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A Fanout Optimization Algorithm Based
on the Effort Delay Model

Peyman Rezvani and Massoud Pedram

Abstract—This paper presents a Logical Effort-based fanout OPtimizer
for ARea and Delay (LEOPARD), which relies on the availability of a (near)
continuous size buffer library. Based on the concept of logical effort in very
large scale integrated circuits, the proposed algorithm attempts to minimize
the total buffer area under the required time and input capacitance con-
straints by constructing the fanout tree topology and assigning the buffer
sizes. More precisely, the proposed algorithm produces the optimum fanout
tree solution if the fanout tree topology is restricted to a chain of buffers.
For the case where a discrete size library of buffers is available, this paper
also presents a postprocessing (buffer merging) step that transforms the
continuous buffer-sizing solution to a discrete one while minimizing the
round-off error. Experimental results show that compared with previous
approaches, both for continuous and discrete buffer libraries, LEOPARD
achieves a significant reduction in the total buffer area subject to the re-
quired time constraints.

Index Terms—Buffer insertion, fanout optimization, gate sizing, logic de-
sign, logical effort.

I. INTRODUCTION

Quite often in a very large scale integrated (VLSI) design, a signal
needs to be distributed to several destinations under a required timing
constraint at each destination. Furthermore, in practice, there may also
be a limitation on the load that can be driven by the source signal.
Fanout optimization is the problem of finding a buffer-tree topology
and sizing the buffers in this topology so as to satisfy the constraints.
Since these buffers must be picked from the sizes that are available
in a given cell library, the more realistic problem is to find the op-
timum sizes for the buffers from the set of sizes available in the library.
This problem has been proved to be NP-complete [1]. While several
approaches exist for tackling the fanout optimization problem using
simplified delay models [9], [10], new techniques [12] have also been
proposed which use more accurate delay models or even taking inter-
connect delay into account [11]. More recently, however, researchers
[3] have started to use continuous, as opposed to discrete, size libraries,
in the sense that the optimum fanout tree is calculated with the as-
sumption that buffers are available in all sizes. This greatly simplifies
the problem and allows the application of more powerful optimization
techniques. At the same time, the number of discrete sizes for inverters
in a typical application-specified integrated circuit (ASIC) library has
increased to the extent that a “near-continuous inverter sizing” model
has become a valid and fairly accurate model.

In [2], the authors simplified the fanout optimization problem by
restricting the search space to a subset of trees and showed that the
results still compare very favorably with the algorithms that consider
a larger set of topologies. The authors used a dynamic programming
approach to implicitly enumerate the set of so-called LT-trees and find
the optimal LT-tree topology and sizing. An LT-tree is either a 2-level
buffer type or a chain of buffers with intermediate fanouts to sinks that
ends up to sinksor to a 2-level tree. Reference [3] also restricted the
search space to a certain class of trees, called fanout-free trees, and
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showed that there still exists an optimal solution in this search space
under a gain-based delay model. Fanout-free trees are trees in which a
buffer can drive at most one other buffer.

In this paper, an algorithm is presented that finds the fanout tree
topology and sizes of the buffers on the tree by decomposing the whole
problem into subproblems and solving each subproblem separately for
each sink. The solutions to the subproblems are then merged to form
the solution to the whole problem. Our derivation relies on the notions
of logical and electrical effort first proposed in [4].

Sutherland and Sproull [4] minimized the delay along any single path
by assigning equal delay budgets to each stage on that path. While this
approach was proven to minimize the delay, it did not necessarily result
in an optimal solution in terms of the total buffer area. Kung [3], on the
other hand, solved the fanout-optimization problem to minimize the
input capacitance seenat thesource gate subject to timingconstraints for
the sinks and without any consideration of the buffer area. In contrast,
the approach presented in this paper minimizes the total buffer area
subject to capacitance constraint for the driver. This is an important
distinction because it allows one to tradeoff the propagation delay
through the source driver and through the rest of the buffer tree to reduce
the total buffer area without too high of an increase in the overall delay.

The remainder of this paper is organized as follows. In Section II,
the effort delay model that is used throughout this paper is explained.
Section III explains the details of the algorithm. In Section IV, experi-
mental results are shown, and in Section V, we conclude the paper.

II. DELAY MODEL

The delay model used in this paper is based on the concept of logical
and electrical efforts presented in [4]. The effort-based model is basi-
callya reformulationof theconventionalRCmodelofCMOSgate delay.

Using the same terminology as in [4], the delay of a gate is defined
to be

d = � (p+ gh) (1)

where� is a time unit that characterizes the semiconductor process
being used. It is only used to convert the unitless part of(p+ gh) to a
time unit. For simplicity,� is not considered from now on. Parameterp

is the parasitic delay of the gate. The major contribution to the parasitic
delay is the capacitance of the source/drain regions of the transistors
that drive the output. Throughout this paperpinv is used as the parasitic
delay for an inverter. Parameterg is called thelogical effortof the gate
and depends only on the topology of the gate and the ability to produce
output current. The logical effort for an inverter is assumed to be 1
and, for other gates, calculated based on their internal topologies. The
logical effort of a logic gate tells how much worse it is at producing
output current than is an inverter, given that each of its inputs may have
only the same input capacitance as the inverter. Parameterh (specified
for each input pin of the gate) is called theelectrical effort(also called
gain) of the gate and is defined to be the ratio of the capacitive load
driven by the gate to the input capacitance at the corresponding input
pin. The electrical effort describes how the electrical environment of
the logic gate affects performance and how the size of the transistors in
the gate determines its load-driving capability.

The important point is thatp andg are independent of the size of
the gate, and the only factor that is affected by sizing is the electrical
effort h. Reference [4] shows howp andg are independent of sizing
by doing the reformulation to define the four factors� , p, g, andh in
terms of the resistance and capacitance of a minimum size inverter and
a template gate representing the topology of the gate. For details, refer
to [4].
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Fig. 1. Buffer chain.

III. A LGORITHM

In this section, the fanout optimization problem is stated as two sep-
arate problems, and each one is solved separately.

One-sink fanout optimization (1FO) problem: Given the source
of a signalQ with maximum driving capabilityCin and a sinkS with
capacitive loadCL, required polarityP , and required arrival timeTR,
find the optimum number of buffers for a buffer chain and the appro-
priate sizing for them to minimize the total buffer area such that the
delay fromQ to S is less than or equal toTR, the required polarityP
is achieved, and the capacitive load imposed onQ is no more thanCin.

Multiple-sink fanout optimization (mFO) problem : Given the
source of a signalQ with maximum driving capabilityCin along with
a set ofm sinksSi each of which is assigned a triplet (CL , TR , Pi)
whereCL is the capacitive load,TR is the required arrival time, and
Pi is the required polarity for the sinkSi, find a fanout tree of buffers
and the appropriate sizing for them to minimize the total buffer area
such that the timing constraint and the polarity required at each sink is
satisfied and the capacitive load imposed onQ is no more thanCin.

Note that the only difference between the two problems is the
number of sinks to be driven. Area, the objective function in both of
these problems, is considered to be the summation of input capaci-
tances of all the buffers, which is reasonable with the assumption of
continuous sizing for the gates.

The rest of this section is organized as follows. The 1FO problem
is solved in Section III-A, and in Section III-B, the mFO problem is
solved based on the solution derived for the 1FO problem.

A. Buffer Chain

For the 1FO problem, the solution is a chain of buffers between the
source and the sink (Fig. 1). The variables of the problem are defined
to be the number of buffersn and the electrical efforts of these buffers
h1; h2; . . . ; hn.

Since the logical effort for an inverter is 1, the delay through the
buffer chain can be expressed in terms ofn andhis as follows:

delay= npinv +

n

i=1

hi: (2)

The overall area, which is calculated as the summation of the input
capacitances of all buffers on the buffer chain, may subsequently be
expressed as

area=
n

i=1

Ci =

n

i=1

CL
n

j=i
hj
: (3)

The goal would be to findn and allhis to minimize area while both
timing and input capacitance constraints are satisfied. That is

Min area
st : delay� TR

C1 � Cin:

Theorem 1: In the 1FO problem, delay through the optimum buffer
chain isexactlyequal to thespecifiedrequired timeTR, i.e.,delay= TR.

Proof: According to (3), area is a monotonically decreasing func-
tion of all his (i = 1; . . . ; n). In other words, increasing anyhi will
always result in a buffer chain with smaller area. The delay, on the other
hand, is an increasing function of allhis according to (2). This means
that by increasing any arbitraryhi, area can be decreased and delay can
be increased up to the point that delay becomes no larger than the given
constraintTR; therefore, the optimum buffer chain has delay= TR.

Lemma 1: In the 1FO problem, for a fixed number of buffersn in
the chain, the optimum buffer chain hashi equal to a constantTR�
npinv.

Proof: According to Theorem 1 and (2)

npinv +

n

i=1

hi = TR:

The first term on the left hand sidenpinv is constant for a givenn.
Therefore, hi for the optimum buffer chain withn buffers is also
constant and equal to

n

i=1

hi = TR � npinv: (4)

Hence, the claim is proved.
To find the optimum number of buffersn the maximum input capac-

itance constraintC1 � Cin is used, whereC1 is the input capacitance
of the first buffer in the chain being driven by the source signal andCin

is the given constraint on the input capacitance.
The input capacitance for the first buffer is computed as follows:

C1 =
CL

hi
: (5)

Let the electrical effort of the chain be defined as the product of elec-
trical efforts of all the buffers, and let it be shown byH . Using the
above equation, the input capacitance constraint can be restated as fol-
lows:

H = hi =
CL

C1

�
CL

Cin

: (6)

Theorem 2: In the 1FO problem, for a fixed number of buffersn in
the chain, the electrical effort of the buffer chainH achieves its max-
imum value when allhis are equal.

Proof: According to Lemma 1, the summation of allhis is con-
stant for any given number of buffers. Since the product of some vari-
ables with a constant summation is maximum when all those variables
are equal, allhis have to be equal to maximizeH .

The electrical effort of each buffer for the buffer chain that maxi-
mizesH , according to Theorem 2 and (4), would then be

ĥi = ĥ =
TR � npinv

n
8i = 1; . . . ; n: (7)

So, the maximum ofH , namedH as a function ofn would be

H =
TR � npinv

n

n

: (8)

H is drawn in Fig. 2 forTR = 14 andpinv = 0:6.
According to Theorem 2, there is a maximum value thatH can

achieve for any given buffer count. Therefore, the only buffer counts
that are feasible are those for which the maximum value thatH
achieves is not less than the ratioCL=Cin (6) and those correspond
to the buffer counts between the points of intersection ofH and line
CL=Cin (Fig. 2). As an example, for Case I in Fig. 2, there is no
feasible solution because there are no intersection points andH lies
belowCL=Cin for all buffer counts. For Case III, on the other hand,
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Fig. 2. Plot ofH = Max( h ) versusn.

Fig. 3. AlgorithmOptN .

there are two points of intersection~n1 and ~n2; therefore, the only
feasible buffer counts are between~n1 and~n2.

With these observations, algorithmOptN in Fig. 3 is proposed for
finding the optimum number of buffers and their sizes.

To find the optimum number of buffers, the lineCL=Cin is inter-
sected with the graphH (line 2 of Fig. 3 and Case III in Fig. 2) which
results in~n1 and~n2. Note that

lim
n!0

H = 1: (9)

Therefore, there always exists an~n1 unless the lineCL=Cin is passing
below unity, which means thatCL is less than or equal toCin, in which
case, no buffers need to be used at all. On the other hand, there ex-
ists an upper bound on the number of buffers because of the intrinsic
buffer delay. According to (4), for the electrical efforts of buffers to
have a meaningful physical interpretation,TR � npinv has to be posi-
tive, which means (line 4 of Fig. 3)

n �
TR
pinv

: (10)

In short, the buffer count is limited by~n1 on one side and by~n2 and
TR=pinv on the other side. Therefore, the optimum buffer count,n, lies
betweenn1 andn2 (lines 3 and 4 of Fig. 3).

There is a possibility that the lineCL=Cin could intersect the graph
where there is no integern between the points of intersection to satisfy
the polarity constraint. This only happens when the line crosses theH
curve very close to the peak of the graph (Case II in Fig. 2). In lines

Fig. 4. Split/merge transformations.

5 and 6, the optimum sizing for the buffers on the chain is found by
solving a convex optimization problem as follows:

Min C

h
+ C

h h
+ . . . + C

h h ...h

st : h1 + . . . + hn � TR � npinv

h1 . . .hn �
C

C
:

(11)

This is a minimization of a posynomial function with posynomial in-
equality constraints that can be easily solved in polynomial time [6].
Finally, among all of the solutions, the one with the minimum area is
selected as the optimum solution.

It is interesting to note that by taking the derivative ofH and setting
it equal to zero, its maximum value is found to be at

n̂ = TR � �(pinv) (12)

where

�(pinv) =
Lambert p

e

pinv Lambert p

e
+ 1

: (13)

The function Lambert(!) is the solution to the nonlinear equation
xex = !. For further information about Lambert function, refer to
[5]. As pinv tends toward zero

lim
p !0

�(pinv) =
1

e
(14)

and this corresponds to allocating the well-known electrical effort ofe
to each buffer with the assumption ofpinv = 0.

Theorem 3: Algorithm OptN finds the optimum solution for the
1FO problem.

Proof: Since all of the feasible solutions are explicitly consid-
ered, the algorithm is guaranteed to find the optimum solution.

B. Buffer Tree

In this section, the more general case of the fanout-optimization
problem is considered, where the source signal is driving more than
one sink.

Reference [3] introduced two transformations that can be performed
on a fanout tree, namelymergingand splitting (Fig. 4). It is shown
here that these transformations maintain the same area, delay, and
capacitance.

Theorem 4: The split/merge transformations applied to a fanout tree
preserve the input capacitance (thus, area) and the delay.

Proof: The proof for split transformation is as follows. Suppose
the electrical effort of the original buffer before splitting ish. Thus, the
delay through the buffer for both of the branches ish + pinv, and the
input capacitance is(C1 +C2)=h, which is also the area of the buffer.
After splitting the original buffer to two buffers with equal electrical
efforts ofh, the delay for both branches would still beh + pinv and
the input capacitance would beC1=h+ C2 + h, thus, the same input
capacitance and, hence, the same area. For merge transformation, one
can easily verify the same provided that the electrical efforts of the
buffers to be merged are equal.
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Fig. 5. Input capacitance allocation for a fanout-free buffer tree.

Therefore, ifT � is the optimal fanout tree with the proper sizing of
buffers, it can be split to afanout-free treeconsisting of a set of buffer
chainsT , which has the same area asT �, according to Theorem 4,
and also satisfies the timing and input capacitance constraints (Fig. 5).
First,T will be found by using the optimal algorithm presented in Sec-
tion III-A. The method used to transformT into T � will be discussed
later.

The 1FO problem was stated such that the maximum input capaci-
tance allowed was given. Therefore, before the mFO problem can be
broken down into 1FO problems, different portions ofCin need to be
allocated to each branch (Fig. 5).

Input capacitance allocation (ICA) problem: Given a number of
sinks, each with a required time, capacitive load, and required polarity,
and a total budget on input capacitanceCin, allocate portions ofCin

to each branch, such that the total area is minimized while the given
constraints for all sinks are satisfied.

In this section, it is first proven that the ICA problem is NP-complete
and then a heuristic is proposed for solving this problem.

Intuitively speaking, the input capacitance allocation problem is
similar to Knapsack problem, where objects of the Knapsack problem
correspond to the capacitance budgets of each branch and the total
capacitance is limited by the input capacitance constraintCin, which
corresponds to the Knapsack volume.

Before it can be formally proven that this problem is NP-complete,
the behavior of area must be studied as a function of input capacitance
for each branch. The valid range for the buffer count on branchi is [1,
bTR =pinvc], according to (10). For each buffer countn, in this range,
there exists a maximum electrical effort for the buffer chain, according
to (8). Therefore, because of the capacitance constraint in (6), there
exists a minimum required input capacitance as follows:

Ci =
CL

T �np

n

n (15)

where the denominator is the maximum value that can be achieved by
h, according to (8). On the other hand, there exists a maximum ben-

eficial input capacitance,Ci, for each buffer count which means that
allocating an input capacitance larger thanCi will not improve area
any further. This value can be calculated using the same optimization
problem as in (11) but with dropping the capacitance constraint. That
is

fhg =
Min arean
st : delayn � TR

and then calculatingCi as follows:

Ci =
CL

h
:

Obviously, any input capacitance larger thanCi will not improve area
any further because allocatingCi already results in the same solution
as when the capacitance constraint is dropped.

Now that there exists a range for input capacitance for each buffer
count, it can be proven that area is a decreasing function of input ca-
pacitance in this range.

Theorem 5: For a fixed number of buffers in a buffer chain, the area
cost is a decreasing function of input capacitance forCi � Cin � Ci.

Proof: Increasing input capacitanceCin for a branch will de-
crease the ratioCL=Cin in the capacitive constraint of the optimiza-
tion problem in (11). Therefore, there either exists a better solution
with smaller area or, if not, the same solution with the same area is still
achievable. Hence, increasing input capacitance will not increase area
and, therefore, area is a decreasing function of input capacitance and
claim is proven.

Area versus input capacitance for some buffer count will, therefore,
look something like the graph shown in Fig. 6(a). As shown in Fig. 6(a),
no feasible solution exists for input capacitances smaller thanCi and
the area stays the same for input capacitances larger thanCi. Different
buffer counts in the range [1,bTR =pinv] result in the graphs shown in
Fig. 6(b). The minimum area over all buffer counts will, therefore, look
like the graph shown in Fig. 6(c). This piecewise nature of area versus
input capacitance, which is due to different buffer counts, causes the
ICA problem to be NP-complete.

Theorem 6: ICA problem is NP-complete.
Proof: To perform the proof, the 0-1 Knapsack problem will be

reduced to the ICA problem. In the conventional version of the Knap-
sack problem, each item has a size and a value and the objective is to
maximize the total value. In the ICA problem, however, the objective
is to minimize area. Therefore, we will consider the negative of area,
rather than the area itself, so as to make the problem a maximization
problem rather than a minimization one [Fig. 7(a)].

The value versus size curve for some item of 0-1 Knapsack problem
is shown in Fig. 7(b). The point about this graph is that it is not a con-
tinuous one. For sizes belowsi, the value is zero, and for sizes greater
thansi, the value isvi. Assuming� to be the accuracy of the machine,
the graph can be modified to the one shown in Fig. 7(c) to make it a
continuous one. Note that the graph may have any arbitrary behavior in
the range betweensi andsi+�. This new graph is a special case of the
graph shown in Fig. 7(a), in which the curve has become linear. Since
the 0-1 knapsack problem is NP-complete, the ICA problem is NP-hard
as well, otherwise one could formulate the 0-1 Knapsack problem as an
ICA problem and solve it in polynomial time. Note that the NP-hard-
ness of ICA is because of the piecewise nature of the area versus input
capacitance curve and, that, in turn, is because area is represented by
different functions for different buffer counts. Now that it has been
proven that ICA is NP-hard, it must be shown that the decision version
of ICA can be tested in polynomial time. This is obviously true be-
cause one can easily add up the input capacitances of each branch and
compare it with the input capacitance budgetCin. This can be done in
linear time, meaning ICA is in NP, and since it was proven that ICA is
NP-hard, therefore, the ICA problem is NP-complete.

After proving that ICA is an NP-complete problem, this section pro-
ceeds by proposing a heuristic method for allocating input capacitances
to each branch.

Letm denote the number of sinks and, thus, the number of branches.
Consider thekth branch(1 � k � m) andHk, the maximum of
electrical effort of thekth branch, has its minimal value of 1 atnk = 0
(lim. H whenn tends toward 0). On the other hand,Hk cannot be any
larger than�(TR ; pinv), the value ofHk(nk) whennk is calculated
from (12). According to (5), the maximum value ofHk corresponds to
the minimum value ofCik. Therefore, the minimum acceptable input
capacitance would be

Ck =
CLk

� (TR ; pinv)
: (16)
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(a) (b)

(c)

Fig. 6. (a) Area versus input cap for some buffer countn. (b) Area versus input cap for different buffer counts. (c) Minimum area versus input cap.

(a) (b)

(c)

Fig. 7. (a) Area versus input cap. (b) Value versus size for an item of knapsack problem. (c) Modified value versus size graph.

Allocating any capacitance less thanC
k

to any branch will make
that branch infeasible. Hence,m new positive variablesxk for
k = 1; . . . ;m are introduced such that

Cik = C
k
+ xk: (17)

This way, one can be sure that the minimum required capacitance is
allocated to each branch. The heuristic is to findxks in such a way that
their ratio is proportional to the positive slope ofH graph in Fig. 2.
The motivation behind this heuristic is the fact that for two different
branches to have the same change in buffer count, the branch with
smaller slope would need a smaller change inCL=Cin. When a branch
is given a wider range of buffer counts to explore, a better solution will
likely be found. For an example, refer to Fig. 8. Branch 1 has a larger
slope compared to branch 2; therefore, a larger change inCL=Cin for
branch 1 is required to have the same buffer count range as branch 2.
SinceCL is given and fixed for each branch, changingCL=Cin corre-
sponds to changing theCin allocated to that branch.

The proposed heuristic is shown in Fig. 9. Line 4 findsxks such that
the desired ratio between them, as discussed above, is fulfilled.

The slope for each branch is estimated as follows:

slope
k
=

ymax � ymin

xmax � xmin

=
� (TR ; pinv)� 1

TR �(pinv)� 0
: (18)

After finding the allocated input capacitances,m instances of the 1FO
problem will be generated that can be optimally solved by the algorithm
presented in Section III-A.

C. Merging Buffer Chains

So far, a continuous-sized buffer library has been assumed. In reality
the ASIC library has a finite (and hopefully large) number of inverter
sizes. So the solution needs to be mapped to one consistent with the
library. The main problem when rounding the inverter sizes is that it
may result in significant errors. To alleviate this problem, the merging
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Fig. 8. Different slopes corresponding to different branches.

Fig. 9. AlgorithmInCapAlloc.

transformation, which is the opposite of the split transformation intro-
duced in Fig. 4, is used.

To show how this works, recall Theorem 4. If the electrical efforts
of the buffers on two branches are equal, one can merge them and re-
place them with a single buffer with the same electrical effort. Note
that simply because the electrical efforts of the buffers are the same,
one cannot conclude that the buffer sizes are also the same. As shown
in Fig. 4, the sizes of each of the buffers before merging areC1=h
andC2=h, respectively, and the size of the buffer after merging is
(C1 + C2)=h. Therefore, the size of the buffer after merging is equal
to the summation of buffer sizes before merging. This fact can be used
to reduce the rounding error. As an example, consider a buffer size of
0.35 that has to be mapped to a buffer size of 1 in the ASIC library.
Now, if two buffers of size 0.35 could be merged to a single buffer, the
size would be 0.7, and rounding to a buffer size of 1 would result in
smaller error.

Clearly, one has to be concerned about satisfying the required time
and input capacitance constraints when performing this transformation.
The merging should be performed in such a way that all timing con-
straints are satisfied and the area (as well as the input capacitance of the

Fig. 10. Algorithmmerge.

TABLE I
COMPARISONWITH SUTHERLAND

very first stage) is the same. As noted in the proof of Theorem 4, for the
merging transformation to produce the exact same area and delay, the
electrical efforts of the buffers to be merged must be equal. However,
because each branch of the fanout tree is optimized separately with re-
spect to the corresponding sink, the electrical efforts of the buffers may
not necessarily be equal. Thus, a constant" is defined and two buffers
are merged if the difference between their electrical efforts is less than
or equal to" percent. In addition, two buffers are merged if the rounding
error after merging the two is smaller than the summation of rounding
errors of each buffer before the merge operation. Obviously, the effi-
ciency of this approach is dependent on the order in which the buffers
are selected to be merged. The approach presented here is to cluster the
buffers into groups of nearly equal electrical efforts and check for the
merging possibilities inside each group. Merging is performed starting
at the source of the signal, and proceeding toward the sinks, while at
the same time preserving the area so as not to increase the capacitive
load imposed on the previous stage. The pseudocode for a recursive
merging algorithm is shown in Fig. 10.

IV. EXPERIMENTAL RESULTS

Three different sets of experiments were performed. In the first set,
the LEOPARD algorithm of Section III was compared with an im-
plementation of the Sutherland algorithm [4], which minimizes delay
through a path. The results are reported in Table I.
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TABLE II
COMPARISONWITH KUNG

For all of the experiments, the minimization problems within the
LEOPARD algorithm were solved using the Matlab Optimization
Toolbox v. 2.0. Furthermore,pinv was assumed to be 0.6. For each cir-
cuit, the capacitive load of the sink and the maximum capacitance that
the source can drive were given. First, the path delay was minimized
using Sutherland’s method. Delay and area of minimum-delay buffer
chain are reported in columns 2 and 3. Next, the resulting delay and
polarity were used as the constraints for the area minimization problem
in LEOPARD. In the 4th column, the minimum area generated by
LEOPARD, subject to the given constraints, is shown. As expected,
the area is almost the same because delay has been minimized and,
hence, the timing constraint is so tight there will not be much room for
reducing area. However, when LEOPARD was given a 5% additional
slack, it can reduce area by an average of 29% as shown in columns 6
and 7. This shows how delay can be traded off for area to significantly
reduce area using LEOPARD if a slight increase in delay can be
afforded. Note that merging or rounding is not applied during this
set of experiments and the area reported is the summation of input
capacitances of all inverters.

In the next set of experiments, the results from LEOPARD are com-
pared with the results of an implementation of Kung’s algorithm [3].

For each circuit, a number of sinks with capacitive load, required
time, and required polarity are given. The number of sinks for each cir-
cuit is shown in column 2. Kung’s algorithm was first used to minimize
capacitive load on the source. The resulting capacitance and area are
reported in columns 3 and 4. The capacitance calculated by Kung’s al-
gorithm was then used as the capacitive constraint for area optimization
in LEOPARD. The resulting area is reported in column 5. Finally, an
additional 5% input capacitance was allowed for each circuit to further
reduce area, and the resulting input capacitance and area are shown in
columns 6 and 7. An average of 19% improvement in area is achieved
in the expense of 5% additional input capacitance. Note that in this
set of experiments, neither merging nor rounding were performed for
Kung’s algorithm or LEOPARD and the area reported in Table II is the
total capacitance of inverters calculated by the algorithms rather than
extracted from the library.pinv is assumed to be 0.6.

Finally, our last set of experimental results compare LEOPARD with
the sequential interactive synthesis (SIS) fanout optimization program.
SIS runs different fanout optimization programs, namelyLT-Tree, Two-
Level, Bottom-Up, andBalanced, and the best one is reported [14]. In
this set of experiments, a standard cell library consisting of ten different
inverters was used. For each inverter,�intrinsic andRout were specified
for the SIS library delay model andpinv and� were specified for the

TABLE III
COMPARISONWITH SIS

Sutherland delay model. A very good match between the SIS delay and
logical effort delay model values was enforced.

The fanout optimization programs of SIS were first used to perform
fanout optimization. The results are reported in column 6 of Table III.
Then, the delay and input capacitance resulting from SIS were used
as constraints for LEOPARD. The results, assuming a continuous-size
buffer library, are reported in column 3. Then, merging and mapping to
the real buffers in the ASIC library were performed, and the results are
shown in columns 4 and 5. As shown in the table, in case of continuous
sizing the area is expressed in terms of the capacitances but for the dis-
crete-sized buffers, it is the actual buffer area extracted from the library.
Results show an average of 38% area improvement for LEOPARD.

V. CONCLUSION

This paper presented an optimal algorithm for buffer chains to min-
imize area with the assumption of continuous sizing for the buffers.
The algorithm finds the optimum number of buffers and the optimum
sizing for them by solving a posynomial minimization problem subject
to posynomial inequality constraints which can be easily and quickly
solved by a convex program solver. Based on this algorithm, a heuristic
method was presented for the general case of buffer trees. Considering
the fact that the number of discrete sizes for buffers in typical libraries
has highly increased, the assumption of near-continuous buffer library
is fairly accurate.
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Reliability-Constrained Area Optimization of VLSI
Power/Ground Networks Via Sequence

of Linear Programmings

Sheldon X.-D. Tan, C.-J. Richard Shi, and Jyh-Chwen Lee

Abstract—This paper presents a new method of sizing the widths of
the power and ground routes in integrated circuits so that the chip area
required by the routes is minimized subject to electromigration andIR
voltage drop constraints. The basic idea is to transform the underlying
constrained nonlinear programming problem into a sequence of linear
programs. Theoretically, we show that the sequence of linear programs
always converges to the optimum solution of the relaxed convex opti-
mization problem. Experimental results demonstrate that the proposed
sequence-of-linear-program method is orders of magnitude faster than the
best-known method based on conjugate gradients with constantly better
solution qualities.

Index Terms—Circuit modeling, linear programming, power distribu-
tion network, simulation and optimization.

I. INTRODUCTION

Power/ground (P/G) networks connect the P/G supplies in the circuit
modules to the P/G pads on a chip. An important problem in P/G net-
work design is to use the minimum amount of chip area for wiring P/G
networks, while avoiding potential reliability failures due to electromi-
gration and excessiveIR drops. Specifically, we are concerned with the
problem of P/G-network optimization where the topologies of P/G net-
works are assumed to be fixed, and only the widths of wire segments
are to be determined. Several methods have been developed to solve
this problem [6]–[9]. However, to the best of our knowledge, none of
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these methods have been incorporated into commercial computer-aided
design (CAD) tools and used by industry.

One major obstacle is that these methods are based on constrained
nonlinear programming, a process known to be computationally inten-
sive (NP-hard) [12]. These methods are applicable only to small size
problems, while P/G networks in today’s very large scale integration
(VLSI) design may contain millions of wire segments (therefore, mil-
lions of variables). On the other hand, with the continuous shrinking of
the chip feature size, P/G network optimization is becoming increas-
ingly important, since more and more portions of the chip area are
dedicated to P/G routings, and the problems ofIR drop and electro-
migration deteriorate.

In this paper, we present a new method capable of solving the P/G
optimization problem orders of magnitude faster than the best known
method. Our method is inspired by a key observation made by Chowd-
hury that if currents in wire segments are fixed, and voltages are used as
variables, then the resulting optimization problem is convex [8]. How-
ever, instead of using the conjugate gradient method as in [8], we show
that the problem can be solved elegantly by a sequence of linear pro-
grams. We prove that there always exists a sequence of linear programs
that converge to the optimal solution of the original convex optimiza-
tion problem. Experimental results have demonstrated that usually a
few linear programs are required to reach the optimal solution. The
complexity of the proposed method is proportional to the complexity
of linear programming (which can be solved in polynomial time [5],
[12]). Therefore, our method is scalable, i.e., the CPU time increases
approximately polynomially with the size of a network. In practice,
we have observed that the new method is orders of magnitude faster
than the conjugate gradient method with constantly better optimization
results.

This paper is organized as follows. Section II reviews some previous
work. Section III describes the formulation of the P/G network opti-
mization problem. The new method is presented in Section IV. Some
practical considerations are described in Section V. Experimental re-
sults from some large P/G networks are summarized in Section VI.
Section VII concludes the paper.

II. PREVIOUS WORK

It is generally assumed that the average current drawn by each
module is known and is modeled as an independent current source
(we do not consider the temporal correlations of current sources). The
constraints from reliability and design rules include: 1)IR voltage
drop constraints; 2) metal-migration constraints; 3) minimum width
constraints; and 4) equal width constraints. The problem of deter-
mining the widths of wire segments of a P/G network to minimize the
total P/G routing area subject to all these constraints is a constrained
nonlinear optimization problem [6], [7].

In the method of Chowdhury and Breuer [6], resistance values and
branch currents are selected as independent variables. Both the objec-
tive function and theIRvoltage drop constraints become nonlinear. The
augmented Lagrangian method combined with the steepest descent al-
gorithm [1] is used to solve the resulting problem.

Dutta and Marek-Sadowska [9] used only resistance values as vari-
ables. All of the constraints expressed in terms of nodal (terminal)
voltages and branch currents, which have to be obtained by explicitly
solving an electrical network, become nonlinear. The feasible direction
method [4] is employed to solve the nonlinear optimization problem.
At each iteration step, extra effort is required to solve the electrical net-
work for nodal voltages and branch currents, as well as their gradients
by numerical differentiation.
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