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Abstract

Farm management focused on maximizing biomass production results in biological sim-

plification and ultimately a degraded production potential for the future. Despite the large 
and growing body of evidence pointing to the need to restore biodiversity to farm systems, 

incorporation of biodiversity and ecosystem services into local agricultural land use deci-

sion-making remains limited. The lack of planned and associated biodiversity may reduce 

resiliency of local managed ecosystems and add management costs; however, the trade-

off for individual landowners of greater diversity is increased management complexity 
and uncertainty. To assist farmers in managing biodiversity and to encourage ecological 

thinking, we developed the Healthy Farm Index, a farm-scale tool that complements ex-

isting farm assessment tools by integrating multiple metrics and outputs suitable for ap-

plied decision-making and annual evaluation. In this article, we describe the impetus for 

the index development and the structure of the index and through a case study apply the 

index and discuss its varied outputs and applications. 

Keywords: adaptive management, agroecology, engagement, organic  

Introduction 

Diversity and complexity are fundamental to healthy systems, whether health is measured by eco-

nomic, ecological or social indicators (Tilman 1999). Biological diversity supports healthy ecologi-

cal systems (Benton et al. 2003, Perrings et al. 2006). In particular, a diversity of genes, species and 

ecosystems are essential to the continued flow of ecosystem services (MA 2005, Perrings et al. 2006, 

Dale and Polasky 2007). In agroecosystems, ecosystem services provided at these respective biologi-

cal levels include genes for drought tolerance, species that pollinate and control pests and land cover 

that regulates water flow (Swinton et al. 2007, Zhang et al. 2007) as well as the primary ecosystem 

service of a farm, biomass production. Yet, the recent intensity of management and singular focus on 

maximizing crop and livestock production has unintentionally resulted in the decline of biodiversity 

and ultimately the reduction of other ecosystem services provided by agroecosystems (Matson et al. 

1997, Altieri 1999, MA 2005, Norris 2008, Bennett et al. 2009). Restoration of biological diversity in 
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agricultural ecosystems may provide an improved flow of ecosystem services to the farm as well as 
the larger landscape (Daily 1997, Boody et al. 2005, Zhang et al. 2007, Chaplin-Kramer et al. 2011) 

and aid species conservation efforts (Beecher et al. 2002).  

Despite the large and growing body of evidence pointing to the need to restore biodiversity to farm 

systems (Jackson et al. 2007, Rands et al. 2010, FAO 2011), incorporation of biodiversity and eco-

system services into agricultural land-use decision-making remains limited. Moreover, opportunity 
costs accumulate as biodiversity is ignored and lost (Perrings et al. 2006). Limited adoption may stem 

from market structures, lack of incentives (Lin 2011, Reganold et al. 2011), limited awareness of the 

need for nature conservation in agroecosystems or what this entails (Ahnström et al. 2009), lack of 

awareness of potential benefits, perception that biodiversity has a negative impact on farm profitabil-
ity (Conover 1998) or the uncertainty and complexity in perceived outcomes (Hammond et al. 1998, 

Ahnström et al. 2009, Bennett et al. 2009). 

To encourage and support a more comprehensive on-farm decision-making process that integrates 

biological diversity and ecosystem services, we have developed and tested a multi-metric and descrip-

tive farm assessment tool, the Healthy Farm Index (HFI). To date, the focus of farm assessment tools 

has largely been agricultural resource conservation, specifically, the abiotic resources, such as water, 
soil and nutrients, necessary for continued biomass production (e.g. Zobeck et al. 2008). When in-

cluded, biodiversity and associated ecosystem services are ancillary metrics. However, this approach 

minimizes the importance of biodiversity. Thus, to incorporate biodiversity and ecosystem services 

more intimately into farm decision-making, we employ a needed agricultural–environment manage-

ment approach (Kevan et al. 1997, Weiner 2003, Batie 2009), while incorporating concepts from mul-

tiple disciplines, including agronomy, economics and human dimensions. Furthermore, measurement 

of biodiversity and ecosystem services places the HFI under the framework of the Millennium Eco-

system Assessment (MA 2005) rather than trying to find a place within the varied applications and 
definitions of sustainability (Pollock et al. 2008). 

In this article, we first outline the index structure, discussing the selection of suitable metrics, tar-

gets and weights. Second, we describe a case study of the initial field application of the HFI to a net-
work of organic farms that collaborated in the index development and data collection effort. Third, 
with calculated metrics from the participating farms, we evaluate and discuss the response of the in-

dex to metric targets and weights. In conclusion, we suggest future development and application of 

the HFI as an assessment tool for adaptive management. 

Materials and methods 

The HFI uses multiple metrics to form a composite indicator or multimetric index (Karr and Chu 

1997, Girardin et al. 1999, Saltelli et al. 2008) built on an interrelated hierarchy of biodiversity com-

position and associated ecosystem services (Bennett et al. 2009, Dennis et al. 2010, Mace et al. 2011). 

Proposed and tested as a conceptual model on hypothetical farm scenarios (Quinn et al. 2009), the 

selected metrics focus on the relationships among farm management, biodiversity maintenance and 

the flow of ecosystem services. The metrics provide a general framework that can be adapted for mon-

itoring associated outcomes of farm management across farm types and global ecoregions. Chosen 

metrics reflect current information available to farmers or new data collected easily by farmers at the 
farm scale. As a composite indicator, the HFI avoids the limitations of focusing on a single outcome 

or measure of success (Kosoy and Corbera 2010) and reflects the variety of key attributes of an agro-

ecosystem, emphasizing integrated agricultural– environment management rather than the less-en-

compassing agriculture resource conservation (Batie 2009). The HFI, however, does not seek to re-

place other measures of agricultural resource conservation (e.g. soil quality; Zobeck et al. 2008), but 

rather to compliment current tools available.  
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Scale of application 

There is a clear need to integrate biodiversity and ecosystem services into the management of agro-

ecosystems (Perrings et al. 2006, Pretty et al. 2010, Quinn 2012). Furthermore, given evidence sup-

porting the need to include local stakeholders (Dawson et al. 2008, Persha et al. 2011, Fischer et al. 

2012), it is clear that farmers must be involved in the process of local management for biodiversity 

and ecosystem services, that tools need to be suitable for farmer use (Lightfoot and Noble 2001, Darn-

hofer et al. 2010, Cerf et al. 2012), and that management must consider suitable scales (Darnhofer et 

al. 2010). Thus, we designed the HFI as a farm-scale assessment tool that aids individual landowners 

in monitoring and managing biodiversity and ecosystem services within a single farm system. Other 

projects have assessed environmental health or biodiversity and ecosystem services at watershed, re-

gional or global scale (e.g. Piorr 2003, Chan et al. 2006, Esty et al. 2006, USDA CEAP, Nelson et al. 

2009, Floridi et al. 2011). Although these larger-scale measurements are of value to governments and 

policy makers, they are not effective tools for individual landowners because of the broad spatial and 
temporal scales over which they measure. 

Index structure: biodiversity and ecosystem services 

Structured to integrate existing knowledge regarding biodiversity and ecosystem service metrics, 

metrics in the index are categorized as either a marker of the current status of biological diver-

sity composition or indicator of the flow of an ecosystem service. Within these two categories, 

the HFI includes metrics (Table 1) that are relevant to biodiversity in agroecosystems at the farm 

scale and predicted to affect the flow of ecosystem services to the farm and surrounding land-

scape. The composition of biodiversity on a farm is an indicator of ecosystem health, whereas flow 

of ecosystem services encompasses the benefits or ecosystem services provided to the farm and 

surrounding environment (de Groot et al. 2002, Tscharntke et al. 2005, FAO 2007). At this time, 

the HFI considers the composition of biodiversity across two levels of biological organization: 

species and ecosystems. The assessment of ecosystem services includes provisioning, regulating 

Table 1. From left to right; Index categories of biodiversity (species and ecosystem diversity) and ecosys-

tem service (provisioning, regulating and cultural), selected metrics in the HFI and data source.  
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and cultural services (Zhang et al. 2007). Data needed for the assessment process are immedi-

ately available to farmers (e.g. yield, cropping patterns, satisfaction), easy to sample with little 

training (bird metrics) or readily available from open data sources (e.g. Google Earth land cover 

images). Moreover, the metrics are not region specific, thus allowing the concept of the HFI to be 
adapted to and applied across agroecosystem types. 

Metrics of biodiversity composition 

Metrics of biodiversity include measures of planned as well as associated species and ecosystem di-
versity (Matson et al. 1997). As a complete biodiversity inventory is not practical (Büchs 2003, Dale 

and Polasky 2007), the HFI uses accurate and suitable indicator species or groups. As species-level 

metrics of planned diversity (i.e. diversity deliberately maintained on a farm and includes crops, 

livestock or landscape elements), the HFI includes the richness of field plantings (i.e. cash crops 
and cover crops) (Lin 2011) and livestock types. Associated biodiversity encompasses species and 

ecosystems that interact with a farm system but are not typically managed as part of a farm opera-

tion. As a species-level metric of associated diversity, the HFI focus on wild bird diversity, in par-

ticular a small set of identified suitable indicator species (Quinn et al. 2011) of regional conserva-

tion interest (e.g. Rich et al. 2004). Birds stand as an ideal indicator species and are preferable to 

insects or plants because of their ease of detection, sensitivity to environmental change and broad 

presence in the environment (Browder et al. 2002). In addition, targeting a limited number of rel-

evant indicator species is more suitable to farmer engagement than metrics like species richness. 

An additional associated bird diversity measure is a native-to-total species ratio (National Acad-

emy of Sciences 2000). HFI ecosystem- level metrics include the abundance of rare landscape el-

ements (e.g. wetlands, riparian areas, primary forest and prairie), percent of the farm in non-crop 

vegetation and richness of land cover types. 

Metrics of ecosystem services 

Metrics of ecosystem services include measures of provisioning, regulating and cultural services. Cur-

rent predictability of the flow of ecosystem services is more limited than measures of species and eco-

system diversity (Kremen 2005, Bennett et al. 2009, Rands et al. 2010). For example, although an 

increase in insectivores may result in greater consumption of pest insects, directly linking this pre-

dation to a reduction in crop damage is difficult (Letourneau and Bothwell 2008). We recognize that 
functional outcomes of many practices are uncertain and predictions are often limited to extrapolat-

ing from the scope of practices implemented in the landscape (Bennett et al. 2009). With acknowl-

edgement of this uncertainty, the HFI, by using current research and reviewing relevant literature to 

estimate trends in ecosystem services resulting from shifts in biodiversity patterns, can be used to em-

phasize outcomes of farm management. For example, planting of buffer strips is widely recognized to 
decrease runoff from crop fields, yet the quantified value of total soil loss or chemical capture is con-

tingent on a wide variety of other field and landscape factors (Dosskey et al. 2008). These points do 

not diminish the value of the HFI but rather reflect the status of ongoing research to clarify relation-

ships between farm practices and ecosystem service outcomes and the need to act on existing knowl-

edge (Fischer et al. 2012). 

The primary ecosystem service provided by agroecosystems is provisioning of biomass. As met-

rics of provisioning services, the HFI measures yields of selected common regional crops (e.g. corn, 

soybean and wheat in the central United States) and alternate income opportunities provided by bio-

diversity or nature (e.g. ecotourism or specialty products). As metrics of regulating services, the HFI 
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measures conservation structures such as field buffers and use of continuous living cover to indicate 
soil retention (Borin et al. 2010). To assess water regulation, the HFI measures the percent of water-

ways protected by buffers (Dosskey et al. 2008, Udawatta et al. 2011). Cultural services are measured 

by land tenure (Soule et al. 2000), calculated as the percentage of farmed land owned by the farmer, 

and a self-evaluation of individual satisfaction with farm profit and the farm management system. We 
selected satisfaction with profit over gross or net profit to reflect an individual’s perception of success 
as the goals of an individual farmer can vary. 

Selection of metric targets and index weights 

To make the HFI broadly applicable, selection of targets is deliberately flexible to be context specific 
for unique location of a farm, available resources and labor and objectives of the individual (Karr and 

Chu 1997, Dale and Haeuber 2001, Darnhofer et al. 2010). Selection of metric targets and weights 

though must take into account the ecoregion a farm is within, available science and objectives of the 

landowner; and reflect the current biodiversity crisis (Norris 2008) and the need to put into practice 
management actions that support ecosystem services (Daily and Matson 2008). The identification 
of metric targets and weights is a collaborative process between local researchers, practitioners and 

farmers, though farmer input is essential throughout the process to ensure that the identified goals 
are applicable and realistic. 

Metric targets 

Metric targets represent a goal as identified by the collaborative process involving local farmers and 
researchers. Although biodiversity conservation is implicit in the use of the HFI, importantly, the goal 

of the index is not to encourage farmers to maximize biodiversity but rather to restore and maintain a 

level of diversity beneficial to the farm and local ecosystem and that contributes to local and regional 
conservation efforts. Furthermore, observation of natural systems and replicated field trials demon-

strate that increasing richness and diversity improves the flow of many ecosystem services (e.g. Til-
man et al. 2006). The benefits, however, of increasing biodiversity do not increase indefinitely; the 
value provided is subject to the law of diminishing returns and spatial and temporal variation (Kre-

men and Ostfeld 2005, Tilman et al. 2006, Zhang et al. 2012). Thus, rather than establishing an ide-

alistic (and ultimately impractical) objective to maximize all metrics, the HFI allows farmers to fo-

cus on pragmatic goals for each metric, to select suitable targets and over time, to examine emerging 

trade-offs and synergies. 
Identification of region- and farm-specific targets for each metric is accomplished in two ways: 

(1) calculated with numerical determinants (e.g. average or maximum) or (2) based on empirical re-

search. Average and maximum targets represent mean and highest observed per metric, respectively, 

on farms scored within a selected region. Empirical targets would reflect published literature, local 
research, discussion with local farmers and informal observations in the field. Engagement of the lo-

cal research community in selection of these targets would prove valuable. Ultimately, targets should 

be ecoregion specific and take into consideration individual farm goals. 
The metric values obtained from the farm are standardized against the chosen target (i.e. Observed 

Metric Value/Target Metric Value), resulting in metric scores between zero and one, with higher val-
ues reflecting better performance (Box 1). When an observed measure of a metric exceeds the se-

lected target for that metric, the index adjusts the scored value to one, limiting the ability of a single 

metric to compensate for shortcomings elsewhere and the potential of a single metric to overwhelm 

other measures.  
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Category weights 

Users of the HFI identify weights for each metric and each metric category (Table 2). To optimize HFI 

effectiveness, weights for each metric should reflect management goals for a region and priorities of 
the landowner. For example, if water quality were of particular interest to an individual farmer or to 

regional management efforts, greater weight can be given to metrics of regulating ecosystem services. 
Other example metric weightings could be made based on goals for crop production or nature con-

servation. Adjusting weights empower the landowner in the decision-making and assessment process 

and yet the format of the HFI ensures that multiple measures are included in the farm assessment 

process. It is important, however, to remember that the primary focus of the HFI is not which farm is 

better but rather to illustrate to the farmer a farm’s success at conserving, maintaining and benefit-
ing from biodiversity conservation and ecosystem services. 

Application of the HFI is currently available as a digital spreadsheet. In the spreadsheet, farmers 

enter the scores for their individual farm and the selected targets and weights. An overall HFI score 

and a standardized score for each individual metric is available for evaluation. 

Great Plains organic case study 

To demonstrate the assessment process and subsequent output of the index, we present a case study 

as an initial application of the index. This case study focused on a group of 23 organic farms in the 

Great Plains region of North America (Figure 1). In this case study, we considered empirical, average 

and maximum targets. We evaluated metric and category weights (Table 2) for one neutral or non-

specific monitoring plan with weights distributed equally across metric categories and for two spe-

cific management goals: grassland bird conservation or crop production. For grassland bird conser-

vation (Table 2, Conservation column), the outcome of management on the state of grassland birds, 

a regional conservation priority (Rich et al. 2004), was given the greatest weight. For crop produc-

tion, metrics of crop diversity and yield were given the greatest weight (Table 2, Production column). 

For this case study, we worked with a local organic farming community. Although the total acre-

age of land managed under organic practices is relatively small (e.g. 58,679 ha on > 200 farms in Ne-

braska, USA of arable cropland, pasture and range), it is increasing across the Great Plains (USDA 

2009). Twenty-three organic farmers, from two adjacent agroecoregions in the Great Plains (Figure 

1), participated. Land use and land cover of the Great Plains region have undergone dramatic change 

Box 1 Calculation of composite scores in the Healthy Farm Index. 

Step 1. Standardize metrics between 0 and 1 

  • Farm result/target = Standardized metric score 
Step 2. Adjust by selected weight 1 (category) 
  •  Standardized metric score × Sub-category weight = Sub-weighted score 
Step 3. Sum sub-weighted scores in category, adjust by selected weight 2 
  •  Σ (Weighted scores in category) × Category weight = Category index score 
Step 4. Sum index scores 
  •  Σ (Biodiversity index scores) = Biodiversity index 
  •  Σ (Ecosystem service index scores) = Ecosystem service index 
Step 5. Average of biodiversity and ecosystem service index 
  •  (Biodiversity index + Ecosystem service index)/2 = Healthy farm index
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from their historical grassland cover. Today, the study area is primarily agricultural, in particular, 

conventional and genetically modified corn and soybean (Henebry et al. 2005, Ellis and Ramankutty 

2008). The applied targets (derived from Table 3) and weights (Table 2) are specific to the WCB and 
Central Great Plains temperate agroecoregions. 

The organic farmers managing the farms were ideal to work alongside because their farm systems 

already included greater biodiversity than many conventional systems (Beecher et al. 2002, Hole et 

al. 2005). As such, they are already dealing with many components of biodiversity and, consequently, 

are involved in a more complex decision-making process than are conventional farmers. 

We collected the applied data of farm biodiversity and ecosystem services for this case study (Table 

3) between 2007 and 2009 with farmer questionnaires, on-farm discussion, field research and field 
maps from the farmers and governmental agencies (Table 1). We sampled avian communities dur-

ing the summer breeding seasons of 2007–2009 as part of an associated project (Quinn et al. 2012). 

Land use and land cover data were provided by individual farmers, USDA, and USFWS and verified 
during farm visits. In the winter of 2008/2009, a mail survey was sent to the broader organic farming 

Table 3. Summary data applied for the Great Plains Organic case study from two regions: Central Great 

Plains (CGP) and Western Corn Belt (WCB). 

Metric  Region  Mean*  SD  Min.  Max.*  Empirical target* 

Planned vegetation richness  CGP  4.17  1.47  3.00  6.00  7.00 

 WCB  3.90  1.73  1.00  7.00 

Livestock richness  CGP  1.33  1.21  0.00  3.00  3.00 

 WCB  2.70  1.77  0.00  5.00 

Grass indicator sp. score (0–1)  CGP  0.39  0.46  0.00  1.00  1.00 

 WCB  0.48  0.28  0.00  0.94 

Shrub indicator sp. score (0–1)  CGP  0.78  0.15  0.50  0.94  1.00 

 WCB  0.84  0.16  0.50  1.00 

Native/total ratio  CGP  0.93  0.03  0.89  0.98  1.00 

 WCB  0.94  0.02  0.90  0.96 

Richness of landscape elements  CGP  4.50  1.76  3.00  7.00  8.00 

 WCB  4.10  2.18  1.00  8.00 

Percent non-crop  CGP  0.22  0.16  6.25  49.07  0.15 

 WCB  0.38  0.28  0.99  86.84 

Percent rare landscape elements  CGP  0.06  0.06  1.79  16.36  0.10 

 WCB  0.11  0.12  0.00  31.37 

Yield average  CGP  101.91  21.49  74.44  133.33  100.00 

 WCB  61.44  26.72  0.00  96.67 

Capture of market opportunities (Y/N)  CGP          50% (3/6) farms captured market opportunity  1.00 

 WCB         50% (5/10) farms captured market opportunity 

Percent of waterways buffered/sheltered  CGP  85.00  30.00  40.00  100.00  100.00 
 WCB  95.00  7.64  80.00  100.00 

Percent continuous living cover  CGP  66.67  51.64  0.00  100.00  100.00 

 WCB  80.00  42.16  0.00  100.00 

Percent of farm fields protected  CGP  55.0  32.7  10.00  100.00  100.00 
 WCB  76.0  28.4  30.00  100.00 

Satisfaction (1–6)  CGP  4.71  0.67  4.08  5.92  6.00 

 WCB  4.90  0.43  4.14  5.71 

Land tenure (percent land-ownership)  CGP  0.91  0.14  71.35  100.00  100.00 

 WCB  0.76  0.26  35.49  100.00 

* Targets used in case study. 
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community of Nebraska, including participants of this project, to assess measures of farm production 

and farmer attitude. Participating farmers provided yield data for three primary crops in the region: 

corn, soybean and wheat. University researchers initially analyzed collected data. We provided initial 

results to participating farmers and followed by in-person discussions to examine the different met-
rics during off-season advisory meetings. 

Results 

Of the 23 initial participants, 10 farmers in the WCB and 6 in the Central Great Plains provided suffi-

cient information for complete assessment using the HFI. Individual farm HFI metric scores and sub-

sequent index values were responsive to the selection of initial metric target values (Table 4).Weight 

selection had less of an impact on calculated HFI scores than did target selection (Table 5). Part of the 

reason for this may be that weights reflect the importance of different outcomes and, as such, only in-

fluence the aggregated sub-scores for the Biodiversity and Ecosystem Service components, which are 
then averaged to obtain the HFI. The variation in the composite scores does reflect the varied man-

agement choices made by individual farmers. 

Examination of the overall HFI score and its two sub-scores is valuable for preliminary discussion 

on assessment output, but information is lost if one only considers a single number that masks the 

variability, uncertainty and the complexity of biodiversity and ecosystem services within agroecosys-

tems. In addition, consideration of only one output likely limits future discussion. Therefore, follow-

ing reflection on composite scores, discussion on individual metric scores provides greater informa-

tion and value than consideration of only a single composite index value. In this case study, variation 

Table 4. Variation in HFI, biodiversity and ecosystem service scores for three different target-type exam-

ples from two regions. 

                                                                                                               Biodiversity 

                                                                        HFI                               composition                     Ecosystem service  

                           Target type                                                                                                          

Region  (equal weight) Median  Max  Min  Median  Max  Min  Median  Max  Min 

Western Average  0.85  0.95  0.63  0.86  0.96  0.47  0.81  1.00  0.69 

Corn Belt  Max  0.64  0.79  0.44  0.55  0.79  0.30  0.76  0.89  0.42 
 Empirical  0.69  0.87  0.52  0.75  0.90  0.33  0.74  0.88  0.41 

 

Central Average  0.79  0.92  0.61  0.78  0.97  0.48  0.80  0.99  0.74 

Great Plains Max  0.63  0.82  0.50  0.55  0.85  0.34  0.72  0.80  0.52 
 Empirical  0.67  0.82  0.53  0.60  0.82  0.37  0.73  0.82  0.53 

Table 5. Variation in HFI, biodiversity and ecosystem service scores for three examples of selected weights. 

                                                                                                           Biodiversity 

                                                                     HFI                              composition                      Ecosystem service  

                           Weight type                                                                                                          

Region  (avg. target) Median  Max  Min  Median  Max  Min  Median  Max  Min 

Western   Equal  0.85  0.95  0.63 0.86  0.96  0.47  0.81  1.00  0.69

Corn Belt  Grassland bird  0.89  0.96  0.71  0.85  0.94  0.64  0.91  1.00  0.69 

 Agronomic  0.88  0.94  0.72  0.85  0.94  0.66  0.92  1.00  0.55 

Central  Equal  0.79  0.92  0.61  0.78  0.97  0.48  0.80  0.99 0.74 

Great Plains  Grassland bird  0.82  0.91  0.66  0.74  0.97  0.45  0.88  0.99  0.79 

 Agronomic  0.87  0.90  0.67  0.80  0.93  0.46  0.88 0.99  0.78
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among farms in individual metric scores in the Biodiversity and Ecosystem Service Categories was 

evident (Figure 2), providing information to the landowner regarding how well a farm is performing 

in relation to specific goals. 
Examination of individual metrics can aid the landowner in setting pragmatic goals for improv-

ing each indictor. Spider plots (Figure 2) more clearly identify strengths and weaknesses regarding a 

Figure 2. Variation observed on three farms for individual biodiversity and ecosystem service metrics. 
Variation in measured values for three participating farms (rows) for individual biodiversity and ecosystem 
service metrics (columns). In the left column, the relative strengths and capacity to improve for each farm 

in regards to biodiversity is presented. Values closer to the perimeter represent measured values closer to 
the metric target. Taken together, a larger area within a star plots suggests greater progress towards stated 

goals. In the right column, strengths and areas to improve are presented for each ecosystem services met-

ric. Plots are suited to identify relative strengths in a single assessment but are also valuable to compare 

among years or farms.  
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farm’s health with consideration of multiple individual metrics (Lightfoot and Noble 2001, Gareau et 

al. 2010, Floridi et al. 2011). Of the three farms used to demonstrate the spider plots, variation in bio-

diversity and ecosystem services patterns is evident. The first farm (Figure 2a) scores well on associ-
ated biodiversity indictors, but is lower in planned diversity, while the second farm (Figure 2c) scores 

high on planned species diversity, but scores lower on associated diversity metrics. In contrast, the 

final farm (Figure 2e) scores well on a mix of both. For the same three farms, the greatest variation in 
metrics of ecosystem services (Figure 2b, d and f) is found in the use of continuous living cover, though 

they score well on other regulating services. All three farms score well in provisioning and cultural 

services. It is not surprising that different farms excel at different metrics of biodiversity maintenance 
and ecosystem services; individual landowners have specific goals for their system. A balanced farm 
scores well on multiple measures but is unlikely to obtain a perfect score on all metrics. Ultimately, 

consideration of the spider plot allows for a system assessment, while by identifying values of individ-

ual metrics, the HFI provides insight for each landowner concerning individual management goals. 

Future development and application of the HFI 

In the Great Plains Organic case study presented above, we described and illustrated an initial assess-

ment of farms in two ecoregions. This assessment process provided participating farmers initial in-

sight into the patterns of biodiversity and ecosystem services on their farms. By integrating measures 

of biodiversity with ecosystem services, the HFI improves the ability of farmers to evaluate trade-offs 
(MA 2005). Yet, farm practices, biodiversity patterns and ecosystem service flows are dynamic and 
change over time. Thus, it would be more informative to collect and examine metric and index scores 

on an annual or a semi-annual basis and watch for change and emerging patterns, allowing a land-

owner to assess and report outcomes of management actions, and adjust future management accord-

ingly. The value of the assessment process would increase in subsequent assessments through a cycli-

cal process of annual data accumulation, assessment and adaptive management. Ultimately, annual 

assessment would allow farmers to focus on overall trends rather than on microtrends and anomalies. 

Farming is a complex adaptive system (Darnhofer et al. 2010). Annual assessment (Figure 3) 

can formalize the ongoing adaptive management processes already inherent in many farm opera-

tions by gathering valuable data and insight from applied practices. Assessment at the farm scale 

Figure 3. Annual assessment and adaptive management process with the Healthy Farm Index.    
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will allow for more informed decisions and more effective progress towards shared production 
and conservation goals through tracking multiple measures of biodiversity and ecosystem services. 

With the increased information from the HFI and a better understanding of trade-offs and syner-

gies (Bennett et al. 2009), a landowner can weigh the costs and benefits of managing for farmland 
biodiversity more accurately and ultimately improve farm management decisions. Moreover, the 
HFI provides a basis for incentive programs and/or payment for environmental service schemes 

that could reward landowners for management of ecosystem services with broader societal inter-

est. Finally, by better engaging farmers, application of the HFI could move farmers towards inno-

vation and use of their farm-specific knowledge to better reach broader societal goals for agricul-
ture and nature conservation. 

In the long term and with further development, collaboration and infrastructure, the data col-

lected through the HFI would be applicable at larger scales and for broader research questions. 

By aggregating individual farm scores within a specific watershed or ecoregion, the HFI can im-

prove and help direct existing research efforts examining trade-offs and synergies in biodiversity 
and ecosystem services at larger scales. Ideally, individual farm scores would be submitted to, cat-

alogued and organized for use by a central agency. A current model of such a management system 

is the USGS Breeding Bird Survey program (Sauer et al. 2011). This format will allow researchers, 

planners and decision makers to have access to the data needed to understand and predict these 

tradeoffs and synergies. Aggregate datasets from multiple, non-identifiable, farms will improve re-

searcher abilities to identify common patterns as well as numerical and functional changes in the 

flow of ecosystem services. Such accumulated data could help drive future research and, most im-

portantly, involve farmers in the process. 

Conclusions 

Agriculture accounts for ~38% of Earth’s total ice-free land (Ellis and Ramankutty 2008, FAO 2007) 
and is expected to expand and intensify further to meet growing demands (Rands et al. 2010). To en-

gage farmers in the global effort in limit negative outcomes of future intensification, we have devel-
oped an accessible biodiversity and ecosystem service assessment tool suitable to engage individual 

landowners in their effort to sustain food production and conserve biodiversity. The HFI provides a 
framework built around multiple metrics of biodiversity and associated ecosystem services. The HFI 

provides decision makers with feedback and structure to make informed choices regarding goals across 

multiple systems. Notably, the HFI does not encourage farmers to maximize biodiversity but rather to 

restore and maintain a level of diversity beneficial to the farm and local ecosystem and that contrib-

utes to local and regional conservation efforts. Ultimately, the vision of ideal on a farm rests with the 
farmer. Further work is needed to evaluate whether use of the HFI changes farmers’ perceptions of the 
costs and benefits of increased diversity and if farmers change their behavior through use of the HFI. 

Given that planetary thresholds of multiple ecological processes are being crossed (Rockström et 

al. 2009) and that solutions presently remain unclear, local scale analysis and local landowners’ in-

volvement will complement global progress towards sustainability (MA 2005, Persha et al. 2011). 

Additionally, given that many policy and economic support mechanisms for farmland environmental 

programs are often perceived as rigid (Ahnström et al. 2009) and often achieve fewer changes than 

intended (Kleijn et al. 2004), it is clear that better farmer engagement and increased frequency of 

on-farm ecological research is necessary. Moreover, through consideration of biodiversity and eco-

system services as part of farm assessment, the HFI provides a much needed common language and 

interface between practitioners of biodiversity conservation and farmers (Berry 2006). Ultimately, 

both landowners and supporting policy and economic mechanisms (e.g. payments for ecosystem ser-

vices) are needed to effectively target and implement sustainable management systems locally and 
globally (Daily and Matson 2008). The HFI provides a timely tool to facilitate management decisions 
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at an individual farm scale and inform research and policy actions at larger scales to achieve mutual 

goals towards a more sustainable future that maintains long-term farm production, biodiversity and 

ecosystem services.  
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