ug—u—HB I ).

Condition #2

‘fnere is a ¢z>0 such that for all geR™, for all symmetric Fe¢R™", and for all

430, pred(g B . A=2E5(—\{(B))A%.

Condition #3

If B is positive definite and |{—=B"g ||<A, thenp{g.B.A)=—B"g.

Ve now state and prove the convergence theorem. The prools are similar to

those of Sorensen [1980]. Conditions #1,#2, and #3 constitute a major generali-

z2tion of his assumption that

p(g. B A)=argmin{ g7w+wTBw : ||w i <A}
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Theorem 2.2

let f: R" R be twice continuously differentiable and bounded below, and let
H(z) satisfy ||H(=z) ||<8, for all zeR™. Suppose that an algorithm satistying the
conditions of Algorithm 2.1 is applied to f(z). starting from some z,e K™, gen-
erating a sequence {z,{, z.eR™, k=1,2,.... Then:

1. If p(g.B.A) satisfies Condition #1 and || B, ||<f; for all k, then g, converges
to O (first order stationary point convergence).

II. If p(g.B.A) satisfies Conditions #1 and #3, By=H(z:) for all k, H(z) is
Lipschitz continuous with constant L, and z. is a limit point of {z,{ with H(z.)
positive definite, then z; converges g-quadratically to z..

Iil. If p(g.B.4) satisfies Conditions #1 and #2, By=H(z,) for all k. H(z) is uni-
formly continuous, and z, converges to z., then H(z.) is positive semi-definite

(second order stationary point convergence, with L.).

Proof:

Each of the proofs of 1, II, and 11l use the following fact:
Lemma If there is a positive integer M and a function w(A) such that

1) limw(A)=0,
A-0*

2) for all A>0, for all k=H,
, ared, (A)

' pred,. (8)
3) each A, satisfies the trust radius requirement in step 2b) of Algorithm 2.1,

—-1|=sw(A), and

then {4} is bounded away from 0.

Proof of the lemma: By 1) and 2), there is a A>0 such that if 0<A<A and k=M,
ured, (A) _

then ———~5=2n, Thus, for k=M +1, if 4, <A, _;. then by 3) there must be some
pf&dk(A)

ared, (8) < arede _\(A) _ But th
pr_—_—_ed,vc(A) N2 or prede_(B) 7+ DBut that means that

A< ;—A,‘ which either has
1

0=B, so Ay=7,0>y,A. Hence, for k=M +1, My=min(h._,7,4). so clearly {44 is
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Ecch of the tiwree parts also uses the following:
By iayior's theorem, for any & ana any A>0,

Jared, {A)—pred, (8),
= Fi=F (% e (A~ Sk =& =9£Pe (8) = ¥ P {B)T Bepi(8)) |

1
=| ¥ pe ()7 R (A)'_{Pk (D)7 H (zp +£p (8))pe (D)1 ~¢)d ¢!

1
st:p.r;'amz{\in-H(xnspk(A))nu-—s)ds.
So,

» ared,(8) _

1
pred(8)

b
(lpeit) |2 { || B —H (zy + &P (8)) | [ (1-€)d¢

|pred, (8)!
All three parts proceed by using the relevant hypotheses and the above argu-

=

ment to bound pred, (A) below by a term that is 0(4%), and then using thke lemma

above.

Proof of I: Consider any m with |jgn, || #0.

Forany x, 1'9(z)~gm 11<B1 1|2 ~Zm ||, soif ||z~Zm ||< I{g; U hen
1
' =] ‘ |
, lg@)iizligm |l-1ig(z)-gm |12 ”9; |
' CallR:.’L&‘;L,andBﬁziz; Hz_zm”(R;.
281

Now, there are two possibilities. Either for all kam, z,£Bg. or eventually

{z:{ leaves the ball Bg. It turns out that the sequence can not stay iu Lie ball.

] z ]
Tnux, by Condition #1. J

‘ ﬁ It z.cBg for all k=m, then for all k=m, |lg, HBM, which we shall call &.

T

el
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pred, (8)=0 || g, | Imin(A, ———
“Bkh

>gemin(A, =)
B2
for all k=m., where 0=¢,0, is used to simplify the notation. So,

‘ ared; (A) . l
pred, (4)
1

Az{i!Ek—H(xk*'ﬁPk(A)) l(1-)d¢

cemin(a, =)

B2

< A%(B,+82)
cemin{A, gﬁ

<

SA(BI+BZ)
og

+
for all k=m and A< =— Applying the lemma with w(A)= M and M=m, we
2

B ot

see that {A.{ is boundad away from 0. But, since

Se~Srai=ared, (A, )=n,pred, (A, )

=n,0emin(4y, '—g—)
2
and f is bounded below, A, converges to 0, which is a contradiction. Hence,

eventually §z, ] must be outside By for some k>m.

Let L +1 be the first index after m with z;,, not in Bp. Then
£ @)= Em)= L £ o)1 (22)
=m
> ¥ nypredy (8, )= 3 myo min (8, £
k=m k=am ﬁZ

2ngemin ( i: b, (1-m) )
k=m ﬂ?

>moemin( Y {ipe(de) |, 2 -m) £
k=m 2
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>n,0emin(R, (L —m)

£
= UHgm”_nin(Hgm“ (l—-'m.)Hgm“
he— g 26 28
—Ilgmlnm—mm(p ﬂ)

Now, since f is bounded below and {f (z){ is monotonically decreasing, {f (zx)}

converges to some limit, say f. . Then by the above, for any k

, 118 O _1__~1_._. - -1,
Hge 15=(m 2 mm(ﬂl.ﬁz)) V(S (ze)=f ).
Thus since §f (2 ). |ige i|-0.

Proof of II. By assumption, z+ is a limit point, say Zy, converges to Z.. We

will show first that in fact, if H(z.) is positive definite, then z, converges to z..
By 1, g(z.)=0. Since H(z.) is positive definite and H is continuous, we can find
6,:>0 such that if |{z-z.]||<6,. then H(z) is positive definite, and if z#z. then

g(z)#0. Call By={z : | z—z.|{<8,].
’ 6
Since g(z.)=0, we can find 63>0, with HH(z)“g(z)H(E’— for all

4
zeBz={z : |jz-x.]|<62). Also, take 62<z’-—.

Find j¢ such that f(xklo)dnf {f(z):zeB;~B;{, and zkjong. Consider any
z;, with I=k; o ZieBz. We claim that z,,e6B; which implies that the entire
sequence beyond Ty, is in By. If 7,4, is not in By, then since f“.1<f,j°. Zy41 is not

in B,, either, so

(]
&=z -z |2 {{zpe =z || = |2y ~2. | {2 6,~ 41 = 2—51
6
>'21‘? B(z,) g (z) 1.

[lct, since the Newton step from z; is within the trust region, by Condition #3,

P )=—H(z;) g (z;). But then since ||p(A;) ||<6,. Z;+1£42;, which is a contrad-

A A & e eSS £ A b A

S ats et — o et o
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Thus for all k=k;, z,£Be and so since J(z) is a strictly decreasing

sequence and Zz. is the unique minimizer of f in B;, we have that z, converges

to z..

Now, to show that the convergence rate is quédratic, we show that {A.} is
beunded away from O, which gives the result, since ||H(zy) 'g(z:) || converges
to 0, so eventually, by Condition #3, the Newton step will always be taken. Then
by a usual theorem the Lipschitz continuity of / implies the quadratic conver-

gence rate.

To show that {A;] is bounded away from O, we will again use the lemma. In

crder to do so, we need the appropriate lower bound on pred, (A).

1 - Condition #1,

pred, (8)=a ||g, |imin(4, _H%%')za”g“ || min( ||px (&) ”'Tlll%:—llll_é'

and for all k large enough, B, =H(z,) is positive deflnite, so either the Newton

siep is longer than the trust radius, or p,(4) is the Newton step. In either case,

el 11 -Be g 1< 1B 1 lgs 1. so [1gn (=L PEUL g,
BT
o | RO
pred (8720 lpu(8) i 124 1. Tt o)
= 2min( 1 hY
712 (8) [P T TR T

1
Az ] {1H(z) ]

Mow call cox= Y min(l, . and note that by continuity there

is an M such that for k=M, B, is positive definite and

1
1B 1 Be

min(1, )= c..

Finally, note that by the argument given earlier and Lipschitz continuity,

NN . ST T i Y A R . o .

paErrnep———
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iared, (A)—pred, (8) (< |ipe(4) iia‘z"-

thus for any A>0 and k=47,

ared (8) . HI"&:(A)HS';~
| prede @ = ool [Tpe(8) 7
_Liipe(8) ] < Lb
- 2oc. 20c. '

LA
20Cs’

so by applying the lemma with w{a)= we have that {A.} is bounded away

rom 0 and we are done.

Proof of III: Suppose to the contrary that A{H(z.))<0. By the uniform con-

tinuity of /, for any A>0, and any &,

. cred, {4)

L lee(d) [Pm()
pred, (8) '

1l<
pred, (A)

where

1
w(A)={ || H (2 +£pe (A))=H(2:) || (1~8)d £,

and thus limw(4)=0.
A~0*

M(H(z0))
e

Find M such that if k>H, A (Be)< -<0. By Condition #2, for all

k=M, and for all A>0,

pred; (A)282(~Ay(Be))A%2E(~M(H(z+))/ )%,
so since ||{pe(8) || <8, the lemma applies with

e
= S HEN D)

Thus, {Ac} is bounded away from 0.

But,

ared, (A, Y2 pred, (&, )=E(~N (H(Z.))/ R)AL,
and since f is bounded below ared,(A,) converges Lo 0. so A, converges to 0,

which is a contradiction. Hence, A(H(z.))=0. This concludes the proof of

L cmy g AT R T R DTSR, e pressemeegeanpgr= SR S Ealaiii i
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Intorem R.2.

The results of this theorem also apply to different shapes of trust region.
Specifically we may wish to use a trust region defined by ||Dp ||<A for some
non-singular square matrix I, such that ||De || and ||Dg!}| are uniformly
bounded in k. This satisfies the conditions of Algorithm 2.1 and Theorem 2.2
sizce if we make a change of variables replacing A by A times the upper bound
cn 1D then ||pe |'<A. and the conditions otherwise do not involve |ip ||.

2 conditions are also not restricted to Euclidean norm and Theorem 2.2

applies as well to rectangular trust regions.
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3. Some Permissible Trust Region Updating Strategies

The conditions on the trust region radius 4, that we gave in step £ of Algo-
rithm 2.1 were chosen to be near minimal conditions that allow us to prove the
results of Theorem 2.2. Obviously in implementing an algorithm invoiviig trust '
regions, there are many detailed considerations in choosing and adjusting thec
trust region radius that we have not considered so far in this paper. Cur pur-
pose in Algorithm 2.1 was to set forth conditions that apply to almosi zny rea-
sonable strategy. Here we indicate more specifically what types of strategies
are covered.
Most approaches {or choosing and adjusting the radius A, follow the feiiow-
ing general pattern. lieration k of the algorithm begins with an initial trust

radius which defines a step p. If this step is unsatisfactory a sequence ¢f smaller

radii are tried until a satisfactory one is found. If the step p is satisfactory it
mey be used or a larger trial trust region radius tried. At the next iterale

Ty +1=Z, +Pe and a new initial trust radius is generated.
To choose the initial trial radius at the k-th iteration, Algorithm 2 1 only

requires that two conditions be met. First, the initial trial r 1ius can be smaller

than the final radius used for the previous step only if the previous step failed

the sufficient decrease condition, i.e.

ared,_ (8 ;) <
prede (8-y) %
Second, in this case the ratio between the previous A ., and the new trial radius

must be bounded by some constant that is fixed for the entire algorithm. These
possibilities are covered by the condition b) in step 2) of Algorithm 2.1. Algo-

rithm 2.1 allows the possibility of making the initial trial radius larger than A, -,

s by any method chosen, if that seems advantageous. Clearly some methods for

doing this could be very inefiicient, but from the point of view of giobal conver-

gence any increase is allowable.
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Oae methoed joi cacosing the initial trial trust region at the k-th iteration
viven dugoritihm 2.1 does aot cover is basing the radius on the length of the pre-
vious step pe-;p even .7l e falls in the interior of the trust region A;_;. We
so2 Litle justifcation for this strategy. and including it in our the.ory. if possible,
veuld meke the analysis more cumbersome.

Given tne initial trial radius at the k-th iteration, a sequence of trial radii
Ly oe iried uniil a saiisiactory one is found. Algorithm 2.1 only requires that
tro trial radius be reduced when the previous trial step fails to satisfy the condi-
tion a) in step 2) of Algerithm 2.1 and only in this case, and that the reduction
b2 bounded below by a constant that is fixed for the entire algorithm. This case
is covered by the condition
As 2,

71
end

ared, (A)
—————ee &
pred, (&) 2
in Algorithm 2.1. Of course, the trust region ultimately used must satisfy this

condition.

The conditions of Algorithm 2.1 also allow successively larger trial trust
regions to be tried within the k-th iteration whenever this seems advantageous.
There is no restriction on the method used to increase the trial radius, nor on
tnhe amount of the increase, as long as the final one used satisfies condition a) of

step 2) in Algorithm 2.1. Notice that it is not necessary to increase the trust

region at any point. Never increasing the trust region may cause great

inefliciency, but convergence is still assured.

3@
i




4. Some Permissible Siep Szlection Strategies

In this section we present three lemmas describing useful conditions under
which the step pi{4) in Algorithm 2.1 will satisfy concitions #! and #R. Using
these lemmas we will see that a number of different metheds for computing
steps yield first and second order stationary point convergent trust region type

algorithms.

First let us mention two types of step selection strategies that have been

used in trust region algorithms to which we will refer.

The "optimal" trust region step selection strategy is to take
pe(d)=argminife+giw+ hwT Bow : Jjw |y, | (4.1)

This strategy has been discussed and used by many authors, see e.g. Hebden
[29783], More [1978], Sorensen [1980], and Gay [1981]. B; 1s positive definite and
| =B g, |1<A, . then p, =—B; !g, is the solution to (4.1). Otherwise, p, satisfies
(Bi +oi I)pe=—gi . tor some non-negative o, such that (B, +a, /) is at least posi-
tive semi-definite and |Ip, ||=A;. If B, is positive definite, then so is (Be+a /)
and
Pe=~(Betarl) gy (4.2)

where o, is uniquely determined by |{p; {[=8¢. If By has a negative eigenvalue,
then p, is still of the form (4.2) unless g, is orthogonal to the null space of
(Be—Ai1) and. 1 (Be~AI)*ge || <Ar: here the superscript + denotes the general-
ized inverse and A; denotes the most negative eigenvalue of B,. In this case,
which More and Sorensen [1981] refer to as the “hard case”,
Pr==(Be =M I)*g, +& v, Where v, is any eigenvector of B, corresponding to the
eigenvalue A;, and £, is chosen so that |[p, {|=A,. The lemmas of this section
will lead to algorithms that are similar to this “optimal” algorithm and have the

same convergence properties but are considerably easier to implement.
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Tne second type of Lrusi region step selection strategy includes the dogleg

lypo algorithms of Pewell {1870] and Dennis and Mei {1979]. These algorithms

ere dofined in the case when B, is positive definite and always choose
Frt =3z, —Bg g, ] When A.>||-Bg'g, |l pe is the Newton step —B;'g,; when
Uy "3

AksJi?g—'?‘-—s Il=Be'9e |1, pr is the steepest descent step of length A.; when
Jk Dk Jr

s(Lf—k—{'——. [1=B¢ g '), pe is the step of length A, on a specified piecewise
9B gk
=g 1i?

lthear curve connecting g and —B'g, (see Dennis and Schnabel

9B 9k
[1983] for further explanation). The lemmas of this section will lead to natural
and eflicient extensions of these algorithms to the indefinite case which satisfy

tne conditions of Theorem 2.2 for second order stationary point convergence.

The first lemma gives a very general condition on the step at each iteration
that ensures satisfaction of Condition #1, and hence first order stationary point
convergence. By way of motivation we note that if an algorithm simply took the
"best gradient step”, i.e. the solutionto

min{ gdw+ B wTBow : ||w||sbwe[-g, 1},
then it would satisfy Condition #1. Lemma 4.3 is a slight generalization of this

fact.

Here we slightly change our earlier notation and iet

pred(s)=—gTs—-¥%sTps,
lemma 4.3
Suppose there is a constant ¢ ,£(0,1] such that at each iterztion k,

pred(pe(8)) = — minfgJw+ B wTBw : ||w |jsdweld,]i.
for some 4, satisiying

dfges—cy |{dy {{ [lge II.
Theza p, (A) satisfies Condition #1, and hence a trust region algorithm using it is

e il s £




first order stationary point convergent.

Proof: We will drop the subscripts k throughout and will show that

p'red(s.)z%l—-l{g Hmin(A,E—;I}—}Bg-]—g-‘—). where s. solves the above minimization
problem. This will clearly imply satisfaction of Condition #1 by p(A). since
pred (p(4))=pred(s.). by assumption.

Define h(a)=—p¢ed(ad)=ag7d+%2—d73d. Then h'(a)=ad”Bd+gTd, and
h'(a)=aTBd.

Let s.=a.d, i.e, a. is the multiple of d which minimizes the guadratic

gTw+wTBw along that direction, subject to the constraint |jw ||<A. Now, if

—gTd .. —g7d A
dTBd >0, then either a.= —Z£-=. if —2-Z<A, or else ao=————. In the first
ene a dTBd 1 dTBd or else a “d ” n e case
we have
pred(s.)
Tq Ta
=pred(a.d)= L gTd~ ¥ (L2227 pa
pred(a.d)= s A(gTpg) 48
=%M
dTBd
2 llg 1121ld ||*
oLl et o
2
>y o2 g l®
Ty
In the second case, we have
pred(s.)

pred(s.) =——————g”2” Td—)é—-——-dllgzna Thd

- A 7
==% a7 ¢
Td \

(with the inequality above true since 2Tl <-:12FB i




¢
=59 Il

Finally, if ¢7Bd=0, a.= 'I_‘s_l_l—' and so we have

pred(s.)
:——-———-g!'g —97d =% (o) TRt

| b ‘I
E—ﬁﬂ—grdécxﬂilg 1.

C
Thus, s. and hence p(A) satisfy Condition #i, with constants 6,=~él~and

We may summarize the lemma by saying that as long as an algorithm takes
sleps which do as well on the quadratic model as directions with "suflicient” des-
cent, then Condition #! is satisfied, and hence the algorithm is first order sta-

tionery point convergent.

Using Lemma 4.3, we can immediately note first order stationary point con-
vergence for a number of algorithms. The lemma can be used to prove the first
order stationary point convergence of most line search algorithms which keep
the angle between the steps and the gradient bounded away from 90 degrees,
because the step length adjusting strategy and step acceptance strategy in the
line search can be shown to correspond to a trust radius adjusting strategy and
step acceptance strategy allowed by Alzorithm 2.1. In addition, it applies to any
dogleg type algorithm, e.g. Powell [1970] and Dennis-Mei [1879], since these
algorithms always do at least as well as the "best gradient step”. Finally, we
ncte tnat the lemma applies immediately to the "optimal” algorithin described

above, for the same reason.

The next lemma says, roughly, that if each step taken by the algorithm

gives as much descent as a direction of sufficient negative curvature, when

wnerc 1s one, tnen Condition #R2 is satisied.




lLemma 4.4

Suppose there is a constant cpe(0,1] such that at each iteration k where
M(H(z:))<0, we have By =H (z;) and

pred (v, (8))=pred(t,),
where

ty=argmin{gfw+ hwTBw: ||w ||sdwelq. ]

for some g, satisfying
g Beqesc oM (H(Z)) [ige |12
Then p, (A) satisfles Condition #2.
Proof: We have just to show that for some €2>0, pred (£, )=&3(—A{H ()42, tor all

iterations with A;(H(z;))<0. Again, we will drop the subscripts k.

Define w=~sgn{gTq) i';“ q. Then
{
'y T A2
red(w)= -2 in—}é —qTh
predle) = I R a g e

A2
== Lo (2)),
since gTBg<ch(H(z)) g |i% So. since pred{w)<pred{t,)<pred{(p,{4)). p.(A)

c
satisfies Condition #2 with ¢,= —éi

So, if the steps taken by an algorithm satisfy the hypotheses of both Lem-

" mas 4.3 and 4.4, then the algorithm is second order stationary point convergent.

For example, if an algorithm uses any steps giving as much descent as
s=argminf{giw+ $wTBow : ||w ||shwelde.qc ]},

where d, satisfies the requirement in Lemma 4.3, and g, satisfies the require-

ment in Lemma 4.4 when A\;{H(z;))<0 and is O otherwise, then it satisfies both

Conditions #1 and #2. One such algorithm is mentioned in Section 5.

Finally, we note that Lemma 4.4 applies to the "optimal" a!gerithm (Soren-

sen [1980Q]), since this algorithm always achieves at least as rauch descent as s
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possiv.e in the eigenvector direction corresponding to the most negative eigen-
Vaiwe Of f{z). Taken wgether witih Theorem 2.2, the two lemmas prove that
{.e "optimai” algorithm is second crder stationary point convergent.

Lemmas 4.3 and 4.4 can also be used to show convergence of algorithms
using scaled trust regions of the form §{ ¢ : || Det |i<A.}, where D, is a positive
ﬂ c.2genal scaling matrix that may change at evefy iteration. If we are using such

a scaled region Lo determine a step otherwise satisiying the conditions of

. ﬂ Lemma 4.3, then we are requiring
se=argmin{syge+ %sTHes : || Des |<A se[d }i.
g Tris satisfies the conditions of Lemma 4.3 as stated but with A replaced by
'ﬂ-bé|—|" Then by the Lemma, Condition #1 is satisfled with &, replaced by
(NN

—

g s g —

Lyl o0

-—.—Tand similarly for 0,. The same argument with Lemma 4.4 shows that
£

3

Condition #2 remains satisfied with a modified trust region. Thus if we require

that |10 || and {{D7!)! be bounded for all k, then the convergence results
from Lemmas 4.3 and 4.4 also apply when using such a scaled trust region. They

also apply to steps using trust regions based on other norms, such as ¢, or {..

The final lemma contains a different set of sufficient conditions for a step
computing method to satisfy both Conditions #1 and #2. These conditions are
related to the step (4.2) of the "optimal" algorithm; however Lemma 4.5 is
broad enough to prove the second order stationary point convergence of a

variety of algorithms, including several discussed in Sections 5 and 6.

lemma 4.5
s unpose By =f{x,) and p,(4) salisfies Condition #1 whecnever A {H(z,))=0. Sup-

pose {urther that there exist constants cg>1 and c,£(0,1] such that whenever b

AT )) <O, for some ope (=M {71 {xe)).comax{ A . A ], 22 Q) satisfies:

O iF AR =~ (B tapl) Mg 1!, then pe{4) is any step satisiying Conditions #1 and

——
g
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#2,

i) if A= [ ~(Be+oul)'ge ||, then p (8)=—(Be+ax /) g

i) it &> ][ ~(Be+ouI) g ||, then p (A)=~(B +ax I) g, +£qs. for some g, satise
fying qlBigesc \(B:) ||9¢ |12 where £eR is chosen so that ||p.(A) ||=A and
sgn {£)=—sgn(qf{Bx +o, [)7'ge).

Then p, (4) also satisfies Conditions #: and #2 whenever A;(H(z.))<0, and thus an
algorithm using p, (A) is second order stationary point convergent.

Proof: We will drop the subscripts k, and call A\;=A(H(z,)). We will first show
that the step in iii) satisfies Conditions #1 and #2, and then see from the same

calculation that the step in ii) satisfies these conditions.
It p{8)=—~(B+al)"'g +¢q. then by simple algebraic manipulation we have
that
pred{p(4))=
=-gT(¢q—(B+al) 'g)- % (¢g -(B+al)g) B (¢g ~(B+al) 'g)

2
=9T(B+al)'g~¢gTq - SqTBg +¢gTB(B+al) g~ gT(B+al) IB(B +al) g

2
=¥%gT(B+al)'g- §2—q TBq—tagT(B+al) g+ g—l [(B+al) g ||?

C4A
2

=%g9T(B+al) g -2 —2iig liz-taq7(5+a1)"y+g—l!(Bv+a!)"9 e
=%gT(B+al) g -5l ||gg ~(Bas) g ||2
H~te—t)gT(B+al) g +( &+ 280 || (B rar) g |12

c 2
= Y% gT(B+al) g +—H-N) o () |}
since the last two terms in the next to last expression above are positive due to

a>—~A\;>—c,\ and g7 (B+al)"1g <0.

So, we see that




-A
Pred(p(A))e%97(3+a1)"9+————c‘(2 1) p2

and since the first quantity is positive, Condition #2 is clearly satisfied. Also,

2 HZ
pred{p())= kg7 (B+al)'g=} H‘B’+a{ I

o 1 g 11?2
2(catl) LBl

with the last inequality due to

HB+al ' =\, vosh, +camax( A | Aq)s(ca+1) [[ B {I.
So, Conditicn #2 is alsc salisfled.
Finaily, note that in case ii), we can take £=0, and the same calculations

yield satisfaction of Conditions #1 and #2 by the step in ii).

The vaiue of Lernma 4.5 is that it suggests many algorithms that are second
crder stationary point convergent but are relatively efficient to implement. The
reader may have recognized that conditions ii) and iii) of Lemma 4.5 just give an
easy-to-impiement way to identify the "hard case” in a second order algorithm,
and to choose a step in this case. The inequality concerning g, in iii) says that
g. must be a direction of sufficient negative curvature. The inequality concern-
ing o, says that we can overestimate the magnitude of A;(H(z,)) by an amount
pocoortional to [[H(ze) || and still achieve global convergence. When we are not
in this "hard case" Lemma 4.5 says that we have great leeway in choosing the

sten p. . The elgorithms of Section 5 are mainly based on Lemma 4.5.




5. New Algorithms That Use Negative Curvature

In this section we present several idealized step selection strategies for
“roblermn 1.1 which use second order information. The step selection strategies
are all based on the lemmas of Section 4 and so any algorithm that uses one of
them within the framework of Algorithm 2.1 achieves second order stationary
point convergence. They are idealized only in the sense that they may use the
largest and smallest eigenvalues of the Hessian matrix and a direction of
sufficient negative curvature g, without specifying how these quantities are to
be computed. In Section 6 we will suggest a possible implermnentation of one of
these algorithms, including the computation of the extreme eigenvalues and

negative curvaturc direction when required.

Before describing the step selection strategies we turn briefly to the ques-
tion of judging these strategies. So far we have been concerned with conver-
gence properties. We now consider two other factors, the computational werx
involved in calculating the step and the continuity of the step selection strategy.
We define a continuous step selection strategy to be one where the function
p(g.B.A) is a continuous function of gB and A. 'ng note that the "optimal” stra-
tegy in Sorensen [19B0] has this property except in the highly unusual case that
the algorithm is at a point x with A;(H(z))=0, g orthogonal to the null space of
H(z),and ||H(z)*g ||<A. All of the strategies to follow will have the same pro-
perty, except as otherwise noted. As for the computational work, the algorithm
we present in Section 6 should be quite efficient in terms of arithmetic opera-

tions required per step.

The first step selection strategy shows how a line search using second order
information can be extended to the indefinite case in & natural way that satisfics

the conditions of Lemma 4.5 and so assures second order stadonary poiit con-

vergence. The strategy is related to an algorithn by Gill and Murray [1972].




In all of Lhe foliowing, let 5 =H (=).

Mgorithm 5.1 Indefinite Line Search Step

1
machines’

Lete»>l k=
2) When X\,(B;)=0 and k(B )<k
(k2 is the I, condition number),
it |1-Bglge =4,

then p, (8)=~B: g,

. A -
otherwise p; (A})=— —————FB"g,
_2 Pt H=Blge i1 T
e | b) VWhen A {5 )<0 or k2{Be ) >k, ¢ is

: chosen such that B, +x, f is positive definite and
k2 B, +a, [ )=k, and p, (A) is chosen by
bl) if ;i (Bk + 0y [)‘lgk ] {EA or )\,(Bk)ao.

A

¢ -1
Bevon ) Tgn 1 e ¥ or ) 0.

then pe (A)=—

bii) otherwise,
Pr(B)=(Br +ael) 7 'ge +4qe.
where £ and g, are selected as in

Lemma 4.5.

The second order stationary point convergence of any algorithm of the form of
Algorithm 2.1 that choses its steps by Algorithm 5.1 can trivially be proven by
»7ing Lemma 4.5 combined with Lemma 4.3. Note that the constant x that is
* . used in Algorithm 5.1 could easily be replaced by some appropriate interval.
Also, in order for the step selection strategy to be continuous as discussed

above, g, must be a continuous function of g, and B;.

The next two step selection strategies are extensions of the dogleg strategy

to the indefinule case. Aigorithm 5.2 shows how to construct a dogleg version of
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the "optimal" algorithm. It is not implementable, due to its use of the general-

ized inverse and the most negative eigenvalue and corresponding eigenvector of

B,. We include it in order to motivate Algorithm 5.3, which is similar but is
really implementable, as we shall see in Section 6. Both steps are easily seen to
satisfy the conditions of Lemma 4.5, with Lemma 4.8 again applying to the por-

3 tion of the algorithm not specified in Lemma 4.5.

Alzorithm 5.2 Indefinite Dogleg Step A
a) When A,(B,)>0,

Pe(O)=argminigfu+ hw'Bow : ||w |18, wel-gp.~B'u .

b b) When A\,(B)=<0,

bi) if g, is not orthogonal to the null space of B, —\,/,

2 or |[{Br—MI)*ge 124,

then p, (8)=argmin {giw+ $wibw : ||w ||=A we[-gi.u ]},
where By, =\ v,

“ bii) otherwise p, (A)=~(Bg =N\ I)*gx +Evy,

where ¢ is selected so that ||p () ||=A.

Of course, the step in a) could be replaced by a usual dogleg or double dogleg

step, losing only the continuity of p,(A) at A,(B,)=0. Also note that minimizing

the quadratic model over a two-dimensional subspace involves performing the
"optimal”’ algorithm when n=2, or, equivalently, solving one fourth degree poly-

nomial in one unknown, meaning that its computational cost is negligible.

The following is the Indefinite Dogleg Step that we propose in practice.
Again, the step a) for the positive definite case could be replaced by a normal
dogleg or double dogleg step.

Algorithm 5.3 Indefinite Dogleg Step B 3
a) When A,(5,)>0, do the same as in Dogleg A.

t
f
o
1
L




L.} ihen A {5, )=0, i¢i g bz chosen as in Lemma 4.5,

re=~{Be+o ) gk, und pi (8) chosen by

bi) if |7 |24, then

Pe Ay =argmin{g{u + ¥ wl Bw : Hw [1=A wel—ge e ]

bii) otherwise

P {A)=rp +&c,., where ¢ and g, are selected as in Lemma 4.5.

The edvantage of Algorithm 5.3 is that it is fairly easy and eflicient to imple-

ment, s we will show in Section 6, while also being a continuous step selection

strategy that is second order stationary point convergent , and that it approxi-

mates the "oplimal” step selection sirategy to some extent.

Algorithm 5.4 shows how a simpler indefinite dogleg step can be con-

g racted that satisfles the conditions of Lemmas 4.3 and 4.4 and so also achieves

second order statinnary point convergence.

fugoritbm 3.4 Simple Indefinite Dogleg Step

a) When A;(B;)>0, do the same as Doglegs A and B.

b) Wnen A\ (B, )=0, let g, satisiy

B qe=—c o\ (B ) |1qe |12

where ¢4 is a2 uniiorm constant for all k, as in

Lemma 4.5, and gg, =<0, and let

pel8)=argminfg{u+ hwTBw : [jw (|=A we[-ge.qe }§.

Mgorithm 3.4 is not continuous as discussed above when A (B, )=0 but if g, is

raigonably chosen this will not be a problem, and the algorithm has the redeem-

ing feature that it may be implemented so as to require no matrix factoiizations

for most incefinite iterations. However, Algorithm 5.4 might require morc itera-

tions than Algorithm 5.3 to solve the minimization problems. In Section 8 we

piropsse an implementation of an algorithm that subsumes Algorithms 5.3 and
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Finally, we mention a slight generalization of the "optimal” step {Sorensen

[1980]) that still leads to a second order stationary point convergent algorithm.

Algorithm 5.5 Variation of “Optimal” Step
a) When A;(B;)>0, let p.(A) be the "optimal” step.
b) When \,(5,)=0, let o, and g, be chosen as in Lemma 4.5,
let my=—(B+ox ) gi. and
bi) if || ||=A then p (8)=argmin {gfw+ bwTBew : |lw || =A};

bii) otherwise p,(A)=7, +£q,. where £ is chosen so that |ip, {|=A.

This step differs from the "optimal” step in that it uses &, not necessarily a
close estimate of the most negative eigenvalue, in identifying the hard case, and
that it just uses the direction of negative curvature g, in this case, not neces-
sarily an eigenvector corresponding to the most negative eigenvalue. This

makes it considerably more efficient to implement in the hard case. The second

order stationary point convergence follows obviously from Lemma 4.5.




6. Ao Impiementacics of vhe Inczfinite Dogleg Algoriizm

In this section we will always use B, =H(z;).

Now we present onc possible implementation of the step selection strategy
in Algorithm 5.3 , both as an example of the sort of algorithm the theory has
been aimed at, and as partial justification that such algorithms can be efficiently

implemented.

Our implementation differs from More and Sorensen's [1981] in that it uses
explicit approximations to the most negative eigenvalue A\; and corresponding
eigenvector v;. We claim that this approach may well be more efficient. The
bulk of the computational work in most optimization algorithms, aside from
function and derivative evaluations, is made up by matrix factorizations. In our
implementation there is the additional work involved in obtaining the approxi-
mations to the largest and smallest eigenwvalues and the most negative eigenvec-
ter. Computational experience shows that a good algorithm for this, e.g. the
Lanczos method, can obtain approximations to outer eigenvalues and eigenvec-
tors of a symametric matrix with guaranteed accuracy, with fewer operations
than one matrix factorization. According to Parlett [1980], the Lanczos algo-
rithm usually requires O{n?5) or fewer arithmetic operations. Thus, calculating
the desired eigen-information explicitly may not introduce a significant addi-

tional cost.

Figure 6.1 below contains a diagram of our proposad implementation of
Algorithm 5.3. This implementation includes estimation of the extreme eigen-
values and the corresponding eigenvectors of 5. This would only be done at the
first minor iteration of each major (k-th) iteration. If additional minor iterations
were required, at this major iteration, the necessary eigen-information would

aireacdy be known and so one would immediately calculate the step in part a) or

. b) of Algorithm 5.3.
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In two places in Iigure 6.1 there are "attempted Choeiesky decompositions”,

of B, and B, +al. These algorithms are given in Gill, Murray, and Wright [1981]

or Dennis and Schnabel [1€83]. If the matrix is numerically positive definite, the
factorization algorithm calculates the LLT factorization of the matrix. If it is
not numerically positive definite, the factorization algorithm returns a lower
bound A; on the most negative eigenvalue of the matrix and a direction of nega-

tive curvature v for the matrix (i.e. for B, or P.+al, respectively). The factori-
3
zation algorithm requires about 7—;— multiplications and additions in all cases.

Since the lLanczos algerithm is restarted using this direction v, the A, that
results from the next use of the Lanczos algorithm at the same iteration must

be smaller than the curvature of v. Thus in particular, the A, resulting from the

lanczos algorithm can be positive only if B, .; was not positive definite and one
is going through the left-hand loop of Figure 6.1 for the first time in the k-th

iteration.

A possible choice of a in Figure 6.1 is

maz(0.N,) _
£

o= A

where e>Vimachmes. If By +al is positive definite and step bii) is required, v

almost certainly will satisfy the conditions on g, in Lemma 4.5, this may be
tested using —a which is a lower bound on A\{B,). It is theoretically possible
that additional iterations of the Lanczos procedure would be required to find a

satisfactory ¥ in this case.

Figure 6.2 shows how our impiementation of Algorithm 5.3 given in Figure
6.1 can be modified to sometimes substitute the simpier step b) of Algorithm 5.4
for step b) of Algorithm 5.3, when 5, is not positive deflnite. A lower bound \; on
A (B,) is always available, initially from the Gerschgorin theorem, and subse-

quently from the failed Cholesky decomposition. If the negative curvature direc-

tion v from the Lanczos algorithm satisfles the condition of Lemma 4.5 for gq,,

NUBIPR. Y
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Figure &.1
An implementation of the step
selection strategy of Algorithm 5.3.

(B,,_} positive deﬁm‘te?_‘[
no yes .

v:=negative eigenvalue
approximation from the
k ~th iteration

Perform Lanczos algerithm|
to desired accuracy,

starting with v, and
gbtaining A;, Ay, and v.

(A0 7]
yes
noj (at each iteration
this can only occur
the first time through
this loop(see
explanation in text)).

To combine Algorithm 5.4
with Algorithm 5.3, add
algorithm in Figure 8.2

hg_:f,
o= a real number >-A
{see explanation in texti
Sle

-
Attempt Cholesky factorization { [Attempt Cholesky factorization

of By +aJ of 5,
{see explanation in text). (see explanation in text).
v = direction
of negative By +al
curvature from positive
attempted Cholesky definite?
decomposition
(see explanation
in text). ne  yes

[Take step b) in
Algorithm 5.3

B
positive
ite?

no yes

Take step a) in
Algorithm 5.3
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Laing ofis foter DOWLU A 10 £.aC8 Ui A k), wien siep b) of Al~orithm 5.4 may be
Lassil, b oi® COMStend by o boiila. & 400 18 wdsatn) saiall, uie dost v probably will
sablizly the condidon tosamma 0. o stey L) vt Alzodoem 9.4 is taken as soon
es il is possibie, the step selection strategy of Iligures 6.1 and 6.2 may require
r.. rmatrix [aciorizations when B is not positive definite. Another alternative is
t:) take this step only il some fixed number of Cholesicy decompositions have

fe g, say two.

T W—r, R

Tae implementations in igures 6.1 and 6.2 strive to minimize the number

of matrix factorizations. When B, is positive definite, only one factorization will

=

be needed, in addition the Lanczos work will be required only if Bi-; was not
positive definite. When H is not posilive definite, the algorithm will perform
} Lutwz2n <ero and i lactorizations, usually between 0 and 2 or 3. When the step

i:: Figure 6.2 is taken on the f-st iteration, no factorizations are needed. Gen-

sl

erully the Lauczos algorithin will yield a good enough approximation to Ay(Bg)
AL thae st « vill yield a positive delinite B +al, and thus only one factoriza-
ticm will be recuired in tha indefinite case. In certain rather pathological cases,

s

th2 Lanczos algorithm can tend to converge not to the smallest eigenvalue but

[irure 6.2

Uptional augmentation with the step selection strategy of Algorithm 5.4.

Is v a direction of If desired, toXe step b)
sufficient negative in Algoitiim 5.4.
curvature witix respect { yes |Olherwise. ~ontinue with
to the current lower algorithm given in
bound on A\y(5:)? Fizure 6.° :

nol B

Ceniinage with
algorithin in
Figurs 3.1
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l¢c & larger vne, in walch case the Cholesky factorization will fail. Then the algo-
rivhm wiil Uuse the direction of negative curvature from the Cholesky failure as a
starting vector {or tho Lanczos process, which guarantees that the Lanczos algo-
rithm will converge to o smaller eigenvalue than the last one. Thus, although we
co2ct only onc factorization to be required in the indefinite case, it is possible -
" ~L soveral may be needed, but never more than n.
In summary, this impliementation will require one factorization on alll posi-

t.vz {cofinite Hessian matrices, and most indefinite ones. In addition, when B, is
k
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=
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e
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-
j=2
(&)
.
£
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0
N
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el
ia ]
[o]
[¢]
©
(2]
n

end hence a compuler code using this step in the framework of Algorithm 2.1 is
sgeond crder stallonary point convergent. Of course, by Theorem 2.2 it is also
foca: | ¢-quadratically convergent. Tne techniques in Iigure 8.1 could also be
ermplieyea ia the implementation of other step selection sirategies, in particular

tihe indefinite line search step given in Algorithm 5.1 or the modified "optimal”

"

tep ziven in Algorithm 5.3, leading again to implementations that are second

order stationary point convergent.
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