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Abstract

In this paper we introduce a family of two-variable derivative polynomials for
tangent and secant. Generating functions for the coefficients of this family of polyno-
mials are studied. In particular, we establish a connection between these generating
functions and Eulerian polynomials.
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1 Introduction

Throughout this paper, denote by D the differential operator d
dx

. Let y = tan(x), and let
z = sec(x). Then D(y) = z2 and D(z) = yz. An important tangent identity is given by

1 + y2 = z2.

In 1995, Hoffman [9] considered two sequences of derivative polynomials defined respec-
tively by

Dn(y) = Pn(y) and Dn(z) = zQn(y)

for n > 0. From the chain rule it follows that the polynomials Pn(u) satisfy P0(u) = u and
Pn+1(u) = (1+u2)P ′n(u), and similarly Q0(u) = 1 and Qn+1(u) = (1+u2)Q′n(u)+uQn(u).
The first few of the polynomials Pn(u) are

P1(u) = 1 + u2, P2(u) = 2u+ 2u3, P3(u) = 2 + 8u2 + 6u4.
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There is a wealth of literature on derivative polynomials (see [3, 4, 8, 10, 11, 14, 15] for
instance).

Let [n] = {1, 2, . . . , n}, and let Sn denote the the set of permutations of [n]. A
permutation π = π(1)π(2) · · · π(n) ∈ Sn is alternating if π(1) > π(2) < · · · π(n). In other
words, π(i) < π(i+ 1) if i is even and π(i) > π(i+ 1) if i is odd. It is well known [1] that
the Euler numbers En defined by

y + z =
∞∑
n=0

En
xn

n!

count alternating permutations in Sn. The study of Euler numbers is a topic in combina-
torics (see [18]). Since the tangent is an odd function and the secant is an even function,
we have

y =
∞∑
n=0

E2n+1
x2n+1

(2n+ 1)!
and z =

∞∑
n=0

E2n
x2n

(2n)!
.

For this reason E2n+1 is called a tangent number and E2n is called a secant number.
Let S(x) = y + z. Clearly, S(0) = 1. It is easy to verify that

2D(S(x)) = 1 + S2(x). (1)

Differentiation of (1) gives

22D2(S(x)) = 2S(x) + 2S3(x). (2)

A second differentiation gives 23D3(S(x)) = 2 + 8S2(x) + 6S4(x). Now we present a
connection between S(x) and Pn(u)

Proposition 1. For n > 0, we have 2nDn(S(x)) = Pn(S(x)).

Proof. We proceed by induction on n. It suffices to consider the case n > 3. Assume that
the statement is true for n = k. Then

2k+1Dk+1(S(x)) = 2D(Pk(S(x)))

= 2P ′k(S(x))D(S(x))

= (1 + S2(x))P ′k(S(x))

= Pk+1(S(x)).

Thus the statement is true for k + 1, as desired.

Writing the derivative polynomials in terms of y and z as follows:

Dn(y) =

bn−1
2
c∑

k=0

Wn,ky
n−2k−1z2k+2,
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Dn(z) =

bn
2
c∑

k=0

W l
n,ky

n−2kz2k+1,

we observed that the coefficients Wn,k and W l
n,k have simple combinatorial interpretations

(see [14]). The coefficient Wn,k is the number of permutations in Sn with k interior peaks,
where an interior peak of π is an index 2 6 i 6 n− 1 such that π(i− 1) < π(i) > π(i+ 1).
The coefficient W l

n,k is the number of permutations in Sn with k left peaks, where a left
peak of π is either an interior peak or else the index 1 in the case π(1) > π(2) (see [6] for
instance).

This paper is organized as follows. In Section 2, we collect some notation, definitions
and results that will be needed in the rest of the paper. In Section 3, we establish a
connection between the Eulerian numbers and the expansion of (Dy)n(y). In Section 4,
we establish a connection between the Eulerian numbers of type B and the expansion of
(Dy)n(z). In Section 5, some polynomials related to (yD)n(y) and (yD)n(z) are studied.

2 Preliminaries

A descent of a permutation π ∈ Sn is a position i such that π(i) > π(i + 1). Denote by
des (π) the number of descents of π. Then the equations

An(x) =
∑
π∈Sn

xdes (π)+1 =
n∑
k=1

A(n, k)xk,

define the Eulerian polynomials An(x) and the Eulerian numbers A(n, k). Set A0(x) = 1.
The exponential generating function for An(x) is

A(x, t) =
∑
n>0

An(x)
tn

n!
=

1− x
1− xet(1−x)

. (3)

The numbers A(n, k) satisfy the recurrence relation

A(n+ 1, k) = kA(n, k) + (n− k + 2)A(n, k − 1) (4)

with the initial conditions A(0, 0) = 1 and A(0, k) = 0 for k > 1 (see [17, A008292]). The
first few of the Eulerian polynomials An(x) are

A0(x) = 1, A1(x) = x,A2(x) = x+ x2, A3(x) = x+ 4x2 + x3.

An explicit formula for A(n, k) is given as follows:

A(n, k) =
k∑
i=0

(−1)i
(
n+ 1

i

)
(k − i)n.
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The hyperoctahedral group Bn is the group of signed permutations of the set ±[n] such
that π(−i) = −π(i) for all i, where ±[n] = {±1,±2, . . . ,±n}. Let

Bn(x) =
n∑
k=0

B(n, k)xk =
∑
π∈Bn

xdesB(π),

where
des B = #{i ∈ {0, 1, 2, . . . , n− 1}|π(i) > π(i+ 1)},

with π(0) = 0. The polynomial Bn(x) is called an Eulerian polynomial of type B, while
B(n, k) is called an Eulerian number of type B (see [17, A060187]). The first few of the
polynomials Bn(x) are

B0(x) = 1, B1(x) = 1 + x,B2(x) = 1 + 6x+ x2, B3(x) = 1 + 23x+ 23x2 + x3.

The numbers B(n, k) satisfy the recurrence relation

B(n+ 1, k) = (2k + 1)B(n, k) + (2n− 2k + 3)B(n, k − 1), (5)

with the initial conditions B(0, 0) = 1 and B(0, k) = 0 for k > 1. An explicit formula for
B(n, k) is given as follows:

B(n, k) =
k∑
i=0

(−1)i
(
n+ 1

i

)
(2k − 2i+ 1)n

for 0 6 k 6 n (see [7] for details).
For n > 0, we always assume that

(Dy)n+1(y) = (Dy)(Dy)n(y) = D(y(Dy)n(y)),

(Dy)n+1(z) = (Dy)(Dy)n(z) = D(y(Dy)n(z)),

(yD)n+1(y) = (yD)(yD)n(y) = yD((yD)n(y)),

(yD)n+1(z) = (yD)(yD)n(z) = yD((yD)n(z)).

Clearly, (Dy)n(y + z) = (Dy)n(y) + (Dy)n(z). For n > 1, we define

(Dy)n(y + z) =
2n∑
k=0

J(2n, k)y2n−kzk+1.

In Section 3 and Section 4, we respectively obtain that

J(2n, 2k − 1) = 2nA(n, k), 1 6 k 6 n,

and
J(2n, 2k) = B(n, k), 0 6 k 6 n.

Let Jn(x) =
∑2n

k=0 J(2n, k)xk for n > 1. Then xJn(x) = 2nAn(x2) + xBn(x2). Therefore,
from [14, Theorem 3], we have

xJn(x) = (1 + x)n+1An(x). (6)

Using (6), we get the following proposition.
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Proposition 2. For n > 1, we have

(Dy)n(y + z) = (y + z)n+1

n∑
k=1

A(n, k)yn−kzk.

3 On the expansion of (Dy)n(y)

For n > 1, we define

(Dy)n(y) =
n∑
k=1

E(n, k)y2n−2k+1z2k. (7)

Theorem 3. For 1 6 k 6 n, we have E(n, k) = 2nA(n, k).

Proof. Note that D(y2) = 2yz2. Then E(1, 1) = 2A(1, 1). Since

D(y(Dy)n(y)) = 2
n∑
k=1

kE(n, k)y2n−2k+3z2k + 2
n∑
k=1

(n− k + 1)E(n, k)y2n−2k+1z2k+2,

there follows
E(n+ 1, k) = 2(kE(n, k) + (n− k + 2)E(n, k − 1)). (8)

By comparing (4) with (8), we obtain the desired result.

Let

Fn(y) = (Dy)n(y) =
n∑
k=0

F (n, k)y2k+1.

Then Fn+1(y) = D(yFn(y)). Hence

Fn+1(y) = (1 + y2)Fn(y) + y(1 + y2)F ′n(y) (9)

with initial value F0(y) = y. Set Fn(y) = 2nan(y) and an(y) =
∑n

k=0 a(n, k)y2k+1. It
follows from Theorem 3 that

an(y) =
n∑
k=1

A(n, k)y2n−2k+1(1 + y2)k. (10)

Equating the coefficients of y2n−2k+1 on both sides of (10), we obtain

a(n, n− k) =
n∑
i=k

(
i

k

)
A(n, i).

It follows from (9) that

a(n+ 1, k) = (k + 1)a(n, k) + ka(n, k − 1).
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Let Wn(x) =
∑n

k=0 a(n, k)xk+1. It is easy to verify that the polynomials Wn(x) satisfy

Wn+1(x) = (x+ x2)W ′
n(x), (11)

with initial value W0(x) = x. The triangular array {a(n, k)}n>0,06k6n is called a Worpitzky
triangle (see [17, A028246]).

In view of (11), it is natural to consider the expansion of the operator ((x + x2)D)n.
We define

((x+ x2)D)n =
n∑
k=1

Gn,k(x)(x+ x2)kDk (12)

for n > 1. Applying the operator (x+ x2)D on the left of (12), we get

Gn+1,k(x) = k(1 + 2x)Gn,k(x) + (x+ x2)D(Gn,k(x)) +Gn,k−1(x). (13)

On the other hand, since

Dk((x+ x2)D) = (x+ x2)Dk+1 + k(1 + 2x)Dk + k(k − 1)Dk−1,

applying the operator (x+ x2)D on the right of (12), we get

Gn+1,k(x) = k(1 + 2x)Gn,k(x) + k(k + 1)(x+ x2)Gn,k+1(x) +Gn,k−1(x). (14)

By comparing (13) with (14), we obtain D(Gn,k(x)) = k(k + 1)Gn,k+1(x). Thus

Gn,k(x) =
1

k!(k − 1)!
Dk−1(Gn,1(x)).

Thus degGn,k(x) = n− k. Set Gn(x) = Gn,1(x). Then (13) reduces to

Gn+1(x) = (1 + 2x)Gn(x) + (x+ x2)D(Gn(x))

with initial value G1(x) = 1. Let Gn(x) =
∑n

k=1G(n, k)xk−1. It is easy to verify that

G(n+ 1, k) = kG(n, k) + kG(n, k − 1) (15)

with initial value G(1, 1) = 1. Recall that the Stirling numbers of the second kind S(n, k)
satisfy the recurrence relation

S(n+ 1, k) = kS(n, k) + S(n, k − 1) (16)

with initial conditions S(0, 0) = 1 and S(n, 0) = 0 for n > 1 (see [17, A008277]). By
comparing (15) with (16), we immediately get the following result.

Proposition 4. For 1 6 k 6 n, we have G(n, k) = k!S(n, k).
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4 On the expansion of (Dy)n(z)

For n > 0, we define

(Dy)n(z) =
n∑
k=0

H(n, k)y2n−2kz2k+1.

Theorem 5. For 0 6 k 6 n, we have H(n, k) = B(n, k).

Proof. Clearly, H(0, 0) = 1. Note that D(yz) = y2z + z3. Then H(1, 0) = B(1, 0) and
H(1, 1) = B(1, 1). Note that

(Dy)(Dy)n(z) =
n∑
k=0

(1 + 2k)H(n, k)y2n−2k+2z2k+1 +
n∑
k=0

(2n− 2k + 1)H(n, k)y2n−2kz2k+3.

Then
H(n+ 1, k) = (1 + 2k)H(n, k) + (2n− 2k + 3)H(n, k − 1).

Hence the numbers H(n, k) satisfy the same recurrence relation and initial conditions as
B(n, k), so they agree.

Let (Dy)n(z) = zfn(y). Using (Dy)n+1(z) = D(yzfn(y)), we get

fn+1(y) = (1 + 2y2)fn(y) + y(1 + y2)f ′n(y) (17)

with initial value f0(y) = 1.
Set fn(y) =

∑n
k=0 f(n, k)y2k. By (17), we obtain

f(n+ 1, k) = (1 + 2k)f(n, k) + 2kf(n, k − 1)

for 0 6 k 6 n, with initial conditions f(0, 0) = 1, f(0, k) = 0 for k > 1. It should be
noted that

(f(n, 0), f(n, 1), . . . , f(n, n))

is the f -vector of the simplicial complex dual to the permutohedra of type B of rank n
(see [17, A145901]).

5 Polynomials related to (yD)n(y) and (yD)n(z)

For n > 1, we define

(yD)n(y) =
n∑
k=1

M(n, k)y2k−1z2n−2k+2,

(yD)n(z) =
n∑
k=1

N(n, k)y2kz2n−2k+1.

the electronic journal of combinatorics 20(1) (2013), #P11 7



Theorem 6. For 1 6 k 6 n, we have

M(n+ 1, k) = (2k − 1)M(n, k) + (2n− 2k + 4)M(n, k − 1), (18)

N(n+ 1, k) = 2kN(n, k) + (2n− 2k + 3)N(n, k − 1). (19)

Proof. Note that

(yD)(yD)n(y) =
n∑
k=1

(2k−1)M(n, k)y2k−1z2n−2k+4+
n∑
k=1

(2n−2k+2)M(n, k)y2k+1z2n−2k+2.

Thus we obtain (18). Similarly, we get (19).

From (18) and (19), we immediately get a connection between M(n, k) and N(n, k).

Corollary 7. For 1 6 k 6 n, we have M(n, k) = N(n, n− k + 1).

Let Mn(x) =
∑n

k=1M(n, k)xk, and let Nn(x) =
∑n

k=1N(n, k)xk. Then we have

Mn(x) = xn+1Nn

(
1

x

)
. (20)

Set

Rn(y) = (yD)n(y) =
n∑
k=0

R(n, k)y2k+1, zTn(y) = (yD)n(z) = z
n∑
k=1

T (n, k)y2k.

It is easy to verify that
Rn+1(y) = y(1 + y2)R′n(y), (21)

Tn+1(y) = y2Tn(y) + y(1 + y2)T ′n(y). (22)

Equating the coefficient of y2k+1 on both sides of (21), we get

R(n+ 1, k) = (2k + 1)R(n, k) + (2k − 1)R(n, k − 1).

Equating the coefficient of y2k on both sides of (22), we get

T (n+ 1, k) = 2kT (n, k) + (2k − 1)T (n, k − 1).

Clearly, R(n, n) = T (n, n) = (2n − 1)!!, where (2n − 1)!! is the double factorial number.
It should be noted that the triangular arrays {R(n, k)}n>1,06k6n and {T (n, k)}n>1,16k6n

are both Galton triangles (see [17, A187075]), which has been studied by Neuwirth [16].
Now we present the following result.

Theorem 8. For n > 1, we have

Rn(y) = y2n+1Nn

(
1 + y2

y2

)
and Tn(y) = (1 + y2)nNn

(
y2

1 + y2

)
.
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Proof. Recall that z2 = y2 + 1. Then

Rn(y) =
n∑
k=1

M(n, k)y2k−1(y2 + 1)n−k+1 = y−1(1 + y2)n+1Mn

(
y2

1 + y2

)
,

and

Tn(y) =
n∑
k=1

N(n, k)y2k(y2 + 1)n−k = (1 + y2)nNn

(
y2

1 + y2

)
.

It follows from (20) that

(1 + y2)n+1Mn

(
y2

1 + y2

)
= y2n+2Nn

(
1 + y2

y2

)
,

as desired.

From Theorem 8, we get Rn(1) = Nn(2) and Tn(1) = 2nNn(1
2
). It follows from (19)

that
Nn+1(x) = (2n+ 1)xNn(x) + 2x(1− x)N ′n(x) (23)

with initial value N0(x) = 1. The first few of the polynomials Nn(x) are

N1(x) = x,N2(x) = 2x+ x2, N3(x) = 4x+ 10x2 + x3.

In particular, N(n, 1) = 2n−1, N(n, n) = 1 and Nn(1) = (2n − 1)!! for n > 1. There
is a nice description of the polynomials Nn(x) (see [17, A156919]): if ϑ = 2xD and

r(x) = (1− x)−
1
2 , then

ϑn(r(x)) = Nn(x)r(x)2n+1.

In the following discussion, we consider some properties of the polynomials Nn(x).
The numbers N(n, k) arise often in combinatorics and other branches of mathematics

(see [12] for instance). A perfect matching of [2n] is a partition of [2n] into n blocks of
size 2. Analyzing the placement of 2n − 1 and 2n, it is easy to verify that the number
N(n, k) counts perfect matchings of [2n] with the restriction that only k matching pairs
have odd smaller entries (see [17, A185411]).

For n > 1, an explicit formula for Nn(x) is given as follows (see [17, A156919]):

Nn(x) =
n∑
k=1

2n−2k
(

2k

k

)
k!S(n, k)xk(1− x)n−k (24)

where S(n, k) is the Stirling number of the second kind. It follows from (24) that

N(n, k) =
k∑
i=1

(−1)k−i2n−2i
(

2i

i

)(
n− i
k − i

)
i!S(n, i).

Let

N(x, t) =
∑
n>0

Nn(x)
tn

n!
.
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Using (23), the formal power series N(x, t) satisfies the following partial differential equa-
tion:

(1− 2xt)
∂N(x, t)

∂t
− 2x(1− x)

∂N(x, t)

∂x
= xN(x, t).

By the method of characteristics [19], it is easy to derive an explicit formula:

N(x, t) = ext
√

1− x
e2xt − xe2t

.

Hence

N2(x, t) =
1− x

1− xe2t(1−x)
. (25)

Combining (3) and (25), we get the following result.

Theorem 9. For n > 0, we have

n∑
k=0

(
n

k

)
Nk(x)Nn−k(x) = 2nAn(x).

In the final part of this section, we present both central and local limit theorems for
the coefficients of Nn(x). As an application of a result [13, Theorem 2] on polynomials
with only real zeros, the recurrence relation (23) enables us to show that the polynomials
{Nn(x)}n>1 form a Sturm sequence.

Proposition 10. For n > 2, the polynomial Nn(x) has n distinct real zeros, separated by
the zeros of Nn−1(x).

Let {a(n, k)}06k6n be a sequence of positive real numbers. It has no internal zeros if
there are no three indices i < j < k such that a(n, i)a(n, k) 6= 0 and a(n, j) = 0. Let
An =

∑n
k=0 a(n, k). We say that the sequence {a(n, k)} satisfies a central limit theorem

with mean µn and variance σ2
n provided

lim sup
n→+∞,x∈R

∣∣∣∣∣
µn+xσn∑
k=0

a(n, k)

An
− 1√

2π

∫ x

−∞
e−

t2

2 dt

∣∣∣∣∣ = 0.

The sequence satisfies a local limit theorem on B ⊆ R if

lim sup
n→+∞,x∈B

∣∣∣∣σna(n, µn + xσn)

An
− 1√

2π
e−

x2

2

∣∣∣∣ = 0.

Recall the following Bender’s theorem.

Theorem 11. [2] Let {Pn(x)}n>1 be a sequence of polynomials with only real zeros. The
sequence of the coefficients of the polynomial Pn(x) satisfies a central limit theorem with

µn =
P ′n(1)

Pn(1)
and σ2

n =
P ′n(1)

Pn(1)
+
P ′′n (1)

Pn(1)
−
(
P ′n(1)

Pn(1)

)2

,

provided that lim
n→∞

σ2
n = +∞. If the sequence of coefficients of the polynomial Pn(x) has

no internal zeros, then the sequence of coefficients satisfies a local limit theorem.
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Combining Proposition 10 and Theorem 11, we obtain the following result.

Theorem 12. The sequence {N(n, k)}16k6n satisfies a central and a local limit theorem
with µn = (2n+ 1)/4 and σ2

n = (2n+ 1)/24 for n > 4.

Proof. By differentiating (23), we obtain the recurrence xn+1 = (2n + 1)!! + (2n − 1)xn
for xn = N ′n(1), and this has the solution xn = (2n + 1)!!/4 for n > 2. By Theorem 11,
we have µn = (2n+ 1)/4. Another differentiation leads to the recurrence

yn+1 =
(2n+ 1)!!

4
(4n− 2) + (2n− 3)yn

for yn = N ′′n(1). Set yn = (2n− 1)!!(an2 + bn+ c) and solve for a, b, c to get

yn = (2n− 1)!!(12n2 − 8n− 7)/48

for n > 4. Hence σ2
n = (2n+ 1)/24. Thus lim

n→∞
σ2
n = +∞ as desired.

Let P (x) =
∑n

i=0 aix
i be a polynomial. Let m be an index such that am = max06i6n ai.

Darroch [5] showed that if P (x) ∈ RZ(−∞, 0], then⌊
P ′n(1)

Pn(1)

⌋
6 m 6

⌈
P ′n(1)

Pn(1)

⌉
.

So the following result is immediate.

Corollary 13. If i = b(2n+ 1)c/4 or i = d(2n+ 1)e/4 then N(n, i) = max16k6nN(n, k).
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[1] D. André, Développement de sec x et tan x, C. R. Math. Acad. Sci. Paris., 88:965–
967, 1879.

[2] E.A. Bender, Central and local limit theorems applied to asymptotic enumeration,
J. Combin. Theory Ser. A, 15:91–111, 1973.

[3] L. Carlitz and R. Scoville, Tangent numbers and operators, Duke Math. J., 39:413–
429, 1972.
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